1
|
Milano SN, Bayer LV, Ko JJ, Casella CE, Bratu DP. The role of ER exit sites in maintaining P-body organization and transmitting ER stress response during Drosophila melanogaster oogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601952. [PMID: 39005311 PMCID: PMC11245038 DOI: 10.1101/2024.07.03.601952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Processing bodies (P-bodies) are cytoplasmic membrane-less organelles which host multiple mRNA processing events. While the fundamental principles of P-body organization are beginning to be elucidated in vitro, a nuanced understanding of how their assembly is regulated in vivo remains elusive. Here, we investigate the potential link between ER exit sites and P-bodies in Drosophila melanogaster egg chambers. Employing a combination of live and super-resolution imaging, we found that P-bodies associated with ER exit sites are larger and less mobile than cytoplasmic P-bodies, indicating that they constitute a distinct class of P-bodies which are more mature than their cytoplasmic counterparts. Moreover, we demonstrate that altering the composition of ER exit sites has differential effects on core P-body proteins (Me31B, Cup, and Trailer Hitch) suggesting a potential role for ER exit sites in P-body organization. We further show that in the absence of ER exit sites, P-body integrity is compromised and the stability and translational repression efficiency of the maternal mRNA, oskar, are reduced. Finally, we show that ER stress is communicated to P-bodies via ER exit sites, highlighting the pivotal role of ER exit sites as a bridge between membrane-bound and membrane-less organelles in ER stress response. Together, our data unveils the significance of ER exit sites not only in governing P-body organization, but also in facilitating inter-organellar communication during stress, potentially bearing implications for a variety of disease pathologies.
Collapse
Affiliation(s)
- Samantha N. Milano
- Department of Biological Sciences, Hunter College, City University of New York, NY, 10065 USA
- Program in Molecular, Cellular, and Developmental Biology, The Graduate Center, City University of New York, NY, 10016 USA
| | - Livia V. Bayer
- Department of Biological Sciences, Hunter College, City University of New York, NY, 10065 USA
| | - Julie J. Ko
- Department of Biological Sciences, Hunter College, City University of New York, NY, 10065 USA
| | - Caroline E. Casella
- Department of Biological Sciences, Hunter College, City University of New York, NY, 10065 USA
| | - Diana P. Bratu
- Department of Biological Sciences, Hunter College, City University of New York, NY, 10065 USA
- Program in Molecular, Cellular, and Developmental Biology, The Graduate Center, City University of New York, NY, 10016 USA
| |
Collapse
|
2
|
Xiao H, Vierling MM, Kennedy RF, Boone EC, Decker LM, Sy VT, Haynes JB, Williams MA, Shiu PKT. Involvement of RNA granule proteins in meiotic silencing by unpaired DNA. G3 (BETHESDA, MD.) 2021; 11:jkab179. [PMID: 34568932 PMCID: PMC8482848 DOI: 10.1093/g3journal/jkab179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/13/2021] [Indexed: 11/14/2022]
Abstract
In Neurospora crassa, expression from an unpaired gene is suppressed by a mechanism known as meiotic silencing by unpaired DNA (MSUD). MSUD utilizes common RNA interference (RNAi) factors to silence target mRNAs. Here, we report that Neurospora CAR-1 and CGH-1, homologs of two Caenorhabditis elegans RNA granule components, are involved in MSUD. These fungal proteins are found in the perinuclear region and P-bodies, much like their worm counterparts. They interact with components of the meiotic silencing complex (MSC), including the SMS-2 Argonaute. This is the first time MSUD has been linked to RNA granule proteins.
Collapse
Affiliation(s)
- Hua Xiao
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Michael M Vierling
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Rana F Kennedy
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Erin C Boone
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Logan M Decker
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Victor T Sy
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jackson B Haynes
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Michelle A Williams
- Present address: Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Patrick K T Shiu
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Longman D, Jackson-Jones KA, Maslon MM, Murphy LC, Young RS, Stoddart JJ, Hug N, Taylor MS, Papadopoulos DK, Cáceres JF. Identification of a localized nonsense-mediated decay pathway at the endoplasmic reticulum. Genes Dev 2020; 34:1075-1088. [PMID: 32616520 PMCID: PMC7397857 DOI: 10.1101/gad.338061.120] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/05/2020] [Indexed: 12/25/2022]
Abstract
Nonsense-mediated decay (NMD) is a translation-dependent RNA quality control mechanism that occurs in the cytoplasm. However, it is unknown how NMD regulates the stability of RNAs translated at the endoplasmic reticulum (ER). Here, we identify a localized NMD pathway dedicated to ER-translated mRNAs. We previously identified NBAS, a component of the Syntaxin 18 complex involved in Golgi-to-ER trafficking, as a novel NMD factor. Furthermore, we show that NBAS fulfills an independent function in NMD. This ER-NMD pathway requires the interaction of NBAS with the core NMD factor UPF1, which is partially localized at the ER in the proximity of the translocon. NBAS and UPF1 coregulate the stability of ER-associated transcripts, in particular those associated with the cellular stress response. We propose a model where NBAS recruits UPF1 to the membrane of the ER and activates an ER-dedicated NMD pathway, thus providing an ER-protective function by ensuring quality control of ER-translated mRNAs.
Collapse
Affiliation(s)
- Dasa Longman
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Kathryn A Jackson-Jones
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Magdalena M Maslon
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Laura C Murphy
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Robert S Young
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Jack J Stoddart
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Nele Hug
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Martin S Taylor
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Dimitrios K Papadopoulos
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
4
|
Catalá R, Carrasco-López C, Perea-Resa C, Hernández-Verdeja T, Salinas J. Emerging Roles of LSM Complexes in Posttranscriptional Regulation of Plant Response to Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:167. [PMID: 30873189 PMCID: PMC6401655 DOI: 10.3389/fpls.2019.00167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/31/2019] [Indexed: 05/04/2023]
Abstract
It has long been assumed that the wide reprogramming of gene expression that modulates plant response to unfavorable environmental conditions is mainly controlled at the transcriptional level. A growing body of evidence, however, indicates that posttranscriptional regulatory mechanisms also play a relevant role in this control. Thus, the LSMs, a family of proteins involved in mRNA metabolism highly conserved in eukaryotes, have emerged as prominent regulators of plant tolerance to abiotic stress. Arabidopsis contains two main LSM ring-shaped heteroheptameric complexes, LSM1-7 and LSM2-8, with different subcellular localization and function. The LSM1-7 ring is part of the cytoplasmic decapping complex that regulates mRNA stability. On the other hand, the LSM2-8 complex accumulates in the nucleus to ensure appropriate levels of U6 snRNA and, therefore, correct pre-mRNA splicing. Recent studies reported unexpected results that led to a fundamental change in the assumed consideration that LSM complexes are mere components of the mRNA decapping and splicing cellular machineries. Indeed, these data have demonstrated that LSM1-7 and LSM2-8 rings operate in Arabidopsis by selecting specific RNA targets, depending on the environmental conditions. This specificity allows them to actively imposing particular gene expression patterns that fine-tune plant responses to abiotic stresses. In this review, we will summarize current and past knowledge on the role of LSM rings in modulating plant physiology, with special focus on their function in abiotic stress responses.
Collapse
|
5
|
Umegawachi T, Yoshida H, Koshida H, Yamada M, Ohkawa Y, Sato T, Suyama M, Krause HM, Yamaguchi M. Control of tissue size and development by a regulatory element in the yorkie 3'UTR. Am J Cancer Res 2017; 7:673-687. [PMID: 28401020 PMCID: PMC5385651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 06/07/2023] Open
Abstract
Regulation of the Hippo pathway via phosphorylation of Yorkie (Yki), the Drosophila homolog of human Yes-associated protein 1, is conserved from Drosophila to humans. Overexpression of a non-phosphorylatable form of Yki induces severe overgrowth in adult fly eyes. Here, we show that yki mRNA associates with microsomal fractions and forms foci that partially colocalize to processing bodies in the vicinity of endoplasmic reticulum. This localization is dependent on a stem-loop (SL) structure in the 3' untranslated region of yki. Surprisingly, expression of SL deleted yki in eye imaginal discs also results in severe overgrowth phenotypes. When the structure of the SL is disrupted, Yki protein levels increase without a significant effect on RNA levels. When the SL is completely removed, protein levels drastically increase, but in this case, due to increased RNA stability. In the latter case, we show that the increased RNA accumulation is due to removal of a putative miR-8 seed sequence in the SL. These data demonstrate the function of two novel regulatory mechanisms, both controlled by the yki SL element, that are essential for proper Hippo pathway mediated growth regulation.
Collapse
Affiliation(s)
- Takanari Umegawachi
- Department of Applied Biology, Kyoto Institute of TechnologyMatsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of TechnologyMatsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- The Center for Advanced Insect Research Promotion, Kyoto Institute of TechnologyMatsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiromu Koshida
- Department of Applied Biology, Kyoto Institute of TechnologyMatsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Momoko Yamada
- Department of Applied Biology, Kyoto Institute of TechnologyMatsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yasuyuki Ohkawa
- Medical Institute of Bioregulation, Kyushu UniversityFukuoka 812-8582, Japan
| | - Tetsuya Sato
- Medical Institute of Bioregulation, Kyushu UniversityFukuoka 812-8582, Japan
| | - Mikita Suyama
- Medical Institute of Bioregulation, Kyushu UniversityFukuoka 812-8582, Japan
| | - Henry M Krause
- Banting and Best Department of Medical Research, University of TorontoToronto, Ontario M5G 1L6, Canada
- Department of Molecular Genetics, University of TorontoToronto, Ontario M5G 1L6, Canada
- Donnelly Centre, University of TorontoToronto, Ontario M5G 1L6, Canada
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of TechnologyMatsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- The Center for Advanced Insect Research Promotion, Kyoto Institute of TechnologyMatsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
6
|
Yarmishyn AA, Kremenskoy M, Batagov AO, Preuss A, Wong JH, Kurochkin IV. Genome-wide analysis of mRNAs associated with mouse peroxisomes. BMC Genomics 2016; 17:1028. [PMID: 28155669 PMCID: PMC5259856 DOI: 10.1186/s12864-016-3330-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background RNA is often targeted to be localized to the specific subcellular compartments. Specific localization of mRNA is believed to be an important mechanism for targeting their protein products to the locations, where their function is required. Results In this study we performed the genome wide transcriptome analysis of peroxisome preparations from the mouse liver using microarrays. We demonstrate that RNA is absent inside peroxisomes, however it is associated at their exterior via the noncovalent contacts with the membrane proteins. We detect enrichment of specific sets of transcripts in two preparations of peroxisomes, purified with different degrees of stringency. Importantly, among these were mRNAs encoding bona fide peroxisomal proteins, such as peroxins and peroxisomal matrix enzymes involved in beta-oxidation of fatty acids and bile acid biosynthesis. The top-most enriched mRNA, whose association with peroxisomes we confirm microscopically was Hmgcs1, encoding 3-hydroxy-3-methylglutaryl-CoA synthase, a crucial enzyme of cholesterol biosynthesis pathway. We observed significant representation of mRNAs encoding mitochondrial and secreted proteins in the peroxisomal fractions. Conclusions This is a pioneer genome-wide study of localization of mRNAs to peroxisomes that provides foundation for more detailed dissection of mechanisms of RNA targeting to subcellular compartments. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3330-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aliaksandr A Yarmishyn
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Matrix, Singapore, 138671, Singapore
| | - Maksym Kremenskoy
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Matrix, Singapore, 138671, Singapore
| | - Arsen O Batagov
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Matrix, Singapore, 138671, Singapore
| | - Axel Preuss
- Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research (A*STAR), Proteos, Singapore, 138673, Singapore
| | - Jin Huei Wong
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Matrix, Singapore, 138671, Singapore
| | - Igor V Kurochkin
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Matrix, Singapore, 138671, Singapore. .,, Present address: Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-ku, Kobe, 651-2271, Japan.
| |
Collapse
|
7
|
RNAi Screen Identifies Novel Regulators of RNP Granules in the Caenorhabditis elegans Germ Line. G3-GENES GENOMES GENETICS 2016; 6:2643-54. [PMID: 27317775 PMCID: PMC4978917 DOI: 10.1534/g3.116.031559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complexes of RNA and RNA binding proteins form large-scale supramolecular structures under many cellular contexts. In Caenorhabditis elegans, small germ granules are present in the germ line that share characteristics with liquid droplets that undergo phase transitions. In meiotically-arrested oocytes of middle-aged hermaphrodites, the germ granules appear to aggregate or condense into large assemblies of RNA-binding proteins and maternal mRNAs. Prior characterization of the assembly of large-scale RNP structures via candidate approaches has identified a small number of regulators of phase transitions in the C. elegans germ line; however, the assembly, function, and regulation of these large RNP assemblies remain incompletely understood. To identify genes that promote remodeling and assembly of large RNP granules in meiotically-arrested oocytes, we performed a targeted, functional RNAi screen and identified over 300 genes that regulate the assembly of the RNA-binding protein MEX-3 into large granules. Among the most common GO classes are several categories related to RNA biology, as well as novel categories such as cell cortex, ER, and chromosome segregation. We found that arrested oocytes that fail to localize MEX-3 into cortical granules display reduced oocyte quality, consistent with the idea that the larger RNP assemblies promote oocyte quality when fertilization is delayed. Interestingly, a relatively small number of genes overlap with the regulators of germ granule assembly during normal development, or with the regulators of solid RNP granules in cgh-1 oocytes, suggesting fundamental differences in the regulation of RNP granule phase transitions during meiotic arrest.
Collapse
|
8
|
Ganesan SM, Falla A, Goldfless SJ, Nasamu AS, Niles JC. Synthetic RNA-protein modules integrated with native translation mechanisms to control gene expression in malaria parasites. Nat Commun 2016; 7:10727. [PMID: 26925876 PMCID: PMC4773503 DOI: 10.1038/ncomms10727] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 01/15/2016] [Indexed: 12/12/2022] Open
Abstract
Synthetic posttranscriptional regulation of gene expression is important for understanding fundamental biology and programming new cellular processes in synthetic biology. Previous strategies for regulating translation in eukaryotes have focused on disrupting individual steps in translation, including initiation and mRNA cleavage. In emphasizing modularity and cross-organism functionality, these systems are designed to operate orthogonally to native control mechanisms. Here we introduce a broadly applicable strategy for robustly controlling protein translation by integrating synthetic translational control via a small-molecule-regulated RNA–protein module with native mechanisms that simultaneously regulate multiple facets of cellular RNA fate. We demonstrate that this strategy reduces ‘leakiness' to improve overall expression dynamic range, and can be implemented without sacrificing modularity and cross-organism functionality. We illustrate this in Saccharomyces cerevisae and the non-model human malarial parasite, Plasmodium falciparum. Given the limited functional genetics toolkit available for P. falciparum, we establish the utility of this strategy for defining essential genes. Current strategies for regulatory control of gene expression are orthogonal to the host organism mechanisms. Here the authors demonstrate an RNA aptamer controlled system integrated into native regulatory pathways in the parasite Plasmodium falciparum.
Collapse
Affiliation(s)
- Suresh M Ganesan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, 02139 Massachusetts, USA
| | - Alejandra Falla
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, 02139 Massachusetts, USA
| | - Stephen J Goldfless
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, 02139 Massachusetts, USA
| | - Armiyaw S Nasamu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, 02139 Massachusetts, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, 02139 Massachusetts, USA
| |
Collapse
|
9
|
Abstract
The storage of translationally inactive mRNAs in cytosolic granules enables cells to react flexibly to environmental changes. In eukaryotes, Scd6 (suppressor of clathrin deficiency 6)/Rap55 (RNA-associated protein 55), a member of the LSm14 (like-Sm14) family, is an important factor in the formation and activity of P-bodies, where mRNA decay factors accumulate, in stress granules that store mRNAs under adverse conditions and in granules that store developmentally regulated mRNAs. SCD6 from Trypanosoma brucei (TbSCD6) shares the same domain architecture as orthologous proteins in other organisms and is also present in cytosolic granules (equivalent to P-bodies). We show that TbSCD6 is a general repressor of translation and that its depletion by RNAi results in a global increase in protein synthesis. With few exceptions, the steady-state levels of proteins are unchanged. TbSCD6 is not required for the formation of starvation-induced granules in trypanosomes, and unlike Scd6 from yeast, Plasmodium and all multicellular organisms analysed to date, it does not form a complex with the helicase Dhh1 (DExD/H-box helicase 1). In common with Xenopus laevis RAP55, TbSCD6 co-purifies with two arginine methyltransferases; moreover, TbSCD6 itself is methylated on three arginine residues. Finally, a detailed analysis identified roles for the Lsm and N-rich domains in both protein localization and translational repression.
Collapse
|
10
|
Jonas S, Izaurralde E. The role of disordered protein regions in the assembly of decapping complexes and RNP granules. Genes Dev 2014; 27:2628-41. [PMID: 24352420 PMCID: PMC3877753 DOI: 10.1101/gad.227843.113] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Removal of the 5′ cap structure is a critical step in mRNA turnover, yet key questions regarding the assembly and regulation of decapping complexes remain unanswered. This review provides comprehensive insight into the structural and biochemical properties of decapping factors. Jonas and Izaurralde highlight the plasticity of the decapping network and cover recent advances that reveal how short linear motifs (SliMs) in disordered regions help maintain interactions between decapping network members. The removal of the 5′ cap structure by the decapping enzyme DCP2 inhibits translation and generally commits the mRNA to irreversible 5′-to-3′ exonucleolytic degradation by XRN1. DCP2 catalytic activity is stimulated by DCP1, and these proteins form the conserved core of the decapping complex. Additional decapping factors orchestrate the recruitment and activity of this complex in vivo. These factors include enhancer of decapping 3 (EDC3), EDC4, like Sm14A (LSm14A), Pat, the LSm1–7 complex, and the RNA helicase DDX6. Decapping factors are often modular and feature folded domains flanked or connected by low-complexity disordered regions. Recent studies have made important advances in understanding how these disordered regions contribute to the assembly of decapping complexes and promote phase transitions that drive RNP granule formation. These studies have also revealed that the decapping network is governed by interactions mediated by short linear motifs (SLiMs) in these disordered regions. Consequently, the network has rapidly evolved, and although decapping factors are conserved, individual interactions between orthologs have been rewired during evolution. The plasticity of the network facilitates the acquisition of additional subunits or domains in pre-existing subunits, enhances opportunities for regulating mRNA degradation, and eventually leads to the emergence of novel functions.
Collapse
Affiliation(s)
- Stefanie Jonas
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | | |
Collapse
|
11
|
Schisa JA. Effects of stress and aging on ribonucleoprotein assembly and function in the germ line. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:231-46. [PMID: 24523207 DOI: 10.1002/wrna.1204] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/03/2013] [Accepted: 10/09/2013] [Indexed: 11/08/2022]
Abstract
In a variety of cell types, ribonucleoprotein (RNP) complexes play critical roles in regulating RNA metabolism. The germ line contains RNPs found also in somatic cells, such as processing (P) bodies and stress granules, as well as several RNPs unique to the germ line, including germ granules, nuage, Balbiani bodies, P granules, U bodies, and sponge bodies. Recent advances have identified a conserved response of germ line RNPs to environmental stresses such as nutritional stress and heat shock. The RNPs increase significantly in size based on cytology; their morphology and subcellular localization changes, and their composition changes. These dynamic changes are reversible when stresses diminish, and similar changes occur in response to aging or extended meiotic arrest prior to fertilization of oocytes. Intriguing correlations exist between the dynamics of the RNPs and the microtubule cytoskeleton and its motor proteins, suggesting a possible mechanism for the assembly and dissociation of the large RNP granules. Similarly, coordinated changes of the nuclear membrane and endoplasmic reticulum may also help unravel the regulatory mechanisms of RNP dynamics. Based on their composition, the RNPs are thought to regulate mRNA decay and/or translation, and initial support for some of these roles is now at hand. Ultimately, the question of why RNP remodeling occurs to such a large extent during a variety of stresses and aging remains to be fully answered, but a current attractive hypothesis is that the plasticity promotes the maintenance of oocyte quality.
Collapse
Affiliation(s)
- Jennifer A Schisa
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
12
|
Golisz A, Sikorski PJ, Kruszka K, Kufel J. Arabidopsis thaliana LSM proteins function in mRNA splicing and degradation. Nucleic Acids Res 2013; 41:6232-49. [PMID: 23620288 PMCID: PMC3695525 DOI: 10.1093/nar/gkt296] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sm-like (Lsm) proteins have been identified in all organisms and are related to RNA metabolism. Here, we report that Arabidopsis nuclear AtLSM8 protein, as well as AtLSM5, which localizes to both the cytoplasm and nucleus, function in pre-mRNA splicing, while AtLSM5 and the exclusively cytoplasmic AtLSM1 contribute to 5'-3' mRNA decay. In lsm8 and sad1/lsm5 mutants, U6 small nuclear RNA (snRNA) was reduced and unspliced mRNA precursors accumulated, whereas mRNA stability was mainly affected in plants lacking AtLSM1 and AtLSM5. Some of the mRNAs affected in lsm1a lsm1b and sad1/lsm5 plants were also substrates of the cytoplasmic 5'-3' exonuclease AtXRN4 and of the decapping enzyme AtDCP2. Surprisingly, a subset of substrates was also stabilized in the mutant lacking AtLSM8, which supports the notion that plant mRNAs are actively degraded in the nucleus. Localization of LSM components, purification of LSM-interacting proteins as well as functional analyses strongly suggest that at least two LSM complexes with conserved activities in RNA metabolism, AtLSM1-7 and AtLSM2-8, exist also in plants.
Collapse
Affiliation(s)
- Anna Golisz
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | | | | | | |
Collapse
|
13
|
Reed JC, Molter B, Geary CD, McNevin J, McElrath J, Giri S, Klein KC, Lingappa JR. HIV-1 Gag co-opts a cellular complex containing DDX6, a helicase that facilitates capsid assembly. ACTA ACUST UNITED AC 2012; 198:439-56. [PMID: 22851315 PMCID: PMC3413349 DOI: 10.1083/jcb.201111012] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The RNA helicase DDX6 promotes HIV-1 assembly in a co-opted cellular complex containing P body proteins and ABCE1. To produce progeny virus, human immunodeficiency virus type I (HIV-1) Gag assembles into capsids that package the viral genome and bud from the infected cell. During assembly of immature capsids, Gag traffics through a pathway of assembly intermediates (AIs) that contain the cellular adenosine triphosphatase ABCE1 (ATP-binding cassette protein E1). In this paper, we showed by coimmunoprecipitation and immunoelectron microscopy (IEM) that these Gag-containing AIs also contain endogenous processing body (PB)–related proteins, including AGO2 and the ribonucleic acid (RNA) helicase DDX6. Moreover, we found a similar complex containing ABCE1 and PB proteins in uninfected cells. Additionally, knockdown and rescue studies demonstrated that the RNA helicase DDX6 acts enzymatically to facilitate capsid assembly independent of RNA packaging. Using IEM, we localized the defect in DDX6-depleted cells to Gag multimerization at the plasma membrane. We also confirmed that DDX6 depletion reduces production of infectious HIV-1 from primary human T cells. Thus, we propose that assembling HIV-1 co-opts a preexisting host complex containing cellular facilitators such as DDX6, which the virus uses to catalyze capsid assembly.
Collapse
Affiliation(s)
- Jonathan C Reed
- Department of Global Health, University of Washington, Seattle, WA 98102, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Matsumoto K, Nakayama H, Yoshimura M, Masuda A, Dohmae N, Matsumoto S, Tsujimoto M. PRMT1 is required for RAP55 to localize to processing bodies. RNA Biol 2012; 9:610-23. [PMID: 22614839 DOI: 10.4161/rna.19527] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In eukaryotic cells, components of messenger ribonucleoproteins (mRNPs) are often detected in cytoplasmic granules, such as processing bodies (P-bodies) and stress granules (SGs) where translationally repressed mRNAs accumulate. RAP55A, which is an RNA binding component of mRNPs, acts as a translational repressor and localizes to P-bodies and SGs. We found here that a homologous protein RAP55B also localized to P-bodies when expressed in human cultured cells. When RAP55A or RAP55B was highly expressed in the cells, they induced the formation of SG-like large cytoplasmic mRNP granules that contained both P-body and SG components, indicating that RAP55 is important for the assembly of cytoplasmic mRNP granules. In addition, we found that RAP55A associated with protein arginine methyltransferases PRMT1 and PRMT5. Multiple arginine residues of RAP55A were indeed asymmetrically dimethylated in the cell and PRMT1 was shown to be a component of large mRNP granules induced by RAP55A overexpression. Although PRMT1 did not accumulate in P-bodies, siRNA-mediated knockdown of PRMT1 impaired the localization of RAP55A to P-bodies, while other components were still retained in these structures. Thus, our data indicate that RAP55 is important for the assembly of cytoplasmic mRNP granules and that PRMT1 is required for RAP55A to localize to P-bodies.
Collapse
Affiliation(s)
- Ken Matsumoto
- Molecular Entomology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Schisa JA. New insights into the regulation of RNP granule assembly in oocytes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:233-89. [PMID: 22449492 DOI: 10.1016/b978-0-12-394306-4.00013-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a variety of cell types in plants, animals, and fungi, ribonucleoprotein (RNP) complexes play critical roles in regulating RNA metabolism. These RNP granules include processing bodies and stress granules that are found broadly across cell types, as well as RNP granules unique to the germline, such as P granules, polar granules, sponge bodies, and germinal granules. This review focuses on RNP granules localized in oocytes of the major model systems, Caenorhabditis elegans, Drosophila, Xenopus, mouse, and zebrafish. The signature families of proteins within oocyte RNPs include Vasa and other RNA-binding proteins, decapping activators and enzymes, Argonaute family proteins, and translation initiation complex proteins. This review describes the many recent insights into the dynamics and functions of RNP granules, including their roles in mRNA degradation, mRNA localization, translational regulation, and fertility. The roles of the cytoskeleton and cell organelles in regulating RNP granule assembly are also discussed.
Collapse
Affiliation(s)
- Jennifer A Schisa
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, USA
| |
Collapse
|
16
|
Kato Y, Nakamura A. Roles of cytoplasmic RNP granules in intracellular RNA localization and translational control in the Drosophila oocyte. Dev Growth Differ 2011; 54:19-31. [PMID: 22111938 DOI: 10.1111/j.1440-169x.2011.01314.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Intracellular mRNA localization and translation are ways to achieve asymmetric protein sorting in polarized cells, and they play fundamental roles in cell-fate decisions and body patterning during animal development. These processes are regulated by the interplay between cis-acting elements and trans-acting RNA-binding proteins that form and occur within a ribonucleoprotein (RNP) complex. Recent studies in the Drosophila oocyte have revealed that RNP complex assembly in the nucleus is critical for the regulation of cytoplasmic mRNA localization and translation. Furthermore, several trans-acting factors promote the reorganization of target mRNAs in the cytoplasm into higher-order RNP granules, which are often visible by light microscopy. Therefore, RNA localization and translation are likely to be coupled within these RNP granules. Notably, diverse cytoplasmic RNP granules observed in different cell types share conserved sets of proteins, suggesting they have fundamental and common cellular functions.
Collapse
Affiliation(s)
- Yasuko Kato
- Laboratory for Germline Development, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | | |
Collapse
|
17
|
Fromm SA, Truffault V, Kamenz J, Braun JE, Hoffmann NA, Izaurralde E, Sprangers R. The structural basis of Edc3- and Scd6-mediated activation of the Dcp1:Dcp2 mRNA decapping complex. EMBO J 2011; 31:279-90. [PMID: 22085934 DOI: 10.1038/emboj.2011.408] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 10/12/2011] [Indexed: 01/01/2023] Open
Abstract
The Dcp1:Dcp2 decapping complex catalyses the removal of the mRNA 5' cap structure. Activator proteins, including Edc3 (enhancer of decapping 3), modulate its activity. Here, we solved the structure of the yeast Edc3 LSm domain in complex with a short helical leucine-rich motif (HLM) from Dcp2. The motif interacts with the monomeric Edc3 LSm domain in an unprecedented manner and recognizes a noncanonical binding surface. Based on the structure, we identified additional HLMs in the disordered C-terminal extension of Dcp2 that can interact with Edc3. Moreover, the LSm domain of the Edc3-related protein Scd6 competes with Edc3 for the interaction with these HLMs. We show that both Edc3 and Scd6 stimulate decapping in vitro, presumably by preventing the Dcp1:Dcp2 complex from adopting an inactive conformation. In addition, we show that the C-terminal HLMs in Dcp2 are necessary for the localization of the Dcp1:Dcp2 decapping complex to P-bodies in vivo. Unexpectedly, in contrast to yeast, in metazoans the HLM is found in Dcp1, suggesting that details underlying the regulation of mRNA decapping changed throughout evolution.
Collapse
Affiliation(s)
- Simon A Fromm
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Berry DB, Guan Q, Hose J, Haroon S, Gebbia M, Heisler LE, Nislow C, Giaever G, Gasch AP. Multiple means to the same end: the genetic basis of acquired stress resistance in yeast. PLoS Genet 2011; 7:e1002353. [PMID: 22102822 PMCID: PMC3213159 DOI: 10.1371/journal.pgen.1002353] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 09/07/2011] [Indexed: 12/30/2022] Open
Abstract
In nature, stressful environments often occur in combination or close succession, and thus the ability to prepare for impending stress likely provides a significant fitness advantage. Organisms exposed to a mild dose of stress can become tolerant to what would otherwise be a lethal dose of subsequent stress; however, the mechanism of this acquired stress tolerance is poorly understood. To explore this, we exposed the yeast gene-deletion libraries, which interrogate all essential and non-essential genes, to successive stress treatments and identified genes necessary for acquiring subsequent stress resistance. Cells were exposed to one of three different mild stress pretreatments (salt, DTT, or heat shock) and then challenged with a severe dose of hydrogen peroxide (H2O2). Surprisingly, there was little overlap in the genes required for acquisition of H2O2 tolerance after different mild-stress pretreatments, revealing distinct mechanisms of surviving H2O2 in each case. Integrative network analysis of these results with respect to protein–protein interactions, synthetic–genetic interactions, and functional annotations identified many processes not previously linked to H2O2 tolerance. We tested and present several models that explain the lack of overlap in genes required for H2O2 tolerance after each of the three pretreatments. Together, this work shows that acquired tolerance to the same severe stress occurs by different mechanisms depending on prior cellular experiences, underscoring the context-dependent nature of stress tolerance. Cells experience stressful conditions in the real world that can threaten physiology. Therefore, organisms have evolved intricate defense systems to protect themselves against environmental stress. Many organisms can increase their stress tolerance at the first sign of a problem through a phenomenon called acquired stress resistance: when pre-exposed to a mild dose of one stress, cells can become super-tolerant to subsequent stresses that would kill unprepared cells. This response is observed in many organisms, from bacteria to plants to humans, and has application in human health and disease treatment; however, its mechanism remains poorly understood. We used yeast as a model to identify genes important for acquired resistance to severe oxidative stress after pretreatment with three different mild stresses (osmotic, heat, or reductive shock). Surprisingly, there was little overlap in the genes required to survive the same severe stress after each pretreatment. This reveals that the mechanism of acquiring tolerance to the same severe stress occurs through different routes depending on the mild stressor. We leveraged available datasets of physical and genetic interaction networks to address the mechanism and regulation of stress tolerance. We find that acquired stress resistance is a unique phenotype that can uncover new insights into stress biology.
Collapse
Affiliation(s)
- David B. Berry
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Qiaoning Guan
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - James Hose
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Suraiya Haroon
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Marinella Gebbia
- Terrance Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada
| | - Lawrence E. Heisler
- Terrance Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada
| | - Corey Nislow
- Terrance Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
| | - Guri Giaever
- Terrance Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada
| | - Audrey P. Gasch
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
19
|
Srikantan S, Abdelmohsen K, Lee EK, Tominaga K, Subaran SS, Kuwano Y, Kulshrestha R, Panchakshari R, Kim HH, Yang X, Martindale JL, Marasa BS, Kim MM, Wersto RP, Indig FE, Chowdhury D, Gorospe M. Translational control of TOP2A influences doxorubicin efficacy. Mol Cell Biol 2011; 31:3790-801. [PMID: 21768308 PMCID: PMC3165726 DOI: 10.1128/mcb.05639-11] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/05/2011] [Indexed: 12/15/2022] Open
Abstract
The cellular abundance of topoisomerase IIα (TOP2A) critically maintains DNA topology after replication and determines the efficacy of TOP2 inhibitors in chemotherapy. Here, we report that the RNA-binding protein HuR, commonly overexpressed in cancers, binds to the TOP2A 3'-untranslated region (3'UTR) and increases TOP2A translation. Reducing HuR levels triggered the recruitment of TOP2A transcripts to RNA-induced silencing complex (RISC) components and to cytoplasmic processing bodies. Using a novel MS2-tagged RNA precipitation method, we identified microRNA miR-548c-3p as a mediator of these effects and further uncovered that the interaction of miR-548c-3p with the TOP2A 3'UTR repressed TOP2A translation by antagonizing the action of HuR. Lowering TOP2A by silencing HuR or by overexpressing miR-548c-3p selectively decreased DNA damage after treatment with the chemotherapeutic agent doxorubicin. In sum, HuR enhances TOP2A translation by competing with miR-548c-3p; their combined actions control TOP2A expression levels and determine the effectiveness of doxorubicin.
Collapse
MESH Headings
- 3' Untranslated Regions
- Antibiotics, Antineoplastic/pharmacology
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/genetics
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- DNA/metabolism
- DNA Damage/drug effects
- DNA Topoisomerases, Type II/biosynthesis
- DNA Topoisomerases, Type II/genetics
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Doxorubicin/pharmacology
- ELAV Proteins
- ELAV-Like Protein 1
- Gene Expression Regulation
- HeLa Cells
- Humans
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Poly-ADP-Ribose Binding Proteins
- Protein Biosynthesis
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering
- RNA-Binding Proteins/antagonists & inhibitors
- RNA-Binding Proteins/biosynthesis
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- RNA-Induced Silencing Complex/metabolism
Collapse
Affiliation(s)
- Subramanya Srikantan
- Laboratory of Molecular Biology and Immunology, NIA-IRP, NIH, Baltimore, Maryland 21224
| | - Kotb Abdelmohsen
- Laboratory of Molecular Biology and Immunology, NIA-IRP, NIH, Baltimore, Maryland 21224
| | - Eun Kyung Lee
- Laboratory of Molecular Biology and Immunology, NIA-IRP, NIH, Baltimore, Maryland 21224
| | - Kumiko Tominaga
- Laboratory of Molecular Biology and Immunology, NIA-IRP, NIH, Baltimore, Maryland 21224
| | - Sarah S. Subaran
- Research Resources Branch, NIA-IRP, NIH, Baltimore, Maryland 21224
| | - Yuki Kuwano
- Laboratory of Molecular Biology and Immunology, NIA-IRP, NIH, Baltimore, Maryland 21224
| | - Ritu Kulshrestha
- Dana-Farber Cancer Institute, Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts 02118
| | - Rohit Panchakshari
- Dana-Farber Cancer Institute, Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts 02118
| | - Hyeon Ho Kim
- Laboratory of Molecular Biology and Immunology, NIA-IRP, NIH, Baltimore, Maryland 21224
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Xiaoling Yang
- Laboratory of Molecular Biology and Immunology, NIA-IRP, NIH, Baltimore, Maryland 21224
| | | | - Bernard S. Marasa
- Laboratory of Molecular Biology and Immunology, NIA-IRP, NIH, Baltimore, Maryland 21224
| | - Mihee M. Kim
- Laboratory of Molecular Biology and Immunology, NIA-IRP, NIH, Baltimore, Maryland 21224
| | - Robert P. Wersto
- Research Resources Branch, NIA-IRP, NIH, Baltimore, Maryland 21224
| | - Fred E. Indig
- Research Resources Branch, NIA-IRP, NIH, Baltimore, Maryland 21224
| | - Dipanjan Chowdhury
- Dana-Farber Cancer Institute, Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts 02118
| | - Myriam Gorospe
- Laboratory of Molecular Biology and Immunology, NIA-IRP, NIH, Baltimore, Maryland 21224
| |
Collapse
|
20
|
Patterson JR, Wood MP, Schisa J. Assembly of RNP granules in stressed and aging oocytes requires nucleoporins and is coordinated with nuclear membrane blebbing. Dev Biol 2011; 353:173-85. [PMID: 21382369 PMCID: PMC3096477 DOI: 10.1016/j.ydbio.2011.02.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/02/2011] [Accepted: 02/02/2011] [Indexed: 01/19/2023]
Abstract
Protective cellular responses to stress and aging in the germline are essential for perpetuation of a species; however, relatively few studies have focused on how germ cells respond to stress and aging. We have previously shown that large ribonucleoprotein (RNP) complexes assemble in oocytes of Caenorhabditis during extended meiotic arrest or after environmental stress. Here we explore the regulation of these dynamic RNPs and demonstrate their assembly is coordinated with dramatic, nuclear membrane blebbing in oocytes. Our ultrastructural analyses reveal distinct changes in the endoplasmic reticulum, and the first evidence for the assembly of stacked annulate lamellae in Caenorhabditis. We further show several nucleoporins are required for the complete assembly of RNP granules, and a disruption in RNP granule assembly coupled with a low frequency of nuclear blebbing in arrested oocytes negatively impacts embryonic viability. Our observations support a model where nuclear membrane blebbing is required to increase the trafficking of nucleoporins to the cell cortex in stressed or meiotically arrested cells and to facilitate the recruitment of RNA and protein components of RNPs into large complexes. These new insights may have general implications for better understanding how germ cells preserve their integrity when fertilization is delayed and how cells respond to stress.
Collapse
Affiliation(s)
- Joseph R. Patterson
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | - Megan P. Wood
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | - Jennifer Schisa
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| |
Collapse
|
21
|
Kraut-Cohen J, Gerst JE. Addressing mRNAs to the ER: cis sequences act up! Trends Biochem Sci 2010; 35:459-69. [DOI: 10.1016/j.tibs.2010.02.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/15/2010] [Accepted: 02/18/2010] [Indexed: 12/26/2022]
|
22
|
Kilchert C, Weidner J, Prescianotto-Baschong C, Spang A. Defects in the secretory pathway and high Ca2+ induce multiple P-bodies. Mol Biol Cell 2010. [PMID: 20519435 DOI: 10.1091/mbc.e10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
mRNA is sequestered and turned over in cytoplasmic processing bodies (PBs), which are induced by various cellular stresses. Unexpectedly, in Saccharomyces cerevisiae, mutants of the small GTPase Arf1 and various secretory pathway mutants induced a significant increase in PB number, compared with PB induction by starvation or oxidative stress. Exposure of wild-type cells to osmotic stress or high extracellular Ca(2+) mimicked this increase in PB number. Conversely, intracellular Ca(2+)-depletion strongly reduced PB formation in the secretory mutants. In contrast to PB induction through starvation or osmotic stress, PB formation in secretory mutants and by Ca(2+) required the PB components Pat1 and Scd6, and calmodulin, indicating that different stressors act through distinct pathways. Consistent with this hypothesis, when stresses were combined, PB number did not correlate with the strength of the translational block, but rather with the type of stress encountered. Interestingly, independent of the stressor, PBs appear as spheres of approximately 40-100 nm connected to the endoplasmic reticulum (ER), consistent with the idea that translation and silencing/degradation occur in a spatially coordinated manner at the ER. We propose that PB assembly in response to stress occurs at the ER and depends on intracellular signals that regulate PB number.
Collapse
Affiliation(s)
- Cornelia Kilchert
- Biozentrum, Growth and Development, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
23
|
Kilchert C, Weidner J, Prescianotto-Baschong C, Spang A. Defects in the secretory pathway and high Ca2+ induce multiple P-bodies. Mol Biol Cell 2010; 21:2624-38. [PMID: 20519435 PMCID: PMC2912349 DOI: 10.1091/mbc.e10-02-0099] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
mRNA is sequestered and turned over in cytoplasmic processing bodies (PBs), which are induced by various cellular stresses. Unexpectedly, in Saccharomyces cerevisiae, mutants of the small GTPase Arf1 and various secretory pathway mutants induced a significant increase in PB number, compared with PB induction by starvation or oxidative stress. Exposure of wild-type cells to osmotic stress or high extracellular Ca(2+) mimicked this increase in PB number. Conversely, intracellular Ca(2+)-depletion strongly reduced PB formation in the secretory mutants. In contrast to PB induction through starvation or osmotic stress, PB formation in secretory mutants and by Ca(2+) required the PB components Pat1 and Scd6, and calmodulin, indicating that different stressors act through distinct pathways. Consistent with this hypothesis, when stresses were combined, PB number did not correlate with the strength of the translational block, but rather with the type of stress encountered. Interestingly, independent of the stressor, PBs appear as spheres of approximately 40-100 nm connected to the endoplasmic reticulum (ER), consistent with the idea that translation and silencing/degradation occur in a spatially coordinated manner at the ER. We propose that PB assembly in response to stress occurs at the ER and depends on intracellular signals that regulate PB number.
Collapse
Affiliation(s)
- Cornelia Kilchert
- Biozentrum, Growth and Development, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
24
|
Tops BBJ, Gauci S, Heck AJR, Krijgsveld J. Worms from venus and mars: proteomics profiling of sexual differences in Caenorhabditis elegans using in vivo 15N isotope labeling. J Proteome Res 2010; 9:341-51. [PMID: 19916504 DOI: 10.1021/pr900678j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hermaphrodites of the nematode Caenorhabditis elegans produce both sperm and oocytes in the same germline. To investigate the process underlying spermatogenesis and oogenesis separately, we used a quantitative proteomics approach applied to two mutant worm lines (fem-3(q20) and fem-1(hc17)) developing only male and female germlines, respectively. We used stable isotopic labeling of whole animals by feeding them either (14)N or (15)N labeled Escherichia coli. This way, we could confidently identify and quantify 1040 proteins in two independent experiments. Of these, approximately 400 proteins showed significant differential expression between female-like and male-like animals. As expected, proteins linked to oogenesis were found to be highly upregulated in the feminized worms, whereas proteins involved in spermatogenesis were found to be highly upregulated in the masculinized worms. This was complemented by many proteins strongly enriched in either mutant. Although the function of the majority of these proteins is unknown, their expression profile indicates that they have an as yet unrecognized role in the development and/or function of the female- and male germline in C. elegans. We show that members of several protein complexes as well as functionally similar proteins show comparable abundance ratios, indicating coregulation of protein expression. Additional analysis comparing our protein data to a previously published microarray data set shows that mRNA and protein expression are poorly correlating. We provide one of the first examples of a large-scale quantitative proteomics experiment in C. elegans and show the potential and feasibility of an approach enabling system-wide accurate quantitative proteomics experiments in this model organism.
Collapse
Affiliation(s)
- Bastiaan B J Tops
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
25
|
Burghes AHM, Beattie CE. Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci 2009; 10:597-609. [PMID: 19584893 DOI: 10.1038/nrn2670] [Citation(s) in RCA: 547] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many neurogenetic disorders are caused by the mutation of ubiquitously expressed genes. One such disorder, spinal muscular atrophy, is caused by loss or mutation of the survival motor neuron1 gene (SMN1), leading to reduced SMN protein levels and a selective dysfunction of motor neurons. SMN, together with partner proteins, functions in the assembly of small nuclear ribonucleoproteins (snRNPs), which are important for pre-mRNA splicing. It has also been suggested that SMN might function in the assembly of other ribonucleoprotein complexes. Two hypotheses have been proposed to explain the molecular dysfunction that gives rise to spinal muscular atrophy (SMA) and its specificity to a particular group of neurons. The first hypothesis states that the loss of SMN's well-known function in snRNP assembly causes an alteration in the splicing of a specific gene (or genes). The second hypothesis proposes that SMN is crucial for the transport of mRNA in neurons and that disruption of this function results in SMA.
Collapse
Affiliation(s)
- Arthur H M Burghes
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
26
|
Abstract
Sponge bodies, cytoplasmic structures containing post-transcriptional regulatory factors, are distributed throughout the nurse cells and oocytes of the Drosophila ovary and share components with P bodies of yeast and mammalian cells. We show that sponge body composition differs between nurse cells and the oocyte, and that the sponge bodies change composition rapidly after entry into the oocyte. We identify conditions that affect sponge body organization. At one extreme, components are distributed relatively uniformly or in small dispersed bodies. At the other extreme, components are present in large reticulated bodies. Both types of sponge bodies allow normal development, but show substantial differences in distribution of Staufen protein and oskar mRNA, whose localization within the oocyte is essential for axial patterning. Based on these and other results we propose a model for the relationship between P bodies and the various cytoplasmic bodies containing P body proteins in the Drosophila ovary.
Collapse
Affiliation(s)
- Mark J Snee
- Institute for Cellular and Molecular Biology, Section of Molecular, Cell, and Developmental Biology, The University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
27
|
Franks TM, Lykke-Andersen J. The control of mRNA decapping and P-body formation. Mol Cell 2009; 32:605-15. [PMID: 19061636 DOI: 10.1016/j.molcel.2008.11.001] [Citation(s) in RCA: 321] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Indexed: 01/24/2023]
Abstract
mRNA decapping is a critical step in eukaryotic cytoplasmic mRNA turnover. Cytoplasmic mRNA decapping is catalyzed by Dcp2 in conjunction with its coactivator Dcp1 and is stimulated by decapping enhancer proteins. mRNAs associated with the decapping machinery can assemble into cytoplasmic mRNP granules called processing bodies (PBs). Evidence suggests that PB-associated mRNPs are translationally repressed and can be degraded or stored for subsequent translation. However, whether mRNP assembly into a PB is important for translational repression, decapping, or decay has remained controversial. Here, we discuss the regulation of decapping machinery recruitment to specific mRNPs and how their assembly into PBs is governed by the relative rates of translational repression, mRNP multimerization, and mRNA decay.
Collapse
Affiliation(s)
- Tobias M Franks
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | |
Collapse
|
28
|
Gaillard H, Aguilera A. A novel class of mRNA-containing cytoplasmic granules are produced in response to UV-irradiation. Mol Biol Cell 2008; 19:4980-92. [PMID: 18768757 DOI: 10.1091/mbc.e08-02-0193] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nucleic acids are substrates for different types of damage, but little is known about the fate of damaged RNAs. We addressed the existence of an RNA-damage response in yeast. The decay kinetics of GAL1p-driven mRNAs revealed a dose-dependent mRNA stabilization upon UV-irradiation that was not observed after heat or saline shocks, or during nitrogen starvation. UV-induced mRNA stabilization did not depend on DNA repair, damage checkpoint or mRNA degradation machineries. Notably, fluorescent in situ hybridization revealed that after UV-irradiation, polyadenylated mRNA accumulated in cytoplasmic foci that increased in size with time. In situ colocalization showed that these foci are not processing-bodies, eIF4E-, eIF4G-, and Pab1-containing bodies, stress granules, autophagy vesicles, or part of the secretory or endocytic pathways. These results point to the existence of a specific eukaryotic RNA-damage response, which leads to new polyadenylated mRNA-containing granules (UV-induced mRNA granules; UVGs). We propose that potentially damaged mRNAs, which may be deleterious to the cell, are temporarily stored in UVG granules to safeguard cell viability.
Collapse
Affiliation(s)
- Hélène Gaillard
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Centro Andaluz de Biología Molecular and Medicina Regenativa CABIMER, 41092 Sevilla, Spain
| | | |
Collapse
|
29
|
Similar modes of interaction enable Trailer Hitch and EDC3 to associate with DCP1 and Me31B in distinct protein complexes. Mol Cell Biol 2008; 28:6695-708. [PMID: 18765641 DOI: 10.1128/mcb.00759-08] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Trailer Hitch (Tral or LSm15) and enhancer of decapping-3 (EDC3 or LSm16) are conserved eukaryotic members of the (L)Sm (Sm and Like-Sm) protein family. They have a similar domain organization, characterized by an N-terminal LSm domain and a central FDF motif; however, in Tral, the FDF motif is flanked by regions rich in charged residues, whereas in EDC3 the FDF motif is followed by a YjeF_N domain. We show that in Drosophila cells, Tral and EDC3 specifically interact with the decapping activator DCP1 and the DEAD-box helicase Me31B. Nevertheless, only Tral associates with the translational repressor CUP, whereas EDC3 associates with the decapping enzyme DCP2. Like EDC3, Tral interacts with DCP1 and localizes to mRNA processing bodies (P bodies) via the LSm domain. This domain remains monomeric in solution and adopts a divergent Sm fold that lacks the characteristic N-terminal alpha-helix, as determined by nuclear magnetic resonance analyses. Mutational analysis revealed that the structural integrity of the LSm domain is required for Tral both to interact with DCP1 and CUP and to localize to P-bodies. Furthermore, both Tral and EDC3 interact with the C-terminal RecA-like domain of Me31B through their FDF motifs. Together with previous studies, our results show that Tral and EDC3 are structurally related and use a similar mode to associate with common partners in distinct protein complexes.
Collapse
|
30
|
Marnef A, Sommerville J, Ladomery MR. RAP55: insights into an evolutionarily conserved protein family. Int J Biochem Cell Biol 2008; 41:977-81. [PMID: 18723115 DOI: 10.1016/j.biocel.2008.06.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 06/02/2008] [Accepted: 06/03/2008] [Indexed: 11/25/2022]
Abstract
The RAP55 protein family is evolutionarily conserved in eukaryotes. Two highly conserved paralogues, RAP55A and RAP55B, exist in vertebrates; their functional properties and expression patterns remain to be compared. RAP55 proteins share multiple domains: the LSm14 domain, a serine/threonine rich region, an FDF (phenylalanine-aspartate-phenylalanine) motif, an FFD-TFG box and RGG (arginine-glycine-glycine) repeats. Together these domains are responsible for RAP55 proteins participating in translational repression, incorporation into mRNP particles, protein-protein interactions, P-body formation and stress granule localisation. All RAP55A proteins localise to P-body-like complexes either in the germline or in somatic cells. Xenopus laevis RAP55B has been shown to be part of translationally repressed mRNP complexes in early oocytes. Together these findings suggest that this protein family has evolved a common and fundamental role in the control of mRNA translation. Furthermore human RAP55A is an autoantigen detected in the serum of patients with primary biliary cirrhosis (PBC). The link between RAP55A, P-bodies and PBC remains to be elucidated.
Collapse
Affiliation(s)
- Aline Marnef
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | | | | |
Collapse
|
31
|
Nykamp K, Lee MH, Kimble J. C. elegans La-related protein, LARP-1, localizes to germline P bodies and attenuates Ras-MAPK signaling during oogenesis. RNA (NEW YORK, N.Y.) 2008; 14:1378-89. [PMID: 18515547 PMCID: PMC2441978 DOI: 10.1261/rna.1066008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 04/16/2008] [Indexed: 05/09/2023]
Abstract
RNA regulators are critical for animal development, especially in the germ line where gene expression is often modulated by changes in mRNA stability, translation, and localization. In this paper, we focus on Caenorhabditis elegans LARP-1, a representative of one La-related protein (Larp) family found broadly among eukaryotes. LARP-1 possesses a signature La motif, which is an ancient RNA-binding domain, plus a second conserved motif, typical of LARP-1 homologs and therefore dubbed the LARP1 domain. LARP-1 appears to bind RNA in vitro via both the La motif and the LARP1 domain. larp-1 null mutants have an oogenesis defect reminiscent of hyperactive Ras-MAPK signaling; this defect is suppressed or enhanced by down- or up-regulating the Ras-MAPK pathway, respectively. Consistent with a role in down-regulating the Ras-MAPK pathway, larp-1 null mutants have higher than normal levels of selected pathway mRNAs and proteins. LARP-1 protein colocalizes with P bodies, which function in RNA degradation. We suggest that LARP-1 functions in P bodies to attenuate the abundance of conserved Ras-MAPK mRNAs. We also propose that the cluster of LARP-1 homologs may function generally to control the expression of key developmental regulators.
Collapse
Affiliation(s)
- Keith Nykamp
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
32
|
Isolation of new polar granule components in Drosophila reveals P body and ER associated proteins. Mech Dev 2008; 125:865-73. [PMID: 18590813 DOI: 10.1016/j.mod.2008.06.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 05/16/2008] [Accepted: 06/04/2008] [Indexed: 11/22/2022]
Abstract
Germ plasm, a specialized cytoplasm present at the posterior of the early Drosophila embryo, is necessary and sufficient for germ cell formation. Germ plasm is rich in mitochondria and contains electron dense structures called polar granules. To identify novel polar granule components we isolated proteins that associate in early embryos with Vasa (VAS) and Tudor (TUD), two known polar granule associated molecules. We identified Maternal expression at 31B (ME31B), eIF4A, Aubergine (AUB) and Transitional Endoplasmic Reticulum 94 (TER94) as components of both VAS and TUD complexes and confirmed their localization to polar granules by immuno-electron microscopy. ME31B, eIF4A and AUB are also present in processing (P) bodies, suggesting that polar granules, which are necessary for germ line formation, might be related to P bodies. Our recovery of ER associated proteins TER94 and ME31B confirms that polar granules are closely linked to the translational machinery and to mRNP assembly.
Collapse
|
33
|
Jud MC, Czerwinski MJ, Wood MP, Young RA, Gallo CM, Bickel JS, Petty EL, Mason JM, Little BA, Padilla PA, Schisa JA. Large P body-like RNPs form in C. elegans oocytes in response to arrested ovulation, heat shock, osmotic stress, and anoxia and are regulated by the major sperm protein pathway. Dev Biol 2008; 318:38-51. [PMID: 18439994 PMCID: PMC2442018 DOI: 10.1016/j.ydbio.2008.02.059] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Revised: 02/16/2008] [Accepted: 02/29/2008] [Indexed: 11/29/2022]
Abstract
As Caenorhabditis elegans hermaphrodites age, sperm become depleted, ovulation arrests, and oocytes accumulate in the gonad arm. Large ribonucleoprotein (RNP) foci form in these arrested oocytes that contain RNA-binding proteins and translationally masked maternal mRNAs. Within 65 min of mating, the RNP foci dissociate and fertilization proceeds. The majority of arrested oocytes with foci result in viable embryos upon fertilization, suggesting that foci are not deleterious to oocyte function. We have determined that foci formation is not strictly a function of aging, and the somatic, ceh-18, branch of the major sperm protein pathway regulates the formation and dissociation of oocyte foci. Our hypothesis for the function of oocyte RNP foci is similar to the RNA-related functions of processing bodies (P bodies) and stress granules; here, we show three orthologs of P body proteins, DCP-2, CAR-1 and CGH-1, and two markers of stress granules, poly (A) binding protein (PABP) and TIA-1, appear to be present in the oocyte RNP foci. Our results are the first in vivo demonstration linking components of P bodies and stress granules in the germ line of a metazoan. Furthermore, our data demonstrate that formation of oocyte RNP foci is inducible in non-arrested oocytes by heat shock, osmotic stress, or anoxia, similar to the induction of stress granules in mammalian cells and P bodies in yeast. These data suggest commonalities between oocytes undergoing delayed fertilization and cells that are stressed environmentally, as to how they modulate mRNAs and regulate translation.
Collapse
Affiliation(s)
- Molly C. Jud
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | | | - Megan P. Wood
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | - Rachel A. Young
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | | | - Jeremy S. Bickel
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | - Emily L. Petty
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | - Jennifer M. Mason
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | - Brent A. Little
- University of North Texas, Department of Biological Sciences, P.O. Box 305220, Denton TX, 76203
| | - Pamela A. Padilla
- University of North Texas, Department of Biological Sciences, P.O. Box 305220, Denton TX, 76203
| | - Jennifer A. Schisa
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| |
Collapse
|
34
|
Palazzo AF, Springer M, Shibata Y, Lee CS, Dias AP, Rapoport TA. The signal sequence coding region promotes nuclear export of mRNA. PLoS Biol 2008; 5:e322. [PMID: 18052610 PMCID: PMC2100149 DOI: 10.1371/journal.pbio.0050322] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 10/19/2007] [Indexed: 11/19/2022] Open
Abstract
In eukaryotic cells, most mRNAs are exported from the nucleus by the transcription export (TREX) complex, which is loaded onto mRNAs after their splicing and capping. We have studied in mammalian cells the nuclear export of mRNAs that code for secretory proteins, which are targeted to the endoplasmic reticulum membrane by hydrophobic signal sequences. The mRNAs were injected into the nucleus or synthesized from injected or transfected DNA, and their export was followed by fluorescent in situ hybridization. We made the surprising observation that the signal sequence coding region (SSCR) can serve as a nuclear export signal of an mRNA that lacks an intron or functional cap. Even the export of an intron-containing natural mRNA was enhanced by its SSCR. Like conventional export, the SSCR-dependent pathway required the factor TAP, but depletion of the TREX components had only moderate effects. The SSCR export signal appears to be characterized in vertebrates by a low content of adenines, as demonstrated by genome-wide sequence analysis and by the inhibitory effect of silent adenine mutations in SSCRs. The discovery of an SSCR-mediated pathway explains the previously noted amino acid bias in signal sequences and suggests a link between nuclear export and membrane targeting of mRNAs. In eukaryotic cells, precursors of messenger RNAs (mRNAs) are synthesized and processed in the nucleus. During processing, noncoding introns are spliced out, and a cap and poly-adenosine sequence are added to the beginning and end of the transcript, respectively. The resulting mature mRNA is exported from the nucleus to the cytoplasm by crossing the nuclear pore. Both the introns and the cap help to recruit factors that are necessary for nuclear export of an mRNA. Here we provide evidence for a novel mRNA export pathway that is specific for transcripts coding for secretory proteins. These proteins contain signal sequences that target them for translocation across the endoplasmic reticulum membrane. We made the surprising observation that the signal sequence coding region (SSCR) can serve as a nuclear export signal of an mRNA that lacks an intron or functional cap. Even the export of an intron-containing natural mRNA was enhanced by its SSCR. The SSCR export signal appears to be characterized in vertebrates by a low content of adenines. Our discovery of an SSCR-mediated pathway explains the previously noted amino acid bias in signal sequences, and suggests a link between nuclear export and membrane targeting of mRNAs. Signal sequences, which target newly synthesized secretory proteins to the endoplasmic reticulum, are encoded by adenine-depleted nucleotide sequences that promote the nuclear export of the mRNAs.
Collapse
Affiliation(s)
- Alexander F Palazzo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Springer
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yoko Shibata
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chung-Sheng Lee
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anusha P Dias
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tom A Rapoport
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Salinas LS, Maldonado E, Macías-Silva M, Blackwell TK, Navarro RE. The DEAD box RNA helicase VBH-1 is required for germ cell function in C. elegans. Genesis 2007; 45:533-46. [PMID: 17868112 DOI: 10.1002/dvg.20323] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Vasa and Belle are conserved DEAD box RNA helicases required for germ cell function. Homologs of this group of proteins in several species, including mammals, are able to complement a mutation in yeast (DED1) suggesting that their function is highly conserved. It has been proposed that these proteins are required for mRNA translation regulation, but their specific mechanism of action is still unknown. Here we describe functions of VBH-1, a C. elegans protein closely related to Belle and Vasa. VBH-1 is expressed specifically in the C. elegans germline, where it is associated with P granules, the C. elegans germ plasm counterpart. vbh-1(RNAi) animals produce fewer offspring than wild type because of defects in oocyte and sperm production, and embryonic lethality. We also find that VBH-1 participates in the sperm/oocyte switch in the hermaphrodite gonad. We conclude that VBH-1 and its orthologs may perform conserved roles in fertility and development.
Collapse
Affiliation(s)
- L Silvia Salinas
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., 04510 México
| | | | | | | | | |
Collapse
|
36
|
Prodon F, Yamada L, Shirae-Kurabayashi M, Nakamura Y, Sasakura Y. Postplasmic/PEM RNAs: a class of localized maternal mRNAs with multiple roles in cell polarity and development in ascidian embryos. Dev Dyn 2007; 236:1698-715. [PMID: 17366574 DOI: 10.1002/dvdy.21109] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ascidian is a good model to understand the cellular and molecular mechanisms responsible for mRNA localization with the discovery of a large family of localized maternal mRNAs, called postplasmic/PEM RNAs, which includes more than 40 members in three different ascidian species (Halocynthia roretzi, Ciona intestinalis, and C. savignyi). Among these mRNAs, two types (Type I and Type II) have been identified and show two different localization patterns from fertilization to the eight-cell stage. At the eight-cell stage, both types concentrate to a macromolecular cortical structure called CAB (for Centrosome Attracting Body) in the posterior-vegetal B4.1 blastomeres. The CAB is responsible for unequal cleavages and the partitioning of postplasmic/PEM RNAs at the posterior pole of embryos during cleavage stages. It has also been suggested that the CAB region could contain putative germ granules. In this review, we discuss recent data obtained on the distribution of Type I postplasmic/PEM RNAs from oogenesis to late development, in relation to their localization and translational control. We have first regrouped localization patterns for Type I and Type II into a comparative diagram and included all important definitions in the field. We also have made an exhaustive classification of their embryonic expression profiles (Type I or Type II), and analyzed their functions after knockdown and/or overexpression experiments and the role of the 3'-untranslated region (3'UTR) controlling both their localization and translation. Finally, we propose a speculative model integrating recent data, and we also discuss the relationship between postplasmic/PEM RNAs, posterior specification, and germ cell formation in ascidians.
Collapse
Affiliation(s)
- François Prodon
- Department of Biology, Graduate School of Science, Osaka University, Osaka, Japan.
| | | | | | | | | |
Collapse
|
37
|
Beckham CJ, Light HR, Nissan TA, Ahlquist P, Parker R, Noueiry A. Interactions between brome mosaic virus RNAs and cytoplasmic processing bodies. J Virol 2007; 81:9759-68. [PMID: 17609284 PMCID: PMC2045432 DOI: 10.1128/jvi.00844-07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytoplasmic processing bodies are sites where nontranslating mRNAs accumulate for different fates, including decapping and degradation, storage, or returning to translation. Previous work has also shown that the Lsm1-7p complex, Dhh1p, and Pat1p, which are all components of P bodies, are required for translation and subsequent recruitment to replication of the plant virus brome mosaic virus (BMV) genomic RNAs when replication is reproduced in yeast cells. To better understand the role of P bodies in BMV replication, we examined the subcellular locations of BMV RNAs in yeast cells. We observed that BMV genomic RNA2 and RNA3 accumulated in P bodies in a manner dependent on cis-acting RNA replication signals, which also directed nonviral RNAs to P bodies. Furthermore, the viral RNA-dependent RNA polymerase coimmunoprecipitates and shows partial colocalization with the P-body component Lsm1p. These observations suggest that the accumulation of BMV RNAs in P bodies may be an important step in RNA replication complex assembly for BMV, and possibly for other positive-strand RNA viruses.
Collapse
Affiliation(s)
- Carla J Beckham
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, The University of Arizona, Tucson, AZ 85721-0206, USA
| | | | | | | | | | | |
Collapse
|
38
|
Sardet C, Paix A, Prodon F, Dru P, Chenevert J. From oocyte to 16-cell stage: Cytoplasmic and cortical reorganizations that pattern the ascidian embryo. Dev Dyn 2007; 236:1716-31. [PMID: 17420986 DOI: 10.1002/dvdy.21136] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The dorsoventral and anteroposterior axes of the ascidian embryo are defined before first cleavage by means of a series of reorganizations that reposition cytoplasmic and cortical domains established during oogenesis. These domains situated in the periphery of the oocyte contain developmental determinants and a population of maternal postplasmic/PEM RNAs. One of these RNAs (macho-1) is a determinant for the muscle cells of the tadpole embryo. Oocytes acquire a primary animal-vegetal (a-v) axis during meiotic maturation, when a subcortical mitochondria-rich domain (myoplasm) and a domain rich in cortical endoplasmic reticulum (cER) and maternal postplasmic/PEM RNAs (cER-mRNA domain) become polarized and asymmetrically enriched in the vegetal hemisphere. Fertilization at metaphase of meiosis I initiates a series of dramatic cytoplasmic and cortical reorganizations of the zygote, which occur in two major phases. The first major phase depends on sperm entry which triggers a calcium wave leading in turn to an actomyosin-driven contraction wave. The contraction concentrates the cER-mRNA domain and myoplasm in and around a vegetal/contraction pole. The precise localization of the vegetal/contraction pole depends on both the a-v axis and the location of sperm entry and prefigures the future site of gastrulation and dorsal side of the embryo. The second major phase of reorganization occurs between meiosis completion and first cleavage. Sperm aster microtubules and then cortical microfilaments cause the cER-mRNA domain and myoplasm to reposition toward the posterior of the zygote. The location of the posterior pole depends on the localization of the sperm centrosome/aster attained during the first major phase of reorganization. Both cER-mRNA and myoplasm domains localized in the posterior region are partitioned equally between the first two blastomeres and then asymmetrically over the next two cleavages. At the eight-cell stage the cER-mRNA domain compacts and gives rise to a macroscopic cortical structure called the Centrosome Attracting Body (CAB). The CAB is responsible for a series of unequal divisions in posterior-vegetal blastomeres, and the postplasmic/PEM RNAs it contains are involved in patterning the posterior region of the embryo. In this review, we discuss these multiple events and phases of reorganizations in detail and their relationship to physiological, cell cycle, and cytoskeletal events. We also examine the role of the reorganizations in localizing determinants, postplasmic/PEM RNAs, and PAR polarity proteins in the cortex. Finally, we summarize some of the remaining questions concerning polarization of the ascidian embryo and provide comparisons to a few other species. A large collection of films illustrating the reorganizations can be consulted by clicking on "Film archive: ascidian eggs and embryos" at http://biodev.obs-vlfr.fr/recherche/biomarcell/.
Collapse
Affiliation(s)
- Christian Sardet
- BioMarCell group, UMR 7009 Biodev CNRS/ Université Pierre et Marie Curie (Paris VI), Observatoire Océanologique, Villefranche-sur-Mer, France.
| | | | | | | | | |
Collapse
|
39
|
Czaplinski K, Singer RH. Pathways for mRNA localization in the cytoplasm. Trends Biochem Sci 2006; 31:687-93. [PMID: 17084632 DOI: 10.1016/j.tibs.2006.10.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 09/12/2006] [Accepted: 10/20/2006] [Indexed: 11/22/2022]
Abstract
Studies of the intracellular localization of mRNA have clearly demonstrated that certain subsets of mRNA are concentrated in discrete locations within the cytoplasm. Localization is one aspect of the post-transcriptional control of gene expression, and is intertwined with the translation and turnover of mRNA to achieve the goal of local protein production. Different mechanisms have been identified that enable localized mRNAs to target different subcellular compartments, and recent advances in understanding these pathways is reviewed here.
Collapse
Affiliation(s)
- Kevin Czaplinski
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461718-430-8646, USA
| | | |
Collapse
|
40
|
Tanaka KJ, Ogawa K, Takagi M, Imamoto N, Matsumoto K, Tsujimoto M. RAP55, a cytoplasmic mRNP component, represses translation in Xenopus oocytes. J Biol Chem 2006; 281:40096-106. [PMID: 17074753 DOI: 10.1074/jbc.m609059200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
mRNAs in eukaryotic cells are presumed to always associate with a set of proteins to form mRNPs. In Xenopus oocytes, a large pool of maternal mRNAs is masked from the translational apparatus as storage mRNPs. Here we identified Xenopus RAP55 (xRAP55) as a component of RNPs that associate with FRGY2, the principal component of maternal mRNPs. RAP55 is a member of the Scd6 or Lsm14 family. RAP55 localized to cytoplasmic foci in Xenopus oocytes and the processing bodies (P-bodies) in cultured human cells: in the latter cells, RAP55 is an essential constituent of the P-bodies. We isolated xRAP55-containing complexes from Xenopus oocytes and identified xRAP55-associated proteins, including a DEAD-box protein, Xp54, and a protein arginine methyltransferase, PRMT1. Recombinant xRAP55 repressed translation, together with Xp54, in an in vitro translation system. In addition, xRAP55 repressed translation in oocytes when tethered with a reporter mRNA. Domain analyses revealed that the N-terminal region of RAP55, including the Lsm domain, is important for the localization to P-bodies and translational repression. Taken together, our results suggest that xRAP55 is involved in translational repression of mRNA as a component of storage mRNPs.
Collapse
Affiliation(s)
- Kimio J Tanaka
- Laboratory of Cellular Biochemistry, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|