1
|
Chrupcala ML, Moseley JB. PP2A-B56 regulates Mid1 protein levels for proper cytokinesis in fission yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601230. [PMID: 38979265 PMCID: PMC11230426 DOI: 10.1101/2024.06.28.601230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Protein phosphorylation regulates many steps in the cell division process including cytokinesis. In the fission yeast S. pombe, the anillin-like protein Mid1 sets the cell division plane and is regulated by phosphorylation. Multiple protein kinases act on Mid1, but no protein phosphatases have been shown to regulate Mid1. Here, we discovered that the conserved protein phosphatase PP2A-B56 is required for proper cytokinesis by promoting Mid1 protein levels. We find that par1Δ cells lacking the primary B56 subunit divide asymmetrically due to the assembly of misplaced cytokinetic rings that slide toward cell tips. These par1Δ mutants have reduced whole-cell levels of Mid1 protein, leading to reduced Mid1 at the cytokinetic ring. Restoring proper Mid1 expression suppresses par1Δ cytokinesis defects. This work identifies a new PP2A-B56 pathway regulating cytokinesis through Mid1, with implications for control of cytokinesis in other organisms.
Collapse
Affiliation(s)
- Madeline L. Chrupcala
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover NH
| | - James B. Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover NH
| |
Collapse
|
2
|
Magliozzi JO, Rands TJ, Shrestha S, Simke WC, Hase NE, Juanes MA, Kelley JB, Goode BL. The roles of yeast formins and their regulators Bud6 and Bil2 in the pheromone response. Mol Biol Cell 2024; 35:ar85. [PMID: 38656798 PMCID: PMC11238086 DOI: 10.1091/mbc.e23-11-0459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
In response to pheromone Saccharomyces cerevisiae extend a mating projection. This process depends on the formation of polarized actin cables which direct secretion to the mating tip and translocate the nucleus for karyogamy. Here, we demonstrate that proper mating projection formation requires the formin Bni1, as well as the actin nucleation promoting activities of Bud6, but not the formin Bnr1. Further, Bni1 is required for pheromone gradient tracking. Our work also reveals unexpected new functions for Bil2 in the pheromone response. Previously we identified Bil2 as a direct inhibitor of Bnr1 during vegetative cell growth. Here, we show that Bil2 has Bnr1-independent functions in spatially focusing Bni1-GFP at mating projection tips, and in vitro Bil2 and its binding partner Bud6 organize Bni1 into clusters that nucleate actin assembly. bil2∆ cells also display entangled Bni1-generated actin cable arrays and defects in secretory vesicle transport and nuclear positioning. At low pheromone concentrations, bil2∆ cells are delayed in establishing a polarity axis, and at high concentrations they prematurely form a second and a third mating projection. Together, these results suggest that Bil2 promotes the proper formation and timing of mating projections by organizing Bni1 and maintaining a persistent axis of polarized growth.
Collapse
Affiliation(s)
| | - Thomas J. Rands
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Sudati Shrestha
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469
| | - William C Simke
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469
| | - Niklas E. Hase
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469
| | - M. Angeles Juanes
- Department of Biology, Brandeis University, Waltham, MA 02454
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Joshua B. Kelley
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469
| | - Bruce L. Goode
- Department of Biology, Brandeis University, Waltham, MA 02454
| |
Collapse
|
3
|
Wang K, Okada H, Wloka C, Bi E. Unraveling the mechanisms and evolution of a two-domain module in IQGAP proteins for controlling eukaryotic cytokinesis. Cell Rep 2023; 42:113510. [PMID: 38041816 PMCID: PMC10809011 DOI: 10.1016/j.celrep.2023.113510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/17/2023] [Accepted: 11/13/2023] [Indexed: 12/04/2023] Open
Abstract
The IQGAP family of proteins plays a crucial role in cytokinesis across diverse organisms, but the underlying mechanisms are not fully understood. In this study, we demonstrate that IQGAPs in budding yeast, fission yeast, and human cells use a two-domain module to regulate their localization as well as the assembly and disassembly of the actomyosin ring during cytokinesis. Strikingly, the calponin homology domains (CHDs) in these IQGAPs bind to distinct cellular F-actin structures with varying specificity, whereas the non-conserved domains immediately downstream of the CHDs in these IQGAPs all target the division site, but differ in timing, localization strength, and binding partners. We also demonstrate that human IQGAP3 acts in parallel to septins and myosin-IIs to mediate the role of anillin in cytokinesis. Collectively, our findings highlight the two-domain mechanism by which IQGAPs regulate cytokinesis in distantly related organisms as well as their evolutionary conservation and divergence.
Collapse
Affiliation(s)
- Kangji Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Carsten Wloka
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, A Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
4
|
Zhu H, O’Shaughnessy B. Actomyosin pulsing rescues embryonic tissue folding from disruption by myosin fluctuations. RESEARCH SQUARE 2023:rs.3.rs-2948564. [PMID: 37886516 PMCID: PMC10602173 DOI: 10.21203/rs.3.rs-2948564/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
During early development, myosin II mechanically reshapes and folds embryo tissue. A muchstudied example is ventral furrow formation in Drosophila, marking the onset of gastrulation. Furrowing is driven by contraction of actomyosin networks on apical cell surfaces, but how the myosin patterning encodes tissue shape is unclear, and elastic models failed to reproduce essential features of experimental cell contraction profiles. The myosin patterning exhibits substantial cell-to-cell fluctuations with pulsatile time-dependence, a striking but unexplained feature of morphogenesis in many organisms. Here, using biophysical modeling we find viscous forces offer the principal resistance to actomyosin-driven apical constriction. In consequence, tissue shape is encoded in the direction-dependent curvature of the myosin patterning which orients an anterior-posterior furrow. Tissue contraction is highly sensitive to cell-to-cell myosin fluctuations, explaining furrowing failure in genetically perturbed embryos whose fluctuations are temporally persistent. In wild-type embryos this disastrous outcome is averted by pulsatile myosin time-dependence, which rescues furrowing by eliminating high frequencies in the fluctuation power spectrum. This low pass filter mechanism may underlie the usage of actomyosin pulsing in diverse morphogenetic processes across many organisms.
Collapse
Affiliation(s)
- Hongkang Zhu
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Ben O’Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
5
|
Onwubiko UN, Kalathil D, Koory E, Pokharel S, Roberts H, Mitoubsi A, Das M. Cdc42 prevents precocious Rho1 activation during cytokinesis in a Pak1-dependent manner. J Cell Sci 2023; 136:jcs261160. [PMID: 37039135 PMCID: PMC10163358 DOI: 10.1242/jcs.261160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 04/12/2023] Open
Abstract
During cytokinesis, a series of coordinated events partition a dividing cell. Accurate regulation of cytokinesis is essential for proliferation and genome integrity. In fission yeast, these coordinated events ensure that the actomyosin ring and septum start ingressing only after chromosome segregation. How cytokinetic events are coordinated remains unclear. The GTPase Cdc42 promotes recruitment of certain cell wall-building enzymes whereas the GTPase Rho1 activates these enzymes. We show that Cdc42 prevents early Rho1 activation during fission yeast cytokinesis. Using an active Rho probe, we find that although the Rho1 activators Rgf1 and Rgf3 localize to the division site in early anaphase, Rho1 is not activated until late anaphase, just before the onset of ring constriction. We find that loss of Cdc42 activation enables precocious Rho1 activation in early anaphase. Furthermore, we provide functional and genetic evidence that Cdc42-dependent Rho1 inhibition is mediated by the Cdc42 target Pak1 kinase. Our work proposes a mechanism of Rho1 regulation by active Cdc42 to coordinate timely septum formation and cytokinesis fidelity.
Collapse
Affiliation(s)
- Udo N. Onwubiko
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Dhanya Kalathil
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | - Emma Koory
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Sahara Pokharel
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Hayden Roberts
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Ahmad Mitoubsi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Maitreyi Das
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
6
|
Zhu H, Oâ Shaughnessy B. Actomyosin pulsing rescues embryonic tissue folding from disruption by myosin fluctuations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.533016. [PMID: 36993262 PMCID: PMC10055118 DOI: 10.1101/2023.03.16.533016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
During early development, myosin II mechanically reshapes and folds embryo tissue. A much-studied example is ventral furrow formation in Drosophila , marking the onset of gastrulation. Furrowing is driven by contraction of actomyosin networks on apical cell surfaces, but how the myosin patterning encodes tissue shape is unclear, and elastic models failed to reproduce essential features of experimental cell contraction profiles. The myosin patterning exhibits substantial cell-to-cell fluctuations with pulsatile time-dependence, a striking but unexplained feature of morphogenesis in many organisms. Here, using biophysical modeling we find viscous forces offer the principle resistance to actomyosin-driven apical constriction. In consequence, tissue shape is encoded in the direction-dependent curvature of the myosin patterning which orients an anterior-posterior furrow. Tissue contraction is highly sensitive to cell-to-cell myosin fluctuations, explaining furrowing failure in genetically perturbed embryos whose fluctuations are temporally persistent. In wild-type embryos, this catastrophic outcome is averted by pulsatile myosin time-dependence, a time-averaging effect that rescues furrowing. This low pass filter mechanism may underlie the usage of actomyosin pulsing in diverse morphogenetic processes across many organisms.
Collapse
|
7
|
McDargh Z, Zhu T, Zhu H, O'Shaughnessy B. Actin turnover protects the cytokinetic contractile ring from structural instability. J Cell Sci 2023; 136:jcs259969. [PMID: 36052670 PMCID: PMC10660070 DOI: 10.1242/jcs.259969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/17/2022] [Indexed: 11/20/2022] Open
Abstract
In common with other actomyosin contractile cellular machineries, actin turnover is required for normal function of the cytokinetic contractile ring. Cofilin is an actin-binding protein contributing to turnover by severing actin filaments, required for cytokinesis by many organisms. In fission yeast cofilin mutants, contractile rings suffer bridging instabilities in which segments of the ring peel away from the plasma membrane, forming straight bridges whose ends remain attached to the membrane. The origin of bridging instability is unclear. Here, we used molecularly explicit simulations of contractile rings to examine the role of cofilin. Simulations reproduced the experimentally observed cycles of bridging and reassembly during constriction, and the occurrence of bridging in ring segments with low density of the myosin II protein Myo2. The lack of cofilin severing produced ∼2-fold longer filaments and, consequently, ∼2-fold higher ring tensions. Simulations identified bridging as originating in the boosted ring tension, which increased centripetal forces that detached actin from Myo2, which was anchoring actin to the membrane. Thus, cofilin serves a critical role in cytokinesis by providing protection from bridging, the principal structural threat to contractile rings.
Collapse
Affiliation(s)
- Zachary McDargh
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Tianyi Zhu
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Hongkang Zhu
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
8
|
Bhattacharjee R, Hall AR, Mangione MC, Igarashi MG, Roberts-Galbraith RH, Chen JS, Vavylonis D, Gould KL. Multiple polarity kinases inhibit phase separation of F-BAR protein Cdc15 and antagonize cytokinetic ring assembly in fission yeast. eLife 2023; 12:83062. [PMID: 36749320 PMCID: PMC9904764 DOI: 10.7554/elife.83062] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2023] Open
Abstract
The F-BAR protein Cdc15 is essential for cytokinesis in Schizosaccharomyces pombe and plays a key role in attaching the cytokinetic ring (CR) to the plasma membrane (PM). Cdc15's abilities to bind to the membrane and oligomerize via its F-BAR domain are inhibited by phosphorylation of its intrinsically disordered region (IDR). Multiple cell polarity kinases regulate Cdc15 IDR phosphostate, and of these the DYRK kinase Pom1 phosphorylation sites on Cdc15 have been shown in vivo to prevent CR formation at cell tips. Here, we compared the ability of Pom1 to control Cdc15 phosphostate and cortical localization to that of other Cdc15 kinases: Kin1, Pck1, and Shk1. We identified distinct but overlapping cohorts of Cdc15 phosphorylation sites targeted by each kinase, and the number of sites correlated with each kinases' abilities to influence Cdc15 PM localization. Coarse-grained simulations predicted that cumulative IDR phosphorylation moves the IDRs of a dimer apart and toward the F-BAR tips. Further, simulations indicated that the overall negative charge of phosphorylation masks positively charged amino acids necessary for F-BAR oligomerization and membrane interaction. Finally, simulations suggested that dephosphorylated Cdc15 undergoes phase separation driven by IDR interactions. Indeed, dephosphorylated but not phosphorylated Cdc15 undergoes liquid-liquid phase separation to form droplets in vitro that recruit Cdc15 binding partners. In cells, Cdc15 phosphomutants also formed PM-bound condensates that recruit other CR components. Together, we propose that a threshold of Cdc15 phosphorylation by assorted kinases prevents Cdc15 condensation on the PM and antagonizes CR assembly.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Aaron R Hall
- Department of Physics, Lehigh UniversityBethlehemUnited States
| | - MariaSanta C Mangione
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Maya G Igarashi
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Rachel H Roberts-Galbraith
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh UniversityBethlehemUnited States,Center for Computational Biology, Flatiron InstituteNew YorkUnited States
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| |
Collapse
|
9
|
Bellingham-Johnstun K, Commer B, Levesque B, Tyree ZL, Laplante C. Imp2p forms actin-dependent clusters and imparts stiffness to the contractile ring. Mol Biol Cell 2022; 33:ar145. [PMID: 36287824 PMCID: PMC9727792 DOI: 10.1091/mbc.e22-06-0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The contractile ring must anchor to the plasma membrane and cell wall to transmit its tension. F-BAR domain containing proteins including Imp2p and Cdc15p in fission yeast are likely candidate anchoring proteins based on their mutant phenotypes. Cdc15p is a node component, links the actin bundle to the plasma membrane, recruits Bgs1p to the division plane, prevents contractile ring sliding, and contributes to the stiffness of the contractile ring. Less is known about Imp2p. We found that similarly to Cdc15p, Imp2p contributes to the stiffness of the contractile ring and assembles into protein clusters. Imp2p clusters contain approximately eight Imp2p dimers and depend on the actin network for their stability at the division plane. Importantly, Imp2p and Cdc15p reciprocally affect the amount of each other in the contractile ring, indicating that the two proteins influence each other during cytokinesis, which may partially explain their similar phenotypes.
Collapse
Affiliation(s)
| | - Blake Commer
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607
| | - Brié Levesque
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607
| | - Zoe L Tyree
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607
| | - Caroline Laplante
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607
| |
Collapse
|
10
|
Sayyad WA, Pollard TD. The number of cytokinesis nodes in mitotic fission yeast scales with cell size. eLife 2022; 11:76249. [PMID: 36093997 PMCID: PMC9467510 DOI: 10.7554/elife.76249] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Cytokinesis nodes are assemblies of stoichiometric ratios of proteins associated with the plasma membrane, which serve as precursors for the contractile ring during cytokinesis by fission yeast. The total number of nodes is uncertain, because of the limitations of the methods used previously. Here, we used the ~140 nm resolution of Airyscan super-resolution microscopy to measure the fluorescence intensity of small, single cytokinesis nodes marked with Blt1-mEGFP in live fission yeast cells early in mitosis. The ratio of the total Blt1-mEGFP fluorescence in the broad band of cytokinesis nodes to the average fluorescence of a single node gives about 190 single cytokinesis nodes in wild-type fission yeast cells early in mitosis. Most, but not all of these nodes condense into a contractile ring. The number of cytokinesis nodes scales with cell size in four strains tested, although large diameter rga4Δ mutant cells form somewhat fewer cytokinesis nodes than expected from the overall trend. The Pom1 kinase restricts cytokinesis nodes from the ends of cells, but the surface density of Pom1 on the plasma membrane around the equators of cells is similar with a wide range of node numbers, so Pom1 does not control cytokinesis node number. However, when the concentrations of either kinase Pom1 or kinase Cdr2 were varied with the nmt1 promoter, the numbers of cytokinesis nodes increased above a baseline of about ~190 with the total cellular concentration of either kinase.
Collapse
Affiliation(s)
- Wasim A Sayyad
- Department of Molecular Cellular and Developmental Biology,Yale University, New Haven, United States
| | - Thomas D Pollard
- Department of Molecular Cellular and Developmental Biology,Yale University, New Haven, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Department of Cell Biology,Yale University, New Haven, United States
| |
Collapse
|
11
|
Zhang D, See T. Coordinated cortical ER remodeling facilitates actomyosin ring assembly. Curr Biol 2022; 32:2694-2703.e4. [DOI: 10.1016/j.cub.2022.04.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/24/2022] [Accepted: 04/27/2022] [Indexed: 11/15/2022]
|
12
|
Moshtohry M, Bellingham-Johnstun K, Elting MW, Laplante C. Laser ablation reveals the impact of Cdc15p on the stiffness of the contractile. Mol Biol Cell 2022; 33:br9. [PMID: 35274981 PMCID: PMC9265155 DOI: 10.1091/mbc.e21-10-0515] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The mechanics that govern the constriction of the contractile ring remain poorly understood yet are critical to understanding the forces that drive cytokinesis. We used laser ablation in fission yeast cells to unravel these mechanics focusing on the role of Cdc15p as a putative anchoring protein. Our work shows that the severed constricting contractile ring recoils to a finite point leaving a gap that can heal if less than ∼1 µm. Severed contractile rings in Cdc15p-depleted cells exhibit an exaggerated recoil, which suggests that the recoil is limited by the anchoring of the ring to the plasma membrane. Based on a physical model of the severed contractile ring, we propose that Cdc15p impacts the stiffness of the contractile ring more than the viscous drag.
Collapse
Affiliation(s)
- Mohamed Moshtohry
- Department of Physics, North Carolina State University, Raleigh, NC 27607
| | | | - Mary Williard Elting
- Department of Physics, North Carolina State University, Raleigh, NC 27607.,Cluster for Quantitative and Computational Developmental Biology, North Carolina State University, Raleigh, NC 27607
| | - Caroline Laplante
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607.,Cluster for Quantitative and Computational Developmental Biology, North Carolina State University, Raleigh, NC 27607
| |
Collapse
|
13
|
Sinha D, Ivan D, Gibbs E, Chetluru M, Goss J, Chen Q. Fission yeast polycystin Pkd2p promotes cell size expansion and antagonizes the Hippo-related SIN pathway. J Cell Sci 2022; 135:274457. [PMID: 35099006 PMCID: PMC8919332 DOI: 10.1242/jcs.259046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/14/2022] [Indexed: 11/20/2022] Open
Abstract
Polycystins are conserved mechanosensitive channels whose mutations lead to the common human renal disorder autosomal dominant polycystic kidney disease (ADPKD). Previously, we discovered that the plasma membrane-localized fission yeast polycystin homolog Pkd2p is an essential protein required for cytokinesis; however, its role remains unclear. Here, we isolated a novel temperature-sensitive pkd2 mutant, pkd2-B42. Among the strong growth defects of this mutant, the most striking was that many mutant cells often lost a significant portion of their volume in just 5 min followed by a gradual recovery, a process that we termed 'deflation'. Unlike cell lysis, deflation did not result in plasma membrane rupture and occurred independently of cell cycle progression. The tip extension of pkd2-B42 cells was 80% slower than that of wild-type cells, and their turgor pressure was 50% lower. Both pkd2-B42 and the hypomorphic depletion mutant pkd2-81KD partially rescued mutants of the septation initiation network (SIN), a yeast Hippo-related signaling pathway, by preventing cell lysis, enhancing septum formation and doubling the number of Sid2p and Mob1p molecules at the spindle pole bodies. We conclude that Pkd2p promotes cell size expansion during interphase by regulating turgor pressure and antagonizes the SIN during cytokinesis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Debatrayee Sinha
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft St, Toledo, OH 43606, USA
| | - Denisa Ivan
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft St, Toledo, OH 43606, USA
| | - Ellie Gibbs
- Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA 02482, USA
| | - Madhurya Chetluru
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft St, Toledo, OH 43606, USA
| | - John Goss
- Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA 02482, USA
| | - Qian Chen
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft St, Toledo, OH 43606, USA,Author for correspondence ()
| |
Collapse
|
14
|
Garno C, Irons ZH, Gamache CM, McKim Q, Reyes G, Wu X, Shuster CB, Henson JH. Building the cytokinetic contractile ring in an early embryo: Initiation as clusters of myosin II, anillin and septin, and visualization of a septin filament network. PLoS One 2021; 16:e0252845. [PMID: 34962917 PMCID: PMC8714119 DOI: 10.1371/journal.pone.0252845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/24/2021] [Indexed: 01/15/2023] Open
Abstract
The cytokinetic contractile ring (CR) was first described some 50 years ago, however our understanding of the assembly and structure of the animal cell CR remains incomplete. We recently reported that mature CRs in sea urchin embryos contain myosin II mini-filaments organized into aligned concatenated arrays, and that in early CRs myosin II formed discrete clusters that transformed into the linearized structure over time. The present study extends our previous work by addressing the hypothesis that these myosin II clusters also contain the crucial scaffolding proteins anillin and septin, known to help link actin, myosin II, RhoA, and the membrane during cytokinesis. Super-resolution imaging of cortices from dividing embryos indicates that within each cluster, anillin and septin2 occupy a centralized position relative to the myosin II mini-filaments. As CR formation progresses, the myosin II, septin and anillin containing clusters enlarge and coalesce into patchy and faintly linear patterns. Our super-resolution images provide the initial visualization of anillin and septin nanostructure within an animal cell CR, including evidence of a septin filament-like network. Furthermore, Latrunculin-treated embryos indicated that the localization of septin or anillin to the myosin II clusters in the early CR was not dependent on actin filaments. These results highlight the structural progression of the CR in sea urchin embryos from an array of clusters to a linearized purse string, the association of anillin and septin with this process, and provide the visualization of an apparent septin filament network with the CR structure of an animal cell.
Collapse
Affiliation(s)
- Chelsea Garno
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
| | - Zoe H. Irons
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
- Department of Biology, Dickinson College, Carlisle, Pennsylvania, United States of America
| | - Courtney M. Gamache
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
- Department of Biology, Dickinson College, Carlisle, Pennsylvania, United States of America
| | - Quenelle McKim
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
- Department of Biology, Dickinson College, Carlisle, Pennsylvania, United States of America
| | - Gabriela Reyes
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
| | - Xufeng Wu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Charles B. Shuster
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
| | - John H. Henson
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
- Department of Biology, Dickinson College, Carlisle, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
15
|
Chen JS, Jones CM, Igarashi MG, Ren L, Johnson AE, Gould KL. Localization of the ubiquitin ligase Dma1 to the fission yeast contractile ring is modulated by phosphorylation. FEBS Lett 2021; 595:2781-2792. [PMID: 34674264 PMCID: PMC8721890 DOI: 10.1002/1873-3468.14211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/06/2022]
Abstract
The timing of cytokinesis relative to other mitotic events in the fission yeast Schizosaccharomyces pombe is controlled by the septation initiation network (SIN). During a mitotic checkpoint, the SIN is inhibited by the E3 ubiquitin ligase Dma1 to prevent chromosome mis-segregation. Dma1 dynamically localizes to spindle pole bodies (SPBs) and the contractile ring (CR) during mitosis, though its role at the CR is unknown. Here, we examined whether Dma1 phosphorylation affects its localization or function. We found that preventing Dma1 phosphorylation by substituting the six phosphosites with alanines diminished its CR localization but did not affect its mitotic checkpoint function. These studies reinforce the conclusion that Dma1 localization to the SPB is key to its role in the mitotic checkpoint.
Collapse
Affiliation(s)
- Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | | | - Maya G. Igarashi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | | | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| |
Collapse
|
16
|
Li Y, Munro E. Filament-guided filament assembly provides structural memory of filament alignment during cytokinesis. Dev Cell 2021; 56:2486-2500.e6. [PMID: 34480876 DOI: 10.1016/j.devcel.2021.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 10/24/2022]
Abstract
During cytokinesis, animal cells rapidly remodel the equatorial cortex to build an aligned array of actin filaments called the contractile ring. Local reorientation of filaments by active equatorial compression is thought to underlie the emergence of filament alignment during ring assembly. Here, combining single molecule analysis and modeling in one-cell C. elegans embryos, we show that filaments turnover is far too fast for reorientation of individual filaments by equatorial compression to explain the observed alignment, even if favorably oriented filaments are selectively stabilized. By tracking single formin/CYK-1::GFP particles to monitor local filament assembly, we identify a mechanism that we call filament-guided filament assembly (FGFA), in which existing filaments serve as templates to orient the growth of new filaments. FGFA sharply increases the effective lifetime of filament orientation, providing structural memory that allows cells to build highly aligned filament arrays in response to equatorial compression, despite rapid turnover of individual filaments.
Collapse
Affiliation(s)
- Younan Li
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
17
|
Bellingham-Johnstun K, Anders EC, Ravi J, Bruinsma C, Laplante C. Molecular organization of cytokinesis node predicts the constriction rate of the contractile ring. J Cell Biol 2021; 220:211718. [PMID: 33496728 PMCID: PMC7844425 DOI: 10.1083/jcb.202008032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/23/2020] [Accepted: 12/22/2020] [Indexed: 01/21/2023] Open
Abstract
The molecular organization of cytokinesis proteins governs contractile ring function. We used single molecule localization microscopy in live cells to elucidate the molecular organization of cytokinesis proteins and relate it to the constriction rate of the contractile ring. Wild-type fission yeast cells assemble contractile rings by the coalescence of cortical proteins complexes called nodes whereas cells without Anillin/Mid1p (Δmid1) lack visible nodes yet assemble contractile rings competent for constriction from the looping of strands. We leveraged the Δmid1 contractile ring assembly mechanism to determine how two distinct molecular organizations, nodes versus strands, can yield functional contractile rings. Contrary to previous interpretations, nodes assemble in Δmid1 cells. Our results suggest that Myo2p heads condense upon interaction with actin filaments and an excess number of Myo2p heads bound to actin filaments hinders constriction thus reducing the constriction rate. Our work establishes a predictive correlation between the molecular organization of nodes and the behavior of the contractile ring.
Collapse
Affiliation(s)
- Kimberly Bellingham-Johnstun
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Erica Casey Anders
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - John Ravi
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Christina Bruinsma
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Caroline Laplante
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| |
Collapse
|
18
|
Mangione MC, Chen JS, Gould KL. Cdk1 phosphorylation of fission yeast paxillin inhibits its cytokinetic ring localization. Mol Biol Cell 2021; 32:1534-1544. [PMID: 34133210 PMCID: PMC8351747 DOI: 10.1091/mbc.e20-12-0807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 11/11/2022] Open
Abstract
Divisions of the genetic material and cytoplasm are coordinated spatially and temporally to ensure genome integrity. This coordination is mediated in part by the major cell cycle regulator cyclin-dependent kinase (Cdk1). Cdk1 activity peaks during mitosis, but during mitotic exit/cytokinesis Cdk1 activity is reduced, and phosphorylation of its substrates is reversed by various phosphatases including Cdc14, PP1, PP2A, and PP2B. Cdk1 is known to phosphorylate several components of the actin- and myosin-based cytokinetic ring (CR) that mediates division of yeast and animal cells. Here we show that Cdk1 also phosphorylates the Schizosaccharomyces pombe CR component paxillin Pxl1. We determined that both the Cdc14 phosphatase Clp1 and the PP1 phosphatase Dis2 contribute to Pxl1 dephosphorylation at mitotic exit, but PP2B/calcineurin does not. Preventing Pxl1 phosphorylation by Cdk1 results in increased Pxl1 levels, precocious Pxl1 recruitment to the division site, and increased duration of CR constriction. In vitro Cdk1-mediated phosphorylation of Pxl1 inhibits its interaction with the F-BAR domain of the cytokinetic scaffold Cdc15, thereby disrupting a major mechanism of Pxl1 recruitment. Thus, Pxl1 is a novel substrate through which S. pombe Cdk1 and opposing phosphatases coordinate mitosis and cytokinesis.
Collapse
Affiliation(s)
- MariaSanta C. Mangione
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| |
Collapse
|
19
|
Homa KE, Zsolnay V, Anderson CA, O'Connell ME, Neidt EM, Voth GA, Bidone TC, Kovar DR. Formin Cdc12's specific actin assembly properties are tailored for cytokinesis in fission yeast. Biophys J 2021; 120:2984-2997. [PMID: 34214524 DOI: 10.1016/j.bpj.2021.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Formins generate unbranched actin filaments by a conserved, processive actin assembly mechanism. Most organisms express multiple formin isoforms that mediate distinct cellular processes and facilitate actin filament polymerization by significantly different rates, but how these actin assembly differences correlate to cellular activity is unclear. We used a computational model of fission yeast cytokinetic ring assembly to test the hypothesis that particular actin assembly properties help tailor formins for specific cellular roles. Simulations run in different actin filament nucleation and elongation conditions revealed that variations in formin's nucleation efficiency critically impact both the probability and timing of contractile ring formation. To probe the physiological importance of nucleation efficiency, we engineered fission yeast formin chimera strains in which the FH1-FH2 actin assembly domains of full-length cytokinesis formin Cdc12 were replaced with the FH1-FH2 domains from functionally and evolutionarily diverse formins with significantly different actin assembly properties. Although Cdc12 chimeras generally support life in fission yeast, quantitative live-cell imaging revealed a range of cytokinesis defects from mild to severe. In agreement with the computational model, chimeras whose nucleation efficiencies are least similar to Cdc12 exhibit more severe cytokinesis defects, specifically in the rate of contractile ring assembly. Together, our computational and experimental results suggest that fission yeast cytokinesis is ideally mediated by a formin with properly tailored actin assembly parameters.
Collapse
Affiliation(s)
- Kaitlin E Homa
- Department of Molecular Genetics and Cell Biology, Chicago, Illinois
| | - Vilmos Zsolnay
- Graduate Program in Biophysical Sciences, Chicago, Illinois
| | | | | | - Erin M Neidt
- Department of Molecular Genetics and Cell Biology, Chicago, Illinois
| | - Gregory A Voth
- Department of Chemistry, The James Franck Institute, Institute for Biophysical Dynamics and Computation Institute, Chicago, Illinois
| | - Tamara C Bidone
- Department of Biomedical Engineering, Salt Lake City, Utah; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah.
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, Chicago, Illinois; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
20
|
Magliozzi JO, Sears J, Cressey L, Brady M, Opalko HE, Kettenbach AN, Moseley JB. Fission yeast Pak1 phosphorylates anillin-like Mid1 for spatial control of cytokinesis. J Cell Biol 2021; 219:151784. [PMID: 32421151 PMCID: PMC7401808 DOI: 10.1083/jcb.201908017] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/09/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Protein kinases direct polarized growth by regulating the cytoskeleton in time and space and could play similar roles in cell division. We found that the Cdc42-activated polarity kinase Pak1 colocalizes with the assembling contractile actomyosin ring (CAR) and remains at the division site during septation. Mutations in pak1 led to defects in CAR assembly and genetic interactions with cytokinesis mutants. Through a phosphoproteomic screen, we identified novel Pak1 substrates that function in polarized growth and cytokinesis. For cytokinesis, we found that Pak1 regulates the localization of its substrates Mid1 and Cdc15 to the CAR. Mechanistically, Pak1 phosphorylates the Mid1 N-terminus to promote its association with cortical nodes that act as CAR precursors. Defects in Pak1-Mid1 signaling lead to misplaced and defective division planes, but these phenotypes can be rescued by synthetic tethering of Mid1 to cortical nodes. Our work defines a new signaling mechanism driven by a cell polarity kinase that promotes CAR assembly in the correct time and place.
Collapse
Affiliation(s)
- Joseph O Magliozzi
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Jack Sears
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH.,Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Lauren Cressey
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH.,Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Marielle Brady
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Hannah E Opalko
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH.,Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - James B Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH
| |
Collapse
|
21
|
Okada H, MacTaggart B, Ohya Y, Bi E. The kinetic landscape and interplay of protein networks in cytokinesis. iScience 2021; 24:101917. [PMID: 33392480 PMCID: PMC7773586 DOI: 10.1016/j.isci.2020.101917] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 11/08/2022] Open
Abstract
Cytokinesis is executed by protein networks organized into functional modules. Individual proteins within each module have been characterized to various degrees. However, the collective behavior and interplay of the modules remain poorly understood. In this study, we conducted quantitative time-lapse imaging to analyze the accumulation kinetics of more than 20 proteins from different modules of cytokinesis in budding yeast. This analysis has led to a comprehensive picture of the kinetic landscape of cytokinesis, from actomyosin ring (AMR) assembly to cell separation. It revealed that the AMR undergoes biphasic constriction and that the switch between the constriction phases is likely triggered by AMR maturation and primary septum formation. This analysis also provided further insights into the functions of actin filaments and the transglutaminase-like protein Cyk3 in cytokinesis and, in addition, defined Kre6 as the likely enzyme that catalyzes β-1,6-glucan synthesis to drive cell wall maturation during cell growth and division. Cytokinesis is executed by protein modules each with a unique kinetic signature Actomyosin ring constricts in a biphasic manner that is elaborately regulated The transglutaminase-like domain in Cyk3 plays a dual role in cytokinesis Kre6 catalyzes β-1,6-glucan synthesis at the cell surface during growth and division
Collapse
Affiliation(s)
- Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Brittany MacTaggart
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| |
Collapse
|
22
|
Magliozzi JO, Moseley JB. Connecting cell polarity signals to the cytokinetic machinery in yeast and metazoan cells. Cell Cycle 2021; 20:1-10. [PMID: 33397181 DOI: 10.1080/15384101.2020.1864941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Polarized growth and cytokinesis are two fundamental cellular processes that exist in virtually all cell types. Mechanisms for asymmetric distribution of materials allow for cells to grow in a polarized manner. This gives rise to a variety of cell shapes seen throughout all cell types. Following polarized growth during interphase, dividing cells assemble a cytokinetic ring containing the protein machinery to constrict and separate daughter cells. Here, we discuss how cell polarity signaling pathways act on cytokinesis, with a focus on direct regulation of the contractile actomyosin ring (CAR). Recent studies have exploited phosphoproteomics to identify new connections between cell polarity kinases and CAR proteins. Existing evidence suggests that some polarity kinases guide the local organization of CAR proteins and structures while also contributing to global organization of the division plane within a cell. We provide several examples of this regulation from budding yeast, fission yeast, and metazoan cells. In some cases, kinase-substrate connections point to conserved processes in these different organisms. We point to several examples where future work can indicate the degree of conservation and divergence in the cell division process of these different organisms.
Collapse
Affiliation(s)
- Joseph O Magliozzi
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth , Hanover, New Hampshire, USA
| | - James B Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth , Hanover, New Hampshire, USA
| |
Collapse
|
23
|
Wang K, Okada H, Bi E. Comparative Analysis of the Roles of Non-muscle Myosin-IIs in Cytokinesis in Budding Yeast, Fission Yeast, and Mammalian Cells. Front Cell Dev Biol 2020; 8:593400. [PMID: 33330476 PMCID: PMC7710916 DOI: 10.3389/fcell.2020.593400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/30/2020] [Indexed: 12/31/2022] Open
Abstract
The contractile ring, which plays critical roles in cytokinesis in fungal and animal cells, has fascinated biologists for decades. However, the basic question of how the non-muscle myosin-II and actin filaments are assembled into a ring structure to drive cytokinesis remains poorly understood. It is even more mysterious why and how the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe, and humans construct the ring structure with one, two, and three myosin-II isoforms, respectively. Here, we provide a comparative analysis of the roles of the non-muscle myosin-IIs in cytokinesis in these three model systems, with the goal of defining the common and unique features and highlighting the major questions regarding this family of proteins.
Collapse
Affiliation(s)
- Kangji Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
24
|
Cell cycle-dependent phosphorylation of IQGAP is involved in assembly and stability of the contractile ring in fission yeast. Biochem Biophys Res Commun 2020; 534:1026-1032. [PMID: 33131769 DOI: 10.1016/j.bbrc.2020.10.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 11/20/2022]
Abstract
Cytokinesis is the final step in cell division and is driven by the constriction of the medial actomyosin-based contractile ring (CR) in many eukaryotic cells. In the fission yeast Schizosaccharomyces pombe, the IQGAP-like protein Rng2 is required for assembly and constriction of the CR, and specifically interacts with actin filaments (F-actin) in the CR after anaphase. However, the mechanism that timely activates Rng2 has not yet been elucidated. We herein tested the hypothesis that the cytokinetic function of Rng2 is regulated by phosphorylation by examining phenotypes of a series of non-phosphorylatable and phosphomimetic rng2 mutant strains. In phosphomimetic mutant cells, F-actin in the CR was unstable. Genetic analyses indicated that phosphorylated Rng2 was involved in CR assembly in cooperation with myosin-II, whereas the phosphomimetic mutation attenuated the localization of Rng2 to CR F-actin. The present results suggest that Rng2 is phosphorylated during CR assembly and then dephosphorylated, which enhances the interaction between Rng2 and CR F-actin to stabilize the ring, thereby ensuring secure cytokinesis.
Collapse
|
25
|
Edreira T, Celador R, Manjón E, Sánchez Y. A novel checkpoint pathway controls actomyosin ring constriction trigger in fission yeast. eLife 2020; 9:59333. [PMID: 33103994 PMCID: PMC7661037 DOI: 10.7554/elife.59333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022] Open
Abstract
In fission yeast, the septation initiation network (SIN) ensures temporal coordination between actomyosin ring (CAR) constriction with membrane ingression and septum synthesis. However, questions remain about CAR regulation under stress conditions. We show that Rgf1p (Rho1p GEF), participates in a delay of cytokinesis under cell wall stress (blankophor, BP). BP did not interfere with CAR assembly or the rate of CAR constriction, but did delay the onset of constriction in the wild type cells but not in the rgf1Δ cells. This delay was also abolished in the absence of Pmk1p, the MAPK of the cell integrity pathway (CIP), leading to premature abscission and a multi-septated phenotype. Moreover, cytokinesis delay correlates with maintained SIN signaling and depends on the SIN to be achieved. Thus, we propose that the CIP participates in a checkpoint, capable of triggering a CAR constriction delay through the SIN pathway to ensure that cytokinesis terminates successfully.
Collapse
Affiliation(s)
- Tomás Edreira
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Rubén Celador
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Elvira Manjón
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Yolanda Sánchez
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
26
|
Winkelman JD, Anderson CA, Suarez C, Kovar DR, Gardel ML. Evolutionarily diverse LIM domain-containing proteins bind stressed actin filaments through a conserved mechanism. Proc Natl Acad Sci U S A 2020; 117:25532-25542. [PMID: 32989126 PMCID: PMC7568268 DOI: 10.1073/pnas.2004656117] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The actin cytoskeleton assembles into diverse load-bearing networks, including stress fibers (SFs), muscle sarcomeres, and the cytokinetic ring to both generate and sense mechanical forces. The LIM (Lin11, Isl- 1, and Mec-3) domain family is functionally diverse, but most members can associate with the actin cytoskeleton with apparent force sensitivity. Zyxin rapidly localizes via its LIM domains to failing SFs in cells, known as strain sites, to initiate SF repair and maintain mechanical homeostasis. The mechanism by which these LIM domains associate with stress fiber strain sites (SFSS) is not known. Additionally, it is unknown how widespread strain sensing is within the LIM protein family. We identify that the LIM domain-containing region of 18 proteins from the Zyxin, Paxillin, Tes, and Enigma proteins accumulate to SFSS. Moreover, the LIM domain region from the fission yeast protein paxillin like 1 (Pxl1) also localizes to SFSS in mammalian cells, suggesting that the strain sensing mechanism is ancient and highly conserved. We then used sequence and domain analysis to demonstrate that tandem LIM domains contribute additively, for SFSS localization. Employing in vitro reconstitution, we show that the LIM domain-containing region from mammalian zyxin and fission yeast Pxl1 binds to mechanically stressed F-actin networks but does not associate with relaxed actin filaments. We propose that tandem LIM domains recognize an F-actin conformation that is rare in the relaxed state but is enriched in the presence of mechanical stress.
Collapse
Affiliation(s)
| | - Caitlin A Anderson
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Cristian Suarez
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637;
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637;
- James Franck Institute, University of Chicago, Chicago, IL 60637
- Physics Department, University of Chicago, Chicago, IL 60637
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637
| |
Collapse
|
27
|
Bhattacharjee R, Mangione MC, Wos M, Chen JS, Snider CE, Roberts-Galbraith RH, McDonald NA, Presti LL, Martin SG, Gould KL. DYRK kinase Pom1 drives F-BAR protein Cdc15 from the membrane to promote medial division. Mol Biol Cell 2020; 31:917-929. [PMID: 32101481 PMCID: PMC7185970 DOI: 10.1091/mbc.e20-01-0026] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
In many organisms, positive and negative signals cooperate to position the division site for cytokinesis. In the rod-shaped fission yeast Schizosaccharomyces pombe, symmetric division is achieved through anillin/Mid1-dependent positive cues released from the central nucleus and negative signals from the DYRK-family polarity kinase Pom1 at cell tips. Here we establish that Pom1's kinase activity prevents septation at cell tips even if Mid1 is absent or mislocalized. We also find that Pom1 phosphorylation of F-BAR protein Cdc15, a major scaffold of the division apparatus, disrupts Cdc15's ability to bind membranes and paxillin, Pxl1, thereby inhibiting Cdc15's function in cytokinesis. A Cdc15 mutant carrying phosphomimetic versions of Pom1 sites or deletion of Cdc15 binding partners suppresses division at cell tips in cells lacking both Mid1 and Pom1 signals. Thus, inhibition of Cdc15-scaffolded septum formation at cell poles is a key Pom1 mechanism that ensures medial division.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | - MariaSanta C. Mangione
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | - Marcin Wos
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | - Chloe E. Snider
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | | | - Nathan A. McDonald
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | - Libera Lo Presti
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| |
Collapse
|
28
|
Yu ZQ, Sun LL, Jiang ZD, Liu XM, Zhao D, Wang HT, He WZ, Dong MQ, Du LL. Atg38-Atg8 interaction in fission yeast establishes a positive feedback loop to promote autophagy. Autophagy 2020; 16:2036-2051. [PMID: 31941401 PMCID: PMC7595586 DOI: 10.1080/15548627.2020.1713644] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Macroautophagy (autophagy) is driven by the coordinated actions of core autophagy-related (Atg) proteins. Atg8, the core Atg protein generally considered acting most downstream, has recently been shown to interact with other core Atg proteins via their Atg8-family-interacting motifs (AIMs). However, the extent, functional consequence, and evolutionary conservation of such interactions remain inadequately understood. Here, we show that, in the fission yeast Schizosaccharomyces pombe, Atg38, a subunit of the phosphatidylinositol 3-kinase (PtdIns3K) complex I, interacts with Atg8 via an AIM, which is highly conserved in Atg38 proteins of fission yeast species, but not conserved in Atg38 proteins of other species. This interaction recruits Atg38 to Atg8 on the phagophore assembly site (PAS) and consequently enhances PAS accumulation of the PtdIns3K complex I and Atg proteins acting downstream of the PtdIns3K complex I, including Atg8. The disruption of the Atg38-Atg8 interaction leads to the reduction of autophagosome size and autophagic flux. Remarkably, the loss of this interaction can be compensated by an artificial Atg14-Atg8 interaction. Our findings demonstrate that the Atg38-Atg8 interaction in fission yeast establishes a positive feedback loop between Atg8 and the PtdIns3K complex I to promote efficient autophagosome formation, underscore the prevalence and diversity of AIM-mediated connections within the autophagic machinery, and reveal unforeseen flexibility of such connections. Abbreviations: AIM: Atg8-family-interacting motif; AP-MS: affinity purification coupled with mass spectrometry; Atg: autophagy-related; FLIP: fluorescence loss in photobleaching; PAS: phagophore assembly site; PB: piggyBac; PE: phosphatidylethanolamine; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate.
Collapse
Affiliation(s)
- Zhong-Qiu Yu
- National Institute of Biological Sciences , Beijing, China.,PTN Graduate Program, School of Life Sciences, Peking University , Beijing, China
| | - Ling-Ling Sun
- National Institute of Biological Sciences , Beijing, China
| | - Zhao-Di Jiang
- National Institute of Biological Sciences , Beijing, China
| | - Xiao-Man Liu
- National Institute of Biological Sciences , Beijing, China
| | - Dan Zhao
- National Institute of Biological Sciences , Beijing, China
| | - Hai-Tao Wang
- National Institute of Biological Sciences , Beijing, China
| | - Wan-Zhong He
- National Institute of Biological Sciences , Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences , Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University , Beijing, China
| | - Li-Lin Du
- National Institute of Biological Sciences , Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University , Beijing, China
| |
Collapse
|
29
|
Hercyk BS, Onwubiko UN, Das ME. Coordinating septum formation and the actomyosin ring during cytokinesis in Schizosaccharomyces pombe. Mol Microbiol 2019; 112:1645-1657. [PMID: 31533197 PMCID: PMC6904431 DOI: 10.1111/mmi.14387] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 01/08/2023]
Abstract
During cytokinesis, animal and fungal cells form a membrane furrow via actomyosin ring constriction. Our understanding of actomyosin ring-driven cytokinesis stems extensively from the fission yeast model system. However, unlike animal cells, actomyosin ring constriction occurs simultaneously with septum formation in fungi. While the formation of an actomyosin ring is essential for cytokinesis in fission yeast, proper furrow formation also requires septum deposition. The molecular mechanisms of spatiotemporal coordination of septum deposition with actomyosin ring constriction are poorly understood. Although the role of the actomyosin ring as a mechanical structure driving furrow formation is better understood, its role as a spatiotemporal landmark for septum deposition is not widely discussed. Here we review and discuss the recent advances describing how the actomyosin ring spatiotemporally regulates membrane traffic to promote septum-driven cytokinesis in fission yeast. Finally, we explore emerging questions in cytokinesis, and discuss the role of extracellular matrix during cytokinesis in other organisms.
Collapse
Affiliation(s)
- Brian S Hercyk
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Udo N Onwubiko
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Maitreyi E Das
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
30
|
Schutt KL, Moseley JB. The phosphatase inhibitor Sds23 regulates cell division symmetry in fission yeast. Mol Biol Cell 2019; 30:2880-2889. [PMID: 31553675 PMCID: PMC6822584 DOI: 10.1091/mbc.e19-05-0254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Animal and fungal cells divide through the assembly, anchoring, and constriction of a contractile actomyosin ring (CAR) during cytokinesis. The timing and position of the CAR must be tightly controlled to prevent defects in cell division, but many of the underlying signaling events remain unknown. The conserved heterotrimeric protein phosphatase PP2A controls the timing of events in mitosis, and upstream pathways including Greatwall-Ensa regulate PP2A activity. A role for PP2A in CAR regulation has been less clear, although loss of PP2A in yeast causes defects in cytokinesis. Here, we report that Sds23, an inhibitor of PP2A family protein phosphatases, promotes the symmetric division of fission yeast cells through spatial control of cytokinesis. We found that sds23∆ cells divide asymmetrically due to misplaced CAR assembly, followed by sliding of the CAR away from its assembly site. These mutant cells exhibit delayed recruitment of putative CAR anchoring proteins including the glucan synthase Bgs1. Our observations likely reflect a broader role for regulation of PP2A in cell polarity and cytokinesis because sds23∆ phenotypes were exacerbated when combined with mutations in the fission yeast Ensa homologue, Igo1. These results identify the PP2A regulatory network as a critical component in the signaling pathways coordinating cytokinesis.
Collapse
Affiliation(s)
- Katherine L Schutt
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - James B Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
31
|
MacQuarrie CD, Mangione MC, Carroll R, James M, Gould KL, Sirotkin V. The S. pombe adaptor protein Bbc1 regulates localization of Wsp1 and Vrp1 during endocytic actin patch assembly. J Cell Sci 2019; 132:jcs233502. [PMID: 31391237 PMCID: PMC6771142 DOI: 10.1242/jcs.233502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/24/2019] [Indexed: 01/01/2023] Open
Abstract
Arp2/3 complex-nucleated branched actin networks provide the key force necessary for endocytosis. The Arp2/3 complex is activated by nucleation-promoting factors including the Schizosaccharomyces pombe Wiskott-Aldrich syndrome protein (Wsp1) and myosin-1 (Myo1). There are >40 known yeast endocytic proteins with distinct spatial and temporal localizations and functions; however, it is still unclear how these proteins work together to drive endocytosis. Here, we used quantitative live-cell imaging to determine the function of the uncharacterized S. pombe protein Bbc1. We discovered that Myo1 interacts with and recruits Bbc1 to sites of endocytosis. Bbc1 competes with the verprolin Vrp1 for localization to patches and association with Myo1, thus releasing Vrp1 and its binding partner Wsp1 from Myo1. Normally Myo1 remains at the base of the endocytic invagination and Vrp1-Wsp1 internalizes with the endocytic vesicle. However, in the absence of Bbc1, a portion of Vrp1-Wsp1 remains with Myo1 at the base of the invagination, and endocytic structures internalize twice as far. We propose that Bbc1 disrupts a transient interaction of Myo1 with Vrp1 and Wsp1 and thereby limits Arp2/3 complex-mediated nucleation of actin branches at the plasma membrane.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Cameron Dale MacQuarrie
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - MariaSanta C Mangione
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Robert Carroll
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael James
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Vladimir Sirotkin
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
32
|
Alonso-Matilla R, Thiyagarajan S, O'Shaughnessy B. Sliding filament and fixed filament mechanisms contribute to ring tension in the cytokinetic contractile ring. Cytoskeleton (Hoboken) 2019; 76:611-625. [PMID: 31443136 DOI: 10.1002/cm.21558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 11/11/2022]
Abstract
A fundamental challenge in cell biology is to understand how cells generate actomyosin-based contractile force. Here we study the actomyosin contractile ring that divides cells during cytokinesis and generates tension by a mechanism that remains poorly understood. Long ago a muscle-like sliding filament mechanism was proposed, but evidence for sarcomeric organization in contractile rings is lacking. We develop a coarse-grained model of the fission yeast cytokinetic ring, incorporating the two myosin-II isoforms Myo2 and Myp2 and severely constrained by experimental data. The model predicts that ring tension is indeed generated by a sliding filament mechanism, but a spatially and temporally homogeneous version of that in muscle. In this mechanism all pairs of oppositely oriented actin filaments are rendered tense as they are pulled toward one another and slide through clusters of myosin-II. The mechanism relies on anchoring of actin filament barbed ends to the plasma membrane, which resists lateral motion and enables filaments to become tense when pulled by myosin-II. A second fixed filament component is independent of lateral anchoring, generated by chains of like-oriented actin filaments. Myo2 contributes to both components, while Myp2 contributes to the sliding filament component only. In the face of instabilities inherent to actomyosin contractility, organizational homeostasis is maintained by rapid turnover of Myo2 and Myp2, and by drag forces that resist lateral motion of actin, Myo2 and Myp2. Thus, sliding and fixed filament mechanisms contribute to tension in the disordered contractile ring without the need for the sarcomeric architecture of muscle.
Collapse
Affiliation(s)
| | | | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, New York
| |
Collapse
|
33
|
Bahrami A, Bahrami AH. Vesicle constriction by rings of Janus nanoparticles and aggregates of curved proteins. NANOTECHNOLOGY 2019; 30:345101. [PMID: 31048566 DOI: 10.1088/1361-6528/ab1ed5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Membrane constriction and associated scission by proteins and nano structures are crucial to many processes in cellular and synthetic biology. We report mechanical constriction of vesicles by rings of adsorbed Janus nanoparticles that represent synthetic nano structures and mimic contractile proteins, and by aggregates of curved crescents that mimic scaffold proteins. Membrane energetics from Monte Carlo simulations and simulated annealing of the elastic membrane model confirms spontaneous vesicle constriction by aggregates of sufficiently-curved crescents of various lengths and by rings of Janus nanoparticles with a variety of ring lengths, particle sizes, and particle area fractions. We show that shorter rings of smaller particles with higher area fractions reinforce the constriction by increasing the energetic drive towards the constricted vesicle with smaller constriction radius. We demonstrate that vesicle constriction by crescent aggregates strongly depends on the crescent curvature. In contrast to aggregates of sufficiently-curved crescents that are capable of inducing full vesicle constriction, those of near flat crescents with negligible curvature leave the vesicle unconstricted. Our results offer promising perspectives for designing membrane-constricting nano structures such as nanoparticle aggregates and clusters of synthetic curved proteins such as DNA origami scaffolds with applications in synthetic biology. Our findings reveal the significant contribution of highly-curved F-BAR domains to cell division and explain how contractile protein rings such as dynamin GTPase, actomyosin rings, and endosomal sorting complexes required for transport constrict the membrane.
Collapse
Affiliation(s)
- Arash Bahrami
- School of Mechanical Engineering, College of Engineering, University of Tehran, North Kargar St., 14399-57131 Tehran, Iran
| | | |
Collapse
|
34
|
Pollard TD. Cell Motility and Cytokinesis: From Mysteries to Molecular Mechanisms in Five Decades. Annu Rev Cell Dev Biol 2019; 35:1-28. [PMID: 31394047 DOI: 10.1146/annurev-cellbio-100818-125427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This is the story of someone who has been fortunate to work in a field of research where essentially nothing was known at the outset but that blossomed with the discovery of profound insights about two basic biological processes: cell motility and cytokinesis. The field started with no molecules, just a few people, and primitive methods. Over time, technological advances in biophysics, biochemistry, and microscopy allowed the combined efforts of scientists in hundreds of laboratories to explain mysterious processes with molecular mechanisms that can be embodied in mathematical equations and simulated by computers. The success of this field is a tribute to the power of the reductionist strategy for understanding biology.
Collapse
Affiliation(s)
- Thomas D Pollard
- Departments of Molecular, Cellular and Developmental Biology; Molecular Biophysics and Biochemistry; and Cell Biology, Yale University, New Haven, Connecticut 06520-8103, USA;
| |
Collapse
|
35
|
Kashiwazaki J, Yoneda Y, Mutoh T, Arai R, Yoshida M, Mabuchi I. A unique kinesin-like protein, Klp8, is involved in mitosis and cell morphology through microtubule stabilization. Cytoskeleton (Hoboken) 2019; 76:355-367. [PMID: 31276301 DOI: 10.1002/cm.21551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/23/2019] [Accepted: 07/01/2019] [Indexed: 11/10/2022]
Abstract
Kinesins are microtubule (MT)-based motors involved in various cellular functions including intracellular transport of vesicles and organelles, and dynamics of chromosomes during cell division. The fission yeast Schizosaccharomyces pombe expresses nine kinesin-like proteins (klps). Klp8 is one of them and has not been characterized yet though it has been reported to localize at the division site. Here, we studied function and localization of Klp8 in S. pombe cells. The gene klp8+ was not essential for both viability and cytoskeletal organization. Klp8-YFP was concentrated as medial cortical dots during interphase, and organized into a ring at the division site during mitosis. The Klp8 ring seemed to be localized in the space between the actomyosin contractile ring and the plasma membrane. The Klp8 ring shrank as cytokinesis proceeded. In klp8-deleted (Δ) cells, the speed of spindle elongation during anaphase B was slowed down. Overproduction of Klp8 caused bent or elongated cells, in which MTs were abnormally elongated and less dynamic than those in normal cells. Deletion of klp8+ gene suppressed the delay in mitotic entry in blt1Δ cells. These results suggest that Klp8 is involved in mitosis and cell morphology through MT stabilization.
Collapse
Affiliation(s)
- Jun Kashiwazaki
- Department of Life Science, Gakushuin University, Tokyo, Japan
| | - Yumi Yoneda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadashi Mutoh
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Ritsuko Arai
- Chemical Genetics Laboratory, RIKEN, Wako, Japan
| | - Minoru Yoshida
- Chemical Genetics Laboratory, RIKEN, Wako, Japan.,CREST Research Project, Japan Science and Technology Corporation, Wako, Japan
| | - Issei Mabuchi
- Department of Life Science, Gakushuin University, Tokyo, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
36
|
Arbizzani F, Rincon SA, Paoletti A. Increasing ergosterol levels delays formin-dependent assembly of F-actin cables and disrupts division plane positioning in fission yeast. J Cell Sci 2019; 132:jcs.227447. [PMID: 31217286 DOI: 10.1242/jcs.227447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/31/2019] [Indexed: 11/20/2022] Open
Abstract
In most eukaryotes, cytokinesis is mediated by the constriction of a contractile acto-myosin ring (CR), which promotes the ingression of the cleavage furrow. Many components of the CR interact with plasma membrane lipids suggesting that lipids may regulate CR assembly and function. Although there is clear evidence that phosphoinositides play an important role in cytokinesis, much less is known about the role of sterols in this process. Here, we studied how sterols influence division plane positioning and CR assembly in fission yeast. We show that increasing ergosterol levels in the plasma membrane blocks the assembly of F-actin cables from cytokinetic precursor nodes, preventing their compaction into a ring. Abnormal F-actin cables form after a delay, leading to randomly placed septa. Since the formin Cdc12 was detected on cytokinetic precursors and the phenotype can be partially rescued by inhibiting the Arp2/3 complex, which competes with formins for F-actin nucleation, we propose that ergosterol may inhibit formin dependent assembly of F-actin cables from cytokinetic precursors.
Collapse
Affiliation(s)
| | - Sergio A Rincon
- Institut Curie, PSL University, CNRS UMR 144, 75005 Paris, France .,Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca 37007, Spain
| | - Anne Paoletti
- Institut Curie, PSL University, CNRS UMR 144, 75005 Paris, France
| |
Collapse
|
37
|
Chatterjee M, Pollard TD. The Functionally Important N-Terminal Half of Fission Yeast Mid1p Anillin Is Intrinsically Disordered and Undergoes Phase Separation. Biochemistry 2019; 58:3031-3041. [PMID: 31243991 DOI: 10.1021/acs.biochem.9b00217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Division of fungal and animal cells depends on scaffold proteins called anillins. Cytokinesis by the fission yeast Schizosaccharomyces pombe is compromised by the loss of anillin Mid1p (Mid1, UniProtKB P78953 ), because cytokinesis organizing centers, called nodes, are misplaced and fail to acquire myosin-II, so they assemble slowly into abnormal contractile rings. The C-terminal half of Mid1p consists of lipid binding C2 and PH domains, but the N-terminal half (Mid1p-N452) performs most of the functions of the full-length protein. Little is known about the structure of the N-terminal half of Mid1p, so we investigated its physical properties using structure prediction tools, spectroscopic techniques, and hydrodynamic measurements. The data indicate that Mid1p-N452 is intrinsically disordered but moderately compact. Recombinant Mid1p-N452 purified from insect cells was phosphorylated, which weakens its tendency to aggregate. Purified Mid1p-N452 demixes into liquid droplets at concentrations far below its concentration in nodes. These physical properties are appropriate for scaffolding other proteins in nodes.
Collapse
|
38
|
Mangione MC, Gould KL. Molecular form and function of the cytokinetic ring. J Cell Sci 2019; 132:132/12/jcs226928. [PMID: 31209062 DOI: 10.1242/jcs.226928] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Animal cells, amoebas and yeast divide using a force-generating, actin- and myosin-based contractile ring or 'cytokinetic ring' (CR). Despite intensive research, questions remain about the spatial organization of CR components, the mechanism by which the CR generates force, and how other cellular processes are coordinated with the CR for successful membrane ingression and ultimate cell separation. This Review highlights new findings about the spatial relationship of the CR to the plasma membrane and the arrangement of molecules within the CR from studies using advanced microscopy techniques, as well as mechanistic information obtained from in vitro approaches. We also consider advances in understanding coordinated cellular processes that impact the architecture and function of the CR.
Collapse
Affiliation(s)
- MariaSanta C Mangione
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| |
Collapse
|
39
|
Miller CJ, LaFosse PK, Asokan SB, Haugh JM, Bear JE, Elston TC. Emergent spatiotemporal dynamics of the actomyosin network in the presence of chemical gradients. Integr Biol (Camb) 2019; 11:280-292. [PMID: 31365063 PMCID: PMC6686739 DOI: 10.1093/intbio/zyz023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 06/05/2019] [Accepted: 06/21/2019] [Indexed: 01/11/2023]
Abstract
We used particle-based computer simulations to study the emergent properties of the actomyosin cytoskeleton. Our model accounted for biophysical interactions between filamentous actin and non-muscle myosin II and was motivated by recent experiments demonstrating that spatial regulation of myosin activity is required for fibroblasts responding to spatial gradients of platelet derived growth factor (PDGF) to undergo chemotaxis. Our simulations revealed the spontaneous formation of actin asters, consistent with the punctate actin structures observed in chemotacting fibroblasts. We performed a systematic analysis of model parameters to identify biochemical steps in myosin activity that significantly affect aster formation and performed simulations in which model parameter values vary spatially to investigate how the model responds to chemical gradients. Interestingly, spatial variations in motor stiffness generated time-dependent behavior of the actomyosin network, in which actin asters continued to spontaneously form and dissociate in different regions of the gradient. Our results should serve as a guide for future experimental investigations.
Collapse
Affiliation(s)
- Callie J Miller
- Department of Engineering, James Madison University, Harrisonburg, VA, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul K LaFosse
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Sreeja B Asokan
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - James E Bear
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
40
|
Network Contractility During Cytokinesis-from Molecular to Global Views. Biomolecules 2019; 9:biom9050194. [PMID: 31109067 PMCID: PMC6572417 DOI: 10.3390/biom9050194] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/28/2022] Open
Abstract
Cytokinesis is the last stage of cell division, which partitions the mother cell into two daughter cells. It requires the assembly and constriction of a contractile ring that consists of a filamentous contractile network of actin and myosin. Network contractility depends on network architecture, level of connectivity and myosin motor activity, but how exactly is the contractile ring network organized or interconnected and how much it depends on motor activity remains unclear. Moreover, the contractile ring is not an isolated entity; rather, it is integrated into the surrounding cortex. Therefore, the mechanical properties of the cell cortex and cortical behaviors are expected to impact contractile ring functioning. Due to the complexity of the process, experimental approaches have been coupled to theoretical modeling in order to advance its global understanding. While earlier coarse-grained descriptions attempted to provide an integrated view of the process, recent models have mostly focused on understanding the behavior of an isolated contractile ring. Here we provide an overview of the organization and dynamics of the actomyosin network during cytokinesis and discuss existing theoretical models in light of cortical behaviors and experimental evidence from several systems. Our view on what is missing in current models and should be tested in the future is provided.
Collapse
|
41
|
Okada H, Wloka C, Wu JQ, Bi E. Distinct Roles of Myosin-II Isoforms in Cytokinesis under Normal and Stressed Conditions. iScience 2019; 14:69-87. [PMID: 30928696 PMCID: PMC6441717 DOI: 10.1016/j.isci.2019.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/30/2019] [Accepted: 03/12/2019] [Indexed: 12/31/2022] Open
Abstract
To address the question of why more than one myosin-II isoform is expressed in a single cell to drive cytokinesis, we analyzed the roles of the myosin-II isoforms, Myo2 and Myp2, of the fission yeast Schizosaccharomyces pombe, in cytokinesis under normal and stressed conditions. We found that Myp2 controls the disassembly, stability, and constriction initiation of the Myo2 ring in response to high-salt stress. A C-terminal coiled-coil domain of Myp2 is required for its immobility and contractility during cytokinesis, and when fused to the tail of the dynamic Myo2, renders the chimera the low-turnover property. We also found, by following distinct processes in real time at the single-cell level, that Myo2 and Myp2 are differentially required but collectively essential for guiding extracellular matrix remodeling during cytokinesis. These results suggest that the dynamic and immobile myosin-II isoforms are evolved to carry out cytokinesis with robustness under different growth conditions. The myosin-II isoforms Myo2 and Myp2 display distinct responses to cellular stress Myp2 controls the constriction initiation of Myo2 during stress response A C-terminal region of Myp2 is required for its immobility during cytokinesis Myo2 and Myp2 are differentially required for guiding ECM remodeling during cytokinesis
Collapse
Affiliation(s)
- Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Carsten Wloka
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AE Groningen, The Netherlands
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
42
|
Willet AH, DeWitt AK, Beckley JR, Clifford DM, Gould KL. NDR Kinase Sid2 Drives Anillin-like Mid1 from the Membrane to Promote Cytokinesis and Medial Division Site Placement. Curr Biol 2019; 29:1055-1063.e2. [PMID: 30853434 DOI: 10.1016/j.cub.2019.01.075] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/09/2019] [Accepted: 01/29/2019] [Indexed: 11/18/2022]
Abstract
In animals and fungi, cytokinesis is facilitated by the constriction of an actomyosin contractile ring (CR) [1]. In Schizosaccharomyces pombe, the CR forms mid-cell during mitosis from clusters of proteins at the medial cell cortex called nodes [2]. The anillin-like protein Mid1 localizes to nodes and is required for CR assembly at mid-cell [3]. When CR constriction begins, Mid1 leaves the division site. How Mid1 disassociates and whether this step is important for cytokinetic progression has been unknown. The septation initiation network (SIN), analogous to the Hippo pathway of multicellular organisms, is a signaling cascade that triggers node dispersal, CR assembly and constriction, and septum formation [4, 5]. We report that the terminal SIN kinase, Sid2 [6], phosphorylates Mid1 to drive its removal from the cortex at CR constriction onset. A Mid1 mutant that cannot be phosphorylated by Sid2 remains cortical during cytokinesis, over-accumulates in interphase nodes following cell division in a manner dependent on the SAD kinase Cdr2, advances the G2/M transition, precociously recruits other CR components to nodes, pulls Cdr2 aberrantly into the CR, and reduces rates of CR maturation and constriction. When combined with cdr2 mutants that affect node assembly or disassembly, gross defects in division site positioning result. Our findings identify Mid1 as a key Sid2 substrate for SIN-mediated remodeling of the division site for efficient cytokinesis and provide evidence that nodes serve to integrate signals coordinating cell cycle progression and cytokinesis.
Collapse
Affiliation(s)
- Alaina H Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ashley K DeWitt
- Grand Valley State University, Department of Cell and Molecular Biology, Allendale, MI 49401, USA
| | - Janel R Beckley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Dawn M Clifford
- Grand Valley State University, Department of Cell and Molecular Biology, Allendale, MI 49401, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
43
|
Onwubiko UN, Mlynarczyk PJ, Wei B, Habiyaremye J, Clack A, Abel SM, Das ME. A Cdc42 GEF, Gef1, through endocytosis organizes F-BAR Cdc15 along the actomyosin ring and promotes concentric furrowing. J Cell Sci 2019; 132:jcs223776. [PMID: 30709916 PMCID: PMC6432710 DOI: 10.1242/jcs.223776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/21/2019] [Indexed: 01/17/2023] Open
Abstract
During cytokinesis, fission yeast coordinates actomyosin ring constriction with septum ingression, resulting in concentric furrow formation by a poorly defined mechanism. We report that Schizosaccharomyces pombe cells lacking the Cdc42 activator Gef1, combined with an activated allele of the formin, Cdc12, display non-concentric furrowing. Non-concentrically furrowing cells display uneven distribution of the scaffold Cdc15 along the ring. This suggests that, after ring assembly, uniform Cdc15 distribution along the ring enables proper furrow formation. We find that, after assembly, Cdc15 is recruited to the ring in an Arp2/3 complex-dependent manner and is decreased in the activated cdc12 mutant. Cdc15 at cortical endocytic patches shows increased levels and extended lifetimes in gef1 and activated cdc12 mutants. We hypothesize endocytosis helps recruit Cdc15 to assembled rings; uneven Cdc15 distribution at the ring occurs when endocytic patches contain increased Cdc15 levels and the patch-association rate is slow. Based on this, we developed a mathematical model that captures experimentally observed Cdc15 distributions along the ring. We propose that, at the ring, Gef1 and endocytic events promote uniform Cdc15 organization to enable proper septum ingression and concentric furrow formation.
Collapse
Affiliation(s)
- Udo N Onwubiko
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Paul J Mlynarczyk
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Bin Wei
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Julius Habiyaremye
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Amanda Clack
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Steven M Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Maitreyi E Das
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
44
|
Kwon L, Magee EM, Crayton A, Goss JW. Fission yeast type 2 node proteins Blt1p and Gef2p cooperate to ensure timely completion of cytokinesis. BMC Mol Cell Biol 2019; 20:1. [PMID: 31041892 PMCID: PMC6446504 DOI: 10.1186/s12860-018-0182-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 12/14/2018] [Indexed: 12/01/2022] Open
Abstract
Background The conserved NDR-family kinase Sid2p localizes to the contractile ring during fission yeast cytokinesis to promote ring constriction, septation, and completion of cell division. Previous studies have found that the Type 2 interphase node proteins Blt1p and Gef2p contribute to localization of Sid2p and its regulatory protein Mob1p at the division site. However, their relative contributions and whether they operate in the same or parallel pathways has been unclear. In this study, we quantify the respective roles of Blt1p and Gef2p in Sid2p/Mob1p recruitment and characterize the effect of single and double deletion mutants on contractile ring dynamics and completion of cell division. Results Using quantitative confocal fluorescence microscopy, we measured Sid2p and Mob1p recruitment to the division site in blt1∆, gef2∆, and blt1∆/gef2∆ mutant cells. We observed an equivalent decrease in Sid2p/Mob1p localization for both single and double mutants. Though assembly of the contractile ring is normal in these mutants, the reduction in Sid2p/Mob1p at the division site delayed the onset of contractile ring constriction and completion of division. We quantified localization of Blt1p and Gef2p at the medial cortex throughout the cell cycle and found that Blt1p localization to interphase nodes and the contractile ring is independent of Gef2p. However, Gef2p localization to the contractile ring is decreased in blt1∆ mutants. Conclusions Blt1p and Gef2p work in the same pathway, rather than in parallel, to localize the NDR-family kinase Sid2p and its regulatory partner Mob1p to the division site, thereby promoting timely completion of cell division. Future studies are necessary to understand how additional fission yeast cytokinesis proteins work with these Type 2 interphase node components to promote Sid2p/Mob1p recruitment. Electronic supplementary material The online version of this article (10.1186/s12860-018-0182-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lois Kwon
- Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA, 02481, USA
| | - Emma M Magee
- Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA, 02481, USA
| | - Alexis Crayton
- Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA, 02481, USA
| | - John W Goss
- Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA, 02481, USA.
| |
Collapse
|
45
|
Berro J. "Essentially, all models are wrong, but some are useful"-a cross-disciplinary agenda for building useful models in cell biology and biophysics. Biophys Rev 2018; 10:1637-1647. [PMID: 30421276 PMCID: PMC6297095 DOI: 10.1007/s12551-018-0478-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
Intuition alone often fails to decipher the mechanisms underlying the experimental data in Cell Biology and Biophysics, and mathematical modeling has become a critical tool in these fields. However, mathematical modeling is not as widespread as it could be, because experimentalists and modelers often have difficulties communicating with each other, and are not always on the same page about what a model can or should achieve. Here, we present a framework to develop models that increase the understanding of the mechanisms underlying one's favorite biological system. Development of the most insightful models starts with identifying a good biological question in light of what is known and unknown in the field, and determining the proper level of details that are sufficient to address this question. The model should aim not only to explain already available data, but also to make predictions that can be experimentally tested. We hope that both experimentalists and modelers who are driven by mechanistic questions will find these guidelines useful to develop models with maximum impact in their field.
Collapse
Affiliation(s)
- Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
- Nanobiology Institute, Yale University, West Haven, CT, USA.
| |
Collapse
|
46
|
O’Shaughnessy B, Thiyagarajan S. Mechanisms of contractile ring tension production and constriction. Biophys Rev 2018; 10:1667-1681. [PMID: 30456601 PMCID: PMC6297097 DOI: 10.1007/s12551-018-0476-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 12/24/2022] Open
Abstract
The contractile ring is a remarkable tension-generating cellular machine that constricts and divides cells into two during cytokinesis, the final stage of the cell cycle. Since the ring's discovery, the parallels with muscle have been emphasized. Both are contractile actomyosin machineries, and long ago, a muscle-like sliding filament mechanism was proposed for the ring. This review focuses on the mechanisms that generate ring tension and constrict contractile rings. The emphasis is on fission yeast, whose contractile ring is sufficiently well characterized that realistic mathematical models are feasible, and possible lessons from fission yeast that may apply to animal cells are discussed. Recent discoveries relevant to the organization in fission yeast rings suggest a stochastic steady-state version of the classic sliding filament mechanism for tension. The importance of different modes of anchoring for tension production and for organizational stability of constricting rings is discussed. Possible mechanisms are discussed that set the constriction rate and enable the contractile ring to meet the technical challenge of maintaining structural integrity and tension-generating capacity while continuously disassembling throughout constriction.
Collapse
Affiliation(s)
- Ben O’Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY 10027 USA
| | | |
Collapse
|
47
|
Abstract
During cytokinesis, the cell employs various molecular machineries to separate into two daughters. Many signaling pathways are required to ensure temporal and spatial coordination of the molecular and mechanical events. Cells can also coordinate division with neighboring cells to maintain tissue integrity and flexibility. In this review, we focus on recent advances in the understanding of the molecular underpinnings of cytokinesis.
Collapse
Affiliation(s)
- Yinan Liu
- Departments of Cell Biology and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Douglas Robinson
- Departments of Cell Biology and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| |
Collapse
|
48
|
Ueda EI, Kashiwazaki J, Inoué S, Mabuchi I. Fission yeast Adf1 is necessary for reassembly of actin filaments into the contractile ring during cytokinesis. Biochem Biophys Res Commun 2018; 506:330-338. [DOI: 10.1016/j.bbrc.2018.07.156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/31/2018] [Indexed: 01/27/2023]
|
49
|
Higashi T, Stephenson RE, Miller AL. Comprehensive analysis of formin localization in Xenopus epithelial cells. Mol Biol Cell 2018; 30:82-95. [PMID: 30379611 PMCID: PMC6337911 DOI: 10.1091/mbc.e18-02-0133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Reorganization of the actin cytoskeleton is crucial for cellular processes, including cytokinesis and cell–cell junction remodeling. Formins are conserved processive actin-polymerizing machines that regulate actin dynamics by nucleating, elongating, and bundling linear actin filaments. Because the formin family is large, with at least 15 members in vertebrates, there have not been any comprehensive studies examining formin localization and function within a common cell type. Here, we characterized the localization of all 15 formins in epithelial cells of Xenopus laevis gastrula-stage embryos. Dia1 and Dia2 localized to tight junctions, while Fhod1 and Fhod3 localized to adherens junctions. Only Dia3 strongly localized at the cytokinetic contractile ring. The Diaphanous inhibitory domain–dimerization domain (DID-DD) region of Dia1 was sufficient for Dia1 localization, and overexpression of a Dia1 DID-DD fragment competitively removed Dia1 and Dia2 from cell–cell junctions. In Dia1 DID-DD–overexpressing cells, Dia1 and Dia2 were mislocalized to the contractile ring, and cells exhibited increased cytokinesis failure. This work provides a comprehensive analysis of the localization of all 15 vertebrate formins in epithelial cells and suggests that misregulated formin localization results in epithelial cytokinesis failure.
Collapse
Affiliation(s)
- Tomohito Higashi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Rachel E Stephenson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
50
|
Dey SK, Pollard TD. Involvement of the septation initiation network in events during cytokinesis in fission yeast. J Cell Sci 2018; 131:jcs.216895. [PMID: 30072443 DOI: 10.1242/jcs.216895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022] Open
Abstract
The septation initiation network (SIN), comprising a GTPase and a cascade of three protein kinases, regulates cell division in fission yeast Schizosaccharomyces pombe, but questions remain about its influence on cytokinesis. Here, we made quantitative measurements of the numbers of Cdc7p kinase molecules (a marker for SIN activity) on spindle pole bodies (SPBs), and on the timing of assembly, maturation and constriction of contractile rings via six different proteins tagged with fluorescent proteins. When SIN activity is low in spg1-106 mutant cells at 32°C, cytokinetic nodes formed contractile rings ∼3 min slower than wild-type cells. During the maturation period, these rings maintained normal levels of the myosin-II mEGFP-Myo2p but accumulated less of the F-BAR protein Cdc15p-GFP than in wild-type cells. The Cdc15p-GFP fluorescence then disintegrated into spots as mEGFP-Myo2p dissociated slowly. Some rings started to constrict at the normal time, but most failed to complete constriction. When high SIN activity persists far longer than normal on both SPBs in cdc16-116 mutant cells at 32°C, contractile rings assembled and constricted normally, but disassembled slowly, delaying cell separation.
Collapse
Affiliation(s)
- Sumit K Dey
- Department of Molecular Cellular and Developmental Biology, Yale University, PO Box 208103, New Haven, CT 06520-8103, USA
| | - Thomas D Pollard
- Department of Molecular Cellular and Developmental Biology, Yale University, PO Box 208103, New Haven, CT 06520-8103, USA .,Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 208103, New Haven, CT 06520-8103, USA.,Department of Cell Biology, Yale University, PO Box 208103, New Haven, CT 06520-8103, USA
| |
Collapse
|