1
|
Shang W, Lichtenberg E, Mlesnita AM, Wilde A, Koch HG. The contribution of mRNA targeting to spatial protein localization in bacteria. FEBS J 2024; 291:4639-4659. [PMID: 38226707 DOI: 10.1111/febs.17054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
About 30% of all bacterial proteins execute their function outside of the cytosol and must be inserted into or translocated across the cytoplasmic membrane. This requires efficient targeting systems that recognize N-terminal signal sequences in client proteins and deliver them to protein transport complexes in the membrane. While the importance of these protein transport machineries for the spatial organization of the bacterial cell is well documented in multiple studies, the contribution of mRNA targeting and localized translation to protein transport is only beginning to emerge. mRNAs can exhibit diverse subcellular localizations in the bacterial cell and can accumulate at sites where new protein is required. This is frequently observed for mRNAs encoding membrane proteins, but the physiological importance of membrane enrichment of mRNAs and the consequences it has for the insertion of the encoded protein have not been explored in detail. Here, we briefly highlight some basic concepts of signal sequence-based protein targeting and describe in more detail strategies that enable the monitoring of mRNA localization in bacterial cells and potential mechanisms that route mRNAs to particular positions within the cell. Finally, we summarize some recent developments that demonstrate that mRNA targeting and localized translation can sustain membrane protein insertion under stress conditions when the protein-targeting machinery is compromised. Thus, mRNA targeting likely acts as a back-up strategy and complements the canonical signal sequence-based protein targeting.
Collapse
Affiliation(s)
- Wenkang Shang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs University Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs University Freiburg, Germany
| | | | - Andreea Mihaela Mlesnita
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs University Freiburg, Germany
| | - Annegret Wilde
- Faculty of Biology, Albert-Ludwigs University Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs University Freiburg, Germany
| |
Collapse
|
2
|
Njenga R, Boele J, Öztürk Y, Koch HG. Coping with stress: How bacteria fine-tune protein synthesis and protein transport. J Biol Chem 2023; 299:105163. [PMID: 37586589 PMCID: PMC10502375 DOI: 10.1016/j.jbc.2023.105163] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
Maintaining a functional proteome under different environmental conditions is challenging for every organism, in particular for unicellular organisms, such as bacteria. In order to cope with changing environments and stress conditions, bacteria depend on strictly coordinated proteostasis networks that control protein production, folding, trafficking, and degradation. Regulation of ribosome biogenesis and protein synthesis are cornerstones of this cellular adaptation in all domains of life, which is rationalized by the high energy demand of both processes and the increased resistance of translationally silent cells against internal or external poisons. Reduced protein synthesis ultimately also reduces the substrate load for protein transport systems, which are required for maintaining the periplasmic, inner, and outer membrane subproteomes. Consequences of impaired protein transport have been analyzed in several studies and generally induce a multifaceted response that includes the upregulation of chaperones and proteases and the simultaneous downregulation of protein synthesis. In contrast, generally less is known on how bacteria adjust the protein targeting and transport machineries to reduced protein synthesis, e.g., when cells encounter stress conditions or face nutrient deprivation. In the current review, which is mainly focused on studies using Escherichia coli as a model organism, we summarize basic concepts on how ribosome biogenesis and activity are regulated under stress conditions. In addition, we highlight some recent developments on how stress conditions directly impair protein targeting to the bacterial membrane. Finally, we describe mechanisms that allow bacteria to maintain the transport of stress-responsive proteins under conditions when the canonical protein targeting pathways are impaired.
Collapse
Affiliation(s)
- Robert Njenga
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Julian Boele
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Yavuz Öztürk
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
Sarmah P, Shang W, Origi A, Licheva M, Kraft C, Ulbrich M, Lichtenberg E, Wilde A, Koch HG. mRNA targeting eliminates the need for the signal recognition particle during membrane protein insertion in bacteria. Cell Rep 2023; 42:112140. [PMID: 36842086 PMCID: PMC10066597 DOI: 10.1016/j.celrep.2023.112140] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 01/10/2023] [Accepted: 02/02/2023] [Indexed: 02/26/2023] Open
Abstract
Signal-sequence-dependent protein targeting is essential for the spatiotemporal organization of eukaryotic and prokaryotic cells and is facilitated by dedicated protein targeting factors such as the signal recognition particle (SRP). However, targeting signals are not exclusively contained within proteins but can also be present within mRNAs. By in vivo and in vitro assays, we show that mRNA targeting is controlled by the nucleotide content and by secondary structures within mRNAs. mRNA binding to bacterial membranes occurs independently of soluble targeting factors but is dependent on the SecYEG translocon and YidC. Importantly, membrane insertion of proteins translated from membrane-bound mRNAs occurs independently of the SRP pathway, while the latter is strictly required for proteins translated from cytosolic mRNAs. In summary, our data indicate that mRNA targeting acts in parallel to the canonical SRP-dependent protein targeting and serves as an alternative strategy for safeguarding membrane protein insertion when the SRP pathway is compromised.
Collapse
Affiliation(s)
- Pinku Sarmah
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Wenkang Shang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Andrea Origi
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University Freiburg, 79104 Freiburg, Germany
| | - Maximilian Ulbrich
- Internal Medicine IV, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | | | - Annegret Wilde
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
4
|
Zimmermann JSM, Linxweiler J, Radosa JC, Linxweiler M, Zimmermann R. The endoplasmic reticulum membrane protein Sec62 as potential therapeutic target in SEC62 overexpressing tumors. Front Physiol 2022; 13:1014271. [PMID: 36262254 PMCID: PMC9574383 DOI: 10.3389/fphys.2022.1014271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022] Open
Abstract
The human SEC62 gene is located on chromosome 3q, was characterized as a tumor driver gene and is found to be overexpressed in an ever-growing number of tumors, particularly those with 3q26 amplification. Where analyzed, SEC62 overexpression was associated with poor prognosis. Sec62 protein is a membrane protein of the endoplasmic reticulum (ER) and has functions in endoplasmic reticulum protein import, endoplasmic reticulum-phagy and -in cooperation with the cytosolic protein calmodulin- the maintenance of cellular calcium homeostasis. Various human tumors show SEC62 overexpression in immunohistochemistry and corresponding cell lines confirm this phenomenon in western blots and immunofluorescence. Furthermore, these tumor cells are characterized by increased stress tolerance and migratory as well as invasive potential, three hallmarks of cancer cells. Strikingly, plasmid-driven overexpression of SEC62 in non-SEC62 overexpressing cells introduces the same three hallmarks of cancer into the transfected cells. Depletion of Sec62 from either type of SEC62 overexpressing tumor cells by treatment with SEC62-targeting siRNAs leads to reduced stress tolerance and reduced migratory as well as invasive potential. Where tested, treatment of SEC62 overexpressing tumor cells with the small molecule/calmodulin antagonist trifluoperazine (TFP) phenocopied the effect of SEC62-targeting siRNAs. Recently, first phase II clinical trials with the prodrug mipsagargin/G202, which targets cellular calcium homeostasis in prostate cells as well as neovascular tissue in various tumors were started. According to experiments with tumor cell lines, however, SEC62 overexpressing tumor cells may be less responsive or resistant against such treatment. Therefore, murine tumor models for tumor growth or metastasis were evaluated with respect to their responsiveness to treatment with a mipsagargin analog (thapsigargin), or trifluoperazine, which had previously been in clinical use for the treatment of schizophrenia, or with the combination of both drugs. So far, no additive effect of the two drugs was observed but trifluoperazine had an inhibitory effect on tumor growth and metastatic potential in the models. Here, we review the state of affairs.
Collapse
Affiliation(s)
- Julia S. M. Zimmermann
- Department of Gynecology, Obstetrics and Reproductive Medicine, Saarland University, Homburg, Germany
| | - Johannes Linxweiler
- Department of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| | - Julia C. Radosa
- Department of Gynecology, Obstetrics and Reproductive Medicine, Saarland University, Homburg, Germany
| | - Maximilian Linxweiler
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University, Homburg, Germany
| | - Richard Zimmermann
- Competence Center for Molecular Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
5
|
Saha N, Tomar RS. Copper inhibits protein maturation in the secretory pathway by targeting the Sec61 translocon in Saccharomyces cerevisiae. J Biol Chem 2022; 298:102170. [PMID: 35738397 PMCID: PMC9304788 DOI: 10.1016/j.jbc.2022.102170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
In Saccharomyces cerevisiae, proteins destined for secretion utilize the post-translational translocon machinery to gain entry into the endoplasmic reticulum. These proteins then mature by undergoing a number of post-translational modifications in different compartments of the secretory pathway. While these modifications have been well established for many proteins, to date only a few studies have been conducted regarding the conditions and factors affecting maturation of these proteins before entering into the endoplasmic reticulum. Here, using immunoblotting, microscopy, and spot test assays, we show that excess copper inhibits the Sec61 translocon function and causes accumulation of two well-known post-translationally translocated proteins, Gas1 (glycophospholipid-anchored surface protein) and CPY (carboxypeptidase Y), in the cytosol. We further show that the copper-sensitive phenotype of sec61-deficient yeast cells is ameliorated by restoring the levels of SEC61 through plasmid transformation. Furthermore, screening of translocation-defective Sec61 mutants revealed that sec61-22, bearing L80M, V134I, M248V, and L342S mutations, is resistant to copper, suggesting that copper might be inflicting toxicity through one of these residues. In conclusion, these findings imply that copper-mediated accumulation of post-translationally translocated proteins is due to the inhibition of Sec61.
Collapse
Affiliation(s)
- Nitu Saha
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, 462066, Madhya Pradesh, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, 462066, Madhya Pradesh, India.
| |
Collapse
|
6
|
Tirincsi A, Sicking M, Hadzibeganovic D, Haßdenteufel S, Lang S. The Molecular Biodiversity of Protein Targeting and Protein Transport Related to the Endoplasmic Reticulum. Int J Mol Sci 2021; 23:143. [PMID: 35008565 PMCID: PMC8745461 DOI: 10.3390/ijms23010143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Looking at the variety of the thousands of different polypeptides that have been focused on in the research on the endoplasmic reticulum from the last five decades taught us one humble lesson: no one size fits all. Cells use an impressive array of components to enable the safe transport of protein cargo from the cytosolic ribosomes to the endoplasmic reticulum. Safety during the transit is warranted by the interplay of cytosolic chaperones, membrane receptors, and protein translocases that together form functional networks and serve as protein targeting and translocation routes. While two targeting routes to the endoplasmic reticulum, SRP (signal recognition particle) and GET (guided entry of tail-anchored proteins), prefer targeting determinants at the N- and C-terminus of the cargo polypeptide, respectively, the recently discovered SND (SRP-independent) route seems to preferentially cater for cargos with non-generic targeting signals that are less hydrophobic or more distant from the termini. With an emphasis on targeting routes and protein translocases, we will discuss those functional networks that drive efficient protein topogenesis and shed light on their redundant and dynamic nature in health and disease.
Collapse
Affiliation(s)
- Andrea Tirincsi
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Mark Sicking
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Drazena Hadzibeganovic
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Sarah Haßdenteufel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| |
Collapse
|
7
|
Srinivasan K, Banerjee A, Baid P, Dhur A, Sengupta J. Ribosome-membrane crosstalk: Co-translational targeting pathways of proteins across membranes in prokaryotes and eukaryotes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:163-198. [PMID: 35034718 DOI: 10.1016/bs.apcsb.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ribosomes are the molecular machine of living cells designed for decoding mRNA-encoded genetic information into protein. Being sophisticated machinery, both in design and function, the ribosome not only carries out protein synthesis, but also coordinates several other ribosome-associated cellular processes. One such process is the translocation of proteins across or into the membrane depending on their secretory or membrane-associated nature. These proteins comprise a large portion of a cell's proteome and act as key factors for cellular survival as well as several crucial functional pathways. Protein transport to extra- and intra-cytosolic compartments (across the eukaryotic endoplasmic reticulum (ER) or across the prokaryotic plasma membrane) or insertion into membranes majorly occurs through an evolutionarily conserved protein-conducting channel called translocon (eukaryotic Sec61 or prokaryotic SecYEG channels). Targeting proteins to the membrane-bound translocon may occur via post-translational or co-translational modes and it is often mediated by recognition of an N-terminal signal sequence in the newly synthesizes polypeptide chain. Co-translational translocation is coupled to protein synthesis where the ribosome-nascent chain complex (RNC) itself is targeted to the translocon. Here, in the light of recent advances in structural and functional studies, we discuss our current understanding of the mechanistic models of co-translational translocation, coordinated by the actively translating ribosomes, in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Krishnamoorthi Srinivasan
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aneek Banerjee
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priya Baid
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Ankit Dhur
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Jayati Sengupta
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
8
|
Rapid inactivation of the yeast Sec complex selectively blocks transport of post-translationally translocated proteins. J Biol Chem 2021; 297:101171. [PMID: 34492269 PMCID: PMC8503631 DOI: 10.1016/j.jbc.2021.101171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 11/29/2022] Open
Abstract
The yeast endoplasmic reticulum has three distinct protein translocation channels. The heterotrimeric Sec61 and Ssh1 complexes, which bind translating ribosomes, mediate cotranslational translocation of proteins targeted to the endoplasmic reticulum by the signal recognition particle (SRP) and SRP receptor targeting pathway, whereas the heptameric Sec complex has been proposed to mediate ribosome-independent post-translational translocation of proteins with less hydrophobic signal sequences that escape recognition by the SRP. However, multiple reports have proposed that the Sec complex may function cotranslationally and be involved in translocation or integration of SRP-dependent protein translocation substrates. To provide insight into these conflicting views, we induced expression of the tobacco etch virus protease to achieve rapid inactivation of the Sec complex by protease-mediated cleavage within the cytoplasmic domain of the Sec63 protein. Protein translocation assays conducted after tobacco etch virus protease induction revealed a complete block in translocation of two well-characterized substrates of the Sec complex, carboxypeptidase Y (CPY) and Gas1p, when the protease cleavage sites were located at structural domain boundaries in Sec63. However, integration of SRP-dependent membrane protein substrates was not detectably impacted. Moreover, redirecting CPY to the cotranslational pathway by increasing the hydrophobicity of the signal sequence rendered translocation of CPY insensitive to inactivation of the Sec complex. We conclude that the Sec complex is primarily responsible for the translocation of yeast secretome proteins with marginally hydrophobic signal sequences.
Collapse
|
9
|
Itskanov S, Kuo KM, Gumbart JC, Park E. Stepwise gating of the Sec61 protein-conducting channel by Sec63 and Sec62. Nat Struct Mol Biol 2021; 28:162-172. [PMID: 33398175 PMCID: PMC8236211 DOI: 10.1038/s41594-020-00541-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Many proteins are transported into the endoplasmic reticulum by the universally conserved Sec61 channel. Post-translational transport requires two additional proteins, Sec62 and Sec63, but their functions are poorly defined. Here, we determined cryo-EM structures of several variants of Sec61–Sec62–Sec63 complexes from Saccharomyces cerevisiae and Thermomyces lanuginosus and show that Sec62 and Sec63 induce opening of the Sec61 channel. Without Sec62, the translocation pore of Sec61 remains closed by the plug domain, rendering the channel inactive. We further show that the lateral gate of Sec61 must first be partially opened by interactions between Sec61 and Sec63 in cytosolic and lumenal domains, a simultaneous disruption of which completely closes the channel. The structures and molecular dynamics simulations suggest that Sec62 may also prevent lipids from invading the channel through the open lateral gate. Our study shows how Sec63 and Sec62 work together in a hierarchical manner to activate Sec61 for post-translational protein translocation.
Collapse
Affiliation(s)
- Samuel Itskanov
- Biophysics Graduate Program, University of California, Berkeley, CA, USA
| | - Katie M Kuo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - James C Gumbart
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.,School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eunyong Park
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA. .,California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA.
| |
Collapse
|
10
|
Kaul Z, Mookherjee D, Das S, Chatterjee D, Chakrabarti S, Chakrabarti O. Loss of tumor susceptibility gene 101 (TSG101) perturbs endoplasmic reticulum structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118741. [PMID: 32422153 DOI: 10.1016/j.bbamcr.2020.118741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/02/2020] [Accepted: 05/08/2020] [Indexed: 12/30/2022]
Abstract
Tumor susceptibility gene 101 (TSG101), an ESCRT-I protein, is implicated in multiple cellular processes and its functional depletion can lead to blocked lysosomal degradation, cell cycle arrest, demyelination and neurodegeneration. Here, we show that loss of TSG101 results in endoplasmic reticulum (ER) stress and this causes ER membrane remodelling (EMR). This correlates with an expansion of ER, increased vacuolation, altered relative distribution of the rough and smooth ER and disruption of three-way junctions. Blocked lysosomal degradation due to TSG101 depletion leads to ER stress and Ca2+ leakage from ER stores, causing destabilization of actin cytoskeleton. Inhibiting Ca2+ release from the ER by blocking ryanodine receptors (RYRs) with Dantrolene partially rescues the ER stress phenotypes. Hence, in this study we have identified the involvement of TSG101 in modulating ER stress mediated remodelling by engaging the actin cytoskeleton. This is significant because functional depletion of TSG101 effectuates ER-stress, perturbs the structure, mobility and function of the ER, all aspects closely associated with neurodegenerative diseases. SUMMARY STATEMENT: We show that tumor susceptibility gene (TSG) 101 regulates endoplasmic reticulum (ER) stress and its membrane remodelling. Loss of TSG101 perturbs structure, mobility and function of the ER as a consequence of actin destabilization.
Collapse
Affiliation(s)
- Zenia Kaul
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA..
| | - Debdatto Mookherjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Subhrangshu Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, CN 6, Sector V, Salt Lake, Kolkata 700091, India
| | - Debmita Chatterjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, CN 6, Sector V, Salt Lake, Kolkata 700091, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, India.
| |
Collapse
|
11
|
Laborenz J, Hansen K, Prescianotto-Baschong C, Spang A, Herrmann JM. In vitro import experiments with semi-intact cells suggest a role of the Sec61 paralog Ssh1 in mitochondrial biogenesis. Biol Chem 2020; 400:1229-1240. [PMID: 31199753 DOI: 10.1515/hsz-2019-0196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/03/2019] [Indexed: 12/21/2022]
Abstract
Mitochondrial biogenesis relies on the synthesis of hundreds of different precursor proteins in the cytosol and their subsequent import into the organelle. Recent studies suggest that the surface of the endoplasmic reticulum (ER) actively contributes to the targeting of some mitochondrial precursors. In the past, in vitro import experiments with isolated mitochondria proved to be extremely powerful to elucidate the individual reactions of the mitochondrial import machinery. However, this in vitro approach is not well suited to study the influence of non-mitochondrial membranes. In this study, we describe an in vitro system using semi-intact yeast cells to test a potential import relevance of the ER proteins Erg3, Lcb5 and Ssh1, all being required for efficient mitochondrial respiration. We optimized the conditions of this experimental test system and found that cells lacking Ssh1, a paralog of the Sec61 translocation pore, show a reduced import efficiency of mitochondrial precursor proteins. Our results suggest that Ssh1, directly or indirectly, increases the efficiency of the biogenesis of mitochondrial proteins. Our findings are compatible with a functional interdependence of the mitochondrial and the ER protein translocation systems.
Collapse
Affiliation(s)
- Janina Laborenz
- Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany
| | - Katja Hansen
- Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany
| | | | - Anne Spang
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Johannes M Herrmann
- Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany
| |
Collapse
|
12
|
Lakshminarayan R, Phillips BP, Binnian IL, Gomez-Navarro N, Escudero-Urquijo N, Warren AJ, Miller EA. Pre-emptive Quality Control of a Misfolded Membrane Protein by Ribosome-Driven Effects. Curr Biol 2020; 30:854-864.e5. [PMID: 31956032 PMCID: PMC7063571 DOI: 10.1016/j.cub.2019.12.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/02/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022]
Abstract
Cells possess multiple mechanisms that protect against the accumulation of toxic aggregation-prone proteins. Here, we identify a pre-emptive pathway that reduces synthesis of membrane proteins that have failed to properly assemble in the endoplasmic reticulum (ER). We show that loss of the ER membrane complex (EMC) or mutation of the Sec61 translocon causes reduced synthesis of misfolded forms of the yeast ABC transporter Yor1. Synthesis defects are rescued by various ribosomal mutations, as well as by reducing cellular ribosome abundance. Genetic and biochemical evidence point to a ribosome-associated quality-control pathway triggered by ribosome collisions when membrane domain insertion and/or folding fails. In support of this model, translation initiation also contributes to synthesis defects, likely by modulating ribosome abundance on the message. Examination of translation efficiency across the yeast membrane proteome revealed that polytopic membrane proteins have relatively low ribosome abundance, providing evidence for translational tuning to balance protein synthesis and folding. We propose that by modulating translation rates of poorly folded proteins, cells can pre-emptively protect themselves from potentially toxic aberrant transmembrane proteins. Yor1-ΔF shows synthesis defects when Sec61 or EMC function is compromised Synthesis defects are suppressed by ribosomal and RQC mutants Translation initiation is a second point of potential regulation Pre-emptive quality control on the ER might protect the cell from aberrant proteins
Collapse
Affiliation(s)
- Ramya Lakshminarayan
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave., New York, NY 10027, USA
| | - Ben P Phillips
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Ave., Cambridge CB2 0QH, UK
| | - Imogen L Binnian
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Ave., Cambridge CB2 0QH, UK
| | - Natalia Gomez-Navarro
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Ave., Cambridge CB2 0QH, UK
| | - Norberto Escudero-Urquijo
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, The Keith Peters Building, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Puddicomb Way, Cambridge CB2 0AW, UK
| | - Alan J Warren
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, The Keith Peters Building, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Puddicomb Way, Cambridge CB2 0AW, UK
| | - Elizabeth A Miller
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave., New York, NY 10027, USA; Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Ave., Cambridge CB2 0QH, UK.
| |
Collapse
|
13
|
Witham CM, Dassanayake HG, Paxman AL, Stevens KLP, Baklous L, White PF, Black AL, Steuart RFL, Stirling CJ, Schulz BL, Mousley CJ. The conserved C-terminus of Sss1p is required to maintain the endoplasmic reticulum permeability barrier. J Biol Chem 2019; 295:2125-2134. [PMID: 31848225 DOI: 10.1074/jbc.ra119.010378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/11/2019] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum (ER) is the entry point to the secretory pathway and major site of protein biogenesis. Translocation of secretory and integral membrane proteins across or into the ER membrane occurs via the evolutionarily conserved Sec61 complex, a heterotrimeric channel that comprises the Sec61p/Sec61α, Sss1p/Sec61γ, and Sbh1p/Sec61β subunits. In addition to forming a protein-conducting channel, the Sec61 complex also functions to maintain the ER permeability barrier, preventing the mass free flow of essential ER-enriched molecules and ions. Loss in Sec61 integrity is detrimental and implicated in the progression of disease. The Sss1p/Sec61γ C terminus is juxtaposed to the key gating module of Sec61p/Sec61α, and we hypothesize it is important for gating the ER translocon. The ER stress response was found to be constitutively induced in two temperature-sensitive sss1 mutants (sss1ts ) that are still proficient to conduct ER translocation. A screen to identify intergenic mutations that allow for sss1ts cells to grow at 37 °C suggests the ER permeability barrier to be compromised in these mutants. We propose the extreme C terminus of Sss1p/Sec61γ is an essential component of the gating module of the ER translocase and is required to maintain the ER permeability barrier.
Collapse
Affiliation(s)
- Christopher M Witham
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Hasindu G Dassanayake
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Aleshanee L Paxman
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Kofi L P Stevens
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Lamprini Baklous
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Paris F White
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Amy L Black
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Robert F L Steuart
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Colin J Stirling
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane St Lucia, QLD 4072, Australia
| | - Carl J Mousley
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia.
| |
Collapse
|
14
|
Shrimal S, Cherepanova NA, Mandon EC, Venev SV, Gilmore R. Asparagine-linked glycosylation is not directly coupled to protein translocation across the endoplasmic reticulum in Saccharomyces cerevisiae. Mol Biol Cell 2019; 30:2626-2638. [PMID: 31433728 PMCID: PMC6761772 DOI: 10.1091/mbc.e19-06-0330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mammalian cells express two oligosaccharyltransferase complexes, STT3A and STT3B, that have distinct roles in N-linked glycosylation. The STT3A complex interacts directly with the protein translocation channel to mediate glycosylation of proteins using an N-terminal-to-C-terminal scanning mechanism. N-linked glycosylation of proteins in budding yeast has been assumed to be a cotranslational reaction. We have compared glycosylation of several glycoproteins in yeast and mammalian cells. Prosaposin, a cysteine-rich protein that contains STT3A-dependent glycosylation sites, is poorly glycosylated in yeast cells and STT3A-deficient human cells. In contrast, a protein with extreme C-terminal glycosylation sites was efficiently glycosylated in yeast by a posttranslocational mechanism. Posttranslocational glycosylation was also observed for carboxypeptidase Y-derived reporter proteins that contain closely spaced acceptor sites. A comparison of two recent protein structures indicates that the yeast OST is unable to interact with the yeast heptameric Sec complex via an evolutionarily conserved interface due to occupation of the OST binding site by the Sec63 protein. The efficiency of glycosylation in yeast is not enhanced for proteins that are translocated by the Sec61 or Ssh1 translocation channels instead of the Sec complex. We conclude that N-linked glycosylation and protein translocation are not directly coupled in yeast cells.
Collapse
Affiliation(s)
- Shiteshu Shrimal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Natalia A Cherepanova
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Elisabet C Mandon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Sergey V Venev
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
15
|
Elia F, Yadhanapudi L, Tretter T, Römisch K. The N-terminus of Sec61p plays key roles in ER protein import and ERAD. PLoS One 2019; 14:e0215950. [PMID: 31017954 PMCID: PMC6481919 DOI: 10.1371/journal.pone.0215950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/11/2019] [Indexed: 01/24/2023] Open
Abstract
Sec61p is the channel-forming subunit of the heterotrimeric Sec61 complex that mediates co-translational protein import into the endoplasmic reticulum (ER). In yeast, proteins can also be post-translationally translocated by the hetero-heptameric Sec complex, composed of the Sec61 and the Sec63 complexes. The Sec61 channel is also a candidate for the dislocation channel for misfolded proteins from the ER to the cytosol during ER-associated degradation (ERAD). The structure of the Sec61 complex is highly conserved, but the roles of its N-terminal acetylation and its amphipathic N-terminal helix are unknown so far. To gain insight into the function of the Sec61p N-terminus, we mutated its N-acetylation site, deleted its amphipathic helix, or both the helix and the N-acetylation site. Mutation of the N-acetylation site on its own had no effect on protein import into the ER in intact cells, but resulted in an ERAD defect. Yeast expressing sec61 without the N-terminal amphipathic helix displayed severe growth defects and had profound defects in post-translational protein import into the ER. Nevertheless the formation of the hetero-heptameric Sec complex was not affected. Instead, the lack of the N-terminal amphipathic helix compromised the integrity of the heterotrimeric Sec61 complex. We conclude that the N-terminal helix of Sec61p is required for post-translational protein import into the ER and Sec61 complex stability, whereas N-terminal acetylation of Sec61p plays a role in ERAD.
Collapse
Affiliation(s)
- Francesco Elia
- Faculty of Natural Sciences and Technology, Saarland University, Saarbruecken, Germany
| | - Lalitha Yadhanapudi
- Faculty of Natural Sciences and Technology, Saarland University, Saarbruecken, Germany
| | - Thomas Tretter
- Faculty of Natural Sciences and Technology, Saarland University, Saarbruecken, Germany
| | - Karin Römisch
- Faculty of Natural Sciences and Technology, Saarland University, Saarbruecken, Germany
- * E-mail:
| |
Collapse
|
16
|
Lang S, Nguyen D, Pfeffer S, Förster F, Helms V, Zimmermann R. Functions and Mechanisms of the Human Ribosome-Translocon Complex. Subcell Biochem 2019; 93:83-141. [PMID: 31939150 DOI: 10.1007/978-3-030-28151-9_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The membrane of the endoplasmic reticulum (ER) in human cells harbors the protein translocon, which facilitates membrane insertion and translocation of almost every newly synthesized polypeptide targeted to organelles of the secretory pathway. The translocon comprises the polypeptide-conducting Sec61 channel and several additional proteins, which are associated with the heterotrimeric Sec61 complex. This ensemble of proteins facilitates ER targeting of precursor polypeptides, Sec61 channel opening and closing, and modification of precursor polypeptides in transit through the Sec61 complex. Recently, cryoelectron tomography of translocons in native ER membranes has given unprecedented insights into the architecture and dynamics of the native, ribosome-associated translocon and the Sec61 channel. These structural data are discussed in light of different Sec61 channel activities including ribosome receptor function, membrane insertion or translocation of newly synthesized polypeptides as well as the possible roles of the Sec61 channel as a passive ER calcium leak channel and regulator of ATP/ADP exchange between cytosol and ER.
Collapse
Affiliation(s)
- Sven Lang
- Competence Center for Molecular Medicine, Saarland University Medical School, Building 44, 66421, Homburg, Germany.
| | - Duy Nguyen
- Center for Bioinformatics, Saarland University, 66041, Saarbrücken, Germany
| | - Stefan Pfeffer
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152, Martinsried, Germany
- ZMBH, 69120, Heidelberg, Germany
| | - Friedrich Förster
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152, Martinsried, Germany
- Center for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, 66041, Saarbrücken, Germany
| | - Richard Zimmermann
- Competence Center for Molecular Medicine, Saarland University Medical School, Building 44, 66421, Homburg, Germany
| |
Collapse
|
17
|
Itskanov S, Park E. Structure of the posttranslational Sec protein-translocation channel complex from yeast. Science 2018; 363:84-87. [PMID: 30545845 DOI: 10.1126/science.aav6740] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/21/2018] [Indexed: 12/14/2022]
Abstract
The Sec61 protein-conducting channel mediates transport of many proteins, such as secretory proteins, across the endoplasmic reticulum (ER) membrane during or after translation. Posttranslational transport is enabled by two additional membrane proteins associated with the channel, Sec63 and Sec62, but its mechanism is poorly understood. We determined a structure of the Sec complex (Sec61-Sec63-Sec71-Sec72) from Saccharomyces cerevisiae by cryo-electron microscopy (cryo-EM). The structure shows that Sec63 tightly associates with Sec61 through interactions in cytosolic, transmembrane, and ER-luminal domains, prying open Sec61's lateral gate and translocation pore and thus activating the channel for substrate engagement. Furthermore, Sec63 optimally positions binding sites for cytosolic and luminal chaperones in the complex to enable efficient polypeptide translocation. Our study provides mechanistic insights into eukaryotic posttranslational protein translocation.
Collapse
Affiliation(s)
- Samuel Itskanov
- Biophysics Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Eunyong Park
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
18
|
Mandon EC, Butova C, Lachapelle A, Gilmore R. Conserved motifs on the cytoplasmic face of the protein translocation channel are critical for the transition between resting and active conformations. J Biol Chem 2018; 293:13662-13672. [PMID: 29986881 DOI: 10.1074/jbc.ra118.004123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/26/2018] [Indexed: 11/06/2022] Open
Abstract
The Sec61 complex is the primary cotranslational protein translocation channel in yeast (Saccharomyces cerevisiae). The structural transition between the closed inactive conformation of the Sec61 complex and its open and active conformation is thought to be promoted by binding of the ribosome nascent-chain complex to the cytoplasmic surface of the Sec61 complex. Here, we have analyzed new yeast Sec61 mutants that selectively interfere with cotranslational translocation across the endoplasmic reticulum. We found that a single substitution at the junction between transmembrane segment TM7 and the L6/7 loop interferes with cotranslational translocation by uncoupling ribosome binding to the L6/7 loop from the separation of the lateral gate transmembrane spans. Substitutions replacing basic residues with acidic residues in the C-terminal tail of Sec61 had an unanticipated impact upon binding of ribosomes to the Sec61 complex. We found that similar charge-reversal mutations in the N-terminal tail and in cytoplasmic loop L2/3 did not alter ribosome binding but interfered with translocation channel gating. These findings indicated that these segments are important for the structural transition between the inactive and active conformations of the Sec61 complex. In summary our results have identified additional cytosolic segments of the Sec61 complex important for promoting the structural transition between the closed and open conformations of the complex. We conclude that positively charged residues in multiple cytosolic segments, as well as bulky hydrophobic residues in the L6/7-TM7 junction, are required for cotranslational translocation or integration of membrane proteins by the Sec61 complex.
Collapse
Affiliation(s)
- Elisabet C Mandon
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Cameron Butova
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Amber Lachapelle
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Reid Gilmore
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
19
|
Tripathi A, Mandon EC, Gilmore R, Rapoport TA. Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins. J Biol Chem 2017; 292:8007-8018. [PMID: 28286332 DOI: 10.1074/jbc.m116.761122] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/09/2017] [Indexed: 12/20/2022] Open
Abstract
The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, we report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1.
Collapse
Affiliation(s)
- Arati Tripathi
- From the Howard Hughes Medical Institute and the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Elisabet C Mandon
- the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Reid Gilmore
- the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Tom A Rapoport
- From the Howard Hughes Medical Institute and the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 and
| |
Collapse
|
20
|
McKenna M, Simmonds RE, High S. Mechanistic insights into the inhibition of Sec61-dependent co- and post-translational translocation by mycolactone. J Cell Sci 2016; 129:1404-15. [PMID: 26869228 PMCID: PMC4852723 DOI: 10.1242/jcs.182352] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/03/2016] [Indexed: 12/17/2022] Open
Abstract
The virulence factor mycolactone is responsible for the immunosuppression and tissue necrosis that characterise Buruli ulcer, a disease caused by infection with Mycobacterium ulcerans In this study, we confirm that Sec61, the protein-conducting channel that coordinates entry of secretory proteins into the endoplasmic reticulum, is a primary target of mycolactone, and characterise the nature of its inhibitory effect. We conclude that mycolactone constrains the ribosome-nascent-chain-Sec61 complex, consistent with its broad-ranging perturbation of the co-translational translocation of classical secretory proteins. In contrast, the effect of mycolactone on the post-translational ribosome-independent translocation of short secretory proteins through the Sec61 complex is dependent on both signal sequence hydrophobicity and the translocation competence of the mature domain. Changes to protease sensitivity strongly suggest that mycolactone acts by inducing a conformational change in the pore-forming Sec61α subunit. These findings establish that mycolactone inhibits Sec61-mediated protein translocation and highlight differences between the co- and post-translational routes that the Sec61 complex mediates. We propose that mycolactone also provides a useful tool for further delineating the molecular mechanisms of Sec61-dependent protein translocation.
Collapse
Affiliation(s)
- Michael McKenna
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester M13 9PT, UK
| | - Rachel E Simmonds
- Department of Microbial Sciences, School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Stephen High
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester M13 9PT, UK
| |
Collapse
|
21
|
Sinha A, Ray A, Ganguly S, Ghosh Dastidar S, Sarkar S. Variation in the ribosome interacting loop of the Sec61α from Giardia lamblia. Biol Direct 2015; 10:56. [PMID: 26424409 PMCID: PMC4588681 DOI: 10.1186/s13062-015-0087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 09/24/2015] [Indexed: 11/17/2022] Open
Abstract
The interaction between the ribosome and the endoplasmic reticulum-located Sec61 protein translocon is mediated through an arginine residue of Sec61α, which is conserved in all prokaryotic and eukaryotic orthologues characterized to date. Using in silico approaches we report that instead of arginine, this ribosome-interaction function is most likely discharged by a lysine residue in the protist Giardia lamblia. This functional substitution of the R with a K in GlSec61α may have taken place to accommodate a G-rich rRNA.
Collapse
Affiliation(s)
- Abhishek Sinha
- Department of Biochemistry, Bose Institute, P-1/12 CIT Road, Scheme VII M, Kolkata, 700054,, West Bengal, India.
| | - Atrayee Ray
- Department of Biochemistry, Bose Institute, P-1/12 CIT Road, Scheme VII M, Kolkata, 700054,, West Bengal, India.
| | - Sandipan Ganguly
- Molecular Parasitology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T Road, Scheme XM, Kolkata, 700010,, West Bengal, India.
| | - Shubhra Ghosh Dastidar
- Bioinformatics Center, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata, 700054,, West Bengal, India.
| | - Srimonti Sarkar
- Department of Biochemistry, Bose Institute, P-1/12 CIT Road, Scheme VII M, Kolkata, 700054,, West Bengal, India.
| |
Collapse
|
22
|
Kaiser ML, Römisch K. Proteasome 19S RP binding to the Sec61 channel plays a key role in ERAD. PLoS One 2015; 10:e0117260. [PMID: 25658429 PMCID: PMC4319758 DOI: 10.1371/journal.pone.0117260] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 12/20/2014] [Indexed: 11/24/2022] Open
Abstract
Import of secretory proteins into the Endoplasmic Reticulum (ER) is an established function of the Sec61 channel. The contribution of the Sec61 channel to export of misfolded proteins from the ER for degradation by proteasomes is still controversial, but the proteasome 19S regulatory particle (RP) is necessary and sufficient for extraction of specific misfolded proteins from the ER, and binds directly to the Sec61 channel. In this work we have identified an import-competent sec61 mutant, S353C, carrying a point mutation in ER-lumenal loop 7 which reduces affinity of the cytoplasmic face of the Sec61 channel for the 19S RP. This indicates that the interaction between the 19S RP and the Sec61 channel is dependent on conformational changes in Sec61p hinging on loop 7. The sec61-S353C mutant had no measurable ER import defects and did not cause ER stress in intact cells, but reduced ER-export of a 19S RP-dependent misfolded protein when proteasomes were limiting in a cell-free assay. Our data suggest that the interaction between the 19S RP and the Sec61 channel is essential for the export of specific substrates from the ER to the cytosol for proteasomal degradation.
Collapse
Affiliation(s)
- Marie-Luise Kaiser
- Department of Microbiology, Faculty of Natural Sciences and Technology VIII, Saarland University, 66123, Saarbrücken, Germany
| | - Karin Römisch
- Department of Microbiology, Faculty of Natural Sciences and Technology VIII, Saarland University, 66123, Saarbrücken, Germany
- * E-mail:
| |
Collapse
|
23
|
Saraogi I, Akopian D, Shan SO. Regulation of cargo recognition, commitment, and unloading drives cotranslational protein targeting. ACTA ACUST UNITED AC 2014; 205:693-706. [PMID: 24914238 PMCID: PMC4050729 DOI: 10.1083/jcb.201311028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Active and sequential regulation of the interaction of SRP with translating ribosomes drives efficient and faithful cotranslational protein targeting to the target membrane. Efficient and accurate protein localization is essential to cells and requires protein-targeting machineries to both effectively capture the cargo in the cytosol and productively unload the cargo at the membrane. To understand how these challenges are met, we followed the interaction of translating ribosomes during their targeting by the signal recognition particle (SRP) using a site-specific fluorescent probe in the nascent protein. We show that initial recruitment of SRP receptor (SR) selectively enhances the affinity of SRP for correct cargos, thus committing SRP-dependent substrates to the pathway. Real-time measurement of cargo transfer from the targeting to translocation machinery revealed multiple factors that drive this event, including GTPase rearrangement in the SRP–SR complex, stepwise displacement of SRP from the ribosome and signal sequence by SecYEG, and elongation of the nascent polypeptide. Our results elucidate how active and sequential regulation of the SRP–cargo interaction drives efficient and faithful protein targeting.
Collapse
Affiliation(s)
- Ishu Saraogi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - David Akopian
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
24
|
Voorhees RM, Fernández IS, Scheres SHW, Hegde RS. Structure of the mammalian ribosome-Sec61 complex to 3.4 Å resolution. Cell 2014; 157:1632-43. [PMID: 24930395 PMCID: PMC4081569 DOI: 10.1016/j.cell.2014.05.024] [Citation(s) in RCA: 258] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/14/2014] [Accepted: 05/20/2014] [Indexed: 11/27/2022]
Abstract
Cotranslational protein translocation is a universally conserved process for secretory and membrane protein biosynthesis. Nascent polypeptides emerging from a translating ribosome are either transported across or inserted into the membrane via the ribosome-bound Sec61 channel. Here, we report structures of a mammalian ribosome-Sec61 complex in both idle and translating states, determined to 3.4 and 3.9 Å resolution. The data sets permit building of a near-complete atomic model of the mammalian ribosome, visualization of A/P and P/E hybrid-state tRNAs, and analysis of a nascent polypeptide in the exit tunnel. Unprecedented chemical detail is observed for both the ribosome-Sec61 interaction and the conformational state of Sec61 upon ribosome binding. Comparison of the maps from idle and translating complexes suggests how conformational changes to the Sec61 channel could facilitate translocation of a secreted polypeptide. The high-resolution structure of the mammalian ribosome-Sec61 complex provides a valuable reference for future functional and structural studies. A near-complete atomic resolution structure of the mammalian ribosome Snapshot of a translating ribosome with hybrid state tRNAs and nascent polypeptide Structures of the Sec61 translocon bound to idle and translating ribosomes Molecular details of the residues involved in the ribosome-Sec61 interaction
Collapse
Affiliation(s)
- Rebecca M Voorhees
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Israel S Fernández
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sjors H W Scheres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
25
|
Denks K, Vogt A, Sachelaru I, Petriman NA, Kudva R, Koch HG. The Sec translocon mediated protein transport in prokaryotes and eukaryotes. Mol Membr Biol 2014; 31:58-84. [DOI: 10.3109/09687688.2014.907455] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
26
|
Lim B, Miyazaki R, Neher S, Siegele DA, Ito K, Walter P, Akiyama Y, Yura T, Gross CA. Heat shock transcription factor σ32 co-opts the signal recognition particle to regulate protein homeostasis in E. coli. PLoS Biol 2013; 11:e1001735. [PMID: 24358019 PMCID: PMC3866087 DOI: 10.1371/journal.pbio.1001735] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022] Open
Abstract
The bacterial heat shock transcription factor, σ32, maintains proper protein homeostasis only after it is targeted to the inner membrane by the signal recognition particle (SRP), thereby enabling integration of protein folding information from both the cytoplasm and cell membrane. All cells must adapt to rapidly changing conditions. The heat shock response (HSR) is an intracellular signaling pathway that maintains proteostasis (protein folding homeostasis), a process critical for survival in all organisms exposed to heat stress or other conditions that alter the folding of the proteome. Yet despite decades of study, the circuitry described for responding to altered protein status in the best-studied bacterium, E. coli, does not faithfully recapitulate the range of cellular responses in response to this stress. Here, we report the discovery of the missing link. Surprisingly, we found that σ32, the central transcription factor driving the HSR, must be localized to the membrane rather than dispersed in the cytoplasm as previously assumed. Genetic analyses indicate that σ32 localization results from a protein targeting reaction facilitated by the signal recognition particle (SRP) and its receptor (SR), which together comprise a conserved protein targeting machine and mediate the cotranslational targeting of inner membrane proteins to the membrane. SRP interacts with σ32 directly and transports it to the inner membrane. Our results show that σ32 must be membrane-associated to be properly regulated in response to the protein folding status in the cell, explaining how the HSR integrates information from both the cytoplasm and bacterial cell membrane. All cells have to adjust to frequent changes in their environmental conditions. The heat shock response is a signaling pathway critical for survival of all organisms exposed to elevated temperatures. Under such conditions, the heat shock response maintains enzymes and other proteins in a properly folded state. The mechanisms for sensing temperature and the subsequent induction of the appropriate transcriptional response have been extensively studied. Prior to this work, however, the circuitry described in the best studied bacterium E. coli could not fully explain the range of cellular responses that are observed following heat shock. We report the discovery of this missing link. Surprisingly, we find that σ32, a transcription factor that induces gene expression during heat shock, needs to be localized to the membrane, rather than being active as a soluble cytoplasmic protein as previously thought. We show that, equally surprisingly, σ32 is targeted to the membrane by the signal recognition particle (SRP) and its receptor (SR). SRP and SR constitute a conserved protein targeting machine that normally only operates on membrane and periplasmic proteins that contain identifiable signal sequences. Intriguingly, σ32 does not have any canonical signal sequence for export or membrane-integration. Our results indicate that membrane-associated σ32, not soluble cytoplasmic σ32, is the preferred target of regulatory control in response to heat shock. Our new model thus explains how protein folding status from both the cytoplasm and bacterial cell membrane can be integrated to control the heat shock response.
Collapse
Affiliation(s)
- Bentley Lim
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California, United States of America
| | - Ryoji Miyazaki
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Saskia Neher
- Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California United States of America
| | - Deborah A. Siegele
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Koreaki Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Peter Walter
- Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California United States of America
| | - Yoshinori Akiyama
- Institute for Virus Research, Kyoto University, Kyoto, Japan
- * E-mail: (Y.A.); (T.Y.); (C.A.G.)
| | - Takashi Yura
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- * E-mail: (Y.A.); (T.Y.); (C.A.G.)
| | - Carol A. Gross
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, California, United States
- * E-mail: (Y.A.); (T.Y.); (C.A.G.)
| |
Collapse
|
27
|
Tretter T, Pereira FP, Ulucan O, Helms V, Allan S, Kalies KU, Römisch K. ERAD and protein import defects in a sec61 mutant lacking ER-lumenal loop 7. BMC Cell Biol 2013; 14:56. [PMID: 24314051 PMCID: PMC3897919 DOI: 10.1186/1471-2121-14-56] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/28/2013] [Indexed: 11/22/2022] Open
Abstract
Background The Sec61 channel mediates protein translocation across the endoplasmic reticulum (ER) membrane during secretory protein biogenesis, and likely also during export of misfolded proteins for ER-associated degradation (ERAD). The mechanisms of channel opening for the different modes of translocation are not understood so far, but the position of the large ER-lumenal loop 7 of Sec61p suggests a decisive role. Results We show here that the Y345H mutation in L7 which causes diabetes in the mouse displays no ER import defects in yeast, but a delay in misfolded protein export. A complete deletion of L7 in Sec61p resulted in viable, cold- and tunicamycin-hypersensitive yeast cells with strong defects in posttranslational protein import of soluble proteins into the ER, and in ERAD of soluble substrates. Membrane protein ERAD was only moderately slower in sec61∆L7 than in wildtype cells. Although Sec61∆L7 channels were unstable in detergent, co-translational protein integration into the ER membrane, proteasome binding to Sec61∆L7 channels, and formation of hetero-heptameric Sec complexes were not affected. Conclusions We conclude that L7 of Sec61p is required for initiation of posttranslational soluble protein import into and misfolded soluble protein export from the ER, suggesting a key role for L7 in transverse gating of the Sec61 channel.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Karin Römisch
- Department of Microbiology, Faculty of Natural Sciences and Technology VIII, Saarland University, Campus A1,5, 66123 Saarbrücken, Germany.
| |
Collapse
|
28
|
Sommer N, Junne T, Kalies KU, Spiess M, Hartmann E. TRAP assists membrane protein topogenesis at the mammalian ER membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3104-3111. [DOI: 10.1016/j.bbamcr.2013.08.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 01/03/2023]
|
29
|
Saraogi I, Shan SO. Co-translational protein targeting to the bacterial membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1433-41. [PMID: 24513458 DOI: 10.1016/j.bbamcr.2013.10.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/09/2013] [Accepted: 10/16/2013] [Indexed: 12/18/2022]
Abstract
Co-translational protein targeting by the Signal Recognition Particle (SRP) is an essential cellular pathway that couples the synthesis of nascent proteins to their proper cellular localization. The bacterial SRP, which contains the minimal ribonucleoprotein core of this universally conserved targeting machine, has served as a paradigm for understanding the molecular basis of protein localization in all cells. In this review, we highlight recent biochemical and structural insights into the molecular mechanisms by which fundamental challenges faced by protein targeting machineries are met in the SRP pathway. Collectively, these studies elucidate how an essential SRP RNA and two regulatory GTPases in the SRP and SRP receptor (SR) enable this targeting machinery to recognize, sense and respond to its biological effectors, i.e. the cargo protein, the target membrane and the translocation machinery, thus driving efficient and faithful co-translational protein targeting. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Ishu Saraogi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
30
|
Kudva R, Denks K, Kuhn P, Vogt A, Müller M, Koch HG. Protein translocation across the inner membrane of Gram-negative bacteria: the Sec and Tat dependent protein transport pathways. Res Microbiol 2013; 164:505-34. [DOI: 10.1016/j.resmic.2013.03.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/11/2013] [Indexed: 11/28/2022]
|
31
|
Trueman SF, Mandon EC, Gilmore R. A gating motif in the translocation channel sets the hydrophobicity threshold for signal sequence function. ACTA ACUST UNITED AC 2013; 199:907-18. [PMID: 23229898 PMCID: PMC3518225 DOI: 10.1083/jcb.201207163] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An apolar patch and a polar cluster in the protein translocation channel cooperate to discriminate between signal sequences and less hydrophobic segments of cytosolic proteins. A critical event in protein translocation across the endoplasmic reticulum is the structural transition between the closed and open conformations of Sec61, the eukaryotic translocation channel. Channel opening allows signal sequence insertion into a gap between the N- and C-terminal halves of Sec61. We have identified a gating motif that regulates the transition between the closed and open channel conformations. Polar amino acid substitutions in the gating motif cause a gain-of-function phenotype that permits translocation of precursors with marginally hydrophobic signal sequences. In contrast, hydrophobic substitutions at certain residues in the gating motif cause a protein translocation defect. We conclude that the gating motif establishes the hydrophobicity threshold for functional insertion of a signal sequence into the Sec61 complex, thereby allowing the wild-type translocation channel to discriminate between authentic signal sequences and the less hydrophobic amino acid segments in cytosolic proteins. Bioinformatic analysis indicates that the gating motif is conserved between eubacterial and archaebacterial SecY and eukaryotic Sec61.
Collapse
Affiliation(s)
- Steven F Trueman
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
32
|
Abstract
The signal recognition particle (SRP) and its receptor compose a universally conserved and essential cellular machinery that couples the synthesis of nascent proteins to their proper membrane localization. The past decade has witnessed an explosion in in-depth mechanistic investigations of this targeting machine at increasingly higher resolutions. In this review, we summarize recent work that elucidates how the SRP and SRP receptor interact with the cargo protein and the target membrane, respectively, and how these interactions are coupled to a novel GTPase cycle in the SRP·SRP receptor complex to provide the driving force and enhance the fidelity of this fundamental cellular pathway. We also discuss emerging frontiers in which important questions remain to be addressed.
Collapse
Affiliation(s)
- David Akopian
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Kuang Shen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Xin Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
33
|
Mandon EC, Trueman SF, Gilmore R. Protein translocation across the rough endoplasmic reticulum. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a013342. [PMID: 23251026 DOI: 10.1101/cshperspect.a013342] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The rough endoplasmic reticulum is a major site of protein biosynthesis in all eukaryotic cells, serving as the entry point for the secretory pathway and as the initial integration site for the majority of cellular integral membrane proteins. The core components of the protein translocation machinery have been identified, and high-resolution structures of the targeting components and the transport channel have been obtained. Research in this area is now focused on obtaining a better understanding of the molecular mechanism of protein translocation and membrane protein integration.
Collapse
Affiliation(s)
- Elisabet C Mandon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| | | | | |
Collapse
|
34
|
Soromani C, Zeng N, Hollemeyer K, Heinzle E, Klein MC, Tretter T, Seaman MNJ, Römisch K. N-acetylation and phosphorylation of Sec complex subunits in the ER membrane. BMC Cell Biol 2012; 13:34. [PMID: 23237413 PMCID: PMC3541991 DOI: 10.1186/1471-2121-13-34] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 12/11/2012] [Indexed: 12/01/2022] Open
Abstract
Background Covalent modifications of proteins provide a mechanism to control protein function. Here, we have investigated modifications of the heptameric Sec complex which is responsible for post-translational protein import into the endoplasmic reticulum (ER). It consists of the Sec61 complex (Sec61p, Sbh1p, Sss1p) which on its own mediates cotranslational protein import into the ER and the Sec63 complex (Sec63p, Sec62p, Sec71p, Sec72p). Little is known about the biogenesis and regulation of individual Sec complex subunits. Results We show that Sbh1p when it is part of the Sec61 complex is phosphorylated on T5 which is flanked by proline residues. The phosphorylation site is conserved in mammalian Sec61ß, but only partially in birds, and not in other vertebrates or unicellular eukaryotes, suggesting convergent evolution. Mutation of T5 to A did not affect the ability of mutant Sbh1p to complement the growth defect in a Δsbh1Δsbh2 strain, and did not result in a hypophosphorylated protein which shows that alternate sites can be used by the T5 kinase. A survey of yeast phosphoproteome data shows that Sbh1p can be phosphorylated on multiple sites which are organized in two patches, one at the N-terminus of its cytosolic domain, the other proximal to the transmembrane domain. Surprisingly, although N-acetylation has been shown to interfere with ER targeting, we found that both Sbh1p and Sec62p are cotranslationally N-acetylated by NatA, and N-acetyl-proteome data indicate that Sec61p is modified by the same enzyme. Mutation of the N-acetylation site, however, did not affect Sec62p function in posttranslational protein import into the ER. Disabling NatA resulted in growth retardation, but not in co- or posttranslational translocation defects or instability of Sec62p or Sbh1p. Conclusions We conclude that N-acetylation of transmembrane and tail-anchored proteins does not interfere with their ER-targeting, and that Sbh1p phosphorylation on T5, which is not present in Sbh2p, plays a non-essential role specific to the Sec61 complex.
Collapse
Affiliation(s)
- Christina Soromani
- Department of Clinical Biochemistry, University College London Hospital, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gilmore R, Mandon EC. Understanding integration of α-helical membrane proteins: the next steps. Trends Biochem Sci 2012; 37:303-8. [PMID: 22748693 DOI: 10.1016/j.tibs.2012.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/16/2012] [Accepted: 05/23/2012] [Indexed: 11/19/2022]
Abstract
Integration of a protein into the endoplasmic reticulum (ER) membrane occurs through a series of multistep reactions that include targeting of ribosome-nascent polypeptide complexes to the ER, attachment of the ribosome to the protein translocation channel, lateral partitioning of α-helical transmembrane spans into the lipid bilayer, and folding of the lumenal, cytosolic and membrane-embedded domains of the protein. However, the molecular mechanisms and kinetics of these steps are still not entirely clear. To obtain a better understanding of the mechanism of membrane protein integration, we propose that it will be important to utilize in vivo experiments to examine the kinetics of membrane protein integration and in vitro experiments to characterize interactions between nascent membrane proteins, protein translocation factors and molecular chaperones.
Collapse
Affiliation(s)
- Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA.
| | | |
Collapse
|
36
|
Wu ZC, de Keyzer J, Kedrov A, Driessen AJM. Competitive binding of the SecA ATPase and ribosomes to the SecYEG translocon. J Biol Chem 2012; 287:7885-95. [PMID: 22267723 DOI: 10.1074/jbc.m111.297911] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During co-translational membrane insertion of membrane proteins with large periplasmic domains, the bacterial SecYEG complex needs to interact both with the ribosome and the SecA ATPase. Although the binding sites for SecA and the ribosome overlap, it has been suggested that these ligands can interact simultaneously with SecYEG. We used surface plasmon resonance and fluorescence correlation spectroscopy to examine the interaction of SecA and ribosomes with the SecYEG complex present in membrane vesicles and the purified SecYEG complex present in a detergent-solubilized state or reconstituted into nanodiscs. Ribosome binding to the SecYEG complex is strongly stimulated when the ribosomes are charged with nascent chains of the monotopic membrane protein FtsQ. This binding is competed by an excess of SecA, indicating that binding of SecA and ribosomes to SecYEG is mutually exclusive.
Collapse
Affiliation(s)
- Zht Cheng Wu
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | | | | | |
Collapse
|
37
|
Bonardi F, Nouwen N, Feringa BL, Driessen AJM. Protein conducting channels—mechanisms, structures and applications. MOLECULAR BIOSYSTEMS 2012; 8:709-19. [DOI: 10.1039/c2mb05433g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
38
|
Devaraneni PK, Conti B, Matsumura Y, Yang Z, Johnson AE, Skach WR. Stepwise insertion and inversion of a type II signal anchor sequence in the ribosome-Sec61 translocon complex. Cell 2011; 146:134-47. [PMID: 21729785 DOI: 10.1016/j.cell.2011.06.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 03/28/2011] [Accepted: 06/02/2011] [Indexed: 01/21/2023]
Abstract
In eukaryotic cells, the ribosome-Sec61 translocon complex (RTC) establishes membrane protein topology by cotranslationally partitioning nascent polypeptides into the cytosol, ER lumen, and lipid bilayer. Using photocrosslinking, collisional quenching, cysteine accessibility, and protease protection, we show that a canonical type II signal anchor (SA) acquires its topology through four tightly coupled and mechanistically distinct steps: (1) head-first insertion into Sec61α, (2) nascent chain accumulation within the RTC, (3) inversion from type I to type II topology, and (4) stable translocation of C-terminal flanking residues. Progression through each stage is induced by incremental increases in chain length and involves abrupt changes in the molecular environment of the SA. Importantly, type II SA inversion deviates from a type I SA at an unstable intermediate whose topology is controlled by dynamic interactions between the ribosome and translocon. Thus, the RTC coordinates SA topogenesis within a protected environment via sequential energetic transitions of the TM segment.
Collapse
Affiliation(s)
- Prasanna K Devaraneni
- Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University, Portland, OR 97239, USA
| | | | | | | | | | | |
Collapse
|
39
|
Trueman SF, Mandon EC, Gilmore R. Translocation channel gating kinetics balances protein translocation efficiency with signal sequence recognition fidelity. Mol Biol Cell 2011; 22:2983-93. [PMID: 21737680 PMCID: PMC3164448 DOI: 10.1091/mbc.e11-01-0070] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The transition between the closed and open conformations of the protein translocation channel controls the efficiency of protein translocation and the fidelity of signal sequence recognition. Mutations in Sec61 that delay or accelerate this structural transition have antagonistic effects on translocation efficiency and fidelity. The transition between the closed and open conformations of the Sec61 complex permits nascent protein insertion into the translocation channel. A critical event in this structural transition is the opening of the lateral translocon gate that is formed by four transmembrane (TM) spans (TM2, TM3, TM7, and TM8 in Sec61p) to expose the signal sequence–binding site. To gain mechanistic insight into lateral gate opening, mutations were introduced into a lumenal loop (L7) that connects TM7 and TM8. The sec61 L7 mutants were found to have defects in both the posttranslational and cotranslational translocation pathways due to a kinetic delay in channel gating. The translocation defect caused by L7 mutations could be suppressed by the prl class of sec61 alleles, which reduce the fidelity of signal sequence recognition. The prl mutants are proposed to act by destabilizing the closed conformation of the translocation channel. Our results indicate that the equilibrium between the open and closed conformations of the protein translocation channel maintains a balance between translocation activity and signal sequence recognition fidelity.
Collapse
Affiliation(s)
- Steven F Trueman
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| | | | | |
Collapse
|
40
|
Martínez-Gil L, Saurí A, Marti-Renom MA, Mingarro I. Membrane protein integration into the endoplasmic reticulum. FEBS J 2011; 278:3846-58. [PMID: 21592307 DOI: 10.1111/j.1742-4658.2011.08185.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Most integral membrane proteins are targeted, inserted and assembled in the endoplasmic reticulum membrane. The sequential and potentially overlapping events necessary for membrane protein integration take place at sites termed translocons, which comprise a specific set of membrane proteins acting in concert with ribosomes and, probably, molecular chaperones to ensure the success of the whole process. In this minireview, we summarize our current understanding of helical membrane protein integration at the endoplasmic reticulum, and highlight specific characteristics that affect the biogenesis of multispanning membrane proteins.
Collapse
Affiliation(s)
- Luis Martínez-Gil
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain
| | | | | | | |
Collapse
|
41
|
N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum. PLoS Biol 2011; 9:e1001073. [PMID: 21655302 PMCID: PMC3104963 DOI: 10.1371/journal.pbio.1001073] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/22/2011] [Indexed: 12/24/2022] Open
Abstract
Amino-terminal acetylation is probably the most common protein modification in eukaryotes with as many as 50%-80% of proteins reportedly altered in this way. Here we report a systematic analysis of the predicted N-terminal processing of cytosolic proteins versus those destined to be sorted to the secretory pathway. While cytosolic proteins were profoundly biased in favour of processing, we found an equal and opposite bias against such modification for secretory proteins. Mutations in secretory signal sequences that led to their acetylation resulted in mis-sorting to the cytosol in a manner that was dependent upon the N-terminal processing machinery. Hence N-terminal acetylation represents an early determining step in the cellular sorting of nascent polypeptides that appears to be conserved across a wide range of species.
Collapse
|
42
|
Braig D, Mircheva M, Sachelaru I, van der Sluis EO, Sturm L, Beckmann R, Koch HG. Signal sequence-independent SRP-SR complex formation at the membrane suggests an alternative targeting pathway within the SRP cycle. Mol Biol Cell 2011; 22:2309-23. [PMID: 21551068 PMCID: PMC3128533 DOI: 10.1091/mbc.e11-02-0152] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Our study reveals an alternative route in the SRP-dependent protein targeting pathway that includes a preassembled, membrane-bound SRP-SR complex. This alternative route is fully sufficient to maintain cell viability in the absence of a soluble SRP. Protein targeting by the signal recognition particle (SRP) and the bacterial SRP receptor FtsY requires a series of closely coordinated steps that monitor the presence of a substrate, the membrane, and a vacant translocon. Although the influence of substrate binding on FtsY-SRP complex formation is well documented, the contribution of the membrane is largely unknown. In the current study, we found that negatively charged phospholipids stimulate FtsY-SRP complex formation. Phospholipids act on a conserved positively charged amphipathic helix in FtsY and induce a conformational change that strongly enhances the FtsY-lipid interaction. This membrane-bound, signal sequence–independent FtsY-SRP complex is able to recruit RNCs to the membrane and to transfer them to the Sec translocon. Significantly, the same results were also observed with an artificial FtsY-SRP fusion protein, which was tethered to the membrane via a transmembrane domain. This indicates that substrate recognition by a soluble SRP is not essential for cotranslational targeting in Escherichia coli. Our findings reveal a remarkable flexibility of SRP-dependent protein targeting, as they indicate that substrate recognition can occur either in the cytosol via ribosome-bound SRP or at the membrane via a preassembled FtsY-SRP complex.
Collapse
Affiliation(s)
- David Braig
- Institut für Biochemie und Molekularbiologie, ZBMZ, 79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
SecA, a remarkable nanomachine. Cell Mol Life Sci 2011; 68:2053-66. [PMID: 21479870 PMCID: PMC3101351 DOI: 10.1007/s00018-011-0681-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 03/22/2011] [Accepted: 03/28/2011] [Indexed: 01/03/2023]
Abstract
Biological cells harbor a variety of molecular machines that carry out mechanical work at the nanoscale. One of these nanomachines is the bacterial motor protein SecA which translocates secretory proteins through the protein-conducting membrane channel SecYEG. SecA converts chemically stored energy in the form of ATP into a mechanical force to drive polypeptide transport through SecYEG and across the cytoplasmic membrane. In order to accommodate a translocating polypeptide chain and to release transmembrane segments of membrane proteins into the lipid bilayer, SecYEG needs to open its central channel and the lateral gate. Recent crystal structures provide a detailed insight into the rearrangements required for channel opening. Here, we review our current understanding of the mode of operation of the SecA motor protein in concert with the dynamic SecYEG channel. We conclude with a new model for SecA-mediated protein translocation that unifies previous conflicting data.
Collapse
|
44
|
Kuhn P, Weiche B, Sturm L, Sommer E, Drepper F, Warscheid B, Sourjik V, Koch HG. The bacterial SRP receptor, SecA and the ribosome use overlapping binding sites on the SecY translocon. Traffic 2011; 12:563-78. [PMID: 21255212 DOI: 10.1111/j.1600-0854.2011.01167.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Signal recognition particle (SRP)-dependent protein targeting is a universally conserved process that delivers proteins to the bacterial cytoplasmic membrane or to the endoplasmic reticulum membrane in eukaryotes. Crucial during targeting is the transfer of the ribosome-nascent chain complex (RNC) from SRP to the Sec translocon. In eukaryotes, this step is co-ordinated by the SRβ subunit of the SRP receptor (SR), which probably senses a vacant translocon by direct interaction with the translocon. Bacteria lack the SRβ subunit and how they co-ordinate RNC transfer is unknown. By site-directed cross-linking and fluorescence resonance energy transfer (FRET) analyses, we show that FtsY, the bacterial SRα homologue, binds to the exposed C4/C5 loops of SecY, the central component of the bacterial Sec translocon. The same loops serve also as binding sites for SecA and the ribosome. The FtsY-SecY interaction involves at least the A domain of FtsY, which attributes an important function to this so far ill-defined domain. Binding of FtsY to SecY residues, which are also used by SecA and the ribosome, probably allows FtsY to sense an available translocon and to align the incoming SRP-RNC with the protein conducting channel. Thus, the Escherichia coli FtsY encompasses the functions of both the eukaryotic SRα and SRβ subunits in one single protein.
Collapse
Affiliation(s)
- Patrick Kuhn
- Institut für Biochemie und Molekularbiologie, ZBMZ, Stefan-Meier-Str. 17, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Bondar AN, del Val C, Freites JA, Tobias DJ, White SH. Dynamics of SecY translocons with translocation-defective mutations. Structure 2010; 18:847-57. [PMID: 20637421 DOI: 10.1016/j.str.2010.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 02/28/2010] [Accepted: 04/01/2010] [Indexed: 10/19/2022]
Abstract
The SecY/Sec61 translocon complex, located in the endoplasmic reticulum membrane of eukaryotes (Sec61) or the plasma membrane of prokaryotes (SecY), mediates the transmembrane secretion or insertion of nascent proteins. Mutations that permit the secretion of nascent proteins with defective signal sequences (Prl-phenotype), or interfere with the transmembrane orientation of newly synthesized protein segments, can affect protein topogenesis. The crystallographic structure of SecYEbeta from Methanococcus jannaschii revealed widespread distribution of mutations causing topogenesis defects, but not their molecular mechanisms. Based upon prolonged molecular dynamics simulations of wild-type M. jannaschii SecYEbeta and an extensive sequence-conservation analysis, we show that the closed state of the translocon is stabilized by hydrogen-bonding interactions of numerous highly conserved amino acids. Perturbations induced by mutation at various locations are rapidly relayed to the plug segment that seals the wild-type closed-state translocon, leading to displacement and increased hydration of the plug.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- Department of Physiology and Biophysics, University of California at Irvine, Irvine, CA 92697-4560, USA
| | | | | | | | | |
Collapse
|
46
|
Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes. Proc Natl Acad Sci U S A 2010; 107:17182-7. [PMID: 20855604 DOI: 10.1073/pnas.1012556107] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structure of the protein-translocating channel SecYEβ from Pyrococcus furiosus at 3.1-Å resolution suggests a mechanism for chaperoning transmembrane regions of a protein substrate during its lateral delivery into the lipid bilayer. Cytoplasmic segments of SecY orient the C-terminal α-helical region of another molecule, suggesting a general binding mode and a promiscuous guiding surface capable of accommodating diverse nascent chains at the exit of the ribosomal tunnel. To accommodate this putative nascent chain mimic, the cytoplasmic vestibule widens, and a lateral exit portal is opened throughout its entire length for partition of transmembrane helical segments to the lipid bilayer. In this primed channel, the central plug still occludes the pore while the lateral gate is opened, enabling topological arbitration during early protein insertion. In vivo, a 15 amino acid truncation of the cytoplasmic C-terminal helix of SecY fails to rescue a secY-deficient strain, supporting the essential role of this helix as suggested from the structure.
Collapse
|
47
|
Harada Y, Li H, Wall JS, Li H, Lennarz WJ. Structural studies and the assembly of the heptameric post-translational translocon complex. J Biol Chem 2010; 286:2956-65. [PMID: 20826819 DOI: 10.1074/jbc.m110.159517] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Saccharomyces cerevisiae, some of the nascent chains can be post-translationally translocated into the endoplasmic reticulum through the heptameric post-translational translocon complex (post-translocon). This membrane-protein complex is composed of the protein-conducting channel and the tetrameric Sec62/63 complex. The Sec62/63 complex plays crucial roles in targeting of the signal recognition particle-independent protein substrate to the protein-conducting channel and in assembly of the post-translocon. Although the molecular mechanism of the post-translational translocation process has been well established, the structure of the post-translocon and how the channel and the Sec62/63 complex form the heptameric complex are largely uncharacterized. Here, we report a 20-Å resolution cryo-electron microscopy structure of the post-translocon. The purified post-translocon was found to have a mass of 287 kDa, which is consistent with the unit stoichiometry of the seven subunits as determined by a cysteine labeling experiment. We demonstrated that Triton X-100 dissociated the heptameric complex into three subcomplexes identified as the trimeric translocon Sec61-Sbh1-Sss1, the Sec63-Sec71-Sec72 trimer, and the heterotetramer Sec62-Sec63-Sec71-Sec72, respectively. Additionally, a role of the sixth cytosolic loop of Sec61 in assembly of the post-translocon was demonstrated. Mutations of conserved, positively charged amino acid residues in the loop caused decreased formation of the post-translocon. These studies provide the first architectural description of the yeast post-translocon.
Collapse
Affiliation(s)
- Yoichiro Harada
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | | | | | |
Collapse
|
48
|
Mori T, Ishitani R, Tsukazaki T, Nureki O, Sugita Y. Molecular mechanisms underlying the early stage of protein translocation through the Sec translocon. Biochemistry 2010; 49:945-50. [PMID: 20055474 DOI: 10.1021/bi901594w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Sec translocon, a protein-conducting channel, consists of a heterotrimeric complex (SecYEG in bacteria and Sec61 alpha beta gamma in eukaryotes) that provides a pathway for secretary proteins to cross membranes, or for membrane proteins to integrate into the membrane. The Sec translocon alone is a passive channel, and association with channel partners, including the ribosome or SecA ATPase in bacteria, is needed for protein translocation. Three recently published crystal structures of SecY are considered to represent the closed (resting state), pre-open (transitional state determined with the bound Fab fragment mimicking SecA interaction), and SecA-bound forms. To elucidate mechanisms of transition between closed and pre-open forms, we performed all-atom molecular dynamics simulations for the pre-open form of Thermus thermophilus SecYE and the closed form of Methanococcus janaschii SecYE beta in explicit solvent and membranes. We found that the closed form of SecY is stable, while the pre-open form without the Fab fragment undergoes large conformational changes toward the closed form. The pre-open form of SecY with Fab remains unchanged, suggesting that the cytosolic interaction mimicking SecA binding stabilizes the pre-open form of SecY. Importantly, a lipid molecule at the lateral gate region appears to be required to maintain the pre-open form in the membrane. We propose that the conformational transition from closed to pre-open states of SecY upon association with SecA facilitates intercalation of phospholipids at the lateral gate, inducing initial entry of the positively charged signal peptide into the channel.
Collapse
Affiliation(s)
- Takaharu Mori
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
49
|
Gumbart J, Trabuco LG, Schreiner E, Villa E, Schulten K. Regulation of the protein-conducting channel by a bound ribosome. Structure 2010; 17:1453-64. [PMID: 19913480 DOI: 10.1016/j.str.2009.09.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 09/13/2009] [Accepted: 09/15/2009] [Indexed: 01/01/2023]
Abstract
During protein synthesis, it is often necessary for the ribosome to form a complex with a membrane-bound channel, the SecY/Sec61 complex, in order to translocate nascent proteins across a cellular membrane. Structural data on the ribosome-channel complex are currently limited to low-resolution cryo-electron microscopy maps, including one showing a bacterial ribosome bound to a monomeric SecY complex. Using that map along with available atomic-level models of the ribosome and SecY, we have determined, through molecular dynamics flexible fitting (MDFF), an atomic-resolution model of the ribosome-channel complex. We characterized computationally the sites of ribosome-SecY interaction within the complex and determined the effect of ribosome binding on the SecY channel. We also constructed a model of a ribosome in complex with a SecY dimer by adding a second copy of SecY to the MDFF-derived model. The study involved 2.7-million-atom simulations over altogether nearly 50 ns.
Collapse
Affiliation(s)
- James Gumbart
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
Special codes are embedded in the primary sequence of newly synthesized proteins to determine their final destination. Protein translocation across biological membranes requires co-operation between the targeting and translocation machineries. A conserved membrane channel, the Sec61/SecY complex, mediates protein translocation across or integration into the endoplasmic reticulum membrane in eukaryotes and the plasma membrane in prokaryotes. A combination of recent biochemical and structural data provides novel insights into the mechanism of how the channel allows polypeptide movement into the exoplasmic space and the lipid bilayer.
Collapse
|