1
|
Olaya I, Burgess SM, Rog O. Formation and resolution of meiotic chromosome entanglements and interlocks. J Cell Sci 2024; 137:jcs262004. [PMID: 38985540 PMCID: PMC11267460 DOI: 10.1242/jcs.262004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Interactions between parental chromosomes during the formation of gametes can lead to entanglements, entrapments and interlocks between unrelated chromosomes. If unresolved, these topological constraints can lead to misregulation of exchanges between chromosomes and to chromosome mis-segregation. Interestingly, these configurations are largely resolved by the time parental chromosomes are aligned during pachytene. In this Review, we highlight the inevitability of topologically complex configurations and discuss possible mechanisms to resolve them. We focus on the dynamic nature of a conserved chromosomal interface - the synaptonemal complex - and the chromosome movements that accompany meiosis as potential mechanisms to resolve topological constraints. We highlight the advantages of the nematode Caenorhabditis elegans for understanding biophysical features of the chromosome axis and synaptonemal complex that could contribute to mechanisms underlying interlock resolution. In addition, we highlight advantages of using the zebrafish, Danio rerio, as a model to understand how entanglements and interlocks are avoided and resolved.
Collapse
Affiliation(s)
- Iván Olaya
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
- Integrative Genetics and Genomics Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Sean M. Burgess
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
2
|
Zhang F, Bechara S, Nowacki M. Structural maintenance of chromosomes (SMC) proteins are required for DNA elimination in Paramecium. Life Sci Alliance 2024; 7:e202302281. [PMID: 38056908 PMCID: PMC10700549 DOI: 10.26508/lsa.202302281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023] Open
Abstract
Chromosome (SMC) proteins are a large family of ATPases that play important roles in the organization and dynamics of chromatin. They are central regulators of chromosome dynamics and the core component of condensin. DNA elimination during zygotic somatic genome development is a characteristic feature of ciliated protozoa such as Paramecium This process occurs after meiosis, mitosis, karyogamy, and another mitosis, which result in the formation of a new germline and somatic nuclei. The series of nuclear divisions implies an important role of SMC proteins in Paramecium sexual development. The relationship between DNA elimination and SMC has not yet been described. Here, we applied RNA interference, genome sequencing, mRNA sequencing, immunofluorescence, and mass spectrometry to investigate the roles of SMC components in DNA elimination. Our results show that SMC4-2 is required for genome rearrangement, whereas SMC4-1 is not. Functional diversification of SMC4 in Paramecium led to a formation of two paralogues where SMC4-2 acquired a novel, development-specific function and differs from SMC4-1. Moreover, our study suggests a competitive relationship between these two proteins.
Collapse
Affiliation(s)
- Fukai Zhang
- https://ror.org/02k7v4d05 Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Sebastian Bechara
- https://ror.org/02k7v4d05 Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Mariusz Nowacki
- https://ror.org/02k7v4d05 Institute of Cell Biology, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Castellano-Pozo M, Sioutas G, Barroso C, Prince JP, Lopez-Jimenez P, Davy J, Jaso-Tamame AL, Crawley O, Shao N, Page J, Martinez-Perez E. The kleisin subunit controls the function of C. elegans meiotic cohesins by determining the mode of DNA binding and differential regulation by SCC-2 and WAPL-1. eLife 2023; 12:e84138. [PMID: 37650378 PMCID: PMC10497282 DOI: 10.7554/elife.84138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/29/2023] [Indexed: 09/01/2023] Open
Abstract
The cohesin complex plays essential roles in chromosome segregation, 3D genome organisation, and DNA damage repair through its ability to modify DNA topology. In higher eukaryotes, meiotic chromosome function, and therefore fertility, requires cohesin complexes containing meiosis-specific kleisin subunits: REC8 and RAD21L in mammals and REC-8 and COH-3/4 in Caenorhabditis elegans. How these complexes perform the multiple functions of cohesin during meiosis and whether this involves different modes of DNA binding or dynamic association with chromosomes is poorly understood. Combining time-resolved methods of protein removal with live imaging and exploiting the temporospatial organisation of the C. elegans germline, we show that REC-8 complexes provide sister chromatid cohesion (SCC) and DNA repair, while COH-3/4 complexes control higher-order chromosome structure. High-abundance COH-3/4 complexes associate dynamically with individual chromatids in a manner dependent on cohesin loading (SCC-2) and removal (WAPL-1) factors. In contrast, low-abundance REC-8 complexes associate stably with chromosomes, tethering sister chromatids from S-phase until the meiotic divisions. Our results reveal that kleisin identity determines the function of meiotic cohesin by controlling the mode and regulation of cohesin-DNA association, and are consistent with a model in which SCC and DNA looping are performed by variant cohesin complexes that coexist on chromosomes.
Collapse
Affiliation(s)
| | | | | | - Josh P Prince
- MRC London Institute of Medical SciencesLondonUnited Kingdom
| | | | - Joseph Davy
- MRC London Institute of Medical SciencesLondonUnited Kingdom
| | | | - Oliver Crawley
- MRC London Institute of Medical SciencesLondonUnited Kingdom
| | - Nan Shao
- MRC London Institute of Medical SciencesLondonUnited Kingdom
| | - Jesus Page
- Universidad Autónoma de MadridMadridSpain
| | - Enrique Martinez-Perez
- MRC London Institute of Medical SciencesLondonUnited Kingdom
- Imperial College Faculty of MedicineLondonUnited Kingdom
| |
Collapse
|
4
|
Belew MD, Chien E, Michael WM. Characterization of factors that underlie transcriptional silencing in C. elegans oocytes. PLoS Genet 2023; 19:e1010831. [PMID: 37478128 PMCID: PMC10395837 DOI: 10.1371/journal.pgen.1010831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/15/2023] [Indexed: 07/23/2023] Open
Abstract
While it has been appreciated for decades that prophase-arrested oocytes are transcriptionally silenced on a global level, the molecular pathways that promote silencing have remained elusive. Previous work in C. elegans has shown that both topoisomerase II (TOP-2) and condensin II collaborate with the H3K9me heterochromatin pathway to silence gene expression in the germline during L1 starvation, and that the PIE-1 protein silences the genome in the P-lineage of early embryos. Here, we show that all three of these silencing systems, TOP-2/condensin II, H3K9me, and PIE-1, are required for transcriptional repression in oocytes. We find that H3K9me3 marks increase dramatically on chromatin during silencing, and that silencing is under cell cycle control. We also find that PIE-1 localizes to the nucleolus just prior to silencing, and that nucleolar dissolution during silencing is dependent on TOP-2/condensin II. Our data identify both the molecular components and the trigger for genome silencing in oocytes and establish a link between PIE-1 nucleolar residency and its ability to repress transcription.
Collapse
Affiliation(s)
- Mezmur D Belew
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, California, United States of America
| | - Emilie Chien
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, California, United States of America
| | - W Matthew Michael
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
5
|
Yang Q, Lo TW, Brejc K, Schartner C, Ralston EJ, Lapidus DM, Meyer BJ. X-chromosome target specificity diverged between dosage compensation mechanisms of two closely related Caenorhabditis species. eLife 2023; 12:e85413. [PMID: 36951246 PMCID: PMC10076027 DOI: 10.7554/elife.85413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/21/2023] [Indexed: 03/24/2023] Open
Abstract
An evolutionary perspective enhances our understanding of biological mechanisms. Comparison of sex determination and X-chromosome dosage compensation mechanisms between the closely related nematode species Caenorhabditis briggsae (Cbr) and Caenorhabditis elegans (Cel) revealed that the genetic regulatory hierarchy controlling both processes is conserved, but the X-chromosome target specificity and mode of binding for the specialized condensin dosage compensation complex (DCC) controlling X expression have diverged. We identified two motifs within Cbr DCC recruitment sites that are highly enriched on X: 13 bp MEX and 30 bp MEX II. Mutating either MEX or MEX II in an endogenous recruitment site with multiple copies of one or both motifs reduced binding, but only removing all motifs eliminated binding in vivo. Hence, DCC binding to Cbr recruitment sites appears additive. In contrast, DCC binding to Cel recruitment sites is synergistic: mutating even one motif in vivo eliminated binding. Although all X-chromosome motifs share the sequence CAGGG, they have otherwise diverged so that a motif from one species cannot function in the other. Functional divergence was demonstrated in vivo and in vitro. A single nucleotide position in Cbr MEX can determine whether Cel DCC binds. This rapid divergence of DCC target specificity could have been an important factor in establishing reproductive isolation between nematode species and contrasts dramatically with the conservation of target specificity for X-chromosome dosage compensation across Drosophila species and for transcription factors controlling developmental processes such as body-plan specification from fruit flies to mice.
Collapse
Affiliation(s)
- Qiming Yang
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Te-Wen Lo
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Katjuša Brejc
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Caitlin Schartner
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Edward J Ralston
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Denise M Lapidus
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Barbara J Meyer
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
6
|
Rourke C, Jaramillo-Lambert A. TOP-2 is differentially required for the proper maintenance of the cohesin subunit REC-8 on meiotic chromosomes in Caenorhabditis elegans spermatogenesis and oogenesis. Genetics 2022; 222:iyac120. [PMID: 35951744 PMCID: PMC9526062 DOI: 10.1093/genetics/iyac120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/01/2022] [Indexed: 11/14/2022] Open
Abstract
During meiotic prophase I, accurate segregation of homologous chromosomes requires the establishment of chromosomes with a meiosis-specific architecture. The sister chromatid cohesin complex and the enzyme Topoisomerase II (TOP-2) are important components of meiotic chromosome architecture, but the relationship of these proteins in the context of meiotic chromosome segregation is poorly defined. Here, we analyzed the role of TOP-2 in the timely release of the sister chromatid cohesin subunit REC-8 during spermatogenesis and oogenesis of Caenorhabditis elegans. We show that there is a different requirement for TOP-2 in meiosis of spermatogenesis and oogenesis. The loss-of-function mutation top-2(it7) results in premature REC-8 removal in spermatogenesis, but not oogenesis. This correlates with a failure to maintain the HORMA-domain proteins HTP-1 and HTP-2 (HTP-1/2) on chromosome axes at diakinesis and mislocalization of the downstream components that control REC-8 release including Aurora B kinase. In oogenesis, top-2(it7) causes a delay in the localization of Aurora B to oocyte chromosomes but can be rescued through premature activation of the maturation promoting factor via knockdown of the inhibitor kinase WEE-1.3. The delay in Aurora B localization is associated with an increase in the length of diakinesis bivalents and wee-1.3 RNAi mediated rescue of Aurora B localization in top-2(it7) is associated with a decrease in diakinesis bivalent length. Our results imply that the sex-specific effects of TOP-2 on REC-8 release are due to differences in the temporal regulation of meiosis and chromosome structure in late prophase I in spermatogenesis and oogenesis.
Collapse
Affiliation(s)
- Christine Rourke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | |
Collapse
|
7
|
Loss, Gain, and Retention: Mechanisms Driving Late Prophase I Chromosome Remodeling for Accurate Meiotic Chromosome Segregation. Genes (Basel) 2022; 13:genes13030546. [PMID: 35328099 PMCID: PMC8949218 DOI: 10.3390/genes13030546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
To generate gametes, sexually reproducing organisms need to achieve a reduction in ploidy, via meiosis. Several mechanisms are set in place to ensure proper reductional chromosome segregation at the first meiotic division (MI), including chromosome remodeling during late prophase I. Chromosome remodeling after crossover formation involves changes in chromosome condensation and restructuring, resulting in a compact bivalent, with sister kinetochores oriented to opposite poles, whose structure is crucial for localized loss of cohesion and accurate chromosome segregation. Here, we review the general processes involved in late prophase I chromosome remodeling, their regulation, and the strategies devised by different organisms to produce bivalents with configurations that promote accurate segregation.
Collapse
|
8
|
Meyer BJ. Mechanisms of sex determination and X-chromosome dosage compensation. Genetics 2022; 220:6498458. [PMID: 35100381 PMCID: PMC8825453 DOI: 10.1093/genetics/iyab197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022] Open
Abstract
Abnormalities in chromosome number have the potential to disrupt the balance of gene expression and thereby decrease organismal fitness and viability. Such abnormalities occur in most solid tumors and also cause severe developmental defects and spontaneous abortions. In contrast to the imbalances in chromosome dose that cause pathologies, the difference in X-chromosome dose used to determine sexual fate across diverse species is well tolerated. Dosage compensation mechanisms have evolved in such species to balance X-chromosome gene expression between the sexes, allowing them to tolerate the difference in X-chromosome dose. This review analyzes the chromosome counting mechanism that tallies X-chromosome number to determine sex (XO male and XX hermaphrodite) in the nematode Caenorhabditis elegans and the associated dosage compensation mechanism that balances X-chromosome gene expression between the sexes. Dissecting the molecular mechanisms underlying X-chromosome counting has revealed how small quantitative differences in intracellular signals can be translated into dramatically different fates. Dissecting the process of X-chromosome dosage compensation has revealed the interplay between chromatin modification and chromosome structure in regulating gene expression over vast chromosomal territories.
Collapse
Affiliation(s)
- Barbara J Meyer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720-3204, USA
| |
Collapse
|
9
|
Wenda JM, Prosée RF, Gabus C, Steiner FA. Mitotic chromosome condensation requires phosphorylation of the centromeric protein KNL-2 in C. elegans. J Cell Sci 2021; 134:272713. [PMID: 34734636 PMCID: PMC8714079 DOI: 10.1242/jcs.259088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022] Open
Abstract
Centromeres are chromosomal regions that serve as sites for kinetochore formation and microtubule attachment, processes that are essential for chromosome segregation during mitosis. Centromeres are almost universally defined by the histone variant CENP-A. In the holocentric nematode C. elegans, CENP-A deposition depends on the loading factor KNL-2. Depletion of either CENP-A or KNL-2 results in defects in centromere maintenance, chromosome condensation and kinetochore formation, leading to chromosome segregation failure. Here, we show that KNL-2 is phosphorylated by CDK-1 in vitro, and that mutation of three C-terminal phosphorylation sites causes chromosome segregation defects and an increase in embryonic lethality. In strains expressing phosphodeficient KNL-2, CENP-A and kinetochore proteins are properly localised, indicating that the role of KNL-2 in centromere maintenance is not affected. Instead, the mutant embryos exhibit reduced mitotic levels of condensin II on chromosomes and significant chromosome condensation impairment. Our findings separate the functions of KNL-2 in CENP-A loading and chromosome condensation, and demonstrate that KNL-2 phosphorylation regulates the cooperation between centromeric regions and the condensation machinery in C. elegans. This article has an associated First Person interview with the first author of the paper. Summary: Phosphorylation of the essential centromere protein KNL-2 is required for mitotic chromosome condensation, but not for the role of KNL-2 in centromere maintenance and kinetochore formation.
Collapse
Affiliation(s)
- Joanna M Wenda
- Department of Molecular Biology and Institute for Genetics and Genomics in Geneva, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Reinier F Prosée
- Department of Molecular Biology and Institute for Genetics and Genomics in Geneva, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Caroline Gabus
- Department of Molecular Biology and Institute for Genetics and Genomics in Geneva, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Florian A Steiner
- Department of Molecular Biology and Institute for Genetics and Genomics in Geneva, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
10
|
Kim KD. Potential roles of condensin in genome organization and beyond in fission yeast. J Microbiol 2021; 59:449-459. [PMID: 33877578 DOI: 10.1007/s12275-021-1039-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/24/2022]
Abstract
The genome is highly organized hierarchically by the function of structural maintenance of chromosomes (SMC) complex proteins such as condensin and cohesin from bacteria to humans. Although the roles of SMC complex proteins have been well characterized, their specialized roles in nuclear processes remain unclear. Condensin and cohesin have distinct binding sites and mediate long-range and short-range genomic associations, respectively, to form cell cycle-specific genome organization. Condensin can be recruited to highly expressed genes as well as dispersed repeat genetic elements, such as Pol III-transcribed genes, LTR retrotransposon, and rDNA repeat. In particular, mitotic transcription factors Ace2 and Ams2 recruit condensin to their target genes, forming centromeric clustering during mitosis. Condensin is potentially involved in various chromosomal processes such as the mobility of chromosomes, chromosome territories, DNA reannealing, and transcription factories. The current knowledge of condensin in fission yeast summarized in this review can help us understand how condensin mediates genome organization and participates in chromosomal processes in other organisms.
Collapse
Affiliation(s)
- Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
11
|
Herbette M, Robert V, Bailly A, Gely L, Feil R, Llères D, Palladino F. A Role for Caenorhabditis elegans COMPASS in Germline Chromatin Organization. Cells 2020; 9:cells9092049. [PMID: 32911802 PMCID: PMC7565041 DOI: 10.3390/cells9092049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
Deposition of histone H3 lysine 4 (H3K4) methylation at promoters is catalyzed by the SET1/COMPASS complex and is associated with context-dependent effects on gene expression and local changes in chromatin organization. The role of SET1/COMPASS in shaping chromosome architecture has not been investigated. Here we used Caenorhabditis elegans to address this question through a live imaging approach and genetic analysis. Using quantitative FRET (Förster resonance energy transfer)-based fluorescence lifetime imaging microscopy (FLIM) on germ cells expressing histones eGFP-H2B and mCherry-H2B, we find that SET1/COMPASS influences meiotic chromosome organization, with marked effects on the close proximity between nucleosomes. We further show that inactivation of set-2, encoding the C. elegans SET1 homologue, or CFP-1, encoding the chromatin targeting subunit of COMPASS, enhances germline chromosome organization defects and sterility of condensin-II depleted animals. set-2 loss also aggravates germline defects resulting from conditional inactivation of topoisomerase II, another structural component of chromosomes. Expression profiling of set-2 mutant germlines revealed only minor transcriptional changes, suggesting that the observed effects are at least partly independent of transcription. Altogether, our results are consistent with a role for SET1/COMPASS in shaping meiotic chromosomes in C. elegans, together with the non-histone proteins condensin-II and topoisomerase. Given the high degree of conservation, our findings expand the range of functions attributed to COMPASS and suggest a broader role in genome organization in different species.
Collapse
Affiliation(s)
- Marion Herbette
- Laboratory of Biology and Modeling of the Cell (LBMC), CNRS, Ecole Normale Supérieure de Lyon, Université de Lyon, 69007 Lyon, France; (M.H.); (V.R.); (L.G.)
| | - Valérie Robert
- Laboratory of Biology and Modeling of the Cell (LBMC), CNRS, Ecole Normale Supérieure de Lyon, Université de Lyon, 69007 Lyon, France; (M.H.); (V.R.); (L.G.)
| | - Aymeric Bailly
- Centre de Recherche en Biologie cellulaire de Montpellier, CRBM, CNRS, University of Montpellier, 34090 Montpellier, France;
| | - Loïc Gely
- Laboratory of Biology and Modeling of the Cell (LBMC), CNRS, Ecole Normale Supérieure de Lyon, Université de Lyon, 69007 Lyon, France; (M.H.); (V.R.); (L.G.)
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, 34090 Montpellier, France; (R.F.); (D.L.)
| | - David Llères
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, 34090 Montpellier, France; (R.F.); (D.L.)
| | - Francesca Palladino
- Laboratory of Biology and Modeling of the Cell (LBMC), CNRS, Ecole Normale Supérieure de Lyon, Université de Lyon, 69007 Lyon, France; (M.H.); (V.R.); (L.G.)
- Correspondence: ; Tel.: +33-047-2728-126
| |
Collapse
|
12
|
Cuenca L, Shin N, Lascarez-Lagunas LI, Martinez-Garcia M, Nadarajan S, Karthikraj R, Kannan K, Colaiácovo MP. Environmentally-relevant exposure to diethylhexyl phthalate (DEHP) alters regulation of double-strand break formation and crossover designation leading to germline dysfunction in Caenorhabditis elegans. PLoS Genet 2020; 16:e1008529. [PMID: 31917788 PMCID: PMC6952080 DOI: 10.1371/journal.pgen.1008529] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/19/2019] [Indexed: 11/18/2022] Open
Abstract
Exposure to diethylhexyl phthalate (DEHP), the most abundant plasticizer used in the production of polyvinyl-containing plastics, has been associated to adverse reproductive health outcomes in both males and females. While the effects of DEHP on reproductive health have been widely investigated, the molecular mechanisms by which exposure to environmentally-relevant levels of DEHP and its metabolites impact the female germline in the context of a multicellular organism have remained elusive. Using the Caenorhabditis elegans germline as a model for studying reprotoxicity, we show that exposure to environmentally-relevant levels of DEHP and its metabolites results in increased meiotic double-strand breaks (DSBs), altered DSB repair progression, activation of p53/CEP-1-dependent germ cell apoptosis, defects in chromosome remodeling at late prophase I, aberrant chromosome morphology in diakinesis oocytes, increased chromosome non-disjunction and defects during early embryogenesis. Exposure to DEHP results in a subset of nuclei held in a DSB permissive state in mid to late pachytene that exhibit defects in crossover (CO) designation/formation. In addition, these nuclei show reduced Polo-like kinase-1/2 (PLK-1/2)-dependent phosphorylation of SYP-4, a synaptonemal complex (SC) protein. Moreover, DEHP exposure leads to germline-specific change in the expression of prmt-5, which encodes for an arginine methyltransferase, and both increased SC length and altered CO designation levels on the X chromosome. Taken together, our data suggest a model by which impairment of a PLK-1/2-dependent negative feedback loop set in place to shut down meiotic DSBs, together with alterations in chromosome structure, contribute to the formation of an excess number of DSBs and altered CO designation levels, leading to genomic instability. Faithful chromosome segregation during meiosis, the specialized cell division program that produces haploid gametes (i.e. eggs and sperm) from a diploid organism, is key for successful sexual reproduction. Diethylhexyl phthalate (DEHP), a commonly used plasticizer found in personal care and household products, has emerged as an endocrine disruptor that exerts reprotoxicity in mammals. In this study, we provide mechanistic insight into the modes of action by which environmentally-relevant levels of DEHP and its metabolites impair female meiosis in the C. elegans germline. Exposure to DEHP leads to defects in late prophase I chromosome remodeling, altered chromosome morphology in oocytes at diakinesis, errors in chromosome segregation, and impaired embryogenesis. Underlying these defects are higher levels of DSBs, altered DSB repair, defects in crossover (CO) designation/formation, germline-specific change in prmt-5 gene expression and altered chromosome structure. We propose that DEHP exposure induces an excess number of DSBs by interfering with mechanisms set in place to turn off DSBs once CO designation is accomplished and by altering chromosome structure resulting in increased chromatin accessibility to the DSB machinery.
Collapse
Affiliation(s)
- Luciann Cuenca
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nara Shin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Laura I. Lascarez-Lagunas
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marina Martinez-Garcia
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Saravanapriah Nadarajan
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rajendiran Karthikraj
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York, United States of America
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York, United States of America
- Department of Pediatrics, New York University School of Medicine, New York City, New York, United States of America
| | - Mónica P. Colaiácovo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
13
|
Large-scale chromatin organisation in interphase, mitosis and meiosis. Biochem J 2019; 476:2141-2156. [DOI: 10.1042/bcj20180512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/17/2023]
Abstract
AbstractThe spatial configuration of chromatin is fundamental to ensure any given cell can fulfil its functional duties, from gene expression to specialised cellular division. Significant technological innovations have facilitated further insights into the structure, function and regulation of three-dimensional chromatin organisation. To date, the vast majority of investigations into chromatin organisation have been conducted in interphase and mitotic cells leaving meiotic chromatin relatively unexplored. In combination, cytological and genome-wide contact frequency analyses in mammalian germ cells have recently demonstrated that large-scale chromatin structures in meiotic prophase I are reminiscent of the sequential loop arrays found in mitotic cells, although interphase-like segmentation of transcriptionally active and inactive regions are also evident along the length of chromosomes. Here, we discuss the similarities and differences of such large-scale chromatin architecture, between interphase, mitotic and meiotic cells, as well as their functional relevance and the proposed modulatory mechanisms which underlie them.
Collapse
|
14
|
Zelkowski M, Zelkowska K, Conrad U, Hesse S, Lermontova I, Marzec M, Meister A, Houben A, Schubert V. Arabidopsis NSE4 Proteins Act in Somatic Nuclei and Meiosis to Ensure Plant Viability and Fertility. FRONTIERS IN PLANT SCIENCE 2019; 10:774. [PMID: 31281325 PMCID: PMC6596448 DOI: 10.3389/fpls.2019.00774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/28/2019] [Indexed: 05/02/2023]
Abstract
The SMC 5/6 complex together with cohesin and condensin is a member of the structural maintenance of chromosome (SMC) protein family. In non-plant organisms SMC5/6 is engaged in DNA repair, meiotic synapsis, genome organization and stability. In plants, the function of SMC5/6 is still enigmatic. Therefore, we analyzed the crucial δ-kleisin component NSE4 of the SMC5/6 complex in the model plant Arabidopsis thaliana. Two functional conserved Nse4 paralogs (Nse4A and Nse4B) are present in A. thaliana, which may have evolved via gene subfunctionalization. Due to its high expression level, Nse4A seems to be the more essential gene, whereas Nse4B appears to be involved mainly in seed development. The morphological characterization of A. thaliana T-DNA mutants suggests that the NSE4 proteins are essential for plant growth and fertility. Detailed investigations in wild-type and the mutants based on live cell imaging of transgenic GFP lines, fluorescence in situ hybridization (FISH), immunolabeling and super-resolution microscopy suggest that NSE4A acts in several processes during plant development, such as mitosis, meiosis and chromatin organization of differentiated nuclei, and that NSE4A operates in a cell cycle-dependent manner. Differential response of NSE4A and NSE4B mutants after induced DNA double strand breaks (DSBs) suggests their involvement in DNA repair processes.
Collapse
Affiliation(s)
- Mateusz Zelkowski
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Katarzyna Zelkowska
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Udo Conrad
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Susann Hesse
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- Plant Cytogenomics Research Group, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Marek Marzec
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Armin Meister
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|
15
|
Ishiguro K. The cohesin complex in mammalian meiosis. Genes Cells 2019; 24:6-30. [PMID: 30479058 PMCID: PMC7379579 DOI: 10.1111/gtc.12652] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022]
Abstract
Cohesin is an evolutionary conserved multi-protein complex that plays a pivotal role in chromosome dynamics. It plays a role both in sister chromatid cohesion and in establishing higher order chromosome architecture, in somatic and germ cells. Notably, the cohesin complex in meiosis differs from that in mitosis. In mammalian meiosis, distinct types of cohesin complexes are produced by altering the combination of meiosis-specific subunits. The meiosis-specific subunits endow the cohesin complex with specific functions for numerous meiosis-associated chromosomal events, such as chromosome axis formation, homologue association, meiotic recombination and centromeric cohesion for sister kinetochore geometry. This review mainly focuses on the cohesin complex in mammalian meiosis, pointing out the differences in its roles from those in mitosis. Further, common and divergent aspects of the meiosis-specific cohesin complex between mammals and other organisms are discussed.
Collapse
Affiliation(s)
- Kei‐ichiro Ishiguro
- Institute of Molecular Embryology and GeneticsKumamoto UniversityKumamotoJapan
| |
Collapse
|
16
|
Meyer BJ. Sex and death: from cell fate specification to dynamic control of X-chromosome structure and gene expression. Mol Biol Cell 2018; 29:2616-2621. [PMID: 30376434 PMCID: PMC6249838 DOI: 10.1091/mbc.e18-06-0397] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Determining sex is a binary developmental decision that most metazoans must make. Like many organisms, Caenorhabditis elegans specifies sex (XO male or XX hermaphrodite) by tallying X-chromosome number. We dissected this precise counting mechanism to determine how tiny differences in concentrations of signals are translated into dramatically different developmental fates. Determining sex by counting chromosomes solved one problem but created another-an imbalance in X gene products. We found that nematodes compensate for the difference in X-chromosome dose between sexes by reducing transcription from both hermaphrodite X chromosomes. In a surprising feat of evolution, X-chromosome regulation is functionally related to a structural problem of all mitotic and meiotic chromosomes: achieving ordered compaction of chromosomes before segregation. We showed the dosage compensation complex is a condensin complex that imposes a specific three--dimensional architecture onto hermaphrodite X chromosomes. It also triggers enrichment of histone modification H4K20me1. We discovered the machinery and mechanism underlying H4K20me1 enrichment and demonstrated its pivotal role in regulating higher-order X-chromosome structure and gene expression.
Collapse
Affiliation(s)
- Barbara J. Meyer
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3204,*Address correspondence to: Barbara J. Meyer ()
| |
Collapse
|
17
|
Condensin action and compaction. Curr Genet 2018; 65:407-415. [PMID: 30361853 DOI: 10.1007/s00294-018-0899-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 12/20/2022]
Abstract
Condensin is a multi-subunit protein complex that belongs to the family of structural maintenance of chromosomes (SMC) complexes. Condensins regulate chromosome structure in a wide range of processes including chromosome segregation, gene regulation, DNA repair and recombination. Recent research defined the structural features and molecular activities of condensins, but it is unclear how these activities are connected to the multitude of phenotypes and functions attributed to condensins. In this review, we briefly discuss the different molecular mechanisms by which condensins may regulate global chromosome compaction, organization of topologically associated domains, clustering of specific loci such as tRNA genes, rDNA segregation, and gene regulation.
Collapse
|
18
|
Henikoff S, Thakur J, Kasinathan S, Talbert PB. Remarkable Evolutionary Plasticity of Centromeric Chromatin. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:71-82. [PMID: 29196559 DOI: 10.1101/sqb.2017.82.033605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Centromeres were familiar to cell biologists in the late 19th century, but for most eukaryotes the basis for centromere specification has remained enigmatic. Much attention has been focused on the cenH3 (CENP-A) histone variant, which forms the foundation of the centromere. To investigate the DNA sequence requirements for centromere specification, we applied a variety of epigenomic approaches, which have revealed surprising diversity in centromeric chromatin properties. Whereas each point centromere of budding yeast is occupied by a single precisely positioned tetrameric nucleosome with one cenH3 molecule, the "regional" centromeres of fission yeast contain unphased presumably octameric nucleosomes with two cenH3s. In Caenorhabditis elegans, kinetochores assemble all along the chromosome at sites of cenH3 nucleosomes that resemble budding yeast point centromeres, whereas holocentric insects lack cenH3 entirely. The "satellite" centromeres of most animals and plants consist of cenH3-containing particles that are precisely positioned over homogeneous tandem repeats, but in humans, different α-satellite subfamilies are occupied by CENP-A nucleosomes with very different conformations. We suggest that this extraordinary evolutionary diversity of centromeric chromatin architectures can be understood in terms of the simplicity of the task of equal chromosome segregation that is continually subverted by selfish DNA sequences.
Collapse
Affiliation(s)
- Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Jitendra Thakur
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Sivakanthan Kasinathan
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109.,Medical Scientist Training Program, University of Washington School of Medicine, Seattle, Washington 98195
| | - Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| |
Collapse
|
19
|
Functional characterization of the meiosis-specific DNA double-strand break inducing factor SPO-11 from C. elegans. Sci Rep 2017; 7:2370. [PMID: 28539630 PMCID: PMC5443798 DOI: 10.1038/s41598-017-02641-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/13/2017] [Indexed: 11/17/2022] Open
Abstract
The programmed induction of meiotic DNA double-strand breaks (DSBs) by the evolutionarily conserved SPO-11 protein, which is structurally related to archaeal Topo VIA topoisomerases, triggers meiotic recombination. Identification of several meiosis-specific factors that are required for SPO-11-mediated DSB formation raises the question whether SPO-11 alone can cleave DNA. Here, we have developed procedures to express and purify C. elegans SPO-11 in a soluble, untagged, and monodispersed form. Our biochemical and biophysical analyses demonstrate that SPO-11 is monomeric and binds DNA, double-stranded DNA in particular. Importantly, SPO-11 does not exhibit DNA cleavage activity under a wide range of reaction conditions, suggesting that co-factors are needed for DSB induction activity. Our SPO-11 purification system and the findings reported herein should facilitate future mechanistic studies directed at delineating the mechanism of action of the SPO-11 ensemble in meiotic DSB formation.
Collapse
|
20
|
Abstract
Sexual reproduction requires the production of haploid gametes (sperm and egg) with only one copy of each chromosome; fertilization then restores the diploid chromosome content in the next generation. This reduction in genetic content is accomplished during a specialized cell division called meiosis, in which two rounds of chromosome segregation follow a single round of DNA replication. In preparation for the first meiotic division, homologous chromosomes pair and synapse, creating a context that promotes formation of crossover recombination events. These crossovers, in conjunction with sister chromatid cohesion, serve to connect the two homologs and facilitate their segregation to opposite poles during the first meiotic division. During the second meiotic division, which is similar to mitosis, sister chromatids separate; the resultant products are haploid cells that become gametes. In Caenorhabditis elegans (and most other eukaryotes) homologous pairing and recombination are required for proper chromosome inheritance during meiosis; accordingly, the events of meiosis are tightly coordinated to ensure the proper execution of these events. In this chapter, we review the seminal events of meiosis: pairing of homologous chromosomes, the changes in chromosome structure that chromosomes undergo during meiosis, the events of meiotic recombination, the differentiation of homologous chromosome pairs into structures optimized for proper chromosome segregation at Meiosis I, and the ultimate segregation of chromosomes during the meiotic divisions. We also review the regulatory processes that ensure the coordinated execution of these meiotic events during prophase I.
Collapse
Affiliation(s)
- Kenneth J Hillers
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, United States
| | - Verena Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter,1030 Vienna, Austria
| | | | - Judith L Yanowitz
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| |
Collapse
|
21
|
An SMC-like protein binds and regulates Caenorhabditis elegans condensins. PLoS Genet 2017; 13:e1006614. [PMID: 28301465 PMCID: PMC5373644 DOI: 10.1371/journal.pgen.1006614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 03/30/2017] [Accepted: 02/01/2017] [Indexed: 01/17/2023] Open
Abstract
Structural Maintenance of Chromosomes (SMC) family proteins participate in multisubunit complexes that govern chromosome structure and dynamics. SMC-containing condensin complexes create chromosome topologies essential for mitosis/meiosis, gene expression, recombination, and repair. Many eukaryotes have two condensin complexes (I and II); C. elegans has three (I, II, and the X-chromosome specialized condensin IDC) and their regulation is poorly understood. Here we identify a novel SMC-like protein, SMCL-1, that binds to C. elegans condensin SMC subunits, and modulates condensin functions. Consistent with a possible role as a negative regulator, loss of SMCL-1 partially rescued the lethal and sterile phenotypes of a hypomorphic condensin mutant, while over-expression of SMCL-1 caused lethality, chromosome mis-segregation, and disruption of condensin IDC localization on X chromosomes. Unlike canonical SMC proteins, SMCL-1 lacks hinge and coil domains, and its ATPase domain lacks conserved amino acids required for ATP hydrolysis, leading to the speculation that it may inhibit condensin ATPase activity. SMCL-1 homologs are apparent only in the subset of Caenorhabditis species in which the condensin I and II subunit SMC-4 duplicated to create the condensin IDC- specific subunit DPY-27, suggesting that SMCL-1 helps this lineage cope with the regulatory challenges imposed by evolution of a third condensin complex. Our findings uncover a new regulator of condensins and highlight how the duplication and divergence of SMC complex components in various lineages has created new proteins with diverse functions in chromosome dynamics.
Collapse
|
22
|
Flora P, McCarthy A, Upadhyay M, Rangan P. Role of Chromatin Modifications in Drosophila Germline Stem Cell Differentiation. Results Probl Cell Differ 2017; 59:1-30. [PMID: 28247044 DOI: 10.1007/978-3-319-44820-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
During Drosophila oogenesis, germline stem cells (GSCs) self-renew and differentiate to give rise to a mature egg. Self-renewal and differentiation of GSCs are regulated by both intrinsic mechanisms such as regulation of gene expression in the germ line and extrinsic signaling pathways from the surrounding somatic niche. Epigenetic mechanisms, including histone-modifying proteins, nucleosome remodeling complexes, and histone variants, play a critical role in regulating intrinsic gene expression and extrinsic signaling cues from the somatic niche. In the GSCs, intrinsic epigenetic modifiers are required to maintain a stem cell fate by promoting expression of self-renewal factors and repressing the differentiation program. Subsequently, in the GSC daughters, epigenetic regulators activate the differentiation program to promote GSC differentiation. During differentiation, the GSC daughter undergoes meiosis to give rise to the developing egg, containing a compacted chromatin architecture called the karyosome. Epigenetic modifiers control the attachment of chromosomes to the nuclear lamina to aid in meiotic recombination and the release from the lamina for karyosome formation. The germ line is in close contact with the soma for the entirety of this developmental process. This proximity facilitates signaling from the somatic niche to the developing germ line. Epigenetic modifiers play a critical role in the somatic niche, modulating signaling pathways in order to coordinate the transition of GSC to an egg. Together, intrinsic and extrinsic epigenetic mechanisms modulate this exquisitely balanced program.
Collapse
Affiliation(s)
- Pooja Flora
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Alicia McCarthy
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Maitreyi Upadhyay
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA.
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
23
|
Zedek F, Bureš P. Absence of positive selection on CenH3 in Luzula suggests that holokinetic chromosomes may suppress centromere drive. ANNALS OF BOTANY 2016; 118:1347-1352. [PMID: 27616209 PMCID: PMC5155603 DOI: 10.1093/aob/mcw186] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/02/2016] [Accepted: 07/10/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS The centromere drive theory explains diversity of eukaryotic centromeres as a consequence of the recurrent conflict between centromeric repeats and centromeric histone H3 (CenH3), in which selfish centromeres exploit meiotic asymmetry and CenH3 evolves adaptively to counterbalance deleterious consequences of driving centromeres. Accordingly, adaptively evolving CenH3 has so far been observed only in eukaryotes with asymmetric meiosis. However, if such evolution is a consequence of centromere drive, it should depend not only on meiotic asymmetry but also on monocentric or holokinetic chromosomal structure. Selective pressures acting on CenH3 have never been investigated in organisms with holokinetic meiosis despite the fact that holokinetic chromosomes have been hypothesized to suppress centromere drive. Therefore, the present study evaluates selective pressures acting on the CenH3 gene in holokinetic organisms for the first time, specifically in the representatives of the plant genus Luzula (Juncaceae), in which the kinetochore formation is not co-localized with any type of centromeric repeat. METHODS PCR, cloning and sequencing, and database searches were used to obtain coding CenH3 sequences from Luzula species. Codon substitution models were employed to infer selective regimes acting on CenH3 in Luzula KEY RESULTS: In addition to the two previously published CenH3 sequences from L. nivea, 16 new CenH3 sequences have been isolated from 12 Luzula species. Two CenH3 isoforms in Luzula that originated by a duplication event prior to the divergence of analysed species were found. No signs of positive selection acting on CenH3 in Luzula were detected. Instead, evidence was found that selection on CenH3 of Luzula might have been relaxed. CONCLUSIONS The results indicate that holokinetism itself may suppress centromere drive and, therefore, holokinetic chromosomes might have evolved as a defence against centromere drive.
Collapse
Affiliation(s)
- František Zedek
- Department of Botany and Zoology, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Petr Bureš
- Department of Botany and Zoology, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| |
Collapse
|
24
|
Wang J, Niu B, Huang J, Wang H, Yang X, Dong A, Makaroff C, Ma H, Wang Y. The PHD Finger Protein MMD1/DUET Ensures the Progression of Male Meiotic Chromosome Condensation and Directly Regulates the Expression of the Condensin Gene CAP-D3. THE PLANT CELL 2016; 28:1894-909. [PMID: 27385818 PMCID: PMC5006699 DOI: 10.1105/tpc.16.00040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/26/2016] [Accepted: 07/01/2016] [Indexed: 05/18/2023]
Abstract
Chromosome condensation, a process mediated by the condensin complex, is essential for proper chromosome segregation during cell division. Unlike rapid mitotic chromosome condensation, meiotic chromosome condensation occurs over a relatively long prophase I and is unusually complex due to the coordination with chromosome axis formation and homolog interaction. The molecular mechanisms that regulate meiotic chromosome condensation progression from prophase I to metaphase I are unclear. Here, we show that the Arabidopsis thaliana meiotic PHD-finger protein MMD1/DUET is required for progressive compaction of prophase I chromosomes to metaphase I bivalents. The MMD1 PHD domain is required for its function in chromosome condensation and binds to methylated histone tails. Transcriptome analysis and qRT-PCR showed that several condensin genes exhibit significantly reduced expression in mmd1 meiocytes. Furthermore, MMD1 specifically binds to the promoter region of the condensin subunit gene CAP-D3 to enhance its expression. Moreover, cap-d3 mutants exhibit similar chromosome condensation defects, revealing an MMD1-dependent mechanism for regulating meiotic chromosome condensation, which functions in part by promoting condensin gene expression. Together, these discoveries provide strong evidence that the histone reader MMD1/DUET defines an important step for regulating the progression of meiotic prophase I chromosome condensation.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Baixiao Niu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiyue Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hongkuan Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaohui Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | | | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
25
|
Dattilo M, D'Amato G, Caroppo E, Ménézo Y. Improvement of gamete quality by stimulating and feeding the endogenous antioxidant system: mechanisms, clinical results, insights on gene-environment interactions and the role of diet. J Assist Reprod Genet 2016; 33:1633-1648. [PMID: 27423667 PMCID: PMC5171888 DOI: 10.1007/s10815-016-0767-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/30/2016] [Indexed: 01/21/2023] Open
Abstract
Oxidative damage triggers extensive repair in gametes and thereafter in the zygote but it results in clinically relevant damage when affecting the maturation of the gametes chromatin, i.e. padlocking and epigenetic marking. It associates with defective DNA methylation and/or with oxidation of the methyl marks leading to derangement of gamete epigenetics, defects of chromatin condensation and aneuploidy. A proper feed to the one carbon cycle has the potential to stimulate the endogenous antioxidant defences, i.e. gluthatione synthesis, and to activate compensative homeostatic mechanisms restoring both the oxy-redox balance and DNA methylation, which are indeed strictly cross-regulated. This has been shown to produce measurable clinical improvements of male reproductive potential in pilot studies herein summarised. However, the effects of dietary habits and of supplementations are variable according to the individual genetic substrate, as genetic variants of several of the concerned enzymes occur with high frequency. Individual risk assessments and personalised interventions are still difficult to implement, in the meantime, a very varied diet may facilitate metabolic compensation in the majority of the cases. This review aims to report on the mechanisms of damage, on the opportunities to modulate the physiologic oxy-redox homeostasis by means of a varied diet or dietary supplements and on the open issues related to the genetic variability of the population.
Collapse
Affiliation(s)
| | - Giuseppe D'Amato
- ASL Bari, U.O. Fisiopatologia della Riproduzione Umana e PMA, Conversano, Ba, Italy
| | - Ettore Caroppo
- ASL Bari, U.O. Fisiopatologia della Riproduzione Umana e PMA, Conversano, Ba, Italy
| | - Yves Ménézo
- London Fertility Associates, 104 Harley Street, London, UK
| |
Collapse
|
26
|
Lim JH, Kim SY, Han JY, Kim MY, Park SY, Ryu HM. Comprehensive investigation of DNA methylation and gene expression in trisomy 21 placenta. Placenta 2016; 42:17-24. [PMID: 27238709 DOI: 10.1016/j.placenta.2016.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/13/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Trisomy 21 (T21) is the most common aneuploidy affecting humans and is caused by an extra copy of all or part of chromosome 21 (chr21). DNA methylation is an epigenetic event that plays an important role in human diseases via regulation of gene expression. However, the integrative association between DNA methylation and gene expression in T21 fetal placenta has yet to be determined. METHODS We profiled expression of 207 genes on chr21 and their DNA methylation patterns in placenta samples from normal and DS fetuses using microarray analysis and predicted the functions of differentially expressed genes using bioinformatics tools. RESULTS We found 47 genes with significantly increased expression in the T21 placenta compared to the normal placenta. Hypomethylation of the 47 genes was observed in the T21 placenta. Most of hypomethylated DNA positions were intragenic regions, i.e. regions inside a gene. Moreover, gene expression and hypomethylated DNA position showed significantly positive associations. By analyzing the properties of the gene-disease network, we found that increased genes in the T21 placenta were significantly associated with T21 and T21 complications such as mental retardation, neurobehavioral manifestations, and congenital abnormalities. DISCUSSION To our knowledge, this is the first study to comprehensively survey the association between gene expression and DNA methylation in chr21 of the T21 fetal placenta. Our findings provide a broad overview of the relationships between gene expression and DNA methylation in the placentas of fetuses with T21 and could contribute to future research efforts concerning genes involvement in disease pathogenesis.
Collapse
Affiliation(s)
- Ji Hyae Lim
- Laboratory of Medical Genetics, Medical Research Institute, Cheil General Hospital and Women's Healthcare Center, Seoul, South Korea
| | - Shin Young Kim
- Laboratory of Medical Genetics, Medical Research Institute, Cheil General Hospital and Women's Healthcare Center, Seoul, South Korea
| | - Jung Yeol Han
- Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, South Korea
| | - Moon Young Kim
- Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, South Korea
| | - So Yeon Park
- Laboratory of Medical Genetics, Medical Research Institute, Cheil General Hospital and Women's Healthcare Center, Seoul, South Korea.
| | - Hyun Mee Ryu
- Laboratory of Medical Genetics, Medical Research Institute, Cheil General Hospital and Women's Healthcare Center, Seoul, South Korea; Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, South Korea.
| |
Collapse
|
27
|
Hong Y, Sonneville R, Agostinho A, Meier B, Wang B, Blow JJ, Gartner A. The SMC-5/6 Complex and the HIM-6 (BLM) Helicase Synergistically Promote Meiotic Recombination Intermediate Processing and Chromosome Maturation during Caenorhabditis elegans Meiosis. PLoS Genet 2016; 12:e1005872. [PMID: 27010650 PMCID: PMC4807058 DOI: 10.1371/journal.pgen.1005872] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/25/2016] [Indexed: 11/19/2022] Open
Abstract
Meiotic recombination is essential for the repair of programmed double strand breaks (DSBs) to generate crossovers (COs) during meiosis. The efficient processing of meiotic recombination intermediates not only needs various resolvases but also requires proper meiotic chromosome structure. The Smc5/6 complex belongs to the structural maintenance of chromosome (SMC) family and is closely related to cohesin and condensin. Although the Smc5/6 complex has been implicated in the processing of recombination intermediates during meiosis, it is not known how Smc5/6 controls meiotic DSB repair. Here, using Caenorhabditis elegans we show that the SMC-5/6 complex acts synergistically with HIM-6, an ortholog of the human Bloom syndrome helicase (BLM) during meiotic recombination. The concerted action of the SMC-5/6 complex and HIM-6 is important for processing recombination intermediates, CO regulation and bivalent maturation. Careful examination of meiotic chromosomal morphology reveals an accumulation of inter-chromosomal bridges in smc-5; him-6 double mutants, leading to compromised chromosome segregation during meiotic cell divisions. Interestingly, we found that the lethality of smc-5; him-6 can be rescued by loss of the conserved BRCA1 ortholog BRC-1. Furthermore, the combined deletion of smc-5 and him-6 leads to an irregular distribution of condensin and to chromosome decondensation defects reminiscent of condensin depletion. Lethality conferred by condensin depletion can also be rescued by BRC-1 depletion. Our results suggest that SMC-5/6 and HIM-6 can synergistically regulate recombination intermediate metabolism and suppress ectopic recombination by controlling chromosome architecture during meiosis.
Collapse
Affiliation(s)
- Ye Hong
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Remi Sonneville
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Ana Agostinho
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Bettina Meier
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Bin Wang
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - J. Julian Blow
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Anton Gartner
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
28
|
Nadarajan S, Mohideen F, Tzur YB, Ferrandiz N, Crawley O, Montoya A, Faull P, Snijders AP, Cutillas PR, Jambhekar A, Blower MD, Martinez-Perez E, Harper JW, Colaiacovo MP. The MAP kinase pathway coordinates crossover designation with disassembly of synaptonemal complex proteins during meiosis. eLife 2016; 5:e12039. [PMID: 26920220 PMCID: PMC4805554 DOI: 10.7554/elife.12039] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/26/2016] [Indexed: 11/21/2022] Open
Abstract
Asymmetric disassembly of the synaptonemal complex (SC) is crucial for proper meiotic chromosome segregation. However, the signaling mechanisms that directly regulate this process are poorly understood. Here we show that the mammalian Rho GEF homolog, ECT-2, functions through the conserved RAS/ERK MAP kinase signaling pathway in the C. elegans germline to regulate the disassembly of SC proteins. We find that SYP-2, a SC central region component, is a potential target for MPK-1-mediated phosphorylation and that constitutively phosphorylated SYP-2 impairs the disassembly of SC proteins from chromosomal domains referred to as the long arms of the bivalents. Inactivation of MAP kinase at late pachytene is critical for timely disassembly of the SC proteins from the long arms, and is dependent on the crossover (CO) promoting factors ZHP-3/RNF212/Zip3 and COSA-1/CNTD1. We propose that the conserved MAP kinase pathway coordinates CO designation with the disassembly of SC proteins to ensure accurate chromosome segregation. DOI:http://dx.doi.org/10.7554/eLife.12039.001 Most plants and animals, including humans, have cells that contain two copies of every chromosome, with one set inherited from each parent. However, reproductive cells (such as eggs and sperm) contain just one copy of every chromosome so that when they fuse together at fertilization, the resulting cell will have the usual two copies of each chromosome. Embryos that have incorrect numbers of chromosome copies either fail to survive or develop disorders such as Down syndrome. Therefore, it is important that when cells divide to form new reproductive cells, their chromosomes are correctly segregated. To end up with one copy of each chromosome, reproductive cells undergo a form of cell division called meiosis. During meiosis, pairs of chromosomes are held together by a zipper-like structure called the synaptonemal complex. While held together like this, each chromosome in the pair exchanges DNA with the other by forming junctions called crossovers. Once DNA exchange is completed, the synaptonemal complex disappears from certain regions of the chromosome. Using a range of genetic, biochemical and cell biological approaches, Nadarajan et al. have now investigated how crossover formation and the disassembly of the synaptonemal complex are coordinated in the reproductive cells of a roundworm called Caenorhabditis elegans. This revealed that a signaling pathway called the MAP kinase pathway regulates the removal of synaptonemal complex proteins from particular sites between the paired chromosomes. Turning off this pathway’s activity is required for the timely disassembly of this complex, and depends on proteins that are involved in crossover formation. This regulatory mechanism likely ensures that the synaptonemal complex starts to disassemble only after the physical attachments between the paired chromosomes are “locked in”, thus ensuring that reproductive cells receive the correct number of chromosomes. Given that the MAP kinase pathway regulates cell processes in many different organisms, a future challenge is to determine whether this pathway regulates the synaptonemal complex in other species as well. DOI:http://dx.doi.org/10.7554/eLife.12039.002
Collapse
Affiliation(s)
| | - Firaz Mohideen
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Yonatan B Tzur
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Nuria Ferrandiz
- MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Oliver Crawley
- MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Alex Montoya
- Proteomics facility, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Peter Faull
- Proteomics facility, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Ambrosius P Snijders
- Proteomics facility, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Pedro R Cutillas
- Proteomics facility, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Ashwini Jambhekar
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Michael D Blower
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | | | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | | |
Collapse
|
29
|
Crawley O, Barroso C, Testori S, Ferrandiz N, Silva N, Castellano-Pozo M, Jaso-Tamame AL, Martinez-Perez E. Cohesin-interacting protein WAPL-1 regulates meiotic chromosome structure and cohesion by antagonizing specific cohesin complexes. eLife 2016; 5:e10851. [PMID: 26841696 PMCID: PMC4758955 DOI: 10.7554/elife.10851] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022] Open
Abstract
Wapl induces cohesin dissociation from DNA throughout the mitotic cell cycle, modulating sister chromatid cohesion and higher-order chromatin structure. Cohesin complexes containing meiosis-specific kleisin subunits govern most aspects of meiotic chromosome function, but whether Wapl regulates these complexes remains unknown. We show that during C. elegans oogenesis WAPL-1 antagonizes binding of cohesin containing COH-3/4 kleisins, but not REC-8, demonstrating that sensitivity to WAPL-1 is dictated by kleisin identity. By restricting the amount of chromosome-associated COH-3/4 cohesin, WAPL-1 controls chromosome structure throughout meiotic prophase. In the absence of REC-8, WAPL-1 inhibits COH-3/4-mediated cohesion, which requires crossover-fated events formed during meiotic recombination. Thus, WAPL-1 promotes functional specialization of meiotic cohesin: WAPL-1-sensitive COH-3/4 complexes modulate higher-order chromosome structure, while WAPL-1-refractory REC-8 complexes provide stable cohesion. Surprisingly, a WAPL-1-independent mechanism removes cohesin before metaphase I. Our studies provide insight into how meiosis-specific cohesin complexes are regulated to ensure formation of euploid gametes.
Collapse
Affiliation(s)
- Oliver Crawley
- Meiosis group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Consuelo Barroso
- Meiosis group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Sarah Testori
- Meiosis group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nuria Ferrandiz
- Meiosis group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nicola Silva
- Meiosis group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Maikel Castellano-Pozo
- Meiosis group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Angel Luis Jaso-Tamame
- Meiosis group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Enrique Martinez-Perez
- Meiosis group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
30
|
Lau AC, Csankovszki G. Condensin-mediated chromosome organization and gene regulation. Front Genet 2015; 5:473. [PMID: 25628648 PMCID: PMC4292777 DOI: 10.3389/fgene.2014.00473] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/19/2014] [Indexed: 11/13/2022] Open
Abstract
In many organisms sexual fate is determined by a chromosome-based method which entails a difference in sex chromosome-linked gene dosage. Consequently, a gene regulatory mechanism called dosage compensation equalizes X-linked gene expression between the sexes. Dosage compensation initiates as cells transition from pluripotency to differentiation. In Caenorhabditis elegans, dosage compensation is achieved by the dosage compensation complex (DCC) binding to both X chromosomes in hermaphrodites to downregulate gene expression by twofold. The DCC contains a subcomplex (condensin I(DC)) similar to the evolutionarily conserved condensin complexes which play a fundamental role in chromosome dynamics during mitosis. Therefore, mechanisms related to mitotic chromosome condensation are hypothesized to mediate dosage compensation. Consistent with this hypothesis, monomethylation of histone H4 lysine 20 is increased, whereas acetylation of histone H4 lysine 16 is decreased, both on mitotic chromosomes and on interphase dosage compensated X chromosomes in worms. These observations suggest that interphase dosage compensated X chromosomes maintain some characteristics associated with condensed mitotic chromosome. This chromosome state is stably propagated from one cell generation to the next. In this review we will speculate on how the biochemical activities of condensin can achieve both mitotic chromosome compaction and gene repression.
Collapse
Affiliation(s)
- Alyssa C Lau
- Department of Molecular, Cellular and Developmental Biology, University of Michigan Ann Arbor, MI, USA
| | - Györgyi Csankovszki
- Department of Molecular, Cellular and Developmental Biology, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
31
|
Lau AC, Nabeshima K, Csankovszki G. The C. elegans dosage compensation complex mediates interphase X chromosome compaction. Epigenetics Chromatin 2014; 7:31. [PMID: 25400696 PMCID: PMC4232692 DOI: 10.1186/1756-8935-7-31] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/06/2014] [Indexed: 12/04/2022] Open
Abstract
Background Dosage compensation is a specialized gene regulatory mechanism which equalizes X-linked gene expression between sexes. In Caenorhabditis elegans, dosage compensation is achieved by the activity of the dosage compensation complex (DCC). The DCC localizes to both X chromosomes in hermaphrodites to downregulate gene expression by half. The DCC contains a subcomplex (condensin IDC) similar to the evolutionarily conserved condensin complexes which play fundamental roles in chromosome dynamics during mitosis and meiosis. Therefore, mechanisms related to mitotic chromosome condensation have been long hypothesized to mediate dosage compensation. However experimental evidence was lacking. Results Using 3D FISH microscopy to measure the volumes of X and chromosome I territories and to measure distances between individual loci, we show that hermaphrodite worms deficient in DCC proteins have enlarged interphase X chromosomes when compared to wild type. By contrast, chromosome I is unaffected. Interestingly, hermaphrodite worms depleted of condensin I or II show no phenotype. Therefore X chromosome compaction is specific to condensin IDC. In addition, we show that SET-1, SET-4, and SIR-2.1, histone modifiers whose activity is regulated by the DCC, need to be present for the compaction of the X chromosome territory. Conclusion These results support the idea that condensin IDC, and the histone modifications regulated by the DCC, mediate interphase X chromosome compaction. Our results link condensin-mediated chromosome compaction, an activity connected to mitotic chromosome condensation, to chromosome-wide repression of gene expression in interphase. Electronic supplementary material The online version of this article (doi:10.1186/1756-8935-7-31) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alyssa C Lau
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 Michigan
| | - Kentaro Nabeshima
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109 Michigan
| | - Györgyi Csankovszki
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 Michigan
| |
Collapse
|
32
|
Abstract
Meiosis entails sorting and separating both homologous and sister chromatids. The mechanisms for connecting sister chromatids and homologs during meiosis are highly conserved and include specialized forms of the cohesin complex and a tightly regulated homolog synapsis/recombination pathway designed to yield regular crossovers between homologous chromatids. Drosophila male meiosis is of special interest because it dispenses with large segments of the standard meiotic script, particularly recombination, synapsis and the associated structures. Instead, Drosophila relies on a unique protein complex composed of at least two novel proteins, SNM and MNM, to provide stable connections between homologs during meiosis I. Sister chromatid cohesion in Drosophila is mediated by cohesins, ring-shaped complexes that entrap sister chromatids. However, unlike other eukaryotes Drosophila does not rely on the highly conserved Rec8 cohesin in meiosis, but instead utilizes two novel cohesion proteins, ORD and SOLO, which interact with the SMC1/3 cohesin components in providing meiotic cohesion.
Collapse
Affiliation(s)
- Bruce D McKee
- Department of Biochemistry, Cellular & Molecular Biology; University of Tennessee; Knoxville TN USA ; Genome Science and Technology Program; University of Tennessee; Knoxville TN USA
| | | | | |
Collapse
|
33
|
Smith SJ, Osman K, Franklin FCH. The condensin complexes play distinct roles to ensure normal chromosome morphogenesis during meiotic division in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:255-68. [PMID: 25065716 PMCID: PMC4552968 DOI: 10.1111/tpj.12628] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/11/2014] [Accepted: 07/23/2014] [Indexed: 05/03/2023]
Abstract
Meiosis is a specialized cell division essential for sexual reproduction. During meiosis the chromosomes are highly organized, and correct chromosome architecture is required for faithful segregation of chromosomes at anaphase I and II. Condensin is involved in chromosome organization during meiotic and mitotic cell divisions. Three condensin subunits, AtSMC4 and the condensin I and II specific subunits AtCAP-D2 and AtCAP-D3, respectively, have been studied for their role in meiosis. This has revealed that both the condensin I and condensin II complexes are required to maintain normal structural integrity of the meiotic chromosomes during the two nuclear divisions. Their roles appear functionally distinct in that condensin I is required to maintain normal compaction of the centromeric repeats and 45S rDNA, whereas loss of condensin II was associated with extensive interchromosome connections at metaphase I. Depletion of condensin is also associated with a slight reduction in crossover formation, suggesting a role during meiotic prophase I.
Collapse
Affiliation(s)
- Sarah J Smith
- School of Biosciences, University of BirminghamEdgbaston, Birmingham, B15 2TT, UK
- School of Biological and Biomedical Sciences, Durham UniversitySouth Road, Durham, DH1 3LE, UK
| | - Kim Osman
- School of Biosciences, University of BirminghamEdgbaston, Birmingham, B15 2TT, UK
| | - F Christopher H Franklin
- School of Biosciences, University of BirminghamEdgbaston, Birmingham, B15 2TT, UK
- *For correspondence (e-mail )
| |
Collapse
|
34
|
Kranz AL, Jiao CY, Winterkorn LH, Albritton SE, Kramer M, Ercan S. Genome-wide analysis of condensin binding in Caenorhabditis elegans. Genome Biol 2014; 14:R112. [PMID: 24125077 PMCID: PMC3983662 DOI: 10.1186/gb-2013-14-10-r112] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/14/2013] [Indexed: 11/26/2022] Open
Abstract
Background Condensins are multi-subunit protein complexes that are essential for chromosome condensation during mitosis and meiosis, and play key roles in transcription regulation during interphase. Metazoans contain two condensins, I and II, which perform different functions and localize to different chromosomal regions. Caenorhabditis elegans contains a third condensin, IDC, that is targeted to and represses transcription of the X chromosome for dosage compensation. Results To understand condensin binding and function, we performed ChIP-seq analysis of C. elegans condensins in mixed developmental stage embryos, which contain predominantly interphase nuclei. Condensins bind to a subset of active promoters, tRNA genes and putative enhancers. Expression analysis in kle-2-mutant larvae suggests that the primary effect of condensin II on transcription is repression. A DNA sequence motif, GCGC, is enriched at condensin II binding sites. A sequence extension of this core motif, AGGG, creates the condensin IDC motif. In addition to differences in recruitment that result in X-enrichment of condensin IDC and condensin II binding to all chromosomes, we provide evidence for a shared recruitment mechanism, as condensin IDC recruiter SDC-2 also recruits condensin II to the condensin IDC recruitment sites on the X. In addition, we found that condensin sites overlap extensively with the cohesin loader SCC-2, and that SDC-2 also recruits SCC-2 to the condensin IDC recruitment sites. Conclusions Our results provide the first genome-wide view of metazoan condensin II binding in interphase, define putative recruitment motifs, and illustrate shared loading mechanisms for condensin IDC and condensin II.
Collapse
|
35
|
Severson AF, Meyer BJ. Divergent kleisin subunits of cohesin specify mechanisms to tether and release meiotic chromosomes. eLife 2014; 3:e03467. [PMID: 25171895 PMCID: PMC4174578 DOI: 10.7554/elife.03467] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/28/2014] [Indexed: 12/22/2022] Open
Abstract
We show that multiple, functionally specialized cohesin complexes mediate the establishment and two-step release of sister chromatid cohesion that underlies the production of haploid gametes. In C. elegans, the kleisin subunits REC-8 and COH-3/4 differ between meiotic cohesins and endow them with distinctive properties that specify how cohesins load onto chromosomes and then trigger and release cohesion. Unlike REC-8 cohesin, COH-3/4 cohesin becomes cohesive through a replication-independent mechanism initiated by the DNA double-stranded breaks that induce crossover recombination. Thus, break-induced cohesion also tethers replicated meiotic chromosomes. Later, recombination stimulates separase-independent removal of REC-8 and COH-3/4 cohesins from reciprocal chromosomal territories flanking the crossover site. This region-specific removal likely underlies the two-step separation of homologs and sisters. Unexpectedly, COH-3/4 performs cohesion-independent functions in synaptonemal complex assembly. This new model for cohesin function diverges from that established in yeast but likely applies directly to plants and mammals, which utilize similar meiotic kleisins.
Collapse
Affiliation(s)
- Aaron F Severson
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, United States
| | - Barbara J Meyer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
36
|
Li P, Jin H, Yu HG. Condensin suppresses recombination and regulates double-strand break processing at the repetitive ribosomal DNA array to ensure proper chromosome segregation during meiosis in budding yeast. Mol Biol Cell 2014; 25:2934-47. [PMID: 25103240 PMCID: PMC4230583 DOI: 10.1091/mbc.e14-05-0957] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Condensin undergoes a sequestration, release, and reloading cycle at the rDNA array in budding yeast meiosis. It regulates rDNA stability by suppressing double-strand break (DSB) formation and promoting DSB processing. During meiosis, homologues are linked by crossover, which is required for bipolar chromosome orientation before chromosome segregation at anaphase I. The repetitive ribosomal DNA (rDNA) array, however, undergoes little or no meiotic recombination. Hyperrecombination can cause chromosome missegregation and rDNA copy number instability. We report here that condensin, a conserved protein complex required for chromosome organization, regulates double-strand break (DSB) formation and repair at the rDNA gene cluster during meiosis in budding yeast. Condensin is highly enriched at the rDNA region during prophase I, released at the prophase I/metaphase I transition, and reassociates with rDNA before anaphase I onset. We show that condensin plays a dual role in maintaining rDNA stability: it suppresses the formation of Spo11-mediated rDNA breaks, and it promotes DSB processing to ensure proper chromosome segregation. Condensin is unnecessary for the export of rDNA breaks outside the nucleolus but required for timely repair of meiotic DSBs. Our work reveals that condensin coordinates meiotic recombination with chromosome segregation at the repetitive rDNA sequence, thereby maintaining genome integrity.
Collapse
Affiliation(s)
- Ping Li
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370
| | - Hui Jin
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370
| | - Hong-Guo Yu
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370
| |
Collapse
|
37
|
Mainiero S, Pawlowski WP. Meiotic chromosome structure and function in plants. Cytogenet Genome Res 2014; 143:6-17. [PMID: 25096046 DOI: 10.1159/000365260] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Chromosome structure is important for many meiotic processes. Here, we outline 3 main determinants of chromosome structure and their effects on meiotic processes in plants. Cohesins are necessary to hold sister chromatids together until the first meiotic division, ensuring that homologous chromosomes and not sister chromatids separate during anaphase I. During meiosis in maize, Arabidopsis, and rice, cohesins are needed for establishing early prophase chromosome structure and recombination and for aligning bivalents at the metaphase plate. Condensin complexes play pivotal roles in controlling the packaging of chromatin into chromosomes through chromatin compaction and chromosome individualization. In animals and fungi, these complexes establish a meiotic chromosome structure that allows for proper recombination, pairing, and synapsis of homologous chromosomes. In plants, information on the role of condensins in meiosis is limited, but they are known to be required for successful completion of reproductive development. Therefore, we speculate that they play roles similar to animal and fungal condensins during meiosis. Plants generally have large and complex genomes due to frequent polyploidy events, and likely, condensins and cohesins organize chromosomes in such a way as to ensure genome stability. Hexaploid wheat has evolved a unique mechanism using a Ph1 locus-controlled chromosome organization to ensure proper chromosome pairing in meiosis. Altogether, studies on meiotic chromosome structure indicate that chromosome organization is not only important for chromatin packaging but also fulfills specific functions in facilitating chromosome interactions during meiosis, including pairing and recombination.
Collapse
Affiliation(s)
- Samantha Mainiero
- Graduate Field of Plant Biology, Cornell University, Ithaca, N.Y., USA
| | | |
Collapse
|
38
|
SUMOylation is essential for sex-specific assembly and function of the Caenorhabditis elegans dosage compensation complex on X chromosomes. Proc Natl Acad Sci U S A 2013; 110:E3810-9. [PMID: 24043781 DOI: 10.1073/pnas.1315793110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The essential process of dosage compensation equalizes X-chromosome gene expression between Caenorhabditis elegans XO males and XX hermaphrodites through a dosage compensation complex (DCC) that is homologous to condensin. The DCC binds to both X chromosomes of hermaphrodites to repress transcription by half. Here, we show that posttranslational modification by the SUMO (small ubiquitin-like modifier) conjugation pathway is essential for sex-specific assembly and function of the DCC on X. Depletion of SUMO in vivo severely disrupts binding of particular DCC subunits and causes changes in X-linked gene expression similar to those caused by deleting genes encoding DCC subunits. Three DCC subunits are SUMOylated, and SUMO depletion preferentially reduces their binding to X, suggesting that SUMOylation of DCC subunits is essential for robust association with X. DCC SUMOylation is triggered by the signal that initiates DCC assembly onto X. The initial step of assembly-binding of X-targeting factors to recruitment sites on X-is independent of SUMOylation, but robust binding of the complete complex requires SUMOylation. SUMOylated DCC subunits are enriched at recruitment sites, and SUMOylation likely enhances interactions between X-targeting factors and condensin subunits that facilitate DCC binding beyond the low level achieved without SUMOylation. DCC subunits also participate in condensin complexes essential for chromosome segregation, but their SUMOylation occurs only in the context of the DCC. Our results reinforce a newly emerging theme in which multiple proteins of a complex are collectively SUMOylated in response to a specific stimulus, leading to accelerated complex formation and enhanced function.
Collapse
|
39
|
Kruesi WS, Core LJ, Waters CT, Lis JT, Meyer BJ. Condensin controls recruitment of RNA polymerase II to achieve nematode X-chromosome dosage compensation. eLife 2013; 2:e00808. [PMID: 23795297 PMCID: PMC3687364 DOI: 10.7554/elife.00808] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/09/2013] [Indexed: 01/24/2023] Open
Abstract
The X-chromosome gene regulatory process called dosage compensation ensures that males (1X) and females (2X) express equal levels of X-chromosome transcripts. The mechanism in Caenorhabditis elegans has been elusive due to improperly annotated transcription start sites (TSSs). Here we define TSSs and the distribution of transcriptionally engaged RNA polymerase II (Pol II) genome-wide in wild-type and dosage-compensation-defective animals to dissect this regulatory mechanism. Our TSS-mapping strategy integrates GRO-seq, which tracks nascent transcription, with a new derivative of this method, called GRO-cap, which recovers nascent RNAs with 5' caps prior to their removal by co-transcriptional processing. Our analyses reveal that promoter-proximal pausing is rare, unlike in other metazoans, and promoters are unexpectedly far upstream from the 5' ends of mature mRNAs. We find that C. elegans equalizes X-chromosome expression between the sexes, to a level equivalent to autosomes, by reducing Pol II recruitment to promoters of hermaphrodite X-linked genes using a chromosome-restructuring condensin complex. DOI:http://dx.doi.org/10.7554/eLife.00808.001.
Collapse
Affiliation(s)
- William S Kruesi
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Leighton J Core
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Colin T Waters
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Barbara J Meyer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
40
|
Bembenek JN, Verbrugghe KJC, Khanikar J, Csankovszki G, Chan RC. Condensin and the spindle midzone prevent cytokinesis failure induced by chromatin bridges in C. elegans embryos. Curr Biol 2013; 23:937-46. [PMID: 23684975 DOI: 10.1016/j.cub.2013.04.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/12/2013] [Accepted: 04/09/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND During cell division, chromosomes must clear the path of the cleavage furrow before the onset of cytokinesis. The abscission checkpoint in mammalian cells stabilizes the cleavage furrow in the presence of a chromatin obstruction. This provides time to resolve the obstruction before the cleavage furrow regresses or breaks the chromosomes, preventing aneuploidy or DNA damage. Two unanswered questions in the proposed mechanistic pathway of the abscission checkpoint concern factors involved in (1) resolving the obstructions and (2) coordinating obstruction resolution with the delay in cytokinesis. RESULTS We found that the one-cell and two-cell C. elegans embryos suppress furrow regression following depletion of essential chromosome-segregation factors: topoisomerase II(TOP-2), CENP-A(HCP-3), cohesin, and to a lesser degree, condensin. Chromatin obstructions activated Aurora B(AIR-2) at the spindle midzone, which is needed for the abscission checkpoint in other systems. Condensin I, but not condensin II, localizes to the spindle midzone in anaphase and to the midbody during normal cytokinesis. Interestingly, condensin I is enriched on chromatin bridges and near the midzone/midbody in an AIR-2-dependent manner. Disruption of AIR-2, the spindle midzone, or condensin leads to cytokinesis failure in a chromatin-obstruction-dependent manner. Examination of the condensin-deficient embryos uncovered defects in both the resolution of the chromatin obstructions and the maintenance of the stable cleavage furrow. CONCLUSIONS We postulate that condensin I is recruited by Aurora B(AIR-2) to aid in the resolution of chromatin obstructions and also helps generate a signal to maintain the delay in cytokinesis.
Collapse
Affiliation(s)
- Joshua N Bembenek
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
41
|
Buster DW, Daniel SG, Nguyen HQ, Windler SL, Skwarek LC, Peterson M, Roberts M, Meserve JH, Hartl T, Klebba JE, Bilder D, Bosco G, Rogers GC. SCFSlimb ubiquitin ligase suppresses condensin II-mediated nuclear reorganization by degrading Cap-H2. J Cell Biol 2013; 201:49-63. [PMID: 23530065 PMCID: PMC3613687 DOI: 10.1083/jcb.201207183] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 03/04/2013] [Indexed: 12/21/2022] Open
Abstract
Condensin complexes play vital roles in chromosome condensation during mitosis and meiosis. Condensin II uniquely localizes to chromatin throughout the cell cycle and, in addition to its mitotic duties, modulates chromosome organization and gene expression during interphase. Mitotic condensin activity is regulated by phosphorylation, but mechanisms that regulate condensin II during interphase are unclear. Here, we report that condensin II is inactivated when its subunit Cap-H2 is targeted for degradation by the SCF(Slimb) ubiquitin ligase complex and that disruption of this process dramatically changed interphase chromatin organization. Inhibition of SCF(Slimb) function reorganized interphase chromosomes into dense, compact domains and disrupted homologue pairing in both cultured Drosophila cells and in vivo, but these effects were rescued by condensin II inactivation. Furthermore, Cap-H2 stabilization distorted nuclear envelopes and dispersed Cid/CENP-A on interphase chromosomes. Therefore, SCF(Slimb)-mediated down-regulation of condensin II is required to maintain proper organization and morphology of the interphase nucleus.
Collapse
Affiliation(s)
- Daniel W. Buster
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, and Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Scott G. Daniel
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, and Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Huy Q. Nguyen
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, and Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Sarah L. Windler
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Lara C. Skwarek
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Maureen Peterson
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, and Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Meredith Roberts
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, and Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Joy H. Meserve
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, and Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Tom Hartl
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, and Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Joseph E. Klebba
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, and Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - David Bilder
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Giovanni Bosco
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, and Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Gregory C. Rogers
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, and Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
42
|
Clemons AM, Brockway HM, Yin Y, Kasinathan B, Butterfield YS, Jones SJM, Colaiácovo MP, Smolikove S. akirin is required for diakinesis bivalent structure and synaptonemal complex disassembly at meiotic prophase I. Mol Biol Cell 2013; 24:1053-67. [PMID: 23363597 PMCID: PMC3608493 DOI: 10.1091/mbc.e12-11-0841] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Formation of a condensed and properly remodeled bivalent is required for accurate execution of meiosis. Meiotic roles are identified for the highly evolutionarily conserved protein AKIRIN in bivalent remodeling in a synaptonemal complex (SC)–dependent and SC–independent manner, demonstrating that proper SC disassembly is crucial for bivalent structure. During meiosis, evolutionarily conserved mechanisms regulate chromosome remodeling, leading to the formation of a tight bivalent structure. This bivalent, a linked pair of homologous chromosomes, is essential for proper chromosome segregation in meiosis. The formation of a tight bivalent involves chromosome condensation and restructuring around the crossover. The synaptonemal complex (SC), which mediates homologous chromosome association before crossover formation, disassembles concurrently with increased condensation during bivalent remodeling. Both chromosome condensation and SC disassembly are likely critical steps in acquiring functional bivalent structure. The mechanisms controlling SC disassembly, however, remain unclear. Here we identify akir-1 as a gene involved in key events of meiotic prophase I in Caenorhabditis elegans. AKIR-1 is a protein conserved among metazoans that lacks any previously known function in meiosis. We show that akir-1 mutants exhibit severe meiotic defects in late prophase I, including improper disassembly of the SC and aberrant chromosome condensation, independently of the condensin complexes. These late-prophase defects then lead to aberrant reconfiguring of the bivalent. The meiotic divisions are delayed in akir-1 mutants and are accompanied by lagging chromosomes. Our analysis therefore provides evidence for an important role of proper SC disassembly in configuring a functional bivalent structure.
Collapse
Affiliation(s)
- Amy M Clemons
- Department of Biology, University of Iowa, Iowa City, IA 52242 , USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Condensins are multisubunit protein complexes that play a fundamental role in the structural and functional organization of chromosomes in the three domains of life. Most eukaryotic species have two different types of condensin complexes, known as condensins I and II, that fulfill nonoverlapping functions and are subjected to differential regulation during mitosis and meiosis. Recent studies revealed that the two complexes contribute to a wide variety of interphase chromosome functions, such as gene regulation, recombination, and repair. Also emerging are their cell type- and tissue-specific functions and relevance to human disease. Biochemical and structural analyses of eukaryotic and bacterial condensins steadily uncover the mechanisms of action of this class of highly sophisticated molecular machines. Future studies on condensins will not only enhance our understanding of chromosome architecture and dynamics, but also help address a previously underappreciated yet profound set of questions in chromosome biology.
Collapse
Affiliation(s)
- Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, Japan.
| |
Collapse
|
44
|
Tzur YB, Egydio de Carvalho C, Nadarajan S, Van Bostelen I, Gu Y, Chu DS, Cheeseman IM, Colaiácovo MP. LAB-1 targets PP1 and restricts Aurora B kinase upon entrance into meiosis to promote sister chromatid cohesion. PLoS Biol 2012; 10:e1001378. [PMID: 22927794 PMCID: PMC3424243 DOI: 10.1371/journal.pbio.1001378] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 07/11/2012] [Indexed: 11/19/2022] Open
Abstract
At the onset of the first meiotic division, the protein LAB-1 recruits the PP1 phosphatase to cohesion complexes, preventing Aurora B kinase from targeting cohesins for degradation prematurely and thereby ensuring proper progression of meiotic events in C. elegans. Successful execution of the meiotic program depends on the timely establishment and removal of sister chromatid cohesion. LAB-1 has been proposed to act in the latter by preventing the premature removal of the meiosis-specific cohesin REC-8 at metaphase I in C. elegans, yet the mechanism and scope of LAB-1 function remained unknown. Here we identify an unexpected earlier role for LAB-1 in promoting the establishment of sister chromatid cohesion in prophase I. LAB-1 and REC-8 are both required for the chromosomal association of the cohesin complex subunit SMC-3. Depletion of lab-1 results in partial loss of sister chromatid cohesion in rec-8 and coh-4 coh-3 mutants and further enhanced chromatid dissociation in worms where all three kleisins are mutated. Moreover, lab-1 depletion results in increased Aurora B kinase (AIR-2) signals in early prophase I nuclei, coupled with a parallel decrease in signals for the PP1 homolog, GSP-2. Finally, LAB-1 directly interacts with GSP-1 and GSP-2. We propose that LAB-1 targets the PP1 homologs to the chromatin at the onset of meiosis I, thereby antagonizing AIR-2 and cooperating with the cohesin complex to promote sister chromatid association and normal progression of the meiotic program. A critical step for achieving successful cell division is the regulation of how the cohesin complexes that bind sister chromatids are initially deposited, then maintained, and finally removed to allow the chromatids to separate into daughter cells. This is particularly challenging during meiosis, when the sister chromatids must remain partially connected to each other through the first division. In organisms that have a single focal centromere on each chromosome, such as mammals and flies, cohesin is protected through the first meiotic division by the protein Shugoshin, which binds the PP2A phosphatase. PP2A counteracts phosphorylation by the Aurora B kinase; if certain cohesins are phosphorylated by Aurora B they become targeted for removal, which allows the chromatids to separate. In the nematode C. elegans, the chromosomes lack a localized centromere and the predicted Shugoshin homolog is not required for protection of cohesins; instead, this function is executed in metaphase of the first meiotic division by the protein LAB-1. But it is not completely understood what leads to the deposition of cohesin prior to entry into meiosis and to its maintenance throughout early meiosis I. In this study, we show that LAB-1 is also required for the loading and maintenance of the cohesin complex. LAB-1 ensures that the chromatids are not separated prematurely, and thus enables the proper progression of events through prophase I of meiosis. We propose that LAB-1 may act at the onset of meiosis in a manner akin to Shugoshin, by recruiting the PP1 phosphatase to counteract Aurora B kinase, thereby ensuring sister chromatid cohesion.
Collapse
Affiliation(s)
- Yonatan B. Tzur
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Saravanapriah Nadarajan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ivo Van Bostelen
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yanjie Gu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Diana S. Chu
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Iain M. Cheeseman
- Whitehead Institute for Biomedical Research, and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Monica P. Colaiácovo
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
45
|
Evidence for centromere drive in the holocentric chromosomes of Caenorhabditis. PLoS One 2012; 7:e30496. [PMID: 22291967 PMCID: PMC3264583 DOI: 10.1371/journal.pone.0030496] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/16/2011] [Indexed: 11/19/2022] Open
Abstract
In monocentric organisms with asymmetric meiosis, the kinetochore proteins, such as CENH3 and CENP-C, evolve adaptively to counterbalance the deleterious effects of centromere drive, which is caused by the expansion of centromeric satellite repeats. The selection regimes that act on CENH3 and CENP-C genes have not been analyzed in organisms with holocentric chromosomes, although holocentrism is speculated to have evolved to suppress centromere drive. We tested both CENH3 and CENP-C for positive selection in several species of the holocentric genus Caenorhabditis using the maximum likelihood approach and sliding-window analysis. Although CENP-C did not show any signs of positive selection, positive selection has been detected in the case of CENH3. These results support the hypothesis that centromere drive occurs in Nematoda, at least in the telokinetic meiosis of Caenorhabditis.
Collapse
|
46
|
Collette KS, Petty EL, Golenberg N, Bembenek JN, Csankovszki G. Different roles for Aurora B in condensin targeting during mitosis and meiosis. J Cell Sci 2011; 124:3684-94. [PMID: 22025633 DOI: 10.1242/jcs.088336] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Condensin complexes are essential for mitotic and meiotic chromosome segregation. Caenorhabditis elegans, like other metazoans, has two distinct mitotic and meiotic condensin complexes (I and II), which occupy distinct chromosomal domains and perform non-redundant functions. Despite the differences in mitotic and meiotic chromosome behavior, we uncovered several conserved aspects of condensin targeting during these processes. During both mitosis and meiosis, condensin II loads onto chromosomes in early prophase, and condensin I loads at entry into prometaphase. During both mitosis and meiosis, the localization of condensin I, but not condensin II, closely parallels the localization of the chromosomal passenger kinase Aurora B (AIR-2 in C. elegans). Interestingly, condensin I and AIR-2 also colocalize on the spindle midzone during anaphase of mitosis, and between separating chromosomes during anaphase of meiosis. Consistently, AIR-2 affects the targeting of condensin I but not condensin II. However, the role AIR-2 plays in condensin I targeting during these processes is different. In mitosis, AIR-2 activity is required for chromosomal association of condensin I. By contrast, during meiosis, AIR-2 is not required for condensin I chromosomal association, but it provides cues for correct spatial targeting of the complex.
Collapse
Affiliation(s)
- Karishma S Collette
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | | | | | | | |
Collapse
|
47
|
Petty E, Laughlin E, Csankovszki G. Regulation of DCC localization by HTZ-1/H2A.Z and DPY-30 does not correlate with H3K4 methylation levels. PLoS One 2011; 6:e25973. [PMID: 21998734 PMCID: PMC3187824 DOI: 10.1371/journal.pone.0025973] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/14/2011] [Indexed: 12/20/2022] Open
Abstract
Dosage compensation is a specialized form of gene regulation that balances sex-chromosome linked gene expression between the sexes. In C. elegans, dosage compensation is achieved by the activity of the dosage compensation complex (DCC). The DCC binds along both X chromosomes in hermaphrodites to down-regulate gene expression by half, limiting X-linked gene products to levels produced in XO males. Sequence motifs enriched on the X chromosome play an important role in targeting the DCC to the X. However, these motifs are not strictly X-specific and therefore other factors, such as the chromatin environment of the X chromosome, are likely to aid in DCC targeting. Previously, we found that loss of HTZ-1 results in partial disruption of dosage compensation localization to the X chromosomes. We wanted to know whether other chromatin components coordinated with HTZ-1 to regulate DCC localization. One candidate is DPY-30, a protein known to play a role in DCC localization. DPY-30 homologs in yeast, flies, and mammals are highly conserved members of histone H3 lysine 4 (H3K4) methyltransferase Set1/MLL complexes. Therefore, we investigated the hypothesis that the dosage compensation function of DPY-30 involves H3K4 methylation. We found that in dpy-30 animals the DCC fails to stably bind chromatin. Interestingly, of all the C. elegans homologs of Set1/MLL complex subunits, only DPY-30 is required for stable DCC binding to chromatin. Additionally, loss of H3K4 methylation does not enhance DCC mislocalization in htz-1 animals. We conclude that DPY-30 and HTZ-1 have unique functions in DCC localization, both of which are largely independent of H3K4 methylation.
Collapse
Affiliation(s)
- Emily Petty
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Emily Laughlin
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Györgyi Csankovszki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
48
|
Lightfoot J, Testori S, Barroso C, Martinez-Perez E. Loading of meiotic cohesin by SCC-2 is required for early processing of DSBs and for the DNA damage checkpoint. Curr Biol 2011; 21:1421-30. [PMID: 21856158 DOI: 10.1016/j.cub.2011.07.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/21/2011] [Accepted: 07/07/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND Chromosome segregation and the repair of DNA double-strand breaks (DSBs) by homologous recombination require cohesin, the protein complex that mediates sister chromatid cohesion (SCC). In addition, cohesin is also required for the integrity of DNA damage checkpoints in somatic cells, where cohesin loading depends on a conserved complex containing the Scc2/Nipbl protein. Although cohesin is required for the completion of meiotic recombination, little is known about how cohesin promotes the repair of meiotic DSBs and about the factors that promote loading of cohesin during meiosis. RESULTS Here we show that during Caenorhabditis elegans meiosis, loading of cohesin requires SCC-2, whereas the cohesin-related complexes condensin and SMC-5/6 can be loaded by mechanisms independent of both SCC-2 and cohesin. Although the lack of cohesin in scc-2 mutants impairs the repair of meiotic DSBs, surprisingly, the persistent DNA damage fails to trigger an apoptotic response of the conserved pachytene DNA damage checkpoint. Mutants carrying an scc-3 allele that abrogates loading of meiotic cohesin are also deficient in the apoptotic response of the pachytene checkpoint, and both scc-2 and scc-3 mutants fail to recruit the DNA damage sensor 9-1-1 complex onto persistent damage sites during meiosis. Furthermore, we show that meiotic cohesin is also required for the timely loading of the RAD-51 recombinase to irradiation-induced DSBs. CONCLUSIONS We propose that meiotic cohesin promotes DSB processing and recruitment of DNA damage checkpoint proteins, thus implicating cohesin in the earliest steps of the DNA damage response during meiosis.
Collapse
Affiliation(s)
- James Lightfoot
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | | | | | | |
Collapse
|
49
|
Lee J, Ogushi S, Saitou M, Hirano T. Condensins I and II are essential for construction of bivalent chromosomes in mouse oocytes. Mol Biol Cell 2011; 22:3465-77. [PMID: 21795393 PMCID: PMC3172270 DOI: 10.1091/mbc.e11-05-0423] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/17/2011] [Accepted: 07/15/2011] [Indexed: 11/11/2022] Open
Abstract
In many eukaryotes, condensins I and II associate with chromosomes in an ordered fashion during mitosis and play nonoverlapping functions in their assembly and segregation. Here we report for the first time the spatiotemporal dynamics and functions of the two condensin complexes during meiotic divisions in mouse oocytes. At the germinal vesicle stage (prophase I), condensin I is present in the cytoplasm, whereas condensin II is localized within the nucleus. After germinal vesicle breakdown, condensin II starts to associate with chromosomes and becomes concentrated onto chromatid axes of bivalent chromosomes by metaphase I. REC8 "glues" chromosome arms along their lengths. In striking contrast to condensin II, condensin I localizes primarily around centromeric regions at metaphase I and starts to associate stably with chromosome arms only after anaphase I. Antibody injection experiments show that condensin functions are required for many aspects of meiotic chromosome dynamics, including chromosome individualization, resolution, and segregation. We propose that the two condensin complexes play distinctive roles in constructing bivalent chromosomes: condensin II might play a primary role in resolving sister chromatid axes, whereas condensin I might contribute to monopolar attachment of sister kinetochores, possibly by assembling a unique centromeric structure underneath.
Collapse
Affiliation(s)
- Jibak Lee
- Chromosome Dynamics Laboratory, RIKEN Advanced Science Institute, Wako 351-0198, Japan
| | - Sugako Ogushi
- The Young Researcher Development Center, Kyoto University, Kyoto 606-8302, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN Advanced Science Institute, Wako 351-0198, Japan
| |
Collapse
|
50
|
Singh M, Goel S, Meeley RB, Dantec C, Parrinello H, Michaud C, Leblanc O, Grimanelli D. Production of viable gametes without meiosis in maize deficient for an ARGONAUTE protein. THE PLANT CELL 2011; 23:443-58. [PMID: 21325139 PMCID: PMC3077773 DOI: 10.1105/tpc.110.079020] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/31/2010] [Accepted: 01/24/2011] [Indexed: 05/18/2023]
Abstract
Apomixis is a form of asexual reproduction through seeds in angiosperms. Apomictic plants bypass meiosis and fertilization, developing offspring that are genetically identical to their mother. In a genetic screen for maize (Zea mays) mutants mimicking aspects of apomixis, we identified a dominant mutation resulting in the formation of functional unreduced gametes. The mutant shows defects in chromatin condensation during meiosis and subsequent failure to segregate chromosomes. The mutated locus codes for AGO104, a member of the ARGONAUTE family of proteins. AGO104 accumulates specifically in somatic cells surrounding the female meiocyte, suggesting a mobile signal rather than cell-autonomous control. AGO104 is necessary for non-CG methylation of centromeric and knob-repeat DNA. Digital gene expression tag profiling experiments using high-throughput sequencing show that AGO104 influences the transcription of many targets in the ovaries, with a strong effect on centromeric repeats. AGO104 is related to Arabidopsis thaliana AGO9, but while AGO9 acts to repress germ cell fate in somatic tissues, AGO104 acts to repress somatic fate in germ cells. Our findings show that female germ cell development in maize is dependent upon conserved small RNA pathways acting non-cell-autonomously in the ovule. Interfering with this repression leads to apomixis-like phenotypes in maize.
Collapse
Affiliation(s)
- Manjit Singh
- Institut de Recherche pour le Développement, Plant Genome and Development Laboratory, UMR5096, 34394 Montpellier, France
| | - Shalendra Goel
- Institut de Recherche pour le Développement, Plant Genome and Development Laboratory, UMR5096, 34394 Montpellier, France
| | | | - Christelle Dantec
- Montpellier GenomiX, Institut de Génomique Fonctionelle, 34094 Montpellier, France
| | - Hugues Parrinello
- Montpellier GenomiX, Institut de Génomique Fonctionelle, 34094 Montpellier, France
| | - Caroline Michaud
- Institut de Recherche pour le Développement, Plant Genome and Development Laboratory, UMR5096, 34394 Montpellier, France
| | - Olivier Leblanc
- Institut de Recherche pour le Développement, Plant Genome and Development Laboratory, UMR5096, 34394 Montpellier, France
| | - Daniel Grimanelli
- Institut de Recherche pour le Développement, Plant Genome and Development Laboratory, UMR5096, 34394 Montpellier, France
- Address correspondence to
| |
Collapse
|