1
|
Sharifian Gh. M, Norouzi F, Sorci M, Zaid TS, Pier GB, Achimovich A, Ongwae GM, Liang B, Ryan M, Lemke M, Belfort G, Gadjeva M, Gahlmann A, Pires MM, Venter H, Harris TE, Laurie GW. Targeting Iron - Respiratory Reciprocity Promotes Bacterial Death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582947. [PMID: 38464199 PMCID: PMC10925246 DOI: 10.1101/2024.03.01.582947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Discovering new bacterial signaling pathways offers unique antibiotic strategies. Here, through an unbiased resistance screen of 3,884 gene knockout strains, we uncovered a previously unknown non-lytic bactericidal mechanism that sequentially couples three transporters and downstream transcription to lethally suppress respiration of the highly virulent P. aeruginosa strain PA14 - one of three species on the WHO's 'Priority 1: Critical' list. By targeting outer membrane YaiW, cationic lacritin peptide 'N-104' translocates into the periplasm where it ligates outer loops 4 and 2 of the inner membrane transporters FeoB and PotH, respectively, to suppress both ferrous iron and polyamine uptake. This broadly shuts down transcription of many biofilm-associated genes, including ferrous iron-dependent TauD and ExbB1. The mechanism is innate to the surface of the eye and is enhanced by synergistic coupling with thrombin peptide GKY20. This is the first example of an inhibitor of multiple bacterial transporters.
Collapse
Affiliation(s)
| | - Fatemeh Norouzi
- Department of Cell Biology, University of Virginia, Charlottesville VA, USA
| | - Mirco Sorci
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy NY, USA
| | - Tanweer S Zaid
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston MA
| | - Gerald B. Pier
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston MA
| | - Alecia Achimovich
- Department of Chemistry, University of Virginia, Charlottesville VA, USA
| | - George M. Ongwae
- Department of Chemistry, University of Virginia, Charlottesville VA, USA
| | - Binyong Liang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville VA, USA
| | - Margaret Ryan
- Department of Cell Biology, University of Virginia, Charlottesville VA, USA
| | - Michael Lemke
- Department of Pharmacology, University of Virginia, Charlottesville VA, USA
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy NY, USA
| | - Mihaela Gadjeva
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston MA
| | - Andreas Gahlmann
- Department of Chemistry, University of Virginia, Charlottesville VA, USA
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville VA, USA
| | - Henrietta Venter
- Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Thurl E. Harris
- Department of Pharmacology, University of Virginia, Charlottesville VA, USA
| | - Gordon W. Laurie
- Department of Cell Biology, University of Virginia, Charlottesville VA, USA
- Department of Ophthalmology, University of Virginia, Charlottesville VA, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville VA, USA
- Contact author: Gordon Laurie
| |
Collapse
|
2
|
Lapcik P, Sulc P, Janacova L, Jilkova K, Potesil D, Bouchalova P, Müller P, Bouchal P. Desmocollin-1 is associated with pro-metastatic phenotype of luminal A breast cancer cells and is modulated by parthenolide. Cell Mol Biol Lett 2023; 28:68. [PMID: 37620794 PMCID: PMC10464112 DOI: 10.1186/s11658-023-00481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Desmocollin-1 (DSC1) is a desmosomal transmembrane glycoprotein that maintains cell-to-cell adhesion. DSC1 was previously associated with lymph node metastasis of luminal A breast tumors and was found to increase migration and invasion of MCF7 cells in vitro. Therefore, we focused on DSC1 role in cellular and molecular mechanisms in luminal A breast cancer and its possible therapeutic modulation. METHODS Western blotting was used to select potential inhibitor decreasing DSC1 protein level in MCF7 cell line. Using atomic force microscopy we evaluated effect of DSC1 overexpression and modulation on cell morphology. The LC-MS/MS analysis of total proteome on Orbitrap Lumos and RNA-Seq analysis of total transcriptome on Illumina NextSeq 500 were performed to study the molecular mechanisms associated with DSC1. Pull-down analysis with LC-MS/MS detection was carried out to uncover DSC1 protein interactome in MCF7 cells. RESULTS Analysis of DSC1 protein levels in response to selected inhibitors displays significant DSC1 downregulation (p-value ≤ 0.01) in MCF7 cells treated with NF-κB inhibitor parthenolide. Analysis of mechanic cell properties in response to DSC1 overexpression and parthenolide treatment using atomic force microscopy reveals that DSC1 overexpression reduces height of MCF7 cells and conversely, parthenolide decreases cell stiffness of MCF7 cells overexpressing DSC1. The LC-MS/MS total proteome analysis in data-independent acquisition mode shows a strong connection between DSC1 overexpression and increased levels of proteins LACRT and IGFBP5, increased expression of IGFBP5 is confirmed by RNA-Seq. Pathway analysis of proteomics data uncovers enrichment of proliferative MCM_BIOCARTA pathway including CDK2 and MCM2-7 after DSC1 overexpression. Parthenolide decreases expression of LACRT, IGFBP5 and MCM_BIOCARTA pathway specifically in DSC1 overexpressing cells. Pull-down assay identifies DSC1 interactions with cadherin family proteins including DSG2, CDH1, CDH3 and tyrosine kinase receptors HER2 and HER3; parthenolide modulates DSC1-HER3 interaction. CONCLUSIONS Our systems biology data indicate that DSC1 is connected to mechanisms of cell cycle regulation in luminal A breast cancer cells, and can be effectively modulated by parthenolide.
Collapse
Affiliation(s)
- Petr Lapcik
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Petr Sulc
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Lucia Janacova
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Katerina Jilkova
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - David Potesil
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Pavla Bouchalova
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Petr Müller
- Masaryk Memorial Cancer Institute, RECAMO, Brno, Czech Republic
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
| |
Collapse
|
3
|
Dias-Teixeira KL, Sharifian Gh M, Romano J, Norouzi F, Laurie GW. Autophagy in the normal and diseased cornea. Exp Eye Res 2022; 225:109274. [PMID: 36252655 PMCID: PMC10083687 DOI: 10.1016/j.exer.2022.109274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 01/18/2023]
Abstract
The cornea and covering tear film are together the 'objective lens' of the eye through which 80% of light is refracted. Despite exposure to a physically harsh and at times infectious or toxic environment, transparency essential for sight is in most cases maintained. Such resiliency makes the avascular cornea a superb model for the exploration of autophagy in the regulation of homeostasis with relevancy to all organs. Nonetheless, missense mutations and inflammation respectively clog or apparently overwhelm autophagic flux to create dystrophies much like in neurodegenerative diseases or further exacerbate inflammation. Here there is opportunity to generate novel topical therapies towards the restoration of homeostasis with potential broad application.
Collapse
Affiliation(s)
| | | | - Jeff Romano
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Fatemeh Norouzi
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Gordon W Laurie
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Wirta D, Torkildsen GL, Boehmer B, Hollander DA, Bendert E, Zeng L, Ackermann M, Nau J. ONSET-1 Phase 2b Randomized Trial to Evaluate the Safety and Efficacy of OC-01 (Varenicline Solution) Nasal Spray on Signs and Symptoms of Dry Eye Disease. Cornea 2022; 41:1207-1216. [PMID: 36107843 PMCID: PMC9473713 DOI: 10.1097/ico.0000000000002941] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE The purpose of this trial was to evaluate the safety and efficacy of OC-01 (varenicline solution), a nicotinic acetylcholine receptor agonist nasal spray, on signs and symptoms of dry eye disease. METHODS A phase 2b, multicenter, randomized, double-masked, vehicle-controlled trial (ONSET-1; NCT03636061) was performed. Patients were aged 22 years or older with a physician's diagnosis of dry eye disease and previous use of artificial tears were randomized 1:1:1:1 to control (vehicle nasal spray twice daily [BID]), OC-01 0.006 mg BID, OC-01 0.03 mg BID, and OC-01 0.06 mg BID. The primary end point was the change in the anesthetized Schirmer test score from baseline to day 28 in the study eye. The secondary end points included the change in the eye dryness score from baseline to day 28. RESULTS One hundred eighty-two patients were randomized. After 28 days, patients who received OC-01 0.03 or 0.06 mg showed a statistically significant improvement in tear film production relative to vehicle, with least squares mean differences from vehicle of 7.7 mm [95% confidence interval, 3.8-11.7; P < 0.001] with OC-01 0.03 mg and 7.5 mm (95% confidence interval, 3.4-11.6; P < 0.001) with OC-01 0.06 mg. Patients receiving OC-01 0.03 mg showed a significant reduction in the eye dryness score by day 28 versus vehicle (P = 0.021); those receiving the OC-01 0.06 mg dose showed a nonsignificant reduction versus vehicle. OC-01 administration was associated with sneezing (62%-84%) and cough (9%-25%); these were transient and predominantly mild in severity. CONCLUSIONS OC-01 nasal spray administered BID at 0.03 and 0.06 mg resulted in significant improvements in signs and symptoms of dry eye disease, was well tolerated, and warrants further clinical investigation.
Collapse
Affiliation(s)
| | | | | | | | | | - Lijuan Zeng
- Statistics Collaborative, Inc, Washington, DC; and
| | | | | |
Collapse
|
5
|
Efraim Y, Chen FYT, Cheong KN, Gaylord EA, McNamara NA, Knox SM. A synthetic tear protein resolves dry eye through promoting corneal nerve regeneration. Cell Rep 2022; 40:111307. [PMID: 36044852 PMCID: PMC9549932 DOI: 10.1016/j.celrep.2022.111307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/17/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022] Open
Abstract
Corneal architecture is essential for vision and is greatly perturbed by the absence of tears due to the highly prevalent disorder dry eye. With no regenerative therapies available, pathological alterations of the ocular surface in response to dryness, including persistent epithelial defects and poor wound healing, result in life-long morbidity. Here, using a mouse model of aqueous-deficient dry eye, we reveal that topical application of the synthetic tear protein Lacripep reverses the pathological outcomes of dry eye through restoring the extensive network of corneal nerves that are essential for tear secretion, barrier function, epithelial homeostasis, and wound healing. Intriguingly, the restorative effects of Lacripep occur despite extensive immune cell infiltration, suggesting tissue reinnervation and regeneration can be achieved under chronic inflammatory conditions. In summary, our data highlight Lacripep as a first-in-class regenerative therapy for returning the cornea to a near homeostatic state in individuals who suffer from dry eye. Currently, there are no regenerative treatments for ocular pathologies due to dry eye. Efraim et al. demonstrate the synthetic tear peptide Lacripep as a regenerative therapy capable of restoring the damaged, dysfunctional ocular surface to a near homeostatic state through promoting nerve regeneration in the presence of chronic inflammation.
Collapse
Affiliation(s)
- Yael Efraim
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Feeling Yu Ting Chen
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ka Neng Cheong
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eliza A Gaylord
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nancy A McNamara
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Oakland, CA 94720, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Sarah M Knox
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
6
|
Lacripep for the Treatment of Primary Sjögren's-Associated Ocular Surface Disease: Results of the First-In-Human Study. Cornea 2022:00003226-990000000-00084. [PMID: 35942530 PMCID: PMC9895125 DOI: 10.1097/ico.0000000000003091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/21/2022] [Indexed: 02/08/2023]
Abstract
PURPOSE The purpose of this study was to assess the safety, tolerability, dosing, and efficacy of the active 19 amino acid fragment of lacritin (Lacripep), a broad regulator of ocular surface homeostasis, in the treatment of ocular surface disease associated with primary Sjögren's syndrome. METHODS Two hundred four subjects were randomized to receive vehicle, 22 μM Lacripep, or 44 μM Lacripep 3 times daily for 28 days, preceded by a 14-day run-in and followed by 14-day washout. Outcome measures were corneal fluorescein staining (CFS), lissamine conjunctival staining, Schirmer with anesthesia, tear break-up time, SANDE scoring, and visual analog scale assessment of symptoms. RESULTS This study established the safety and tolerability of topical treatment with Lacripep in patients with primary Sjögren's syndrome. There were few adverse events: Only mild irritation was found in less than 3 percent of patients dosed with Lacripep. Total CFS and Eye Dryness Score were not significantly changed at day 28. Post hoc analysis of patients with Eye Dryness Severity scores of 60 or greater at baseline revealed significant improvements in inferior CFS at 14 and 28 days and complaints of burning and stinging at 14 days. Significant improvement in regional lissamine conjunctival staining was seen at 14 and 28 days. CONCLUSIONS This first-in-human study of Lacripep in patients with primary Sjögren's syndrome demonstrated clinically significant improvements in specific signs and symptoms on which to base future studies. This study established safety and tolerability and potential metrics of efficacy in patients with moderate to severe disease. Further work on appropriate dosing and concentration is ongoing.
Collapse
|
7
|
Kalló G, Kumar A, Tőzsér J, Csősz É. Chemical Barrier Proteins in Human Body Fluids. Biomedicines 2022; 10:biomedicines10071472. [PMID: 35884778 PMCID: PMC9312486 DOI: 10.3390/biomedicines10071472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Chemical barriers are composed of those sites of the human body where potential pathogens can contact the host cells. A chemical barrier is made up by different proteins that are part of the antimicrobial and immunomodulatory protein/peptide (AMP) family. Proteins of the AMP family exert antibacterial, antiviral, and/or antifungal activity and can modulate the immune system. Besides these proteins, a wide range of proteases and protease inhibitors can also be found in the chemical barriers maintaining a proteolytic balance in the host and/or the pathogens. In this review, we aimed to identify the chemical barrier components in nine human body fluids. The interaction networks of the chemical barrier proteins in each examined body fluid were generated as well.
Collapse
Affiliation(s)
- Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (A.K.); (J.T.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-52-416432
| | - Ajneesh Kumar
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (A.K.); (J.T.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - József Tőzsér
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (A.K.); (J.T.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (A.K.); (J.T.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| |
Collapse
|
8
|
Biochemistry of human tear film: A review. Exp Eye Res 2022; 220:109101. [DOI: 10.1016/j.exer.2022.109101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022]
|
9
|
Kalló G, Varga AK, Szabó J, Emri M, Tőzsér J, Csutak A, Csősz É. Reduced Level of Tear Antimicrobial and Immunomodulatory Proteins as a Possible Reason for Higher Ocular Infections in Diabetic Patients. Pathogens 2021; 10:pathogens10070883. [PMID: 34358033 PMCID: PMC8308669 DOI: 10.3390/pathogens10070883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Diabetes mellitus is one of the most common metabolic disorders and a risk factor for bacterial ocular infections. Our aim was to examine the antibacterial activity of tears from patients with diabetes mellitus with and without diabetic retinopathy and to link this activity to the level of tear proteins. (2) Methods: Non-stimulated basal tears were collected from 39 eyes of 35 subjects. The antibacterial activity of tear pools was tested against pathogenic Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 26922 and Pseudomonas aeruginosa ATCC 27853 strains. The levels of 10 antimicrobial and immunomodulatory proteins were analyzed in the individual tear samples of the studied groups by SRM-based targeted mass spectrometry analysis. (3) Results: Disease stage-specific antimicrobial effect was observed in case of Staphylococcus aureus ATCC 29213 strain, and a non-disease specific inhibitory effect was observed in case of Pseudomonas aeruginosa ATCC 27853 strain. Changes in the levels of the studied antimicrobial and immunomodulatory proteins in the tears of the studied groups were also observed. (4) Conclusions: The higher ocular infection rate observed in diabetic patients may be the consequence of the decreased antimicrobial activity of tears possibly caused by the changes in the levels of antimicrobial and immunomodulatory proteins.
Collapse
Affiliation(s)
- Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (G.K.); (A.K.V.); (J.T.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Anita Katalin Varga
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (G.K.); (A.K.V.); (J.T.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Judit Szabó
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary;
| | - Miklós Emri
- Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary;
| | - József Tőzsér
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (G.K.); (A.K.V.); (J.T.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Adrienne Csutak
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary;
- Department of Ophthalmology, Faculty of Medicine, University of Pécs, Rákóczi út 2, 7623 Pécs, Hungary
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (G.K.); (A.K.V.); (J.T.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-52-416-432; Fax: +36-52-314-989
| |
Collapse
|
10
|
Abstract
Dry eye disease (DED) is among the most common reasons for visiting eye care practitioners and represents a substantial health and cost burden. Disease prevalence ranges from 5% to 33% and is increasing in the younger population. The core mechanism of DED involves a vicious cycle where hyperosmolarity leads to an inflammatory cascade resulting in ocular surface damage. No cure is available for DED, and patients require ongoing disease management. Over-the-counter medications can provide temporary symptom relief but do not tackle the inflammatory pathophysiology of DED. A number of medications with anti-inflammatory activity are available, but there is a need for development of pharmacotherapies with novel delivery methods and targets to widen the variety of treatment options. This review discusses current anti-inflammatory pharmacotherapies approved in the United States and Europe for DED and highlights novel drugs that have been recently approved or are in development.
Collapse
|
11
|
Eshac Y, Redfern RL, Aakalu VK. The Role of Endogenous Antimicrobial Peptides in Modulating Innate Immunity of the Ocular Surface in Dry Eye Diseases. Int J Mol Sci 2021; 22:E721. [PMID: 33450870 PMCID: PMC7828360 DOI: 10.3390/ijms22020721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
The ocular surface has the challenging responsibility of maintaining a clear moist refractive surface while protecting the eye from exogenous pathogens and the environment. Homeostasis of the ocular surface, including its innate immune components, is altered in ocular surface disease states. In this review, we focus on antimicrobial peptides and the role they play in the immune response of the ocular surface during healthy states and dry eye diseases. Antimicrobial peptides are of special interest to the study of the ocular surface because of their various roles that include microbial threat neutralization, wound healing, and immune modulation. This review explores current literature on antimicrobial peptides in ocular surface diseases and discusses their therapeutic potential in ocular surface diseases and dry eye.
Collapse
Affiliation(s)
- Youssof Eshac
- Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt;
| | - Rachel L. Redfern
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX 77204, USA;
| | - Vinay Kumar Aakalu
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
12
|
Georgiev GA, Gh MS, Romano J, Dias Teixeira KL, Struble C, Ryan DS, Sia RK, Kitt JP, Harris JM, Hsu KL, Libby A, Odrich MG, Suárez T, McKown RL, Laurie GW. Lacritin proteoforms prevent tear film collapse and maintain epithelial homeostasis. J Biol Chem 2020; 296:100070. [PMID: 33187980 PMCID: PMC7948570 DOI: 10.1074/jbc.ra120.015833] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Lipids in complex, protein-enriched films at air/liquid interfaces reduce surface tension. In the absence of this benefit, the light refracting and immunoprotective tear film on eyes would collapse. Premature collapse, coupled with chronic inflammation compromising visual acuity, is a hallmark of dry eye disease affecting 7 to 10% of individuals worldwide. Although collapse seems independent of mutation (unlike newborn lung alveoli), selective proteome and possible lipidome changes have been noted. These include elevated tissue transglutaminase and consequent inactivation through C-terminal cross-linking of the tear mitogen lacritin, leading to significant loss of lacritin monomer. Lacritin monomer restores homeostasis via autophagy and mitochondrial fusion and promotes basal tearing. Here, we discover that lacritin monomer C-terminal processing, inclusive of cysteine, serine, and metalloproteinase activity, generates cationic amphipathic α-helical proteoforms. Such proteoforms (using synthetic peptide surrogates) act like alveolar surfactant proteins to rapidly bind and stabilize the tear lipid layer. Immunodepletion of C- but not N-terminal proteoforms nor intact lacritin, from normal human tears promotes loss of stability akin to human dry eye tears. Stability of these and dry eye tears is rescuable with C- but not N-terminal proteoforms. Repeated topical application in rabbits reveals a proteoform turnover time of 7 to 33 h with gradual loss from human tear lipid that retains bioactivity without further processing. Thus, the processed C-terminus of lacritin that is deficient or absent in dry eye tears appears to play a key role in preventing tear film collapse and as a natural slow release mechanism that restores epithelial homeostasis.
Collapse
Affiliation(s)
- Georgi A Georgiev
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | | | - Jeff Romano
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Craig Struble
- Drug Metabolism, Covance Laboratories Inc, Madison, Wisconsin, USA
| | - Denise S Ryan
- Warfighter Refractive Eye Surgery Program and Research Center at Fort Belvoir, Fort Belvoir, Virginia, USA
| | - Rose K Sia
- Warfighter Refractive Eye Surgery Program and Research Center at Fort Belvoir, Fort Belvoir, Virginia, USA
| | - Jay P Kitt
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Joel M Harris
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Adam Libby
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Marc G Odrich
- Department of Ophthalmology, University of Virginia, Charlottesville, Virginia, USA
| | - Tatiana Suárez
- Department of Research, Development and Innovation, FAES FARMA, Bizkaia, Spain
| | - Robert L McKown
- Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia, USA
| | - Gordon W Laurie
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA; Department of Ophthalmology, University of Virginia, Charlottesville, Virginia, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
13
|
Justis BM, Coburn CE, Tyler EM, Showalter RS, Dissler BJ, Li M, McNamara NA, Laurie GW, McKown RL. Development of a Quantitative Immunoassay for Tear Lacritin Proteoforms. Transl Vis Sci Technol 2020; 9:13. [PMID: 32879769 PMCID: PMC7442861 DOI: 10.1167/tvst.9.9.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Lacritin is a tear glycoprotein with pro-tearing and pro-ocular surface homeostasis activities that is selectively deficient in most dry eye tears. Proteoforms include an active monomer, inactive polymers, and a splice variant termed lacritin-c. Quantitation of the different proteoforms of tear lacritin may provide a diagnostic tool for ocular diseases. Here, we report the development of an immunoassay for the quantification of multiple lacritin proteoforms in human tear samples. Methods Basal tears collected on Schirmer test strips with anesthesia were eluted by diffusion and centrifugation under optimized conditions. Tear protein concentrations were determined, and 2.56 µg of each sample was separated by SDS-PAGE followed by western blot analysis. Blots were challenged with anti-Pep Lac N-term antibodies. Detection was with fluorescent secondary antibodies visualized by the LI-COR Odyssey CLx imaging system and quantified with standard curves of recombinant lacritin. Results The percent total lacritin (ng lacritin/100 ng total protein) ranged from 1.8% to 14.8%. Monomer, lacritin-c, and polymer proteoform percent total protein ranged from 1.1% to 6.3%, 0.3% to 5.4%, and 0.7% to 5.7%, respectively. Monomer lacritin was detected at concentrations of 6 to 176 µM, with lacritin-c and polymer proteoforms at 2 to 46 µM and 1 to 23 µM, respectively. Conclusions This assay greatly exceeds the power and sensitivity of our prior lacritin enzyme-linked immunosorbent assay that was not capable of distinguishing monomer from polymers and lacritin-c proteoforms. Translational Relevance A new method has been developed to quantitate multiple proteoforms of tear lacritin in preparation for analyses of samples from clinical trials.
Collapse
Affiliation(s)
- Brooke M Justis
- School of Integrated Sciences, James Madison University, Harrisonburg, VA USA
| | - Casey E Coburn
- School of Integrated Sciences, James Madison University, Harrisonburg, VA USA
| | - Ethan M Tyler
- School of Integrated Sciences, James Madison University, Harrisonburg, VA USA
| | - Ryan S Showalter
- School of Integrated Sciences, James Madison University, Harrisonburg, VA USA
| | - Brianna J Dissler
- School of Integrated Sciences, James Madison University, Harrisonburg, VA USA
| | - Melissa Li
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA, USA
| | - Nancy A McNamara
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA, USA.,Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Gordon W Laurie
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA.,Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA.,Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Robert L McKown
- School of Integrated Sciences, James Madison University, Harrisonburg, VA USA
| |
Collapse
|
14
|
Biosynthesized Multivalent Lacritin Peptides Stimulate Exosome Production in Human Corneal Epithelium. Int J Mol Sci 2020; 21:ijms21176157. [PMID: 32859014 PMCID: PMC7504496 DOI: 10.3390/ijms21176157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022] Open
Abstract
Lacripep is a therapeutic peptide derived from the human tear protein, Lacritin. Lacripep interacts with syndecan-1 and induces mitogenesis upon the removal of heparan sulfates (HS) that are attached at the extracellular domain of syndecan-1. The presence of HS is a prerequisite for the syndecan-1 clustering that stimulates exosome biogenesis and release. Therefore, syndecan-1-mediated mitogenesis versus HS-mediated exosome biogenesis are assumed to be mutually exclusive. This study introduces a biosynthesized fusion between Lacripep and an elastin-like polypeptide named LP-A96, and evaluates its activity on cell motility enhancement versus exosome biogenesis. LP-A96 activates both downstream pathways in a dose-dependent manner. HCE-T cells at high confluence treated with 1 μM LP-A96 enhanced cell motility equipotent to Lacripep. However, cells at low density treated with 1 μM LP-A96 generated a 210-fold higher number of exosomes compared to those treated at low density with Lacripep. As monovalent Lacripep is capable of enhancing cell motility but not exosome biogenesis, activation of exosome biogenesis by LP-A96 not only suggests its utility as a novel molecular tool to study the Lacritin biology in the corneal epithelium but also implies activity as a potential therapeutic peptide that can further improve ocular surface health through the induction of exosomes.
Collapse
|
15
|
Dias-Teixeira K, Horton X, McKown R, Romano J, Laurie GW. The Lacritin-Syndecan-1-Heparanase Axis in Dry Eye Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:747-757. [PMID: 32274735 PMCID: PMC7398572 DOI: 10.1007/978-3-030-34521-1_31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Homeostasis and visual acuity of the surface of the eye are dependent on tears, a thin film comprising at least 1800 different extracellular proteins and numerous species of lipids through which 80% of entering light is refracted at the air interface. Loss of homeostasis in dry eye disease affects 5-7% of the world's population, yet little is known about key molecular players. Our story began as an unbiased screen for regulators of tearing that led to the discovery of homeostasis-restorative 'lacritin', a tear protein whose active form is selectively deficient in dry eye. Heparanase acts as a novel 'on-switch' for lacritin ligation of syndecan-1 necessary to trigger basal tearing, as well as pertussis toxin-sensitive and FOXO-dependent signaling pathways for healing of inflammation-damaged epithelia and restoring epithelial oxidative phosphorylation by mitochondrial fusion downstream of transiently accelerated autophagy. A phase 2 clinical trial has tested the applicability of this mechanism to the resolution of dry eye disease. Results are not yet available. With lacritin proteoforms detected in cerebral spinal fluid, plasma, and urine, the capacity of the lacritin-syndecan-1-heparanase axis to restore homeostasis might have wide systemic relevance to other organs.
Collapse
Affiliation(s)
| | - Xavier Horton
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Robert McKown
- School of Integrated Sciences, James Madison University, Harrisonburg, VA, USA
| | - Jeffrey Romano
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Gordon W Laurie
- Departments of Cell Biology, Biomedical Engineering and Ophthalmology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
16
|
Abstract
Exosomes are secreted vesicles involved in signaling processes. The biogenesis of a class of these extracellular vesicles depends on syntenin, and on the interaction of this cytosolic protein with syndecans. Heparanase, largely an endosomal enzyme, acts as a regulator of the syndecan-syntenin-exosome biogenesis pathway. The upregulation of syntenin and heparanase in cancers may support the suspected roles of exosomes in tumor biology.
Collapse
|
17
|
Liu J, Jin P, Lin X, Zhou Q, Wang F, Liu S, Xi S. Arsenite increases Cyclin D1 expression through coordinated regulation of the Ca 2+/NFAT2 and NF-κB pathways via ERK/MAPK in a human uroepithelial cell line. Metallomics 2018. [PMID: 29528074 DOI: 10.1039/c7mt00305f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To understand the direct link between Cyclin D1, and nuclear factor of activated T cells 2 (NFAT2) and nuclear factor (NF)-κB in arsenic-treated bladder cells, as well as the association between MAPK and NFAT signaling, we determined whether or not the Ca2+/NFAT pathway is activated in an arsenic-treated normal urothelial cell line and determined the roles of NFAT and NF-κB signals in the regulation of Cyclin D1 expression. The SV-40 immortalized human uroepithelial cell line, SV-HUC-1, was treated with NaAsO2 for 24 h (0, 1, 2, 4, 8, and 10 μM) and 10, 20, 30, and 40 weeks (0 and 0.5 μM). We found that arsenite increased the intracellular Ca2+ levels and induced NFAT2 nuclear translocation after treatment for 24 h. The level of NFAT2 mRNA and expression of total protein and nuclear protein were increased after long-term treatment with 0.5 μM arsenite for 30 and 40 weeks compared to the cells treated for 24 h. In addition, NF-κB p50 and p65 nuclear protein expression increased significantly in cells treated with 2-8 μM arsenite for 24 h, which was consistent with NFAT2 nuclear expression. Furthermore, an ERK inhibitor (U0126) significantly reduced the expression of NFAT2 nuclear protein, and an ERK and JNK inhibitor decreased the levels of p65 and p50 nuclear protein. Cyclin D1 is known as a proto-oncogene and the level of this protein was increased in SV-HUC-1 cells treated with arsenite for 24 h and long-term. An NFAT inhibitor (CsA) and NF-κB inhibitor (PDTC) all markedly reduced Cyclin D1 protein expression. Treatment with U0126 also significantly decreased Cyclin D1 protein expression while JNK and p38 inhibitors did not attenuate the arsenite-associated increase in Cyclin D1 protein expression. The results suggest that regulation of Cyclin D1 protein expression by arsenite in SV-HUC-1 cells is dependent on ERK/NFAT2 and ERK/NF-κB, but is not dependent on JNK or p38.
Collapse
Affiliation(s)
- Jieyu Liu
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, P. R. China.
| | - Peiyu Jin
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, P. R. China.
| | - Xiaoli Lin
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, P. R. China.
| | - Qing Zhou
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, P. R. China.
| | - Fei Wang
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, P. R. China.
| | - Shengnan Liu
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, P. R. China.
| | - Shuhua Xi
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, P. R. China.
| |
Collapse
|
18
|
Csősz É, Kalló G, Márkus B, Deák E, Csutak A, Tőzsér J. Quantitative body fluid proteomics in medicine - A focus on minimal invasiveness. J Proteomics 2016; 153:30-43. [PMID: 27542507 DOI: 10.1016/j.jprot.2016.08.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/27/2016] [Accepted: 08/08/2016] [Indexed: 01/07/2023]
Abstract
Identification of new biomarkers specific for various pathological conditions is an important field in medical sciences. Body fluids have emerging potential in biomarker studies especially those which are continuously available and can be collected by non-invasive means. Changes in the protein composition of body fluids such as tears, saliva, sweat, etc. may provide information on both local and systemic conditions of medical relevance. In this review, our aim is to discuss the quantitative proteomics techniques used in biomarker studies, and to present advances in quantitative body fluid proteomics of non-invasively collectable body fluids with relevance to biomarker identification. The advantages and limitations of the widely used quantitative proteomics techniques are also presented. Based on the reviewed literature, we suggest an ideal pipeline for body fluid analyses aiming at biomarkers discoveries: starting from identification of biomarker candidates by shotgun quantitative proteomics or protein arrays, through verification of potential biomarkers by targeted mass spectrometry, to the antibody-based validation of biomarkers. The importance of body fluids as a rich source of biomarkers is discussed. SIGNIFICANCE Quantitative proteomics is a challenging part of proteomics applications. The body fluids collected by non-invasive means have high relevance in medicine; they are good sources for biomarkers used in establishing the diagnosis, follow up of disease progression and predicting high risk groups. The review presents the most widely used quantitative proteomics techniques in body fluid analysis and lists the potential biomarkers identified in tears, saliva, sweat, nasal mucus and urine for local and systemic diseases.
Collapse
Affiliation(s)
- Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary
| | - Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary
| | - Bernadett Márkus
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary
| | - Eszter Deák
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary; Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary
| | - Adrienne Csutak
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary
| | - József Tőzsér
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary.
| |
Collapse
|
19
|
Azkargorta M, Soria J, Acera A, Iloro I, Elortza F. Human tear proteomics and peptidomics in ophthalmology: Toward the translation of proteomic biomarkers into clinical practice. J Proteomics 2016; 150:359-367. [PMID: 27184738 DOI: 10.1016/j.jprot.2016.05.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/02/2016] [Indexed: 12/14/2022]
Abstract
Tears are a complex biological mixture containing electrolytes, metabolites, lipids, mucins, some small organic molecules, and proteins. The tear film has various roles in the lubrication, protection from the external environment, and nutrition of the cornea; it is also involved in the modulation of the optical properties of the eye. Tear composition reflects the physiological condition of the underlying tissues. Therefore, the tear fluid is useful in the evaluation of health and disease states and it is a valuable source of biomarkers for objective analysis of ocular and systemic diseases. The relatively high protein concentration of this fluid and the ease of noninvasive sample collection make it suitable for diagnostic and prognostic purposes. Efforts in proteomics research have positively affected to the field of ophthalmology, and the knowledge on the tear proteome has expanded considerably in the last few years. Nevertheless, despite a large amount of available data and the many biomarkers proposed for several eye and systemic diseases, the extent of translation to well-characterized and clinically useful tools has been largely insufficient. As for most of other biofluids, the road from discovery to clinical application is still long and full of pitfalls. In this review, we discuss the proteomic approaches used in the characterization of tear protein and peptide content, recapitulating the main studies and the progress done. We also present a brief summary of the path from discovery to clinical application of tear protein markers, with some representative examples of translation from the bench to the bedside. SIGNIFICANCE In this review we cover the most relevant proteomic approaches used in the characterization of the tear proteome, and for the first time we also focus in advances performed in the nowadays emerging peptide content characterization. In this context, we recapitulate on the main studies and the progresses done in this field. We also present a concise overview of the course that may be happen from discovery to clinical application for tear protein markers. Finally we include some representative examples of translation from the bench to the bedside.
Collapse
Affiliation(s)
- Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - Javier Soria
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Arantxa Acera
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Ibon Iloro
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain.
| |
Collapse
|
20
|
Lacritin Salvages Human Corneal Epithelial Cells from Lipopolysaccharide Induced Cell Death. Sci Rep 2015; 5:18362. [PMID: 26670139 PMCID: PMC4680935 DOI: 10.1038/srep18362] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/12/2015] [Indexed: 02/07/2023] Open
Abstract
Innate immunity of the corneal epithelium is conferred by proteinaceous secretions from the epithelium and associated lacrimal and meibomian glands. Lacritin, an eye-specific protein with anti-microbial, cytoprotective and wound-healing properties, predominantly secreted by lacrimal glands, is absent in conditions such as Dry eye and Keratitis. In view of the biological significance of lacritin in human eye, we investigated its role in human corneal epithelial (HCE) cells during lipopolysaccharide (LPS)-induced infection. LPS-challenged HCE cells demonstrated apoptosis-mediated cell death and elevated lacritin levels. The LPS-induced cell death is alleviated with exogenous supplementation of recombinant lacritin. This cytoprotective effect of lacritin is mediated through Cyclooxygenase-2 (COX-2). This study is the first to highlight the protective role of lacritin and mechanism of its action during bacterial infection of cornea in vitro.
Collapse
|
21
|
Shegefti MS, Malekzadeh M, Malek-Hosseini Z, Khademi B, Ghaderi A, Doroudchi M. Reduced serum levels of syndecan-1 in patients with tongue squamous cell carcinoma. Laryngoscope 2015; 126:E191-5. [PMID: 26667395 DOI: 10.1002/lary.25812] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2015] [Indexed: 11/11/2022]
Abstract
OBJECTIVES/HYPOTHESIS To investigate soluble syndecan-1 (Sdc-1) in the sera of patients with tongue squamous cell carcinoma (SCC) and its correlation with the histopathological criteria of tumors. STUDY DESIGN In a case-control study using a convenient method of sampling, 18 female and 25 male patients with confirmed diagnosis of tongue SCC, and 19 healthy females and 27 males were studied. METHODS Soluble Sdc-1 was measured in the sera of 43 patients with tongue SCC and was compared with that of healthy age-/sex-matched controls using a commercial enzyme-linked immunosorbent assay. Clinical and pathological data, along with the demographic characteristics of the patients, were recorded at the time of sampling. RESULTS The levels of soluble Sdc-1 were decreased in the sera of patients compared to controls (91.17 ± 88.60 vs. 158.17 ± 103.47 ng/mL, P = .002). Although patients who smoke tended to have higher grades (P = .043), there was no significant difference in the level of syndecan-1 between smokers and non-smokers. A significant difference between syndecan-1 in the sera of patients with tumors of different stages was observed (Kruskal-Wallis test P=0.039); however, scarcity of patients in stages I and III decreased the power of the comparison. CONCLUSIONS Sdc-1 levels in the sera of patients do not correlate with the tumor progression in the tongue SCC. This is in contrast with the reported inverse correlation between the expression level of membranous Sdc-1 and the histological grade and size of head and neck tumors. Therefore, Sdc-1 shedding may not be a major mechanism in the progressive loss of its expression regarding tongue tumor. LEVEL OF EVIDENCE NA Laryngoscope, 126:E191-E195, 2016.
Collapse
Affiliation(s)
| | - Mahyar Malekzadeh
- Institute for Cancer Research , School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Malek-Hosseini
- Department of Immunology , School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bijan Khademi
- Department of Otolaryngology , School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Department of Immunology , School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Institute for Cancer Research , School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology , School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Institute for Cancer Research , School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
22
|
"TRP inflammation" relationship in cardiovascular system. Semin Immunopathol 2015; 38:339-56. [PMID: 26482920 PMCID: PMC4851701 DOI: 10.1007/s00281-015-0536-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023]
Abstract
Despite considerable advances in the research and treatment, the precise relationship between inflammation and cardiovascular (CV) disease remains incompletely understood. Therefore, understanding the immunoinflammatory processes underlying the initiation, progression, and exacerbation of many cardiovascular diseases is of prime importance. The innate immune system has an ancient origin and is well conserved across species. Its activation occurs in response to pathogens or tissue injury. Recent studies suggest that altered ionic balance, and production of noxious gaseous mediators link to immune and inflammatory responses with altered ion channel expression and function. Among plausible candidates for this are transient receptor potential (TRP) channels that function as polymodal sensors and scaffolding proteins involved in many physiological and pathological processes. In this review, we will first focus on the relevance of TRP channel to both exogenous and endogenous factors related to innate immune response and transcription factors related to sustained inflammatory status. The emerging role of inflammasome to regulate innate immunity and its possible connection to TRP channels will also be discussed. Secondly, we will discuss about the linkage of TRP channels to inflammatory CV diseases, from a viewpoint of inflammation in a general sense which is not restricted to the innate immunity. These knowledge may serve to provide new insights into the pathogenesis of various inflammatory CV diseases and their novel therapeutic strategies.
Collapse
|
23
|
Lacritin and other autophagy associated proteins in ocular surface health. Exp Eye Res 2015; 144:4-13. [PMID: 26318608 DOI: 10.1016/j.exer.2015.08.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/20/2015] [Accepted: 08/18/2015] [Indexed: 12/19/2022]
Abstract
Advantage may be taken of macroautophagy ('autophagy') to promote ocular health. Autophagy continually captures aged or damaged cellular material for lysosomal degradation and recyling. When autophagic flux is chronically elevated, or alternatively deficient, health suffers. Chronic elevation of flux and stress are the consequence of inflammatory cytokines or of dry eye tears but not normal tears invitro. Exogenous tear protein lacritin transiently accelerates flux to restore homeostasis invitro and corneal health invivo, and yet the monomeric active form of lacritin appears to be selectively deficient in dry eye. Tissue transglutaminase-dependent cross-linking of monomer decreases monomer quantity and monomer affinity for coreceptor syndecan-1 thereby abrogating activity. Tissue transglutaminase is elevated in dry eye. Mutation of arylsulfatase A, arylsulfatase B, ceroid-lipofuscinosis neuronal 3, mucolipin, or Niemann-Pick disease type C1 respectively underlie several diseases of apparently insufficient autophagic flux that affect the eye, including: metachromatic leukodystrophy, mucopolysaccharidosis type VI, juvenile-onset Batten disease, mucolipidosis IV, and Niemann-Pick type C associated with myelin sheath destruction of corneal sensory and ciliary nerves and of the optic nerve; corneal clouding, ocular hypertension, glaucoma and optic nerve atrophy; accumulation of 'ceroid-lipofuscin' in surface conjunctival cells, and in ganglion and neuronal cells; decreased visual acuity and retinal dystrophy; and neurodegeneration. For some, enzyme or gene replacement, or substrate reduction, therapy is proving to be successful. Here we discuss examples of restoring ocular surface homeostasis through alteration of autophagy, with particular attention to lacritin.
Collapse
|
24
|
Azkargorta M, Soria J, Ojeda C, Guzmán F, Acera A, Iloro I, Suárez T, Elortza F. Human Basal Tear Peptidome Characterization by CID, HCD, and ETD Followed by in Silico and in Vitro Analyses for Antimicrobial Peptide Identification. J Proteome Res 2015; 14:2649-58. [DOI: 10.1021/acs.jproteome.5b00179] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mikel Azkargorta
- Proteomics Platform,
CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Javier Soria
- Bioftalmik Applied Research, Bizkaia
Science and Technology Park, 48160 Derio, Spain
| | - Claudia Ojeda
- Instituto
de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, 2373223 Valparaíso, Chile
| | - Fanny Guzmán
- Núcleo
Biotecnológico de Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, 2373223 Valparaíso, Chile
| | - Arantxa Acera
- Bioftalmik Applied Research, Bizkaia
Science and Technology Park, 48160 Derio, Spain
| | - Ibon Iloro
- Proteomics Platform,
CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Tatiana Suárez
- Bioftalmik Applied Research, Bizkaia
Science and Technology Park, 48160 Derio, Spain
| | - Felix Elortza
- Proteomics Platform,
CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| |
Collapse
|
25
|
Bancovik J, Moreira DF, Carrasco D, Yao J, Porter D, Moura R, Camargo A, Fontes-Oliveira CC, Malpartida MG, Carambula S, Vannier E, Strauss BE, Wakamatsu A, Alves VA, Logullo AF, Soares FA, Polyak K, Belizário JE. Dermcidin exerts its oncogenic effects in breast cancer via modulation of ERBB signaling. BMC Cancer 2015; 15:70. [PMID: 25879571 PMCID: PMC4353460 DOI: 10.1186/s12885-015-1022-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 01/14/2015] [Indexed: 01/20/2023] Open
Abstract
Background We previously identified dermicidin (DCD), which encodes a growth and survival factor, as a gene amplified and overexpressed in a subset of breast tumors. Patients with DCD-positive breast cancer have worse prognostic features. We therefore searched for specific molecular signatures in DCD-positive breast carcinomas from patients and representative cell lines. Methods DCD expression was evaluated by qRT-PCR, immunohistochemical and immunoblot assays in normal and neoplastic tissues and cell lines. To investigate the role of DCD in breast tumorigenesis, we analyzed the consequences of its downregulation in human breast cancer cell lines using three specific shRNA lentiviral vectors. Genes up- and down-regulated by DCD were identified using Affymetrix microarray and analyzed by MetaCore Platform. Results We identified DCD splice variant (DCD-SV) that is co-expressed with DCD in primary invasive breast carcinomas and in other tissue types and cell lines. DCD expression in breast tumors from patients with clinical follow up data correlated with high histological grade, HER2 amplification and luminal subtype. We found that loss of DCD expression led to reduced cell proliferation, resistance to apoptosis, and suppressed tumorigenesis in immunodeficient mice. Network analysis of gene expression data revealed perturbed ERBB signaling following DCD shRNA expression including changes in the expression of ERBB receptors and their ligands. Conclusions These findings imply that DCD promotes breast tumorigenesis via modulation of ERBB signaling pathways. As ERBB signaling is also important for neural survival, HER2+ breast tumors may highjack DCD’s neural survival-promoting functions to promote tumorigenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1022-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jasna Bancovik
- Department of Pharmacology, Institute of Biomedical Sciences - University of São Paulo, Av Lineu Prestes 1524, 05508-900, São Paulo, SP, Brazil.
| | - Dayson F Moreira
- Department of Pharmacology, Institute of Biomedical Sciences - University of São Paulo, Av Lineu Prestes 1524, 05508-900, São Paulo, SP, Brazil.
| | - Daniel Carrasco
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute - Harvard Medical School, 450 Brookline Ave. D740C, Boston, MA, 02215, USA.
| | - Jun Yao
- Department of Neuro-Oncology Research, Division of Cancer Medicine, University of Texas - MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - Dale Porter
- Oncology Disease Area and Developmental and Molecular Pathways Group, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| | - Ricardo Moura
- Ludwig Institute for Cancer Research- Hospital Sírio-Libanês, Rua Peixoto Gomide, 316, 7th floor, 01409-000, São Paulo, SP, Brazil.
| | - Anamaria Camargo
- Ludwig Institute for Cancer Research- Hospital Sírio-Libanês, Rua Peixoto Gomide, 316, 7th floor, 01409-000, São Paulo, SP, Brazil.
| | - Cibely C Fontes-Oliveira
- Department of Pharmacology, Institute of Biomedical Sciences - University of São Paulo, Av Lineu Prestes 1524, 05508-900, São Paulo, SP, Brazil.
| | - Miguel G Malpartida
- Department of Pharmacology, Institute of Biomedical Sciences - University of São Paulo, Av Lineu Prestes 1524, 05508-900, São Paulo, SP, Brazil.
| | - Silvia Carambula
- Division of Geographic Medicine & Infectious Diseases, Tufts Medical Center, 25 Harvard Street - Tupper 729, Boston, MA, 02111, USA.
| | - Edouard Vannier
- Division of Geographic Medicine & Infectious Diseases, Tufts Medical Center, 25 Harvard Street - Tupper 729, Boston, MA, 02111, USA.
| | - Bryan E Strauss
- The Cancer Institute of São Paulo, Av. Dr. Arnaldo, 251, 8th floor, 01246-000, Sao Paulo, SP, Brazil.
| | - Alda Wakamatsu
- Department of Pathology - School of Medicine, University of São Paulo, Avenida Dr Enéas de Carvalho Aguiar, 155 - 10th floor, 05403-000, Sao Paulo, SP, Brazil.
| | - Venancio Af Alves
- Department of Pathology - School of Medicine, University of São Paulo, Avenida Dr Enéas de Carvalho Aguiar, 155 - 10th floor, 05403-000, Sao Paulo, SP, Brazil.
| | - Angela F Logullo
- Department of Pathology - Paulista School of Medicine, Federal University of São Paulo, Rua Sena Madureira, 1500, 04021-001, São Paulo, SP, Brazil.
| | - Fernando A Soares
- Department of Pathology - AC Camargo Cancer Center, Rua Professor Antônio Prudente, 211, 01509-010, São Paulo, SP, Brazil.
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute - Harvard Medical School, 450 Brookline Ave. D740C, Boston, MA, 02215, USA.
| | - José E Belizário
- Department of Pharmacology, Institute of Biomedical Sciences - University of São Paulo, Av Lineu Prestes 1524, 05508-900, São Paulo, SP, Brazil.
| |
Collapse
|
26
|
Wang W, Despanie J, Shi P, Edman-Woolcott MC, Lin YA, Cui H, Heur JM, Fini ME, Hamm-Alvarez SF, MacKay JA. Lacritin-mediated regeneration of the corneal epithelia by protein polymer nanoparticles. J Mater Chem B 2014; 2:8131-8141. [PMID: 25530855 PMCID: PMC4270104 DOI: 10.1039/c4tb00979g] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The avascular corneal epithelium plays an important role in maintaining normal vision and protecting the corneal interior from environmental infections. Delayed recovery of ocular wounds caused by trauma or refractive surgery strengthens the need to accelerate corneal wound healing and better restore the ocular surface. To address this need, we fused elastin-like polypeptide (ELP) based nanoparticles SI with a model mitogenic protein called lacritin. Lacritin fused at the N-terminus of the SI diblock copolymer is called LSI. This LSI fusion protein undergoes thermo-responsive assembly of nanoparticles at physiologically relevant temperatures. In comparison to ELP nanoparticles without lacritin, LSI showed potent signs of lacritin specific effects on a human corneal epithelial cell line (HCE-T), which included enhancement of cellular uptake, calcium-mediated signaling, and closure of a scratch. In vivo, the corneas of non-obese diabetic mice (NOD) were found to be highly responsive to LSI. Fluorescein imaging and corneal histology suggested that topical administration of LSI onto the ocular surface significantly promoted corneal wound healing and epithelial integrity compared to mice treated with or without plain ELP. Most interestingly, it appears that ELP-mediated assembly of LSI is essential to produce this potent activity. This was confirmed by comparison to a control lacritin ELP fusion called LS96, which does not undergo thermally-mediated assembly at relevant temperatures. In summary, fusion of a mitogenic protein to ELP nanoparticles appears to be a promising new strategy to bioengineer more potent biopharmaceuticals with potential applications in corneal wound healing.
Collapse
Affiliation(s)
- Wan Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles, CA; 90033-9121
| | - Jordan Despanie
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles, CA; 90033-9121
| | - Pu Shi
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles, CA; 90033-9121
| | - Maria C Edman-Woolcott
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles, CA; 90033-9121
| | - Yi-An Lin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD; 21218
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD; 21218
| | - J Martin Heur
- Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA; 90033-9121
| | - M Elizabeth Fini
- Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA; 90033-9121
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles, CA; 90033-9121 ; Department of Physiology and Biophysics, Keck School of Medicine of the University of Southern California, Los Angeles, CA; 90033-9121
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles, CA; 90033-9121 ; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA; 90033
| |
Collapse
|
27
|
Wang W, Jashnani A, Aluri SR, Gustafson JA, Hsueh PY, Yarber F, McKown RL, Laurie GW, Hamm-Alvarez SF, MacKay JA. A thermo-responsive protein treatment for dry eyes. J Control Release 2014; 199:156-67. [PMID: 25481446 DOI: 10.1016/j.jconrel.2014.11.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 10/30/2014] [Accepted: 11/17/2014] [Indexed: 11/27/2022]
Abstract
Millions of Americans suffer from dry eye disease, and there are few effective therapies capable of treating these patients. A decade ago, an abundant protein component of human tears was discovered and named lacritin (Lacrt). Lacrt has prosecretory activity in the lacrimal gland and mitogenic activity at the corneal epithelium. Similar to other proteins placed on the ocular surface, the durability of its effect is limited by rapid tear turnover. Motivated by the rationale that a thermo-responsive coacervate containing Lacrt would have better retention upon administration, we have constructed and tested the activity of a thermo-responsive Lacrt fused to an elastin-like polypeptide (ELP). Inspired from the human tropoelastin protein, ELP protein polymers reversibly phase separate into viscous coacervates above a tunable transition temperature. This fusion construct exhibited the prosecretory function of native Lacrt as illustrated by its ability to stimulate β-hexosaminidase secretion from primary rabbit lacrimal gland acinar cells. It also increased tear secretion from non-obese diabetic (NOD) mice, a model of autoimmune dacryoadenitis, when administered via intra-lacrimal injection. Lacrt ELP fusion proteins undergo temperature-mediated assembly to form a depot inside the lacrimal gland. We propose that these Lacrt ELP fusion proteins represent a potential therapy for dry eye disease and the strategy of ELP-mediated phase separation may have applicability to other diseases of the ocular surface.
Collapse
Affiliation(s)
- Wan Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Aarti Jashnani
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Suhaas R Aluri
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Joshua A Gustafson
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Pang-Yu Hsueh
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Frances Yarber
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Robert L McKown
- Department of Integrated Science and Technology, James Madison University, Harrisonburg, VA, United States
| | - Gordon W Laurie
- Department of Cell Biology, School of Medicine of the University of Virginia, Charlottesville, VA, United States
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States; Department of Physiology and Biophysics, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
28
|
Shin J, Jang H, Lin J, Lee SY. PKCβ positively regulates RANKL-induced osteoclastogenesis by inactivating GSK-3β. Mol Cells 2014; 37:747-52. [PMID: 25256217 PMCID: PMC4213766 DOI: 10.14348/molcells.2014.0220] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 12/14/2022] Open
Abstract
Protein kinase C (PKC) family members phosphorylate a wide variety of protein targets and are known to be involved in diverse cellular signaling pathways. However, the role of PKC in receptor activator of NF-κB ligand (RANKL) signaling has remained elusive. We now demonstrate that PKCβ acts as a positive regulator which inactivates glycogen synthase kinase-3β (GSK-3β) and promotes NFATc1 induction during RANKL-induced osteoclastogenesis. Among PKCs, PKCβ expression is increased by RANKL. Pharmacological inhibition of PKCβ decreased the formation of osteoclasts which was caused by the inhibition of NFATc1 induction. Importantly, the phosphorylation of GSK-3β was decreased by PKCβ inhibition. Likewise, down-regulation of PKCβ by RNA interference suppressed osteoclast differentiation, NFATc1 induction, and GSK-3β phosphorylation. The administration of PKC inhibitor to the RANKL-injected mouse calvaria efficiently protected RANKL-induced bone destruction. Thus, the PKCβ pathway, leading to GSK-3β inactivation and NFATc1 induction, has a key role in the differentiation of osteoclasts. Our results also provide a further rationale for PKCβ's therapeutic targeting to treat inflammation-related bone diseases.
Collapse
Affiliation(s)
- Jihye Shin
- Department of Life Science and the Research Center for Cellular Home-ostasis, Ewha Womans University, Seoul 120-750,
Korea
| | - Hyunduk Jang
- Department of Life Science and the Research Center for Cellular Home-ostasis, Ewha Womans University, Seoul 120-750,
Korea
- Present address: Department of Neurology, Seoul National University Hospital, and College of Medicine and Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 110-749,
Korea
| | - Jingjing Lin
- Department of Life Science and the Research Center for Cellular Home-ostasis, Ewha Womans University, Seoul 120-750,
Korea
| | - Soo Young Lee
- Department of Life Science and the Research Center for Cellular Home-ostasis, Ewha Womans University, Seoul 120-750,
Korea
| |
Collapse
|
29
|
Vijmasi T, Chen FYT, Balasubbu S, Gallup M, McKown RL, Laurie GW, McNamara NA. Topical administration of lacritin is a novel therapy for aqueous-deficient dry eye disease. Invest Ophthalmol Vis Sci 2014; 55:5401-9. [PMID: 25034600 DOI: 10.1167/iovs.14-13924] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
PURPOSE Lacritin is a tear glycoprotein with prosecretory, prosurvival, and mitogenic properties. We examined lacritin levels in the tears of Sjögren's syndrome (SS) patients and explored the therapeutic potential of topical lacritin for the treatment of keratoconjunctivitis sicca. METHODS Tears from healthy controls (n = 14) and SS patients (n = 15) were assayed for lacritin using a C-terminal antibody. In a paired-eye study, autoimmune regulator (Aire) knockout (KO) mice (n = 7) were treated three times daily for 21 days with 10 μL of 4 μM lacritin (left eye) or vehicle (PBS) control (right eye). Tear secretion and ocular surface integrity were assessed at baseline and after treatment. Immunohistochemical staining of CD4+ T cells, cytokeratin-10 (K10), and cytokeratin-12 (K12) expression in the cornea and CD4+ T cell infiltration in the lacrimal glands were assessed. RESULTS Lacritin monomer (421.8 ± 65.3 ng [SS] vs. 655.8 ± 118.9 ng [controls]; P = 0.05) and C-terminal fragment protein (125 ± 34.1 ng [SS] vs. 399.5 ± 84.3 ng [controls]; P = 0.008) per 100 μL of tear eluate were significantly lower in SS patients. In Aire KO mice treated with lacritin, tear secretion increased by 46% (13.0 ± 3.5 mm vs. 8.9 ± 2.9 mm; P = 0.01) and lissamine green staining score significantly decreased relative to baseline (-0.417 ± 0.06 vs. 0.125 ± 0.07; P = 0.02). Expression of K10 but not K12 in the cornea was significantly decreased in lacritin-treated eyes. Focal CD4+ T cell infiltration of the lacrimal glands was significantly reduced on the lacritin-treated side versus the untreated side. CONCLUSIONS Lacritin is significantly reduced in the tears of SS patients. Topically administered lacritin has therapeutic potential for the treatment of aqueous-deficient dry eye disease.
Collapse
Affiliation(s)
- Trinka Vijmasi
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, California, United States
| | - Feeling Y T Chen
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, California, United States
| | - Suganthalakshmi Balasubbu
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, California, United States
| | - Marianne Gallup
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, California, United States
| | - Robert L McKown
- Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia, United States
| | - Gordon W Laurie
- Departments of Cell Biology and Ophthalmology, University of Virginia, Charlottesville, Virginia, United States
| | - Nancy A McNamara
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, California, United States Departments of Anatomy and Ophthalmology, University of California San Francisco, San Francisco, California, United States School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, California, United States
| |
Collapse
|
30
|
McKown RL, Coleman Frazier EV, Zadrozny KK, Deleault AM, Raab RW, Ryan DS, Sia RK, Lee JK, Laurie GW. A cleavage-potentiated fragment of tear lacritin is bactericidal. J Biol Chem 2014; 289:22172-82. [PMID: 24942736 DOI: 10.1074/jbc.m114.570143] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Antimicrobial peptides are important as the first line of innate defense, through their tendency to disrupt bacterial membranes or intracellular pathways and potentially as the next generation of antibiotics. How they protect wet epithelia is not entirely clear, with most individually inactive under physiological conditions and many preferentially targeting Gram-positive bacteria. Tears covering the surface of the eye are bactericidal for Gram-positive and -negative bacteria. Here we narrow much of the bactericidal activity to a latent C-terminal fragment in the prosecretory mitogen lacritin and report that the mechanism combines membrane permeabilization with rapid metabolic changes, including reduced levels of dephosphocoenzyme A, spermidine, putrescine, and phosphatidylethanolamines and elevated alanine, leucine, phenylalanine, tryptophan, proline, glycine, lysine, serine, glutamate, cadaverine, and pyrophosphate. Thus, death by metabolic stress parallels cellular attempts to survive. Cleavage-dependent appearance of the C-terminal cationic amphipathic α-helix is inducible within hours by Staphylococcus epidermidis and slowly by another mechanism, in a chymotrypsin- or leupeptin protease-inhibitable manner. Although bactericidal at low micromolar levels, within a biphasic 1-10 nM dose optimum, the same domain is mitogenic and cytoprotective for epithelia via a syndecan-1 targeting mechanism dependent on heparanase. Thus, the C terminus of lacritin is multifunctional by dose and proteolytic processing and appears to play a key role in the innate protection of the eye, with wider potential benefit elsewhere as lacritin flows from exocrine secretory cells.
Collapse
Affiliation(s)
- Robert L McKown
- From the Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia 22807
| | - Erin V Coleman Frazier
- From the Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia 22807
| | - Kaneil K Zadrozny
- From the Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia 22807
| | - Andrea M Deleault
- From the Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia 22807
| | - Ronald W Raab
- From the Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia 22807
| | - Denise S Ryan
- the Warfighter Refractive Eye Surgery Program and Research Center at Fort Belvoir, Fort Belvoir, Virginia 22060, and
| | - Rose K Sia
- the Warfighter Refractive Eye Surgery Program and Research Center at Fort Belvoir, Fort Belvoir, Virginia 22060, and
| | - Jae K Lee
- the Departments of Public Health Sciences, Systems and Information Engineering
| | - Gordon W Laurie
- Cell Biology, Ophthalmology, and Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
31
|
Feng MM, Baryla J, Liu H, Laurie GW, McKown RL, Ashki N, Bhayana D, Hutnik CML. Cytoprotective effect of lacritin on human corneal epithelial cells exposed to benzalkonium chloride in vitro. Curr Eye Res 2014; 39:604-10. [PMID: 24401093 DOI: 10.3109/02713683.2013.859275] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE Benzalkonium chloride (BAK) is the most commonly found preservative in eye drops, and has been shown to cause ocular surface inflammation and toxicity. Lacritin is a human tear glycoprotein secreted from the lacrimal glands that has been found to be cytoprotective. This study was designed to determine if the presence of lacritin confers protection to a cultured human corneal epithelial (HCE) cell line, CRL-11515, and primary HCE cells after exposure to the ocular preservative agent BAK. MATERIALS AND METHODS Recombinant human lacritin was cloned into intein fusion vectors, expressed in E. coli, and purified on chitin beads and DEAE Sepharose. Metabolic curves were established using the MTT assay after exposure of sub-confluent CRL-11515 cells to BAK or lacritin. Western blot analysis of lipidated LC3 (LC3-II) provided a measure of autophagy in CRL-11515 cells exposed to lacritin and/or BAK. RESULTS BAK reduced CRL-11515 cellular metabolic activity in a time- and dose-dependent manner. BAK-induced cellular stress was evident by elevated autophagy that increased with rising concentrations of BAK compared to control (p < 0.05). Lacritin increased HCE cell proliferation at an optimal dose of 1 nM. Preconditioning HCE cells with 1 nM lacritin for 24 h prior to BAK exposure significantly dampened levels of LC3-II (p < 0.05) and promoted a significant increase in cellular metabolic activity (p < 0.01) compared to BAK alone. CONCLUSIONS These results suggest lacritin protects cultured HCE cells stressed with BAK. Lacritin may have the potential to be used as a topical adjunctive therapy in eyes chronically exposed to BAK.
Collapse
Affiliation(s)
- Mary M Feng
- Department of Ophthalmology, Western University , London, Ontario , Canada
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Nasal mucus proteomic changes reflect altered immune responses and epithelial permeability in patients with allergic rhinitis. J Allergy Clin Immunol 2013; 133:741-50. [PMID: 24290289 DOI: 10.1016/j.jaci.2013.09.040] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 08/31/2013] [Accepted: 09/27/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND Nasal mucus is the first-line defense barrier against (aero-) allergens. However, its proteome and function have not been clearly investigated. OBJECTIVE The role of nasal mucus in the pathophysiology of allergic rhinitis was investigated by analyzing its proteome in patients with allergic rhinitis (n = 29) and healthy control subjects (n = 29). METHODS Nasal mucus was collected with a suction device, tryptically digested, and analyzed by using liquid chromatography-tandem mass spectrometry. Proteins were identified by searching the SwissProt database and annotated by collecting gene ontology data from databases and existing literature. Gene enrichment analysis was performed by using Cytoscape/BINGO software tools. Proteins were quantified with spectral counting, and selected proteins were confirmed by means of Western blotting. RESULTS In total, 267 proteins were identified, with 20 (7.5%) found exclusively in patients with allergic rhinitis and 25 (9.5%) found exclusively in healthy control subjects. Five proteins were found to be significantly upregulated in patients with allergic rhinitis (apolipoprotein A-2 [APOA2], 9.7-fold; α2-macroglobulin [A2M], 4.5-fold; apolipoprotein A-1 [APOA1], 3.2-fold; α1-antitrypsin [SERPINA1], 2.5-fold; and complement C3 [C3], 2.3-fold) and 5 were found to be downregulated (antileukoproteinase [SLPI], 0.6-fold; WAP 4-disulfide core domain protein [WFDC2], 0.5-fold; haptoglobin [HP], 0.7-fold; IgJ chain [IGJ], 0.7-fold; and Ig hc V-III region BRO, 0.8-fold) compared with levels seen in healthy control subjects. CONCLUSION The allergic rhinitis mucus proteome shows an enhanced immune response in which apolipoproteins might play an important role. Furthermore, an imbalance between cysteine proteases and antiproteases could be seen, which negatively affects epithelial integrity on exposure to pollen protease activity. This reflects the important role of mucus as the first-line defense barrier against allergens.
Collapse
|
33
|
Daniel C, Gerlach K, Väth M, Neurath MF, Weigmann B. Nuclear factor of activated T cells - a transcription factor family as critical regulator in lung and colon cancer. Int J Cancer 2013; 134:1767-75. [PMID: 23775822 DOI: 10.1002/ijc.28329] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/21/2013] [Accepted: 05/28/2013] [Indexed: 01/03/2023]
Abstract
Nuclear factor of activated T cells (NFAT) was first identified as a transcription factor which is activated upon T cell stimulation. Subsequent studies uncovered that a whole family of individual NFAT proteins exists with pleiotropic functions not only in immune but also in nonimmune cells. However, dysregulation of NFAT thereby favors malignant growth and cancer. Summarizing the recent advances in understanding how individual NFAT factors regulate the immune system, this review gives new insights into the critical role of NFAT in cancer development with special focus on inflammation-associated colorectal cancer.
Collapse
Affiliation(s)
- Carolin Daniel
- Institute of Diabetes Research, Helmholtz Zentrum Muenchen,German Research Center for Environmental Health (GmbH), Munich, Germany
| | | | | | | | | |
Collapse
|
34
|
Wang N, Zimmerman K, Raab RW, McKown RL, Hutnik CML, Talla V, Tyler MF, Lee JK, Laurie GW. Lacritin rescues stressed epithelia via rapid forkhead box O3 (FOXO3)-associated autophagy that restores metabolism. J Biol Chem 2013; 288:18146-61. [PMID: 23640897 PMCID: PMC3689958 DOI: 10.1074/jbc.m112.436584] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 05/01/2013] [Indexed: 11/06/2022] Open
Abstract
Homeostasis is essential for cell survival. However, homeostatic regulation of surface epithelia is poorly understood. The eye surface, lacking the cornified barrier of skin, provides an excellent model. Tears cover the surface of the eye and are deficient in dry eye, the most common eye disease affecting at least 5% of the world's population. Only a tiny fraction of the tear proteome appears to be affected, including lacritin, an epithelium-selective mitogen that promotes basal tearing when topically applied to rabbit eyes. Here we show that homeostasis of cultured corneal epithelia is entirely lacritin-dependent and elucidate the mechanism as a rapid autophagic flux to promptly restore cellular metabolism and mitochondrial fusion in keeping with the short residence time of lacritin on the eye. Accelerated flux appears to be derived from lacritin-stimulated acetylation of FOXO3 as a novel ligand for ATG101 and coupling of stress-acetylated FOXO1 with ATG7 (which remains uncoupled without lacritin) and be sufficient to selectively divert huntingtin mutant Htt103Q aggregates largely without affecting non-aggregated Htt25Q. This is in keeping with stress as a prerequisite for lacritin-stimulated autophagy. Lacritin targets the cell surface proteoglycan syndecan-1 via its C-terminal amino acids Leu(108)-Leu(109)-Phe(112) and is also available in saliva, plasma, and lung lavage. Thus, lacritin may promote epithelial homeostasis widely.
Collapse
Affiliation(s)
| | | | - Ronald W. Raab
- Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia 22807, and
| | - Robert L. McKown
- Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia 22807, and
| | - Cindy M. L. Hutnik
- Department of Ophthalmology, University of Western Ontario, London, Ontario N6A 4V2, Canada
| | | | | | - Jae K. Lee
- Public Health Sciences
- Systems and Information Engineering, and
| | - Gordon W. Laurie
- From the Departments of Cell Biology
- Ophthalmology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
35
|
Lacritin and the tear proteome as natural replacement therapy for dry eye. Exp Eye Res 2013; 117:39-52. [PMID: 23769845 DOI: 10.1016/j.exer.2013.05.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/23/2013] [Accepted: 05/31/2013] [Indexed: 12/21/2022]
Abstract
Tear proteins are potential biomarkers, drug targets, and even biotherapeutics. As a biotherapeutic, a recombinant tear protein might physiologically rescue the ocular surface when a deficiency is detected. Such a strategy pays more attention to the natural prosecretory and protective properties of the tear film and seeks to alleviate symptoms by addressing cause, rather than the current palliative, non-specific and temporary approaches. Only a handful of tear proteins appear to be selectively downregulated in dry eye, the most common eye disease. Lacritin and lipocalin-1 are two tear proteins selectively deficient in dry eye. Both proteins influence ocular surface health. Lacritin is a prosecretory mitogen that promotes basal tearing when applied topically. Levels of active monomeric lacritin are negatively regulated by tear tissue transglutaminase, whose expression is elevated in dry eye with ocular surface inflammation. Lipocalin-1 is the master lipid sponge of the ocular surface, without which residual lipids could interfere with epithelial wetting. It also is a carrier for vitamins and steroid hormones, and is a key endonuclease. Accumulation of DNA in tears is thought to be proinflammatory. Functions of these and other tear proteins may be influenced by protein-protein interactions. Here we discuss new advances in lacritin biology and provide an overview on lipocalin-1, and newly identified members of the tear proteome.
Collapse
|
36
|
Fujii A, Morimoto-Tochigi A, Walkup RD, Shearer TR, Azuma M. Lacritin-induced secretion of tear proteins from cultured monkey lacrimal acinar cells. Invest Ophthalmol Vis Sci 2013; 54:2533-40. [PMID: 23482462 DOI: 10.1167/iovs.12-10394] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE During inflammation of the ocular surface, increased proinflammatory cytokines depress tear protein secretion, suggesting that a decline in lacrimal cell function contributes to dry eye. Lacritin, a glycoprotein secreted from lacrimal acinar cells, may function as an autocrine factor to stimulate tear protein secretion. The purpose of the present experiment was to investigate lacritin-induced protein secretion in normal and cytokine-pretreated (inflammation model) monkey acinar cells. METHODS Acinar cells from monkey lacrimal glands were cultured with or without tumor necrosis factor alpha (TNF-α) plus interferon gamma (IFN-γ). Protein secretion was induced by lacritin or carbachol (Cch, positive control). Proteins were detected and identified by immunoblotting and immunocytochemistry. Intracellular Ca(2+) was measured with the fluorophore Calcium-4, and cell damage was determined by LDH leakage into the culture medium. RESULTS In cultured monkey acinar cells, lacritin stimulated tear protein secretion in normal cells without elevating intracellular Ca(2+). In contrast, Cch elevated intracellular Ca(2+) and release of tear proteins. This contrast suggested an alternate, calcium-independent mechanism for lacritin-induced protein secretion. TNF-α plus IFN-γ caused LDH leakage from sensitive human corneal epithelial cells, but even higher doses of TNF-α plus IFN-γ did not cause LDH leakage from monkey acinar cells, suggesting a higher tolerance against these cytokines. In cytokine-treated acinar cells, lacritin stimulated protein secretion as much as that in normal cells. In contrast, Cch-induced elevation of Ca(2+) and release of proteins were depressed by cytokines. CONCLUSIONS Lacritin might be a useful biotechnology-based treatment agent against ocular surface diseases where endogenous lacritin is inadequate.
Collapse
Affiliation(s)
- Atsuko Fujii
- Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Corporation Limited, Beaverton, Oregon 97006, USA
| | | | | | | | | |
Collapse
|
37
|
Zhang Y, Wang N, Raab RW, McKown RL, Irwin JA, Kwon I, van Kuppevelt TH, Laurie GW. Targeting of heparanase-modified syndecan-1 by prosecretory mitogen lacritin requires conserved core GAGAL plus heparan and chondroitin sulfate as a novel hybrid binding site that enhances selectivity. J Biol Chem 2013; 288:12090-101. [PMID: 23504321 DOI: 10.1074/jbc.m112.422717] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cell surface heparan sulfate (HS) proteoglycans shape organogenesis and homeostasis by capture and release of morphogens through mechanisms largely thought to exclude the core protein domain. Nevertheless, heparanase deglycanation of the N-terminal HS-rich domain of syndecan-1 (SDC1), but not SDC2 or -4, is a prerequisite for binding of the prosecretory mitogen lacritin (Ma, P., Beck, S. L., Raab, R. W., McKown, R. L., Coffman, G. L., Utani, A., Chirico, W. J., Rapraeger, A. C., and Laurie, G. W. (2006) Heparanase deglycanation of syndecan-1 is required for binding of the epithelial-restricted prosecretory mitogen lacritin. J. Cell Biol. 174, 1097-1106). We now report that the conserved and hydrophobic GAGAL domain in SDC1, adjacent to predicted HS substitution sites, is necessary to ligate and substantially enhance the α-helicity of the amphipathic C terminus of lacritin. Swapping out GAGAL for GADED in SDC2 or for GDLDD in SDC4 (both less hydrophobic) abrogated binding. HS and chondroitin sulfate are also essential. Both are detected in the N terminus, and when incubated with antibodies HS4C3 (anti-HS) or IO3H10 (anti-chondroitin sulfate), binding was absent, as occurred when all three N-terminal glycosaminoglycan substitution sites were mutated to alanine or when cells were treated with 4-methylumbelliferyl-β-d-xylopyranoside or chlorate to suppress glycosaminoglycan substitution or sulfation, respectively. SDC1 interacts with the hydrophobic face of lacritin via Leu-108/Leu-109/Phe-112 as well as with Glu-103/Lys-107 and Lys-111 of the largely cationic face. Carving a hybrid hydrophobic/electrostatic docking site out of SDC1 in a manner dependent on endogenous heparanase is a dynamic process appropriate for subtle or broad epithelial regulation in morphogenesis, health, and disease.
Collapse
Affiliation(s)
- Yinghui Zhang
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Velez V F, Romano JA, McKown RL, Green K, Zhang L, Raab RW, Ryan DS, Hutnik CML, Frierson HF, Laurie GW. Tissue transglutaminase is a negative regulator of monomeric lacritin bioactivity. Invest Ophthalmol Vis Sci 2013; 54:2123-32. [PMID: 23425695 DOI: 10.1167/iovs.12-11488] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Molar accounting of bioactive fluids can expose new regulatory mechanisms in the growing proteomic focus on epithelial biology. Essential for the viability of the surface epithelium of the eye and for normal vision is the thin, but protein-rich, tear film in which the small tear glycoprotein lacritin appears to play a prominent prosecretory, cytoprotective, and mitogenic role. Although optimal bioactive levels in cell culture are 1 to 10 nM over a biphasic dose optimum, ELISA suggests a sustained tear lacritin concentration in the midmicromolar range in healthy adults. Here we identify a reconciling mechanism. METHODS Monoclonal anti-lacritin 1F5 antibody was generated, and applied together with a new anti-C-terminal polyclonal antibody to tear and tissue Western blotting. In vitro tissue transglutaminase (Tgm2) cross-linking was monitored and characterized by mass spectrometry. RESULTS Blotting for lacritin in human tears or saliva surprisingly detected immunoreactive material with a higher molecular weight and prominence equal or exceeding the ∼23 to 25 kDa band of monomeric glycosylated lacritin. Exogenous Tgm2 initiated lacritin cross-linking within 1 minute and was complete by 90 minutes-even with as little as 0.1 nM lacritin, and involved the donors lysine 82 and 85 and the acceptor glutamine 106 in the syndecan-1 binding domain. Lacritin spiked into lacritin-depleted tears formed multimers, in keeping with ∼0.6 μM TGM2 in tears. Cross-linking was absent when Tgm2 was inactive, and cross-linked lacritin, unlike recombinant monomer, bound syndecan-1 poorly. CONCLUSIONS Since syndecan-1 binding is necessary for lacritin mitogenic and cytoprotective activities, TGM2 cross-linking negatively regulates lacritin bioactivity.
Collapse
Affiliation(s)
- Francisco Velez V
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908-0732, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Seifert K, Gandia NC, Wilburn JK, Bower KS, Sia RK, Ryan DS, Deaton ML, Still KM, Vassilev VC, Laurie GW, McKown RL. Tear lacritin levels by age, sex, and time of day in healthy adults. Invest Ophthalmol Vis Sci 2012; 53:6610-6. [PMID: 22918641 DOI: 10.1167/iovs.11-8729] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Several small proteomic studies suggest that the prosecretory tear protein lacritin may be selectively downregulated in dry eye syndrome and in blepharitis, yet little information is available about normal baseline levels. This study assessed lacritin levels in tears from healthy individuals and addressed whether they differ according to sex, age, or time of day. METHODS Rabbit antibodies against lacritin N-terminal peptide EDASSDSTGADPAQEAGTS (Pep Lac N-Term) were generated and characterized against human recombinant lacritin and N-65 truncation mutant. Basal tears were collected from 66 healthy individuals ranging in age from 18 to 52 years, and at four times during one 24-hour period from 34 other individuals. Lacritin levels were then analyzed by ELISA and Western blotting. RESULTS Anti-Pep Lac N-Term bound lacritin, but not truncation mutant N-65 that lacks the N-terminal antigenic site. Tear lacritin levels followed a normal distribution with a mean of 4.2 ± 1.17 ng/100 ng total tear protein. Levels differed little by age or sex, and decreased slightly between 4 and 8 hours in a 24-hour cycle. Tear-blocking effects were minimal, as suggested by spiking of tears with recombinant lacritin. CONCLUSIONS Anti-Pep Lac N-Term-detectable lacritin comprises ~4.2 ng/100 ng total tear protein in healthy individuals, with no significant differences between males and females or among individuals between 18 and 52 years old. Levels decrease slightly in the late afternoon. These findings provide a baseline for future immunodiagnostic studies of lacritin in dry eye and other ocular diseases.
Collapse
Affiliation(s)
- Kyle Seifert
- Department of Biology, James Madison University, 701 Carrier Drive, Harrisonburg, VA 22807, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Laurie DE, Splan RK, Green K, Still KM, McKown RL, Laurie GW. Detection of prosecretory mitogen lacritin in nonprimate tears primarily as a C-terminal-like fragment. Invest Ophthalmol Vis Sci 2012; 53:6130-6. [PMID: 22871838 DOI: 10.1167/iovs.11-8567] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Lacritin is a human tear glycoprotein that promotes basal tear protein secretion in cultured rat lacrimal acinar cells and proliferation of subconfluent human corneal epithelial cells. When topically added to rabbit eyes, lacritin promotes basal tearing. Despite these activities on several species, lacritin's presence in nonprimate tears or other tissues has not been explored. Here we probed for lacritin in normal horse tears. METHODS Sequences were collected from the Ensembl genomic alignment of human LACRT gene with high-quality draft horse genome (EquCab2.0) and analyzed. Normal horse tears were collected and assayed by Western blotting, ELISA, and mass spectrometry. Newly generated rabbit antibodies, respectively, against N- and C-terminal regions of human lacritin were employed. RESULTS Identity was 75% and 45%, respectively, at nucleotide and protein levels. Structural features were conserved, including a C-terminal amphipathic α-helix. Anti-C-terminal antibodies strongly detected a ∼13 kDa band in horse tears that was validated by mass spectrometry. In human tears, the same antibody detected uncleaved lacritin (∼24 kDa) strongly and C-terminal fragments of ∼13 and ∼11 kDa weakly. Anti-N-terminal antibodies were slightly reactive with a ∼24 kDa horse antigen and showed no reaction with the anti-C-terminal-reactive ∼13 kDa species. Similar respective levels of horse C-terminal versus N-terminal immunoreactivity were apparent by ELISA. CONCLUSIONS Lacritin is present in horse tears, largely as a C-terminal fragment homologous to the mitogenic and bactericidal region in human lacritin, suggesting potential benefit in corneal wound repair.
Collapse
Affiliation(s)
- Diane E Laurie
- Department of Animal and Poultry Sciences, Virginia Polytechnic and State University, Blacksburg, Virginia, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Csősz É, Boross P, Csutak A, Berta A, Tóth F, Póliska S, Török Z, Tőzsér J. Quantitative analysis of proteins in the tear fluid of patients with diabetic retinopathy. J Proteomics 2012; 75:2196-204. [PMID: 22300579 DOI: 10.1016/j.jprot.2012.01.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 12/16/2011] [Accepted: 01/16/2012] [Indexed: 11/28/2022]
Abstract
Diabetic retinopathy is the leading cause of new cases of legal blindness among adults in the developed countries. Approximately 40% of all people with diabetes have diabetic retinopathy and 5% of these have sight-threatening form. As the advanced stage, where there is a high risk for vision loss, can develop without any serious symptoms, sometimes it is hard to detect it. A non invasive method to detect biomarkers characteristic for diabetic retinopathy from the tear fluid was developed. Tear samples from diabetic patients with no retinopathy, non proliferative and proliferative stages of diabetic retinopathy were analyzed and the protein content of each sample was compared to the protein content of tear pool from healthy volunteers. The samples were labeled with iTRAQ fourplex labels and were analyzed with nanoHPLC coupled ESI-MS/MS mass spectrometry. The lipocalin 1, lactotransferrin, lacritin, lysozyme C, lipophilin A and immunoglobulin lambda chain were identified as possible biomarker candidates with significantly higher relative levels in the tear of patients with diabetic retinopathy.
Collapse
Affiliation(s)
- Éva Csősz
- Department of Biochemistry and Molecular Biology, Proteomics Core Facility, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Jungquist CR, Karan S, Perlis ML. Risk Factors for Opioid-Induced Excessive Respiratory Depression. Pain Manag Nurs 2011; 12:180-7. [DOI: 10.1016/j.pmn.2010.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 01/24/2010] [Accepted: 02/01/2010] [Indexed: 10/19/2022]
|
43
|
Samudre S, Lattanzio FA, Lossen V, Hosseini A, Sheppard JD, McKown RL, Laurie GW, Williams PB. Lacritin, a novel human tear glycoprotein, promotes sustained basal tearing and is well tolerated. Invest Ophthalmol Vis Sci 2011; 52:6265-70. [PMID: 21087963 DOI: 10.1167/iovs.10-6220] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Lacritin is a novel human tear glycoprotein that promotes basal tear peroxidase secretion by rat lacrimal acinar cells in vitro. This study investigates whether lacritin is prosecretory when added topically to the ocular surface of normal living rabbits, and if so, what is its efficacy and tolerability versus cyclosporine and artificial tears. METHODS Purified recombinant human lacritin (1, 10, 50, or 100 μg/mL), inactive lacritin truncation mutant C-25 (10 μg/mL), cyclosporine (0.05%), or artificial tears were topically administered to eyes of normal New Zealand White rabbits either as a single dose or three times daily for 14 days with monitoring of basal tear production. Basal tearing under proparacaine anesthesia was repeatedly assessed throughout and 1 week after chronic treatment ceased. Eyes were examined weekly by slit-lamp biomicroscopy. RESULTS Lacritin acutely increased basal tearing to 30% over vehicle at 240 minutes. Three times daily treatment with 10-100 μg/mL lacritin was well tolerated. Basal tearing became progressively elevated 4, 7, and 14 days later and was 50% over baseline (50 μg/mL lacritin) 1 week after treatment had ceased. Cyclosporine elevated tearing to a similar level on days 4 and 7 but had little or no effect on day 14 and had returned to baseline 1 week after ending treatment. C-25 and artificial tears had no effect. CONCLUSIONS Lacritin acutely stimulates basal tear flow that is sustained for at least 240 minutes. Two weeks of lacritin treatment three times daily was well tolerated and progressively elevated the basal tear flow. One week after treatment ended, basal tearing was still 50% over baseline. In contrast, cyclosporine triggered mild to moderate corneal irritation and a temporary elevation in tearing.
Collapse
Affiliation(s)
- Sandeep Samudre
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23501, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Koshimizu H, Cawley NX, Kim T, Yergey AL, Loh YP. Serpinin: a novel chromogranin A-derived, secreted peptide up-regulates protease nexin-1 expression and granule biogenesis in endocrine cells. Mol Endocrinol 2011; 25:732-44. [PMID: 21436258 DOI: 10.1210/me.2010-0124] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Previously we demonstrated that chromogranin A (CgA) promoted secretory granule biogenesis in endocrine cells by stabilizing and preventing granule protein degradation in the Golgi, through up-regulation of expression of the protease inhibitor, protease nexin-1 (PN-1). However, the mechanism by which CgA signals the increase of PN-1 expression is unknown. Here we identified a 2.9-kDa CgA-C-terminus peptide, which we named serpinin, in conditioned media from AtT-20 cells, a corticotroph cell line, which up-regulated PN-1 mRNA expression. Serpinin was secreted from AtT-20 cells upon high potassium stimulation and increased PN-1 mRNA transcription in these cells, in an actinomycin D-inhibitable manner. CgA itself and other CgA-derived peptides, when added to AtT-20 cell media, had no effect on PN-1 expression. Treatment of AtT-20 cells with 10 nm serpinin elevated cAMP levels and PN-1 mRNA expression, and this effect was inhibited by a protein kinase A inhibitor, 6-22 amide. Serpinin and a cAMP analog, 8-bromo-cAMP, promoted the translocation of the transcription factor Sp1 into the nucleus, which is known to drive PN-1 expression. Additionally, an Sp1 inhibitor, mithramycin A inhibited the serpinin-induced PN-1 mRNA up-regulation. Furthermore, a luciferase reporter assay demonstrated serpinin-induced up-regulation of PN-1 promoter activity in an Sp1-dependent manner. When added to CgB-transfected 6T3 cells, a mutant AtT20 cell line, serpinin induced granule biogenesis as evidenced by the presence of CgB puncta accumulation in the processes and tips. Our findings taken together show that serpinin, a novel CgA-derived peptide, is secreted upon stimulation of corticotrophs and plays an important autocrine role in up-regulating PN-1-dependent granule biogenesis via a cAMP-protein kinase A-Sp1 pathway to replenish released granules.
Collapse
Affiliation(s)
- Hisatsugu Koshimizu
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
45
|
Kåredal MH, Mortstedt H, Jeppsson MC, Kronholm Diab K, Nielsen J, Jonsson BAG, Lindh CH. Time-dependent proteomic iTRAQ analysis of nasal lavage of hairdressers challenged by persulfate. J Proteome Res 2010; 9:5620-8. [PMID: 20815409 DOI: 10.1021/pr100436a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hairdressers are frequently exposed to bleaching powder containing persulfates, a group of compounds that may induce hypersensitivity in the airways. The mechanism causing this reaction is not clear. The aim of this study was to identify changes in the nasal lavage fluid proteome after challenge with potassium persulfate in hairdressers with bleaching powder-associated rhinitis. Furthermore, we aimed to compare their response to that of hairdressers without nasal symptoms, and atopic subjects with pollen-associated nasal symptoms. To study the pathogenesis of persulfate-associated rhinitis, the response in protein expression from the upper airway was assessed by time-dependent proteomic expression analysis of nasal lavage fluids. Samples were prepared by pooling nasal lavage fluids from the groups at different time points after challenge. Samples were depleted of high-abundant proteins, labeled with iTRAQ and analyzed by online 2D-nanoLC-MS/MS. Differences in the protein pattern between the three groups were observed. Most proteins with differentially expressed levels were involved in pathways of lipid transportation and antimicrobial activities. The major finding was increased abundance of apolipoprotein A-1, 20 min postchallenge, detected solely in the group of symptomatic hairdressers. Our results suggest there may be differences between the mechanisms responsible for the rhinitis in the symptomatic and atopic group.
Collapse
Affiliation(s)
- Monica H Kåredal
- Department of Laboratory Medicine, Lund University, SE-221 85 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
46
|
Dartt DA. Neural regulation of lacrimal gland secretory processes: relevance in dry eye diseases. Prog Retin Eye Res 2009; 28:155-77. [PMID: 19376264 DOI: 10.1016/j.preteyeres.2009.04.003] [Citation(s) in RCA: 322] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The lacrimal gland is the major contributor to the aqueous layer of the tear film which consists of water, electrolytes and proteins. The amount and composition of this layer is critical for the health, maintenance, and protection of the cells of the cornea and conjunctiva (the ocular surface). Small changes in the concentration of tear electrolytes have been correlated with dry eye syndrome. While the mechanisms of secretion of water, electrolytes and proteins from the lacrimal gland differ, all three are under tight neural control. This allows for a rapid response to meet the needs of the cells of the ocular surface in response to environmental conditions. The neural response consists of the activation of the afferent sensory nerves in the cornea and conjunctiva to stimulate efferent parasympathetic and sympathetic nerves that innervate the lacrimal gland. Neurotransmitters are released from the stimulated parasympathetic and sympathetic nerves that cause secretion of water, electrolytes, and proteins from the lacrimal gland and onto the ocular surface. This review focuses on the neural regulation of lacrimal gland secretion under normal and dry eye conditions.
Collapse
Affiliation(s)
- Darlene A Dartt
- Schepens Eye Research Institute and Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
47
|
Zhou L, Beuerman RW, Chew AP, Koh SK, Cafaro TA, Urrets-Zavalia EA, Urrets-Zavalia JA, Li SFY, Serra HM. Quantitative Analysis of N-Linked Glycoproteins in Tear Fluid of Climatic Droplet Keratopathy by Glycopeptide Capture and iTRAQ. J Proteome Res 2009; 8:1992-2003. [DOI: 10.1021/pr800962q] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Lei Zhou
- Singapore Eye Research Institute, Singapore, Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Department of Chemistry, National University of Singapore, Singapore, CIBICI, Faculty of Chemistry, National University of Córdoba, Argentina, Department of Ophthalmology, Clínica Universitaria Reina Fabiola, Argentina, Ophthalmology, Catholic University of Cordoba, Argentina
| | - Roger W. Beuerman
- Singapore Eye Research Institute, Singapore, Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Department of Chemistry, National University of Singapore, Singapore, CIBICI, Faculty of Chemistry, National University of Córdoba, Argentina, Department of Ophthalmology, Clínica Universitaria Reina Fabiola, Argentina, Ophthalmology, Catholic University of Cordoba, Argentina
| | - Ai Ping Chew
- Singapore Eye Research Institute, Singapore, Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Department of Chemistry, National University of Singapore, Singapore, CIBICI, Faculty of Chemistry, National University of Córdoba, Argentina, Department of Ophthalmology, Clínica Universitaria Reina Fabiola, Argentina, Ophthalmology, Catholic University of Cordoba, Argentina
| | - Siew Kwan Koh
- Singapore Eye Research Institute, Singapore, Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Department of Chemistry, National University of Singapore, Singapore, CIBICI, Faculty of Chemistry, National University of Córdoba, Argentina, Department of Ophthalmology, Clínica Universitaria Reina Fabiola, Argentina, Ophthalmology, Catholic University of Cordoba, Argentina
| | - Thamara A. Cafaro
- Singapore Eye Research Institute, Singapore, Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Department of Chemistry, National University of Singapore, Singapore, CIBICI, Faculty of Chemistry, National University of Córdoba, Argentina, Department of Ophthalmology, Clínica Universitaria Reina Fabiola, Argentina, Ophthalmology, Catholic University of Cordoba, Argentina
| | - Enrique A. Urrets-Zavalia
- Singapore Eye Research Institute, Singapore, Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Department of Chemistry, National University of Singapore, Singapore, CIBICI, Faculty of Chemistry, National University of Córdoba, Argentina, Department of Ophthalmology, Clínica Universitaria Reina Fabiola, Argentina, Ophthalmology, Catholic University of Cordoba, Argentina
| | - Julio A. Urrets-Zavalia
- Singapore Eye Research Institute, Singapore, Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Department of Chemistry, National University of Singapore, Singapore, CIBICI, Faculty of Chemistry, National University of Córdoba, Argentina, Department of Ophthalmology, Clínica Universitaria Reina Fabiola, Argentina, Ophthalmology, Catholic University of Cordoba, Argentina
| | - Sam F. Y. Li
- Singapore Eye Research Institute, Singapore, Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Department of Chemistry, National University of Singapore, Singapore, CIBICI, Faculty of Chemistry, National University of Córdoba, Argentina, Department of Ophthalmology, Clínica Universitaria Reina Fabiola, Argentina, Ophthalmology, Catholic University of Cordoba, Argentina
| | - Horacio M. Serra
- Singapore Eye Research Institute, Singapore, Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Department of Chemistry, National University of Singapore, Singapore, CIBICI, Faculty of Chemistry, National University of Córdoba, Argentina, Department of Ophthalmology, Clínica Universitaria Reina Fabiola, Argentina, Ophthalmology, Catholic University of Cordoba, Argentina
| |
Collapse
|
48
|
Graham SJL, Black MJ, Soboloff J, Gill DL, Dziadek MA, Johnstone LS. Stim1, an endoplasmic reticulum Ca2+ sensor, negatively regulates 3T3-L1 pre-adipocyte differentiation. Differentiation 2008; 77:239-47. [PMID: 19272522 DOI: 10.1016/j.diff.2008.10.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 09/23/2008] [Accepted: 10/06/2008] [Indexed: 02/07/2023]
Abstract
Ca(2+) plays a complex role in the differentiation of committed pre-adipocytes into mature, fat laden adipocytes. Stim1 is a single pass transmembrane protein that has an essential role in regulating the influx of Ca(2+) ions through specific plasma membrane store-operated Ca(2+) channels. Stim1 is a sensor of endoplasmic reticulum Ca(2+) store content and when these stores are depleted ER-localized Stim1 interacts with molecular components of store-operated Ca(2+) channels in the plasma membrane to activate these channels and induce Ca(2+) influx. To investigate the potential role of Stim1 in Ca(2+)-mediated adipogenesis, we investigated the expression of Stim1 during adipocyte differentiation and the effects of altering Stim1 expression on the differentiation process. Western blotting revealed that Stim1 was expressed at low levels in 3T3-L1 pre-adipocytes and was upregulated 4 days following induction of differentiation. However, overexpression of Stim1 potently inhibited their ability to differentiate and accumulate lipid, and reduced the expression of C/EBP alpha and adiponectin. Stim1-mediated differentiation was shown to be dependent on store-operated Ca(2+) entry, which was increased upon overexpression of Stim1. Overexpression of Stim1 did not disrupt cell proliferation, mitotic clonal expansion or subsequent growth arrest. siRNA-mediated knockdown of endogenous Stim1 had the opposite effect, with increased 3T3-L1 differentiation and increased expression of C/EBP alpha and adiponectin. We thus demonstrate for the first time the presence of store-operated Ca(2+) entry in 3T3-L1 adipocytes, and that Stim1-mediated Ca(2+) entry negatively regulates adipocyte differentiation. We suggest that increased expression of Stim1 during 3T3-L1 differentiation may act, through its ability to modify the level of Ca(2+) influx through store-operated channels, to balance the level of differentiation in these cells in vitro.
Collapse
Affiliation(s)
- Sarah J L Graham
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Expressed sequence tag (EST), proteomic, and antibody capture assays are revealing a level of tear film protein complexity far greater than previously appreciated. A systems biology approach will be needed to fully appreciate function as tear protein doses fluctuate in time through different conditions. Although consensus is growing on what fully constitutes the human tear proteome, questions remain about the source and significance of the approximately 256 tear proteins designated as "intracellular." Many of these may derive from normal cellular turnover and could therefore be informative. A further >183 are designated as "extracellular." Surprisingly, only 4 to 5% of these appear to be dysregulated in the three forms of dry eye preliminarily examined to date. Some differ and a couple overlap, suggesting that disease-specific signatures could be identified. Future dry eye treatment might include recombinant tear protein rescue as a personalized ophthalmic approach to ocular surface disease.
Collapse
|
50
|
Lacritin and other new proteins of the lacrimal functional unit. Exp Eye Res 2008; 88:848-58. [PMID: 18840430 DOI: 10.1016/j.exer.2008.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/04/2008] [Accepted: 09/08/2008] [Indexed: 12/21/2022]
Abstract
The lacrimal functional unit (LFU) is defined by the 2007 International Dry Eye WorkShop as 'an integrated system comprising the lacrimal glands, ocular surface (cornea, conjunctiva and meibomian glands) and lids, and the sensory and motor nerves that connect them'. The LFU maintains a healthy ocular surface primarily through a properly functioning tear film that provides protection, lubrication, and an environment for corneal epithelial cell renewal. LFU cells express thousands of proteins. Over 200 new LFU proteins have been discovered in the last decade. Lacritin is a new LFU-specific growth factor in human tears that flows through ducts to target corneal epithelial cells on the ocular surface. When applied topically in rabbits, lacritin appears to increase the volume of basal tear secretion. Lacritin is one of only a handful of tear proteins preliminarily reported to be downregulated in blepharitis and in two dry eye syndromes. Computational analysis predicts an ordered C-terminal domain that binds the corneal epithelial cell surface proteoglycan syndecan-1 (SDC1) and is required for lacritin's low nanomolar mitogenic activity. The lacritin-binding site on the N-terminus of SDC1 is exposed by heparanase. Heparanase is constitutively expressed by the corneal epithelium and appears to be a normal constituent of tears. Binding triggers rapid signaling to downstream NFAT and mTOR. A wealth of other new proteins, originally designated as hypothetical when first identified by genomic sequencing, are expressed by the human LFU including: ALS2CL, ARHGEF19, KIAA1109, PLXNA1, POLG, WIPI1 and ZMIZ2. Their demonstrated or implied roles in human genetic disease or basic cellular functions are fuel for new investigation. Addressing topical areas in ocular surface physiology with new LFU proteins may reveal interesting new biological mechanisms and help get to the heart of ocular surface dysfunction.
Collapse
|