1
|
Velazquez-Sanchez C, Muresan L, Marti-Prats L, Belin D. The development of compulsive coping behaviour is associated with a downregulation of Arc in a Locus Coeruleus neuronal ensemble. Neuropsychopharmacology 2023; 48:653-663. [PMID: 36635597 PMCID: PMC9938202 DOI: 10.1038/s41386-022-01522-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/14/2023]
Abstract
Some compulsive disorders have been considered to stem from the loss of control over coping strategies, such as displacement. However, the cellular mechanisms involved in the acquisition of coping behaviours and their subsequent compulsive manifestation in vulnerable individuals have not been elucidated. Considering the role of the locus coeruleus (LC) noradrenaline-dependent system in stress and related excessive behaviours, we hypothesised that neuroplastic changes in the LC may be associated with the acquisition of an adjunctive polydipsic water drinking, a prototypical displacement behaviour, and the ensuing development of compulsion in vulnerable individuals. Thus, male Sprague Dawley rats were characterised for their tendency, or not, to develop compulsive polydipsic drinking in a schedule-induced polydipsia (SIP) procedure before their fresh brains were harvested. A new quantification tool for RNAscope assays revealed that the development of compulsive adjunctive behaviour was associated with a low mRNA copy number of the plasticity marker Arc in the LC which appeared to be driven by specific adaptations in an ensemble of tyrosine hydroxylase (TH)+, zif268- neurons. This ensemble was specifically engaged by the expression of compulsive adjunctive behaviour, not by stress, because its functional recruitment was not observed in individuals that no longer had access to the water bottle before sacrifice, while it consistently correlated with the levels of polydipsic water drinking only when it had become compulsive. Together these findings suggest that downregulation of Arc mRNA levels in a population of a TH+/zif268- LC neurons represents a signature of the tendency to develop compulsive coping behaviours.
Collapse
Affiliation(s)
- Clara Velazquez-Sanchez
- CLIC (Cambridge Laboratory for research on Impulsive/Compulsive disorders), Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| | - Leila Muresan
- Cambridge Advanced Imaging Centre, Department of Physiology Development and Neuroscience of the University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Lucia Marti-Prats
- CLIC (Cambridge Laboratory for research on Impulsive/Compulsive disorders), Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| | - David Belin
- CLIC (Cambridge Laboratory for research on Impulsive/Compulsive disorders), Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.
| |
Collapse
|
2
|
Barrett P, Quick TJ, Mudera V, Player DJ. Neuregulin 1 Drives Morphological and Phenotypical Changes in C2C12 Myotubes: Towards De Novo Formation of Intrafusal Fibres In Vitro. Front Cell Dev Biol 2022; 9:760260. [PMID: 35087826 PMCID: PMC8787273 DOI: 10.3389/fcell.2021.760260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Muscle spindles are sensory organs that detect and mediate both static and dynamic muscle stretch and monitor muscle position, through a specialised cell population, termed intrafusal fibres. It is these fibres that provide a key contribution to proprioception and muscle spindle dysfunction is associated with multiple neuromuscular diseases, aging and nerve injuries. To date, there are few publications focussed on de novo generation and characterisation of intrafusal muscle fibres in vitro. To this end, current models of skeletal muscle focus on extrafusal fibres and lack an appreciation for the afferent functions of the muscle spindle. The goal of this study was to produce and define intrafusal bag and chain myotubes from differentiated C2C12 myoblasts, utilising the addition of the developmentally associated protein, Neuregulin 1 (Nrg-1). Intrafusal bag myotubes have a fusiform shape and were assigned using statistical morphological parameters. The model was further validated using immunofluorescent microscopy and western blot analysis, directed against an extensive list of putative intrafusal specific markers, as identified in vivo. The addition of Nrg-1 treatment resulted in a 5-fold increase in intrafusal bag myotubes (as assessed by morphology) and increased protein and gene expression of the intrafusal specific transcription factor, Egr3. Surprisingly, Nrg-1 treated myotubes had significantly reduced gene and protein expression of many intrafusal specific markers and showed no specificity towards intrafusal bag morphology. Another novel finding highlights a proliferative effect for Nrg-1 during the serum starvation-initiated differentiation phase, leading to increased nuclei counts, paired with less myotube area per myonuclei. Therefore, despite no clear collective evidence for specific intrafusal development, Nrg-1 treated myotubes share two inherent characteristics of intrafusal fibres, which contain increased satellite cell numbers and smaller myonuclear domains compared with their extrafusal neighbours. This research represents a minimalistic, monocellular C2C12 model for progression towards de novo intrafusal skeletal muscle generation, with the most extensive characterisation to date. Integration of intrafusal myotubes, characteristic of native, in vivo intrafusal skeletal muscle into future biomimetic tissue engineered models could provide platforms for developmental or disease state studies, pre-clinical screening, or clinical applications.
Collapse
Affiliation(s)
- Philip Barrett
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Tom J Quick
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, London, United Kingdom.,UCL Centre for Nerve Engineering, University College London, London, United Kingdom
| | - Vivek Mudera
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Darren J Player
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| |
Collapse
|
3
|
Kröger S, Watkins B. Muscle spindle function in healthy and diseased muscle. Skelet Muscle 2021; 11:3. [PMID: 33407830 PMCID: PMC7788844 DOI: 10.1186/s13395-020-00258-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022] Open
Abstract
Almost every muscle contains muscle spindles. These delicate sensory receptors inform the central nervous system (CNS) about changes in the length of individual muscles and the speed of stretching. With this information, the CNS computes the position and movement of our extremities in space, which is a requirement for motor control, for maintaining posture and for a stable gait. Many neuromuscular diseases affect muscle spindle function contributing, among others, to an unstable gait, frequent falls and ataxic behavior in the affected patients. Nevertheless, muscle spindles are usually ignored during examination and analysis of muscle function and when designing therapeutic strategies for neuromuscular diseases. This review summarizes the development and function of muscle spindles and the changes observed under pathological conditions, in particular in the various forms of muscular dystrophies.
Collapse
Affiliation(s)
- Stephan Kröger
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany.
| | - Bridgette Watkins
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
4
|
Barrett P, Quick TJ, Mudera V, Player DJ. Generating intrafusal skeletal muscle fibres in vitro: Current state of the art and future challenges. J Tissue Eng 2020; 11:2041731420985205. [PMID: 34956586 PMCID: PMC8693220 DOI: 10.1177/2041731420985205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/12/2020] [Indexed: 01/18/2023] Open
Abstract
Intrafusal fibres are a specialised cell population in skeletal muscle, found within the muscle spindle. These fibres have a mechano-sensory capacity, forming part of the monosynaptic stretch-reflex arc, a key component responsible for proprioceptive function. Impairment of proprioception and associated dysfunction of the muscle spindle is linked with many neuromuscular diseases. Research to-date has largely been undertaken in vivo or using ex vivo preparations. These studies have provided a foundation for our understanding of muscle spindle physiology, however, the cellular and molecular mechanisms which underpin physiological changes are yet to be fully elucidated. Therefrom, the use of in vitro models has been proposed, whereby intrafusal fibres can be generated de novo. Although there has been progress, it is predominantly a developing and evolving area of research. This narrative review presents the current state of art in this area and proposes the direction of future work, with the aim of providing novel pre-clinical and clinical applications.
Collapse
Affiliation(s)
- Philip Barrett
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| | - Tom J Quick
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, Stanmore, UK
- UCL Centre for Nerve Engineering, University College London, London, UK
| | - Vivek Mudera
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| | - Darren J Player
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| |
Collapse
|
5
|
André LM, Ausems CRM, Wansink DG, Wieringa B. Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy. Front Neurol 2018; 9:368. [PMID: 29892259 PMCID: PMC5985300 DOI: 10.3389/fneur.2018.00368] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative neuromuscular disorders characterized by progressive skeletal muscle weakness, atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are characterized by skeletal muscle dysfunction and also share other clinical features, the diseases differ in the muscle groups that are affected. In DM1, distal muscles are mainly affected, whereas in DM2 problems are mostly found in proximal muscles. In addition, manifestation in DM1 is generally more severe, with possible congenital or childhood-onset of disease and prominent CNS involvement. DM1 and DM2 are caused by expansion of (CTG•CAG)n and (CCTG•CAGG)n repeats in the 3' non-coding region of DMPK and in intron 1 of CNBP, respectively, and in overlapping antisense genes. This critical review will focus on the pleiotropic problems that occur during development, growth, regeneration, and aging of skeletal muscle in patients who inherited these expansions. The current best-accepted idea is that most muscle symptoms can be explained by pathomechanistic effects of repeat expansion on RNA-mediated pathways. However, aberrations in DNA replication and transcription of the DM loci or in protein translation and proteome homeostasis could also affect the control of proliferation and differentiation of muscle progenitor cells or the maintenance and physiological integrity of muscle fibers during a patient's lifetime. Here, we will discuss these molecular and cellular processes and summarize current knowledge about the role of embryonic and adult muscle-resident stem cells in growth, homeostasis, regeneration, and premature aging of healthy and diseased muscle tissue. Of particular interest is that also progenitor cells from extramuscular sources, such as pericytes and mesoangioblasts, can participate in myogenic differentiation. We will examine the potential of all these types of cells in the application of regenerative medicine for muscular dystrophies and evaluate new possibilities for their use in future therapy of DM.
Collapse
Affiliation(s)
- Laurène M André
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - C Rosanne M Ausems
- Department of Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Derick G Wansink
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
6
|
Kim HR, Kim YS, Yoon JA, Yang SC, Park M, Seol DW, Lyu SW, Jun JH, Lim HJ, Lee DR, Song H. Estrogen induces EGR1 to fine-tune its actions on uterine epithelium by controlling PR signaling for successful embryo implantation. FASEB J 2018; 32:1184-1195. [PMID: 29092905 DOI: 10.1096/fj.201700854rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The harmonized actions of ovarian E2 and progesterone (P4) regulate the proliferation and differentiation of uterine cells in a spatiotemporal manner. Imbalances between these hormones often lead to infertility and gynecologic diseases. Whereas numerous factors that are involved in P4 signaling have been identified, few local factors that mediate E2 actions in the uterus have been revealed. Here, we demonstrate that estrogen induces the transcription factor, early growth response 1 ( Egr1), to fine-tune its actions in uterine epithelial cells (ECs) that are responsible for uterine receptivity for embryo implantation. In the presence of exogenous gonadotrophins, ovulation, fertilization, and embryonic development normally occur in Egr1-/- mice, but these animals experience the complete failure of embryo implantation with reduced artificial decidualization. Although serum levels of E2 and P4 were comparable between Egr1+/+ and Egr1-/- mice on d 4 of pregnancy, aberrantly reduced levels of progesterone receptor in Egr1-/- uterine ECs caused enhanced E2 activity and impaired P4 response. Ultrastructural analyses revealed that Egr1-/- ECs are not fully able to provide proper uterine receptivity. Uterine mRNA landscapes in Egr1-/- mice revealed that EGR1 controls the expression of a subset of E2-regulated genes. In addition, P4 signaling was unable to modulate estrogen actions, including those that are involved in cell-cycle progression, in ECs that were deficient in EGR1. Furthermore, primary coculture of Egr1-/- ECs with Egr1+/+ stromal cells, and vice versa, supported the notion that Egr1 is required to modulate E2 actions on ECs to prepare the uterine environment for embryo implantation. In contrast to its role in ECs, loss of Egr1 in stroma significantly reduced stromal cell proliferation. Collectively, our results demonstrate that E2 induces EGR1 to streamline its actions for the preparation of uterine receptivity for embryo implantation in mice.-Kim, H.-R., Kim, Y. S., Yoon, J. A., Yang, S. C., Park, M., Seol, D.-W., Lyu, S. W., Jun, J. H., Lim, H. J., Lee, D. R., Song, H. Estrogen induces EGR1 to fine-tune its actions on uterine epithelium by controlling PR signaling for successful embryo implantation.
Collapse
Affiliation(s)
- Hye-Ryun Kim
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Yeon Sun Kim
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Jung Ah Yoon
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Seung Chel Yang
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Mira Park
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Dong-Won Seol
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Sang Woo Lyu
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Jin Hyun Jun
- Department of Biomedical Laboratory Science, Graduate School of Health Science, Eulji University, Seongnam, Korea
| | | | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Haengseok Song
- Department of Biomedical Science, CHA University, Seongnam, Korea
| |
Collapse
|
7
|
Vaughan SK, Stanley OL, Valdez G. Impact of Aging on Proprioceptive Sensory Neurons and Intrafusal Muscle Fibers in Mice. J Gerontol A Biol Sci Med Sci 2017; 72:771-779. [PMID: 27688482 DOI: 10.1093/gerona/glw175] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/09/2016] [Indexed: 11/13/2022] Open
Abstract
The impact of aging on proprioceptive sensory neurons and intrafusal muscle fibers (IMFs) remains largely unexplored despite the central function these cells play in modulating voluntary movements. Here, we show that proprioceptive sensory neurons undergo deleterious morphological changes in middle age (11- to 13-month-old) and old (15- to 21-month-old) mice. In the extensor digitorum longus and soleus muscles of middle age and old mice, there is a significant increase in the number of Ia afferents with large swellings that fail to properly wrap around IMFs compared with young adult (2- to 4-month-old) mice. Fewer II afferents were also found in the same muscles of middle age and old mice. Although these age-related changes in peripheral nerve endings were accompanied by degeneration of proprioceptive sensory neuron cell bodies in dorsal root ganglia (DRG), the morphology and number of IMFs remained unchanged. Our analysis also revealed normal levels of neurotrophin 3 (NT3) but dysregulated expression of the tyrosine kinase receptor C (TrkC) in aged muscles and DRGs, respectively. These results show that proprioceptive sensory neurons degenerate prior to atrophy of IMFs during aging, and in the presence of the NT3/TrkC signaling axis.
Collapse
Affiliation(s)
- Sydney K Vaughan
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke.,Graduate Program in Translational Biology, Medicine, and Health and
| | - Olivia L Stanley
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke
| | - Gregorio Valdez
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke.,Department of Biological Sciences, Virginia Tech, Blacksburg
| |
Collapse
|
8
|
Sawicki KT, Shang M, Wu R, Chang HC, Khechaduri A, Sato T, Kamide C, Liu T, Naga Prasad SV, Ardehali H. Increased Heme Levels in the Heart Lead to Exacerbated Ischemic Injury. J Am Heart Assoc 2015; 4:e002272. [PMID: 26231844 PMCID: PMC4599478 DOI: 10.1161/jaha.115.002272] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Heme is an essential iron-containing molecule for cardiovascular physiology, but in excess it may increase oxidative stress. Failing human hearts have increased heme levels, with upregulation of the rate-limiting enzyme in heme synthesis, δ-aminolevulinic acid synthase 2 (ALAS2), which is normally not expressed in cardiomyocytes. We hypothesized that increased heme accumulation (through cardiac overexpression of ALAS2) leads to increased oxidative stress and cell death in the heart. Methods and Results We first showed that ALAS2 and heme levels are increased in the hearts of mice subjected to coronary ligation. To determine the causative role of increased heme in the development of heart failure, we generated transgenic mice with cardiac-specific overexpression of ALAS2. While ALAS2 transgenic mice have normal cardiac function at baseline, their hearts display increased heme content, higher oxidative stress, exacerbated cell death, and worsened cardiac function after coronary ligation compared to nontransgenic littermates. We confirmed in cultured cardiomyoblasts that the increased oxidative stress and cell death observed with ALAS2 overexpression is mediated by increased heme accumulation. Furthermore, knockdown of ALAS2 in cultured cardiomyoblasts exposed to hypoxia reversed the increases in heme content and cell death. Administration of the mitochondrial antioxidant MitoTempo to ALAS2-overexpressing cardiomyoblasts normalized the elevated oxidative stress and cell death levels to baseline, indicating that the effects of increased ALAS2 and heme are through elevated mitochondrial oxidative stress. The clinical relevance of these findings was supported by the finding of increased ALAS2 induction and heme accumulation in failing human hearts from patients with ischemic cardiomyopathy compared to nonischemic cardiomyopathy. Conclusions Heme accumulation is detrimental to cardiac function under ischemic conditions, and reducing heme in the heart may be a novel approach for protection against the development of heart failure.
Collapse
Affiliation(s)
- Konrad Teodor Sawicki
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University, Chicago, IL (K.T.S., M.S., R.W., H.C.C., A.K., T.S., C.K., T.L., H.A.)
| | - Meng Shang
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University, Chicago, IL (K.T.S., M.S., R.W., H.C.C., A.K., T.S., C.K., T.L., H.A.)
| | - Rongxue Wu
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University, Chicago, IL (K.T.S., M.S., R.W., H.C.C., A.K., T.S., C.K., T.L., H.A.)
| | - Hsiang-Chun Chang
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University, Chicago, IL (K.T.S., M.S., R.W., H.C.C., A.K., T.S., C.K., T.L., H.A.)
| | - Arineh Khechaduri
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University, Chicago, IL (K.T.S., M.S., R.W., H.C.C., A.K., T.S., C.K., T.L., H.A.)
| | - Tatsuya Sato
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University, Chicago, IL (K.T.S., M.S., R.W., H.C.C., A.K., T.S., C.K., T.L., H.A.)
| | - Christine Kamide
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University, Chicago, IL (K.T.S., M.S., R.W., H.C.C., A.K., T.S., C.K., T.L., H.A.)
| | - Ting Liu
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University, Chicago, IL (K.T.S., M.S., R.W., H.C.C., A.K., T.S., C.K., T.L., H.A.)
| | - Sathyamangla V Naga Prasad
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH (S.V.N.P.)
| | - Hossein Ardehali
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University, Chicago, IL (K.T.S., M.S., R.W., H.C.C., A.K., T.S., C.K., T.L., H.A.)
| |
Collapse
|
9
|
Egr3-dependent muscle spindle stretch receptor intrafusal muscle fiber differentiation and fusimotor innervation homeostasis. J Neurosci 2015; 35:5566-78. [PMID: 25855173 DOI: 10.1523/jneurosci.0241-15.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Muscle stretch proprioceptors (muscle spindles) are required for stretch reflexes and locomotor control. Proprioception abnormalities are observed in many human neuropathies, but the mechanisms involved in establishing and maintaining muscle spindle innervation and function are still poorly understood. During skeletal muscle development, sensory (Ia-afferent) innervation induces contacted myotubes to transform into intrafusal muscle fibers that form the stretch receptor core. The transcriptional regulator Egr3 is induced in Ia-afferent contacted myotubes by Neuregulin1 (Nrg1)/ErbB receptor signaling and it has an essential role in spindle morphogenesis and function. Because Egr3 is widely expressed during development and has a pleiotropic function, whether Egr3 functions primarily in skeletal muscle, Ia-afferent neurons, or in Schwann cells that myelinate Ia-afferent axons remains unresolved. In the present studies, cell-specific ablation of Egr3 in mice showed that it has a skeletal muscle autonomous function in stretch receptor development. Moreover, using genetic tracing, we found that Ia-afferent contacted Egr3-deficient myotubes were induced in normal numbers, but their development was blocked to generate one to two shortened fibers that failed to express some characteristic myosin heavy chain (MyHC) proteins. These "spindle remnants" persisted into adulthood, remained innervated by Ia-afferents, and expressed neurotrophin3 (NT3), which is required for Ia-afferent neuron survival. However, they were not innervated by fusimotor axons and they did not express glial derived neurotrophic factor (GDNF), which is essential for fusimotor neuron survival. These results demonstrate that Egr3 has an essential role in regulating gene expression that promotes normal intrafusal muscle fiber differentiation and fusimotor innervation homeostasis.
Collapse
|
10
|
Li F, Gao B, Dong H, Shi J, Fang D. Icariin induces synoviolin expression through NFE2L1 to protect neurons from ER stress-induced apoptosis. PLoS One 2015; 10:e0119955. [PMID: 25806530 PMCID: PMC4373914 DOI: 10.1371/journal.pone.0119955] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/26/2014] [Indexed: 11/19/2022] Open
Abstract
By suppressing neuronal apoptosis, Icariin is a potential therapeutic drug for neuronal degenerative diseases. The molecular mechanisms of Icariin anti-apoptotic functions are still largely unclear. In this report, we found that Icariin induces the expression of Synoviolin, an endoplasmic reticulum (ER)-anchoring E3 ubiquitin ligase that functions as a suppressor of ER stress-induced apoptosis. The nuclear factor erythroid 2-related factor 1 (NFE2L1) is responsible for Icariin-mediated Synoviolin gene expression. Mutation of the NFE2L1-binding sites in a distal region of the Synoviolin promoter abolished Icariin-induced Synoviolin promoter activity, and knockdown of NFE2L1 expression prevented Icariin-stimulated Synoviolin expression. More importantly, Icariin protected ER stress-induced apoptosis of PC12 cells in a Synoviolin-dependent manner. Therefore, our study reveals Icariin-induced Synoviolin expression through NFE2L1 as a previously unappreciated molecular mechanism underlying the neuronal protective function of Icariin.
Collapse
Affiliation(s)
- Fei Li
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Zunyi, China
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, United States of America
- * E-mail: (FL); (DF)
| | - Beixue Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, United States of America
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, United States of America
| | - Jingshan Shi
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Zunyi, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, United States of America
| |
Collapse
|
11
|
Jackson MZ, Gruner KA, Qin C, Tourtellotte WG. A neuron autonomous role for the familial dysautonomia gene ELP1 in sympathetic and sensory target tissue innervation. Development 2014; 141:2452-61. [PMID: 24917501 DOI: 10.1242/dev.107797] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Familial dysautonomia (FD) is characterized by severe and progressive sympathetic and sensory neuron loss caused by a highly conserved germline point mutation of the human ELP1/IKBKAP gene. Elp1 is a subunit of the hetero-hexameric transcriptional elongator complex, but how it functions in disease-vulnerable neurons is unknown. Conditional knockout mice were generated to characterize the role of Elp1 in migration, differentiation and survival of migratory neural crest (NC) progenitors that give rise to sympathetic and sensory neurons. Loss of Elp1 in NC progenitors did not impair their migration, proliferation or survival, but there was a significant impact on post-migratory sensory and sympathetic neuron survival and target tissue innervation. Ablation of Elp1 in post-migratory sympathetic neurons caused highly abnormal target tissue innervation that was correlated with abnormal neurite outgrowth/branching and abnormal cellular distribution of soluble tyrosinated α-tubulin in Elp1-deficient primary sympathetic and sensory neurons. These results indicate that neuron loss and physiologic impairment in FD is not a consequence of abnormal neuron progenitor migration, differentiation or survival. Rather, loss of Elp1 leads to neuron death as a consequence of failed target tissue innervation associated with impairments in cytoskeletal regulation.
Collapse
Affiliation(s)
- Marisa Z Jackson
- Department of Pathology (Division of Neuropathology), Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA Northwestern University Integrated Neuroscience (NUIN) Program, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Katherine A Gruner
- Department of Pathology (Division of Neuropathology), Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Charles Qin
- Department of Pathology (Division of Neuropathology), Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Warren G Tourtellotte
- Department of Pathology (Division of Neuropathology), Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA Northwestern University Integrated Neuroscience (NUIN) Program, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| |
Collapse
|
12
|
Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV, Mutharasan RK, Naik TJ, Ardehali H. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest 2014; 124:617-30. [PMID: 24382354 DOI: 10.1172/jci72931] [Citation(s) in RCA: 623] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/17/2013] [Indexed: 01/19/2023] Open
Abstract
Doxorubicin is an effective anticancer drug with known cardiotoxic side effects. It has been hypothesized that doxorubicin-dependent cardiotoxicity occurs through ROS production and possibly cellular iron accumulation. Here, we found that cardiotoxicity develops through the preferential accumulation of iron inside the mitochondria following doxorubicin treatment. In isolated cardiomyocytes, doxorubicin became concentrated in the mitochondria and increased both mitochondrial iron and cellular ROS levels. Overexpression of ABCB8, a mitochondrial protein that facilitates iron export, in vitro and in the hearts of transgenic mice decreased mitochondrial iron and cellular ROS and protected against doxorubicin-induced cardiomyopathy. Dexrazoxane, a drug that attenuates doxorubicin-induced cardiotoxicity, decreased mitochondrial iron levels and reversed doxorubicin-induced cardiac damage. Finally, hearts from patients with doxorubicin-induced cardiomyopathy had markedly higher mitochondrial iron levels than hearts from patients with other types of cardiomyopathies or normal cardiac function. These results suggest that the cardiotoxic effects of doxorubicin develop from mitochondrial iron accumulation and that reducing mitochondrial iron levels protects against doxorubicin-induced cardiomyopathy.
Collapse
|
13
|
Herndon CA, Ankenbruck N, Fromm L. The Erk MAP kinase pathway is activated at muscle spindles and is required for induction of the muscle spindle-specific gene Egr3 by neuregulin1. J Neurosci Res 2013; 92:174-84. [PMID: 24272970 DOI: 10.1002/jnr.23293] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/02/2013] [Accepted: 08/09/2013] [Indexed: 01/03/2023]
Abstract
Muscle spindles are sensory receptors composed of specialized muscle fibers, known as intrafusal muscle fibers, along with the endings of sensory neuron axons that innervate these muscle fibers. Formation of muscle spindles requires neuregulin1 (NRG1), which is released by sensory axons, activating ErbB receptors in muscle cells that are contacted. The transcription factor Egr3 is transcriptionally induced by NRG1, which in turn activates various target genes involved in forming intrafusal fibers. We have previously shown that, in cultured muscle cells, NRG1 signaling activates the Egr3 gene through SRF and CREB, which bind to a composite regulatory element, and that NRG1 signaling targets SRF by stimulating nuclear translocation of SRF coactivators myocardin-related transcription factor (MRTF)-A and MRTF-B and targets CREB by phosphorylation. The current studies examined signaling relays that might function in the NRG1 pathway upstream of SRF and CREB. We found that transcriptional induction of Egr3 in response to NRG1 requires the MAP kinase Erk1/2, which acts upstream of CREB to induce its phosphorylation. MRTFs are targeted by the Rho-actin pathway, yet in the absence of Rho-actin signaling, even though MRTFs fail to be translocated to the nucleus, NRG1 induces Egr3 transcription. In mouse muscle in vivo, activation of Erk1/2 is enhanced selectively where muscle spindles are located. These results suggest that Erk1/2 acts in intrafusal fibers of muscle spindles to induce transcription of Egr3 and that Egr3 induction occurs independently of MRTFs and involves Erk1/2 acting on other transcriptional regulatory targets that interact with the SRF-CREB regulatory element.
Collapse
Affiliation(s)
- Carter A Herndon
- Indiana University School of Medicine-Muncie and Ball State University, Muncie, Indiana
| | | | | |
Collapse
|
14
|
Fang F, Shangguan AJ, Kelly K, Wei J, Gruner K, Ye B, Wang W, Bhattacharyya S, Hinchcliff ME, Tourtellotte WG, Varga J. Early growth response 3 (Egr-3) is induced by transforming growth factor-β and regulates fibrogenic responses. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1197-1208. [PMID: 23906810 DOI: 10.1016/j.ajpath.2013.06.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/01/2013] [Accepted: 06/19/2013] [Indexed: 01/09/2023]
Abstract
Members of the early growth response (Egr) gene family of transcription factors have nonredundant biological functions. Although Egr-3 is implicated primarily in neuromuscular development and immunity, its regulation and role in tissue repair and fibrosis has not been studied. We now show that in normal skin fibroblasts, Egr-3 was potently induced by transforming growth factor-β via canonical Smad3. Moreover, transient Egr-3 overexpression was sufficient to stimulate fibrotic gene expression, whereas deletion of Egr-3 resulted in substantially attenuated transforming growth factor-β responses. Genome-wide expression profiling in fibroblasts showed that genes associated with tissue remodeling and wound healing were prominently up-regulated by Egr-3. Notably, <5% of fibroblast genes regulated by Egr-1 or Egr-2 were found to be coregulated by Egr-3, revealing substantial functional divergence among these Egr family members. In a mouse model of scleroderma, development of dermal fibrosis was accompanied by accumulation of Egr-3-positive myofibroblasts in the lesional tissue. Moreover, skin biopsy samples from patients with scleroderma showed elevated Egr-3 levels in the dermis, and Egr-3 mRNA levels correlated with the extent of skin involvement. These results provide the first evidence that Egr-3, a functionally distinct member of the Egr family with potent effects on inflammation and immunity, is up-regulated in scleroderma and is necessary and sufficient for profibrotic responses, suggesting important and distinct roles in the pathogenesis of fibrosis.
Collapse
Affiliation(s)
- Feng Fang
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Anna J Shangguan
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kathleen Kelly
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jun Wei
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Katherine Gruner
- Department of Pathology and Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Boping Ye
- College of Life and Science, China Pharmaceutical University, Nanjing, China
| | - Wenxia Wang
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Swati Bhattacharyya
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Monique E Hinchcliff
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Warren G Tourtellotte
- Department of Pathology and Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - John Varga
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
15
|
A sympathetic neuron autonomous role for Egr3-mediated gene regulation in dendrite morphogenesis and target tissue innervation. J Neurosci 2013; 33:4570-83. [PMID: 23467373 DOI: 10.1523/jneurosci.5481-12.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Egr3 is a nerve growth factor (NGF)-induced transcriptional regulator that is essential for normal sympathetic nervous system development. Mice lacking Egr3 in the germline have sympathetic target tissue innervation abnormalities and physiologic sympathetic dysfunction similar to humans with dysautonomia. However, since Egr3 is widely expressed and has pleiotropic function, it has not been clear whether it has a role within sympathetic neurons and if so, what target genes it regulates to facilitate target tissue innervation. Here, we show that Egr3 expression within sympathetic neurons is required for their normal innervation since isolated sympathetic neurons lacking Egr3 have neurite outgrowth abnormalities when treated with NGF and mice with sympathetic neuron-restricted Egr3 ablation have target tissue innervation abnormalities similar to mice lacking Egr3 in all tissues. Microarray analysis performed on sympathetic neurons identified many target genes deregulated in the absence of Egr3, with some of the most significantly deregulated genes having roles in axonogenesis, dendritogenesis, and axon guidance. Using a novel genetic technique to visualize axons and dendrites in a subpopulation of randomly labeled sympathetic neurons, we found that Egr3 has an essential role in regulating sympathetic neuron dendrite morphology and terminal axon branching, but not in regulating sympathetic axon guidance to their targets. Together, these results indicate that Egr3 has a sympathetic neuron autonomous role in sympathetic nervous system development that involves modulating downstream target genes affecting the outgrowth and branching of sympathetic neuron dendrites and axons.
Collapse
|
16
|
Herndon CA, Ankenbruck N, Lester B, Bailey J, Fromm L. Neuregulin1 signaling targets SRF and CREB and activates the muscle spindle-specific gene Egr3 through a composite SRF-CREB-binding site. Exp Cell Res 2013; 319:718-30. [PMID: 23318675 DOI: 10.1016/j.yexcr.2013.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/14/2012] [Accepted: 01/07/2013] [Indexed: 12/20/2022]
Abstract
Muscle spindles are sensory receptors embedded within muscle that detect changes in muscle length. Each spindle is composed of specialized muscle fibers, known as intrafusal muscle fibers, along with the endings of axons from sensory neurons that innervate these muscle fibers. Formation of muscle spindles requires neuregulin1 (NRG1), which is released by sensory axons, activating ErbB receptors in muscle cells that are contacted. In muscle cells, the transcription factor Egr3 is transcriptionally induced by NRG1, which in turn activates various target genes involved in forming the intrafusal fibers of muscle spindles. The signaling relay within the NRG1-ErbB pathway that acts to induce Egr3 is presumably critical for muscle spindle formation but for the most part has not been determined. In the current studies, we examined, using cultured muscle cells, transcriptional regulatory mechanisms by which Egr3 responds to NRG1. We identified a composite regulatory element for the Egr3 gene, consisting adjacent sites that bind cAMP response element binding protein (CREB) and serum response factor (SRF), with a role in NRG1 responsiveness. The SRF element also influences Egr3 basal expression in unstimulated myotubes, and in the absence of the SRF element, the CREB element influences basal expression. We show that NRG1 signaling, to target SRF, acts on the SRF coactivators myocardian-related transcription factor (MRTF)-A and MRTF-B, which are known to activate SRF-mediated transcription, by stimulating their translocation from the cytoplasm to the nucleus. CREB is phosphorylated, which is known to contribute to its activation, in response to NRG1. These results suggest that NRG1 induces expression of the muscle spindle-specific gene Egr3 by stimulating the transcriptional activity of CREB and SRF.
Collapse
Affiliation(s)
- Carter A Herndon
- Indiana University School of Medicine-Muncie and Ball State University, 2000 University Avenue, Muncie, IN 47306, USA
| | | | | | | | | |
Collapse
|
17
|
Egr3 dependent sympathetic target tissue innervation in the absence of neuron death. PLoS One 2011; 6:e25696. [PMID: 21980528 PMCID: PMC3182249 DOI: 10.1371/journal.pone.0025696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/08/2011] [Indexed: 01/19/2023] Open
Abstract
Nerve Growth Factor (NGF) is a target tissue derived neurotrophin required for normal sympathetic neuron survival and target tissue innervation. NGF signaling regulates gene expression in sympathetic neurons, which in turn mediates critical aspects of neuron survival, axon extension and terminal axon branching during sympathetic nervous system (SNS) development. Egr3 is a transcription factor regulated by NGF signaling in sympathetic neurons that is essential for normal SNS development. Germline Egr3-deficient mice have physiologic dysautonomia characterized by apoptotic sympathetic neuron death and abnormal innervation to many target tissues. The extent to which sympathetic innervation abnormalities in the absence of Egr3 is caused by altered innervation or by neuron death during development is unknown. Using Bax-deficient mice to abrogate apoptotic sympathetic neuron death in vivo, we show that Egr3 has an essential role in target tissue innervation in the absence of neuron death. Sympathetic target tissue innervation is abnormal in many target tissues in the absence of neuron death, and like NGF, Egr3 also appears to effect target tissue innervation heterogeneously. In some tissues, such as heart, spleen, bowel, kidney, pineal gland and the eye, Egr3 is essential for normal innervation, whereas in other tissues such as lung, stomach, pancreas and liver, Egr3 appears to have little role in innervation. Moreover, in salivary glands and heart, two tissues where Egr3 has an essential role in sympathetic innervation, NGF and NT-3 are expressed normally in the absence of Egr3 indicating that abnormal target tissue innervation is not due to deregulation of these neurotrophins in target tissues. Taken together, these results clearly demonstrate a role for Egr3 in mediating sympathetic target tissue innervation that is independent of neuron survival or neurotrophin deregulation.
Collapse
|
18
|
Sinico M, Bassez G, Touboul C, Cavé H, Vergnaud A, Zirah C, Fleury-Feith J, Gettler S, Vojtek AM, Chevalier N, Amram D, Alsamad IA, Haddad B, Encha-Razavi F. Excess of neuromuscular spindles in a fetus with Costello syndrome: a clinicopathological report. Pediatr Dev Pathol 2011; 14:218-23. [PMID: 20658932 DOI: 10.2350/09-06-0664-cr.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neuromuscular spindle (NMS) is a proprioceptive myofibrillar component of skeletal muscles that is necessary to maintain normal muscle tone and coordination. Recently, an excess of NMS has been reported as a congenital neuromuscular syndrome with a Noonan phenotype, now linked to Costello syndrome (CS). The vast majority of patients with CS have a de novo heterozygous mutation in the HRAS gene involved in the Ras/mitogen-activated protein kinase (MAPK) pathway. CS has many features in common with Noonan and cardiofaciocutaneous syndromes, also linked to activating mutations (but in other genes) of the Ras/MAPK pathway. This makes the orientation of molecular screening difficult. The observation of excess NMS in a 26-weeks'-gestation stillborn prompted us to screen the HRAS gene for mutation. The identification of a HRAS mutation made it possible to establish a diagnosis of CS. We conclude that the excess of NMS is the most reliable sign for the diagnosis of CS. Our findings also show the instrumental role of histological study of the skeletal muscles in the context of polyhydramnios and fetal hydrops.
Collapse
|
19
|
Komori T, Gyobu H, Ueno H, Kitamura T, Senba E, Morikawa Y. Expression of kin of irregular chiasm-like 3/mKirre in proprioceptive neurons of the dorsal root ganglia and its interaction with nephrin in muscle spindles. J Comp Neurol 2008; 511:92-108. [DOI: 10.1002/cne.21838] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
20
|
Eldredge LC, Gao XM, Quach DH, Li L, Han X, Lomasney J, Tourtellotte WG. Abnormal sympathetic nervous system development and physiological dysautonomia in Egr3-deficient mice. Development 2008; 135:2949-57. [PMID: 18653557 DOI: 10.1242/dev.023960] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sympathetic nervous system development depends upon many factors that mediate neuron migration, differentiation and survival. Target tissue-derived nerve growth factor (NGF) signaling-induced gene expression is required for survival, differentiation and target tissue innervation of post-migratory sympathetic neurons. However, the transcriptional regulatory mechanisms mediated by NGF signaling are very poorly defined. Here, we identify Egr3, a member of the early growth response (Egr) family of transcriptional regulators, as having an important role in sympathetic nervous system development. Egr3 is regulated by NGF signaling and it is expressed in sympathetic neurons during development when they depend upon NGF for survival and target tissue innervation. Egr3-deficient mice have severe sympathetic target tissue innervation abnormalities and profound physiological dysautonomia. Unlike NGF, which is essential for sympathetic neuron survival and for axon branching within target tissues, Egr3 is required for normal terminal axon extension and branching, but not for neuron survival. The results indicate that Egr3 is a novel NGF signaling effector that regulates sympathetic neuron gene expression required for normal target tissue innervation and function. Egr3-deficient mice have a phenotype that is remarkably similar to humans with sympathetic nervous system disease, raising the possibility that it may have a role in some forms of human dysautonomia, most of which have no known cause.
Collapse
Affiliation(s)
- Laurie C Eldredge
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Mateos L, Akterin S, Gil-Bea FJ, Spulber S, Rahman A, Björkhem I, Schultzberg M, Flores-Morales A, Cedazo-Mínguez A. Activity-regulated cytoskeleton-associated protein in rodent brain is down-regulated by high fat diet in vivo and by 27-hydroxycholesterol in vitro. Brain Pathol 2008; 19:69-80. [PMID: 18503570 DOI: 10.1111/j.1750-3639.2008.00174.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Growing evidence strongly suggests that high fat diet (HFD) has an important role in some neurodegenerative disorders, including Alzheimer's disease (AD). To identify new cellular pathways linking hypercholesterolemia and neurodegeneration, we analyzed the effects of HFD on gene expression in mouse brain. Using cDNA microarrays and real time RT-PCR, we found that HFD has a mild, but significant effect on the expression of several genes. The altered genes include molecules linked to AD pathology and others of potential interest for neurodegeneration. We further investigated the effect of HFD on the activity-regulated cytoskeleton-associated protein (Arc). Expression of Arc was decreased in cerebral cortex and hippocampus of HFD-fed animals. From the known regulatory mechanisms of Arc expression, HFD reduced N-methyl-D-aspartate receptor (NMDAR) activity, as seen by decreases in tyrosine phosphorylation of NMDAR2A and levels of NMDAR1. Additionally, we demonstrated that 27-hydroxycholesterol, a cholesterol metabolite that enters the brain from the blood, decreases Arc levels as well as NMDAR and Src kinase activities in rat primary hippocampal neurons. Finally, we showed that Arc levels are decreased in the cortex of AD brains. We propose that one of the mechanisms, by which hypercholesterolemia contributes to neurodegenerative diseases, could be through Arc down-regulation caused by 27-hydroxycholesterol.
Collapse
Affiliation(s)
- Laura Mateos
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer's Disease Research Center, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rumsey JW, Das M, Kang JF, Wagner R, Molnar P, Hickman JJ. Tissue engineering intrafusal fibers: dose- and time-dependent differentiation of nuclear bag fibers in a defined in vitro system using neuregulin 1-beta-1. Biomaterials 2008; 29:994-1004. [PMID: 18076984 DOI: 10.1016/j.biomaterials.2007.10.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 10/26/2007] [Indexed: 10/22/2022]
Abstract
While much is known about muscle spindle structure, innervation and function, relatively few factors have been identified that regulate intrafusal fiber differentiation and spindle development. Identification of these factors will be a crucial step in tissue engineering functional muscle systems. In this study, we investigated the role of the growth factor, neuregulin 1-beta-1 (Nrg 1-beta-1) EGF, for its ability to influence myotube fate specification in a defined culture system utilizing the non-biological substrate N-1[3-(trimethoxysilyl)propyl]-diethylenetriamine (DETA). Based on morphological and immunocytochemical criteria, Nrg 1-beta-1 treatment of developing myotubes increases the ratio of nuclear bag fibers to total myotubes from 0.019 to 0.100, approximately a five-fold increase. The myotube cultures were evaluated for expression of the intrafusal fiber-specific alpha cardiac-like myosin heavy chain and for the expression of the non-specific slow myosin heavy chain. Additionally, the expression of ErbB2 receptors on all myotubes was observed, while phosphorylated ErbB2 receptors were only observed in Nrg 1-beta-1-treated intrafusal fibers. After Nrg 1-beta-1 treatment, we were able to observe the expression of the intrafusal fiber-specific transcription factor Egr3 only in fibers exhibiting the nuclear bag phenotype. Finally, nuclear bag fibers were characterized electrophysiologically for the first time in vitro. This data shows conclusively, in a serum-free system, that Nrg 1-beta-1 is necessary to drive specification of forming myotubes to the nuclear bag phenotype.
Collapse
Affiliation(s)
- John W Rumsey
- NanoScience Technology Center, 12424 Research Parkway, Suite 400, University of Central Florida, Orlando, FL 32826, USA
| | | | | | | | | | | |
Collapse
|
23
|
Gao X, Daugherty RL, Tourtellotte WG. Regulation of low affinity neurotrophin receptor (p75(NTR)) by early growth response (Egr) transcriptional regulators. Mol Cell Neurosci 2007; 36:501-14. [PMID: 17916431 DOI: 10.1016/j.mcn.2007.08.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 08/10/2007] [Accepted: 08/21/2007] [Indexed: 12/21/2022] Open
Abstract
The low affinity neurotrophin receptor p75(NTR) is a multifunctional receptor with important roles in neurotrophin signaling, axon outgrowth, and oligodendroglia and neuron survival. It is transcriptionally regulated with spatial and temporal precision during nervous system development, injury and regeneration. Very little is known about how p75(NTR) expression is dynamically regulated but it is likely to influence how p75(NTR) signals in particular cellular contexts. Here, we identify the early growth response (Egr) transcriptional regulators, Egr1 and Egr3, as direct modulators of p75(NTR) gene expression. Egr1 and Egr3 bind and transactivate the p75(NTR) promoter in vitro and in vivo, using distinct response elements on the p75(NTR) promoter. Consistent with these results, p75(NTR) expression is greatly diminished in muscle spindle stretch receptors and in peripheral nerve Schwann cells in Egr gene deficient mice. Taken together, the results elucidate a novel mechanism whereby Egr proteins can directly modulate p75(NTR) expression and signaling in vivo.
Collapse
Affiliation(s)
- Xiaoguang Gao
- Department of Pathology (Division of Neuropathology), Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | | | | |
Collapse
|
24
|
Carter JH, Lefebvre JM, Wiest DL, Tourtellotte WG. Redundant role for early growth response transcriptional regulators in thymocyte differentiation and survival. THE JOURNAL OF IMMUNOLOGY 2007; 178:6796-805. [PMID: 17513727 DOI: 10.4049/jimmunol.178.11.6796] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The early growth response (Egr) family of transcriptional regulators consists of four proteins that share highly conserved DNA-binding domains. In many cell types, they are coexpressed and appear to have cooperative roles in regulating gene expression during growth and differentiation. Three Egr proteins, Egr1, Egr2, and Egr3, are induced during thymocyte differentiation in response to pre-TCR signaling, suggesting they may be critical for some aspects of pre-TCR-mediated differentiation. Indeed, enforced expression of Egr proteins in developing thymocytes can recapitulate some aspects of pre-TCR signaling, but the mechanisms by which they contribute to beta-selection are still poorly understood. Egr3 stimulates proliferation of beta-selected thymocytes, and Egr3-deficient mice have hypocellular thymuses, defects in proliferation, and impaired progression from double-negative 3 to double-negative 4. Surprisingly, Egr1-deficient mice exhibit normal beta-selection, indicating that the functions of Egr1 during beta-selection are likely compensated by other Egr proteins. In this study, we show that mice lacking both Egr1 and Egr3 exhibit a more severe thymic atrophy and impairment of thymocyte differentiation than mice lacking either Egr1 or Egr3. This is due to a proliferation defect and cell-autonomous increase in apoptosis, indicating that Egr1 and Egr3 cooperate to promote thymocyte survival. Microarray analysis of deregulated gene expression in immature thymocytes lacking both Egr1 and Egr3 revealed a previously unknown role for Egr proteins in the maintenance of cellular metabolism, providing new insight into the function of these molecules during T cell development.
Collapse
Affiliation(s)
- John H Carter
- Department of Pathology, Northwestern University, Chicago IL, 60611, USA
| | | | | | | |
Collapse
|
25
|
Dominy JE, Hwang J, Stipanuk MH. Overexpression of cysteine dioxygenase reduces intracellular cysteine and glutathione pools in HepG2/C3A cells. Am J Physiol Endocrinol Metab 2007; 293:E62-9. [PMID: 17327371 DOI: 10.1152/ajpendo.00053.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cysteine levels are carefully regulated in mammals to balance metabolic needs against the potential for cytotoxicity. It has been postulated that one of the major regulators of intracellular cysteine levels in mammals is cysteine dioxygenase (CDO). Hepatic expression of this catabolic enzyme increases dramatically in response to increased cysteine availability and may therefore be part of a homeostatic response to shunt excess toxic cysteine to more benign metabolites such as sulfate or taurine. Direct experimental evidence, however, is lacking to support the hypothesis that CDO is capable of altering steady-state intracellular cysteine levels. In this study, we expressed either the wild-type (WT) or a catalytically inactivated mutant (H86A) isoform of CDO in HepG2/C3A cells (which do not express endogenous CDO protein) and cultured them in different concentrations of extracellular cysteine. WT CDO, but not H86A CDO, was capable of reducing intracellular cysteine levels in cells incubated in physiologically relevant concentrations of cysteine. WT CDO also decreased the glutathione pool and potentiated the toxicity of CdCl(2). These results demonstrate that CDO is capable of altering intracellular cysteine levels as well as glutathione levels.
Collapse
Affiliation(s)
- John E Dominy
- Department of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
26
|
Kim JB, Porreca GJ, Song L, Greenway SC, Gorham JM, Church GM, Seidman CE, Seidman JG. Polony Multiplex Analysis of Gene Expression (PMAGE) in Mouse Hypertrophic Cardiomyopathy. Science 2007; 316:1481-4. [PMID: 17556586 DOI: 10.1126/science.1137325] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We describe a sensitive mRNA profiling technology, PMAGE (for "polony multiplex analysis of gene expression"), which detects messenger RNAs (mRNAs) as rare as one transcript per three cells. PMAGE incorporates an improved ligation-based method to sequence 14-nucleotide tags derived from individual mRNA molecules. One sequence tag from each mRNA molecule is amplified onto a separate 1-micrometer bead, denoted as a polymerase colony or polony, and about 5 million polonies are arrayed in a flow cell for parallel sequencing. Using PMAGE, we identified early transcriptional changes that preceded pathological manifestations of hypertrophic cardiomyopathy in mice carrying a disease-causing mutation. PMAGE provided a comprehensive profile of cardiac mRNAs, including low-abundance mRNAs encoding signaling molecules and transcription factors that are likely to participate in disease pathogenesis.
Collapse
Affiliation(s)
- Jae Bum Kim
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Romanovsky D, Moseley AE, Mrak RE, Taylor MD, Dobretsov M. Phylogenetic preservation of alpha3 Na+,K+-ATPase distribution in vertebrate peripheral nervous systems. J Comp Neurol 2007; 500:1106-16. [PMID: 17183534 DOI: 10.1002/cne.21218] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The alpha(3) isoform of Na(+),K(+)-ATPase is uniquely expressed in afferent and efferent neurons innervating muscle spindles in the peripheral nervous system (PNS) of adult rats, but the distribution pattern of this isoform in other species has not been investigated. We compared expression of alpha(3) Na(+),K(+)-ATPase in lumbar dorsal root ganglia (DRG), spinal roots, and skeletal muscle samples of amphibian (frog), reptilian (turtle), avian (pigeon and chicken), and mammalian (mouse and human) species. In all species studied, the alpha(3) Na(+),K(+)-ATPase isoform was nonuniformly expressed in peripheral ganglia and nerves. In spinal ganglia, only 5-20% of neurons expressed this isoform, and, in avian and mammalian species, these alpha(3) Na(+),K(+)-ATPase-expressing neurons belonged to a subpopulation of large DRG neurons. In ventral root fibers of pigeons, mice, and humans, the alpha(3) Na(+),K(+)-ATPase was abundantly expressed predominantly in small myelinated axons. In skeletal muscle samples from turtles, pigeons, mice, and humans, alpha(3) Na(+),K(+)-ATPase was detected in intramuscular myelinated axons and in profiles of nerve terminals associated with the equatorial and polar regions of muscle spindle intrafusal fibers. These results show that the expression profiles for alpha(3) Na(+),K(+)-ATPase in the peripheral nervous system of a wide variety of vertebrate species are similar to the profile of rats and suggest that stretch receptor-associated expression of alpha(3) Na(+),K(+)-ATPase is preserved through vertebrate evolution.
Collapse
Affiliation(s)
- Dmitry Romanovsky
- Department of Anesthesiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | |
Collapse
|
28
|
Li LY, Wang Z, Sedý J, Quazi R, Walro JM, Frank E, Kucera J. Neurotrophin-3 ameliorates sensory-motor deficits in Er81-deficient mice. Dev Dyn 2007; 235:3039-50. [PMID: 17013886 PMCID: PMC2587023 DOI: 10.1002/dvdy.20964] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Two factors, the ETS transcription factor ER81 and skeletal muscle-derived neurotrophin-3 (NT3), are essential for the formation of muscle spindles and the function of spindle afferent-motoneuron synapses in the spinal cord. Spindles either degenerate completely or are abnormal, and spindle afferents fail to project to spinal motoneurons in Er81 null mice; however, the interactions between ER81 and NT3 during the processes of afferent neuron and muscle spindle development are poorly understood. To examine if overexpression of NT3 in muscle rescues spindles and afferent-motoneuron connectivity in the absence of ER81, we generated myoNT3;Er81(-/-) double-mutant mice that selectively overexpress NT3 in muscle in the absence of ER81. Spindle reflex arcs in myoNT3;Er81(-/-) mutants differed greatly from Er81 null mice. Muscle spindle densities were greater and more afferents projected into the ventral spinal cord in myoNT3;Er81(-/-) mice. Spindles of myoNT3;Er81(-/-) muscles responded normally to repetitive muscle taps, and the monosynaptic inputs from Ia afferents to motoneurons, grossly reduced in Er81(-/-) mutants, were restored to wild-type levels in myoNT3;Er81(-/-) mice. Thus, an excess of muscle-derived NT3 reverses deficits in spindle numbers and afferent function induced by the absence of ER81. We conclude that muscle-derived NT3 can modulate spindle density and afferent-motoneuron connectivity independently of ER81.
Collapse
Affiliation(s)
- L Y Li
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Roberts DS, Hu Y, Lund IV, Brooks-Kayal AR, Russek SJ. Brain-derived neurotrophic factor (BDNF)-induced synthesis of early growth response factor 3 (Egr3) controls the levels of type A GABA receptor alpha 4 subunits in hippocampal neurons. J Biol Chem 2006; 281:29431-5. [PMID: 16901909 DOI: 10.1074/jbc.c600167200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Altered function of gamma-aminobutyric acid type A receptors (GABA(A)Rs) in dentate granule cells of the hippocampus has been associated with temporal lobe epilepsy (TLE) in humans and in animal models of TLE. Such altered receptor function (including increased inhibition by zinc and lack of modulation by benzodiazepines) is related, in part, to changes in the mRNA levels of certain GABA(A)R subunits, including alpha4, and may play a role in epileptogenesis. The majority of GABA(A)Rs that contain alpha4 subunits are extra-synaptic due to lack of the gamma2 subunit and presence of delta. However, it has been hypothesized that seizure activity may result in expression of synaptic receptors with altered properties driven by an increased pool of alpha4 subunits. Results of our previous work suggests that signaling via protein kinase C (PKC) and early growth response factor 3 (Egr3) is the plasticity trigger for aberrant alpha4 subunit gene (GABRA4) expression after status epilepticus. We now report that brain derived neurotrophic factor (BDNF) is the endogenous signal that induces Egr3 expression via a PKC/MAPK-dependent pathway. Taken together with the fact that blockade of tyrosine kinase (Trk) neurotrophin receptors reduces basal GABRA4 promoter activity by 50%, our findings support a role for BDNF as the mediator of Egr3-induced GABRA4 regulation in developing neurons and epilepsy and, moreover, suggest that BDNF may alter inhibitory processing in the brain by regulating the balance between phasic and tonic inhibition.
Collapse
Affiliation(s)
- Daniel S Roberts
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
30
|
Schwanekamp JA, Sartor MA, Karyala S, Halbleib D, Medvedovic M, Tomlinson CR. Genome-wide analyses show that nuclear and cytoplasmic RNA levels are differentially affected by dioxin. ACTA ACUST UNITED AC 2006; 1759:388-402. [PMID: 16962184 DOI: 10.1016/j.bbaexp.2006.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 06/19/2006] [Accepted: 07/31/2006] [Indexed: 01/16/2023]
Abstract
The aryl hydrocarbon receptor (AHR) mounts the body's main molecular defense against environmental toxicants by inducing a battery of genes encoding xenobiotic metabolizing proteins. The AHR is activated by polycyclic aromatic hydrocarbon toxicants, including the pervasive teratogen and carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or dioxin). The TCDD-activated AHR significantly changes the cytoplasmic mRNA levels of hundreds of genes, but little is known of the mechanism by which the activated AHR causes such a strong effect on global gene expression. We used high-density microarrays to compare nuclear and cytoplasmic RNA levels from untreated and TCDD-treated mouse embryonic fibroblasts (MEF) to test the hypotheses that (1) TCDD has a large impact on nuclear RNA levels and (2) that cytoplasmic RNA levels are dependent on nuclear RNA levels. We found that nuclear RNA levels are strongly affected by TCDD, and that nuclear and cytoplasmic RNA levels are only weakly correlated, indicating that other regulatory mechanisms are controlling cytoplasmic RNA levels. The nuclear RNAs most affected by TCDD encode proteins involved in nuclear RNA processing and transcription. We conclude that although the AHR regulates key xenobiotic metabolizing genes at the transcriptional level, a larger impact of the TCDD-activated AHR may be at post-transcriptional levels.
Collapse
Affiliation(s)
- Jennifer A Schwanekamp
- Division of Environmental Genetics and Molecular Toxicology, University of Cincinnati, Department of Environmental Health, Cincinnati, OH 45267-0056, USA
| | | | | | | | | | | |
Collapse
|
31
|
Li L, Carter J, Gao X, Whitehead J, Tourtellotte WG. The neuroplasticity-associated arc gene is a direct transcriptional target of early growth response (Egr) transcription factors. Mol Cell Biol 2005; 25:10286-300. [PMID: 16287845 PMCID: PMC1291244 DOI: 10.1128/mcb.25.23.10286-10300.2005] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 09/02/2005] [Indexed: 11/20/2022] Open
Abstract
Early growth response (Egr) transcription factors (Egr1 to Egr4) are synaptic activity-inducible immediate early genes (IEGs) that regulate some aspects of synaptic plasticity-related to learning and memory, yet the target genes regulated by them are unknown. In particular, Egr1 is essential for persistence of late-phase long-term potentiation (L-LTP), for hippocampus-dependent long-term memory formation, and for reconsolidation of previously established memories. Here, we show that Egr1 and Egr3 directly regulate the plasticity-associated activity-regulated cytoskeletal-related (Arc) gene, a synaptic activity-induced effector molecule which is also required for L-LTP and hippocampus-dependent learning and memory processing. Moreover, Egr1-deficient and Egr3-deficient mice lack Arc protein in a subpopulation of neurons, while mice lacking both Egr1 and Egr3 lack Arc in all neurons. Thus, Egr1 and Egr3 can indirectly modulate synaptic plasticity by directly regulating Arc and the plasticity mechanisms it mediates in recently activated synapses.
Collapse
Affiliation(s)
- Lin Li
- Ward 7-110, Department of Pathology, W127, Northwestern University, 393 E. Chicago Ave., Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|