1
|
Campelo F, Lillo JV, von Blume J. Protein condensates in the the secretory pathway: Unraveling biophysical interactions and function. Biophys J 2024; 123:1531-1541. [PMID: 38698644 PMCID: PMC11214006 DOI: 10.1016/j.bpj.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024] Open
Abstract
The emergence of phase separation phenomena among macromolecules has identified biomolecular condensates as fundamental cellular organizers. These condensates concentrate specific components and accelerate biochemical reactions without relying on membrane boundaries. Although extensive studies have revealed a large variety of nuclear and cytosolic membraneless organelles, we are witnessing a surge in the exploration of protein condensates associated with the membranes of the secretory pathway, such as the endoplasmic reticulum and the Golgi apparatus. This review focuses on protein condensates in the secretory pathway and discusses their impact on the organization and functions of this cellular process. Moreover, we explore the modes of condensate-membrane association and the biophysical and cellular consequences of protein condensate interactions with secretory pathway membranes.
Collapse
Affiliation(s)
- Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain.
| | - Javier Vera Lillo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Julia von Blume
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
2
|
Campelo F, Tian M, von Blume J. Rediscovering the intricacies of secretory granule biogenesis. Curr Opin Cell Biol 2023; 85:102231. [PMID: 37657367 DOI: 10.1016/j.ceb.2023.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 09/03/2023]
Abstract
Regulated secretion, an essential cellular process, relies on secretory granules (SGs) for the controlled release of a diverse range of cargo molecules, including proteins, peptides, hormones, enzymes, and neurotransmitters. SG biogenesis encompasses cargo selection, sorting, packaging, and trafficking, with the trans-Golgi Network (TGN) playing a central role. Research in the last three decades has revealed significant components required for SG biogenesis; however, no cargo receptor transferring granule cargo from the TGN to immature SGs (ISGs) has yet been identified. Consequently, recent research has devoted significant attention to studying receptor-independent cargo sorting mechanisms, shedding new light on the complexities of regulated secretion. Understanding the underlying molecular and biophysical mechanisms behind cargo sorting into ISGs holds great promise for advancing our knowledge of cellular communication and disease mechanisms.
Collapse
Affiliation(s)
- Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Meng Tian
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Julia von Blume
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Štepihar D, Florke Gee RR, Hoyos Sanchez MC, Fon Tacer K. Cell-specific secretory granule sorting mechanisms: the role of MAGEL2 and retromer in hypothalamic regulated secretion. Front Cell Dev Biol 2023; 11:1243038. [PMID: 37799273 PMCID: PMC10548473 DOI: 10.3389/fcell.2023.1243038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Intracellular protein trafficking and sorting are extremely arduous in endocrine and neuroendocrine cells, which synthesize and secrete on-demand substantial quantities of proteins. To ensure that neuroendocrine secretion operates correctly, each step in the secretion pathways is tightly regulated and coordinated both spatially and temporally. At the trans-Golgi network (TGN), intrinsic structural features of proteins and several sorting mechanisms and distinct signals direct newly synthesized proteins into proper membrane vesicles that enter either constitutive or regulated secretion pathways. Furthermore, this anterograde transport is counterbalanced by retrograde transport, which not only maintains membrane homeostasis but also recycles various proteins that function in the sorting of secretory cargo, formation of transport intermediates, or retrieval of resident proteins of secretory organelles. The retromer complex recycles proteins from the endocytic pathway back to the plasma membrane or TGN and was recently identified as a critical player in regulated secretion in the hypothalamus. Furthermore, melanoma antigen protein L2 (MAGEL2) was discovered to act as a tissue-specific regulator of the retromer-dependent endosomal protein recycling pathway and, by doing so, ensures proper secretory granule formation and maturation. MAGEL2 is a mammalian-specific and maternally imprinted gene implicated in Prader-Willi and Schaaf-Yang neurodevelopmental syndromes. In this review, we will briefly discuss the current understanding of the regulated secretion pathway, encompassing anterograde and retrograde traffic. Although our understanding of the retrograde trafficking and sorting in regulated secretion is not yet complete, we will review recent insights into the molecular role of MAGEL2 in hypothalamic neuroendocrine secretion and how its dysregulation contributes to the symptoms of Prader-Willi and Schaaf-Yang patients. Given that the activation of many secreted proteins occurs after they enter secretory granules, modulation of the sorting efficiency in a tissue-specific manner may represent an evolutionary adaptation to environmental cues.
Collapse
Affiliation(s)
- Denis Štepihar
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| |
Collapse
|
4
|
Armoza-Eilat S, Malis Y, Caspi M, Shomron O, Hirschberg K, Rosin-Arbesfeld R. Title: The C-terminal amphipathic helix of Carboxypeptidase E mediates export from the ER and secretion via lysosomes. J Mol Biol 2023:168171. [PMID: 37285900 DOI: 10.1016/j.jmb.2023.168171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Carboxypeptidase E (CPE), an essential enzyme in the biosynthetic production line of most peptide hormones and neuropeptides, is predominantly expressed in endocrine tissues and in the nervous system. CPE is active in acidic environments where it cleaves the C'-terminal basic residues of peptide precursors to generate their bioactive form. Consequently, this highly conserved enzyme regulates numerous fundamental biological processes. Here, we combined live-cell microscopy and molecular analysis to examine the intracellular distribution and secretion dynamics of fluorescently tagged CPE. We show that, in non-endocrine cells, tagged-CPE is a soluble luminal protein that is efficiently exported from the ER via the Golgi apparatus to lysosomes. The C'-terminal conserved amphipathic helix serves as a lysosomal and secretory granule targeting and a secretion motif. Following secretion, CPE may be reinternalized into the lysosomes of neighboring cells.
Collapse
Affiliation(s)
- Shir Armoza-Eilat
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yehonathan Malis
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Caspi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Olga Shomron
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Koret Hirschberg
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Toledo PL, Vazquez DS, Gianotti AR, Abate MB, Wegbrod C, Torkko JM, Solimena M, Ermácora MR. Condensation of the β-cell secretory granule luminal cargoes pro/insulin and ICA512 RESP18 homology domain. Protein Sci 2023; 32:e4649. [PMID: 37159024 PMCID: PMC10201709 DOI: 10.1002/pro.4649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
ICA512/PTPRN is a receptor tyrosine-like phosphatase implicated in the biogenesis and turnover of the insulin secretory granules (SGs) in pancreatic islet beta cells. Previously we found biophysical evidence that its luminal RESP18 homology domain (RESP18HD) forms a biomolecular condensate and interacts with insulin in vitro at close-to-neutral pH, that is, in conditions resembling those present in the early secretory pathway. Here we provide further evidence for the relevance of these findings by showing that at pH 6.8 RESP18HD interacts also with proinsulin-the physiological insulin precursor found in the early secretory pathway and the major luminal cargo of β-cell nascent SGs. Our light scattering analyses indicate that RESP18HD and proinsulin, but also insulin, populate nanocondensates ranging in size from 15 to 300 nm and 10e2 to 10e6 molecules. Co-condensation of RESP18HD with proinsulin/insulin transforms the initial nanocondensates into microcondensates (size >1 μm). The intrinsic tendency of proinsulin to self-condensate implies that, in the ER, a chaperoning mechanism must arrest its spontaneous intermolecular condensation to allow for proper intramolecular folding. These data further suggest that proinsulin is an early driver of insulin SG biogenesis, in a process in which its co-condensation with RESP18HD participates in their phase separation from other secretory proteins in transit through the same compartments but destined to other routes. Through the cytosolic tail of ICA512, proinsulin co-condensation with RESP18HD may further orchestrate the recruitment of cytosolic factors involved in membrane budding and fission of transport vesicles and nascent SGs.
Collapse
Affiliation(s)
- Pamela L. Toledo
- Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICETUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
| | - Diego S. Vazquez
- Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICETUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
| | - Alejo R. Gianotti
- Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICETUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
| | - Milagros B. Abate
- Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICETUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
| | - Carolin Wegbrod
- Department of Molecular DiabetologyUniversity Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- Paul Langerhans Institute Dresden of Helmholtz Munich at the University Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| | - Juha M. Torkko
- Department of Molecular DiabetologyUniversity Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- Paul Langerhans Institute Dresden of Helmholtz Munich at the University Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| | - Michele Solimena
- Department of Molecular DiabetologyUniversity Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- Paul Langerhans Institute Dresden of Helmholtz Munich at the University Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| | - Mario R. Ermácora
- Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICETUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
| |
Collapse
|
6
|
Parchure A, Tian M, Stalder D, Boyer CK, Bearrows SC, Rohli KE, Zhang J, Rivera-Molina F, Ramazanov BR, Mahata SK, Wang Y, Stephens SB, Gershlick DC, von Blume J. Liquid-liquid phase separation facilitates the biogenesis of secretory storage granules. J Cell Biol 2022; 221:e202206132. [PMID: 36173346 PMCID: PMC9526250 DOI: 10.1083/jcb.202206132] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 02/03/2023] Open
Abstract
Insulin is synthesized by pancreatic β-cells and stored into secretory granules (SGs). SGs fuse with the plasma membrane in response to a stimulus and deliver insulin to the bloodstream. The mechanism of how proinsulin and its processing enzymes are sorted and targeted from the trans-Golgi network (TGN) to SGs remains mysterious. No cargo receptor for proinsulin has been identified. Here, we show that chromogranin (CG) proteins undergo liquid-liquid phase separation (LLPS) at a mildly acidic pH in the lumen of the TGN, and recruit clients like proinsulin to the condensates. Client selectivity is sequence-independent but based on the concentration of the client molecules in the TGN. We propose that the TGN provides the milieu for converting CGs into a "cargo sponge" leading to partitioning of client molecules, thus facilitating receptor-independent client sorting. These findings provide a new receptor-independent sorting model in β-cells and many other cell types and therefore represent an innovation in the field of membrane trafficking.
Collapse
Affiliation(s)
- Anup Parchure
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Meng Tian
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Cierra K. Boyer
- Departments of Pharmacology and Neuroscience, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA
| | - Shelby C. Bearrows
- Departments of Pharmacology and Neuroscience, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA
| | - Kristen E. Rohli
- Departments of Pharmacology and Neuroscience, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA
| | - Jianchao Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Bulat R. Ramazanov
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Sushil K. Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA
- VA San Diego Healthcare System, San Diego, CA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Samuel B. Stephens
- Departments of Pharmacology and Neuroscience, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| | - David C. Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Julia von Blume
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
7
|
Rohli KE, Boyer CK, Blom SE, Stephens SB. Nutrient Regulation of Pancreatic Islet β-Cell Secretory Capacity and Insulin Production. Biomolecules 2022; 12:335. [PMID: 35204835 PMCID: PMC8869698 DOI: 10.3390/biom12020335] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Pancreatic islet β-cells exhibit tremendous plasticity for secretory adaptations that coordinate insulin production and release with nutritional demands. This essential feature of the β-cell can allow for compensatory changes that increase secretory output to overcome insulin resistance early in Type 2 diabetes (T2D). Nutrient-stimulated increases in proinsulin biosynthesis may initiate this β-cell adaptive compensation; however, the molecular regulators of secretory expansion that accommodate the increased biosynthetic burden of packaging and producing additional insulin granules, such as enhanced ER and Golgi functions, remain poorly defined. As these adaptive mechanisms fail and T2D progresses, the β-cell succumbs to metabolic defects resulting in alterations to glucose metabolism and a decline in nutrient-regulated secretory functions, including impaired proinsulin processing and a deficit in mature insulin-containing secretory granules. In this review, we will discuss how the adaptative plasticity of the pancreatic islet β-cell's secretory program allows insulin production to be carefully matched with nutrient availability and peripheral cues for insulin signaling. Furthermore, we will highlight potential defects in the secretory pathway that limit or delay insulin granule biosynthesis, which may contribute to the decline in β-cell function during the pathogenesis of T2D.
Collapse
Affiliation(s)
- Kristen E. Rohli
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Cierra K. Boyer
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Sandra E. Blom
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Samuel B. Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Reck J, Beuret N, Demirci E, Prescianotto-Baschong C, Spiess M. Small disulfide loops in peptide hormones mediate self-aggregation and secretory granule sorting. Life Sci Alliance 2022; 5:5/5/e202101279. [PMID: 35086936 PMCID: PMC8807871 DOI: 10.26508/lsa.202101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Unlike constitutively secreted proteins, peptide hormones are stored in densely packed secretory granules, before regulated release upon stimulation. Secretory granules are formed at the TGN by self-aggregation of prohormones as functional amyloids. The nonapeptide hormone vasopressin, which forms a small disulfide loop, was shown to be responsible for granule formation of its precursor in the TGN as well as for toxic fibrillar aggregation of unfolded mutants in the ER. Several other hormone precursors also contain similar small disulfide loops suggesting their function as a general device to mediate aggregation for granule sorting. To test this hypothesis, we studied the capacity of small disulfide loops of different hormone precursors to mediate aggregation in the ER and the TGN. They indeed induced ER aggregation in Neuro-2a and COS-1 cells. Fused to a constitutively secreted reporter protein, they also promoted sorting into secretory granules, enhanced stimulated secretion, and increased Lubrol insolubility in AtT20 cells. These results support the hypothesis that small disulfide loops act as novel signals for sorting into secretory granules by self-aggregation.
Collapse
|
9
|
Spiess M, Friberg M, Beuret N, Prescianotto-Baschong C, Rutishauser J. Role of protein aggregation and degradation in autosomal dominant neurohypophyseal diabetes insipidus. Mol Cell Endocrinol 2020; 501:110653. [PMID: 31785344 DOI: 10.1016/j.mce.2019.110653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022]
Abstract
This review focuses on the cellular and molecular aspects underlying familial neurohypophyseal diabetes insipidus (DI), a rare disorder that is usually transmitted in an autosomal-dominant fashion. The disease, manifesting in infancy or early childhood and gradually progressing in severity, is caused by fully penetrant heterozygous mutations in the gene encoding prepro-vasopressin-neurophysin II, the precursor of the antidiuretic hormone arginine vasopressin (AVP). Post mortem studies in affected adults have shown cell degeneration in vasopressinergic hypothalamic nuclei. Studies in cells expressing pathogenic mutants and knock-in rodent models have shown that the mutant precursors are folding incompetent and fail to exit the endoplasmic reticulum (ER), as occurs normally with proteins that have entered the regulated secretory pathway. A portion of these mutants is eliminated via ER-associated degradation (ERAD) by proteasomes after retrotranslocation to the cytosol. Another portion forms large disulfide-linked fibrillar aggregates within the ER, in which wild-type precursor is trapped. Aggregation capacity is independently conferred by two domains of the prohormone, namely the AVP moiety and the C-terminal glycopeptide (copeptin). The same domains are also required for packaging into dense-core secretory granules and regulated secretion, suggesting a disturbed balance between the physiological self-aggregation at the trans-Golgi network and avoiding premature aggregate formation at the ER in the disease. The critical role of ERAD in maintaining physiological water balance has been underscored by experiments in mice expressing wild-type AVP but lacking critical components of the ERAD machinery. These animals also develop DI and show amyloid-like aggregates in the ER lumen. Thus, the capacity of the ERAD is exceeded in autosomal dominant DI, which can be viewed as a neurodegenerative disorder associated with the formation of amyloid ER aggregates. While DI symptoms develop prior to detectable cell death in transgenic DI mice, the eventual loss of vasopressinergic neurons is accompanied by autophagy, but the mechanism leading to cell degeneration in autosomal dominant neurohypophyseal DI still remains unknown.
Collapse
Affiliation(s)
- Martin Spiess
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | - Michael Friberg
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | - Nicole Beuret
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | | | - Jonas Rutishauser
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland.
| |
Collapse
|
10
|
Nagayach A, Singh A, Geller AI. Efficient gene transfers into neocortical neurons connected by NMDA NR1-containing synapses. J Neurosci Methods 2019; 327:108390. [PMID: 31404560 PMCID: PMC6760849 DOI: 10.1016/j.jneumeth.2019.108390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Within a circuit, specific neurons and synapses are hypothesized to have essential roles in circuit physiology and learning, and dysfunction in these neurons and synapses causes specific disorders. These critical neurons and synapses are embedded in complex circuits containing many neuron and synapse types. NEW METHOD We established technology that can deliver different genes into pre- and post-synaptic neurons connected by a specific synapse type. The first, presynaptic gene transfer employs standard gene transfer technology to express a synthetic peptide neurotransmitter which has three domains, a dense core vesicle sorting domain for processing the protein as a peptide neurotransmitter, a receptor-binding domain, here a small peptide that binds to NMDA NR1 subunits, and the His tag. Upon release, this peptide neurotransmitter binds to its cognate receptor on postsynaptic neurons. Gene transfer selectively into these postsynaptic neurons employs antibody-mediated, targeted gene transfer and anti-His tag antibodies, which recognize the His tag domain in the synthetic peptide neurotransmitter. RESULTS For the model system, we studied the connection from projection neurons in postrhinal cortex to specific neurons in perirhinal cortex. In our initial report, gene transfer to connected neurons was 20+1% specific. Here, we optimized the technology; we improved the transfection for packaging by using a modern using a modern lipid, Lipofectamine 3000, and used a modern confocal microscope to collect data. We now report 80+2% specific gene transfer to connected neurons. COMPARISON WITH EXISTING METHODS There is no existing method with this capability. CONCLUSIONS This technology may enable studies on the roles of specific neurons and synapses in circuit physiology and learning, and support gene therapy treatments for specific disorders.
Collapse
Affiliation(s)
- Aarti Nagayach
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Anshuman Singh
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Alfred I Geller
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA; Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
11
|
Perego C, Da Dalt L, Pirillo A, Galli A, Catapano AL, Norata GD. Cholesterol metabolism, pancreatic β-cell function and diabetes. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2149-2156. [DOI: 10.1016/j.bbadis.2019.04.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
|
12
|
Nagayach A, Singh A, Geller AI. Separate Gene Transfers into Pre- and Postsynaptic Neocortical Neurons Connected by mGluR5-Containing Synapses. J Mol Neurosci 2019; 68:549-564. [PMID: 30972540 PMCID: PMC6615967 DOI: 10.1007/s12031-019-01317-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/28/2019] [Indexed: 11/25/2022]
Abstract
mGluR5-containing synapses have essential roles in synaptic plasticity, circuit physiology, and learning, and dysfunction at these synapses is implicated in specific neurological disorders. As mGluR5-containing synapses are embedded in large and complex distributed circuits containing many neuron and synapse types, it is challenging to elucidate the roles of these synapses and to develop treatments for the associated disorders. Thus, it would be advantageous to deliver different genes into pre- and postsynaptic neurons connected by a mGluR5-containing synapse. Here, we develop this capability: The first gene transfer, into the presynaptic neurons, uses standard techniques to deliver a vector that expresses a synthetic peptide neurotransmitter. This peptide neurotransmitter has three domains: a dense core vesicle sorting domain, a mGluR5-binding domain composed of a single-chain variable fragment anti-mGluR5, and the His tag. Upon release, this peptide neurotransmitter binds to mGluR5, predominately located on the postsynaptic neurons. Selective gene transfer into these neurons uses antibody-mediated, targeted gene transfer and anti-His tag antibodies, as the synthetic peptide neurotransmitter contains the His tag. For the model system, we studied the connection between neurons in two neocortical areas: postrhinal and perirhinal cortices. Targeted gene transfer was over 80% specific for mGluR5-containing synapses, but untargeted gene transfer was only ~ 15% specific for these synapses. This technology may enable studies on the roles of mGluR5-containing neurons and synapses in circuit physiology and learning and support gene therapy treatments for specific disorders that involve dysfunction at these synapses.
Collapse
Affiliation(s)
- Aarti Nagayach
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Anshuman Singh
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Alfred I Geller
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, USA.
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, USA.
| |
Collapse
|
13
|
Bearrows SC, Bauchle CJ, Becker M, Haldeman JM, Swaminathan S, Stephens SB. Chromogranin B regulates early-stage insulin granule trafficking from the Golgi in pancreatic islet β-cells. J Cell Sci 2019; 132:jcs.231373. [PMID: 31182646 DOI: 10.1242/jcs.231373] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Chromogranin B (CgB, also known as CHGB) is abundantly expressed in dense core secretory granules of multiple endocrine tissues and has been suggested to regulate granule biogenesis in some cell types, including the pancreatic islet β-cell, though the mechanisms are poorly understood. Here, we demonstrate a critical role for CgB in regulating secretory granule trafficking in the β-cell. Loss of CgB impairs glucose-stimulated insulin secretion, impedes proinsulin processing to yield increased proinsulin content, and alters the density of insulin-containing granules. Using an in situ fluorescent pulse-chase strategy to track nascent proinsulin, we show that loss of CgB impairs Golgi budding of proinsulin-containing secretory granules, resulting in a substantial delay in trafficking of nascent granules to the plasma membrane with an overall decrease in total plasma membrane-associated granules. These studies demonstrate that CgB is necessary for efficient trafficking of secretory proteins into the budding granule, which impacts the availability of insulin-containing secretory granules for exocytic release.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Shelby C Bearrows
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52246, USA.,Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52246, USA
| | - Casey J Bauchle
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52246, USA.,Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52246, USA
| | - McKenzie Becker
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52246, USA.,Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52246, USA
| | - Jonathan M Haldeman
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Svetha Swaminathan
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52246, USA.,Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52246, USA
| | - Samuel B Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52246, USA .,Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52246, USA
| |
Collapse
|
14
|
Nagayach A, Singh A, De Blas AL, Geller AI. Delivery of different genes into pre- and post-synaptic neocortical interneurons connected by GABAergic synapses. PLoS One 2019; 14:e0217094. [PMID: 31125364 PMCID: PMC6534327 DOI: 10.1371/journal.pone.0217094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022] Open
Abstract
Local neocortical circuits play critical roles in information processing, including synaptic plasticity, circuit physiology, and learning, and GABAergic inhibitory interneurons have key roles in these circuits. Moreover, specific neurological disorders, including schizophrenia and autism, are associated with deficits in GABAergic transmission in these circuits. GABAergic synapses represent a small fraction of neocortical synapses, and are embedded in complex local circuits that contain many neuron and synapse types. Thus, it is challenging to study the physiological roles of GABAergic inhibitory interneurons and their synapses, and to develop treatments for the specific disorders caused by dysfunction at these GABAergic synapses. To these ends, we report a novel technology that can deliver different genes into pre- and post-synaptic neocortical interneurons connected by a GABAergic synapse: First, standard gene transfer into the presynaptic neurons delivers a synthetic peptide neurotransmitter, containing three domains, a dense core vesicle sorting domain, a GABAA receptor-binding domain, a single-chain variable fragment anti-GABAA ß2 or ß3, and the His tag. Second, upon release, this synthetic peptide neurotransmitter binds to GABAA receptors on the postsynaptic neurons. Third, as the synthetic peptide neurotransmitter contains the His tag, antibody-mediated, targeted gene transfer using anti-His tag antibodies is selective for these neurons. We established this technology by expressing the synthetic peptide neurotransmitter in GABAergic neurons in the middle layers of postrhinal cortex, and the delivering the postsynaptic vector into connected GABAergic neurons in the upper neocortical layers. Targeted gene transfer was 61% specific for the connected neurons, but untargeted gene transfer was only 21% specific for these neurons. This technology may support studies on the roles of GABAergic inhibitory interneurons in circuit physiology and learning, and support gene therapy treatments for specific disorders associated with deficits at GABAergic synapses.
Collapse
Affiliation(s)
- Aarti Nagayach
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Anshuman Singh
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Angel L. De Blas
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Alfred I. Geller
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| |
Collapse
|
15
|
Toledo PL, Torkko JM, Müller A, Wegbrod C, Sönmez A, Solimena M, Ermácora MR. ICA512 RESP18 homology domain is a protein-condensing factor and insulin fibrillation inhibitor. J Biol Chem 2019; 294:8564-8576. [PMID: 30979722 DOI: 10.1074/jbc.ra119.007607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/09/2019] [Indexed: 12/19/2022] Open
Abstract
Type 1 diabetes islet cell autoantigen 512 (ICA512/IA-2) is a tyrosine phosphatase-like intrinsic membrane protein involved in the biogenesis and turnover of insulin secretory granules (SGs) in pancreatic islet β-cells. Whereas its membrane-proximal and cytoplasmic domains have been functionally and structurally characterized, the role of the ICA512 N-terminal segment named "regulated endocrine-specific protein 18 homology domain" (RESP18HD), which encompasses residues 35-131, remains largely unknown. Here, we show that ICA512 RESP18HD residues 91-131 encode for an intrinsically disordered region (IDR), which in vitro acts as a condensing factor for the reversible aggregation of insulin and other β-cell proteins in a pH and Zn2+-regulated fashion. At variance with what has been shown for other granule cargoes with aggregating properties, the condensing activity of ICA512 RESP18HD is displayed at a pH close to neutral, i.e. in the pH range found in the early secretory pathway, whereas it is resolved at acidic pH and Zn2+ concentrations resembling those present in mature SGs. Moreover, we show that ICA512 RESP18HD residues 35-90, preceding the IDR, inhibit insulin fibrillation in vitro Finally, we found that glucose-stimulated secretion of RESP18HD upon exocytosis of SGs from insulinoma INS-1 cells is associated with cleavage of its IDR, conceivably to prevent its aggregation upon exposure to neutral pH in the extracellular milieu. Taken together, these findings point to ICA512 RESP18HD being a condensing factor for protein sorting and granulogenesis early in the secretory pathway and for prevention of amyloidogenesis.
Collapse
Affiliation(s)
- Pamela L Toledo
- Grupo de Biología Estructural y Biotecnología, Universidad Nacional de Quilmes, 1876 Bernal, Buenos Aires, Argentina; IMBICE, CONICET-CIC-Universidad Nacional de La Plata, B1906APO La Plata, Buenos Aires, Argentina
| | - Juha M Torkko
- Grupo de Biología Estructural y Biotecnología, Universidad Nacional de Quilmes, 1876 Bernal, Buenos Aires, Argentina; IMBICE, CONICET-CIC-Universidad Nacional de La Plata, B1906APO La Plata, Buenos Aires, Argentina; Department of Molecular Diabetology, University Hospital and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
| | - Andreas Müller
- Department of Molecular Diabetology, University Hospital and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
| | - Carolin Wegbrod
- Department of Molecular Diabetology, University Hospital and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
| | - Anke Sönmez
- Department of Molecular Diabetology, University Hospital and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
| | - Michele Solimena
- Department of Molecular Diabetology, University Hospital and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | - Mario R Ermácora
- Grupo de Biología Estructural y Biotecnología, Universidad Nacional de Quilmes, 1876 Bernal, Buenos Aires, Argentina; IMBICE, CONICET-CIC-Universidad Nacional de La Plata, B1906APO La Plata, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Miao N, Zhan Y, Xu Y, Yuan H, Qin C, Lin F, Xie X, Mu S, Yuan M, Mu H, Guo S, Li Y, Zhang B. Loss of Fam20c causes defects in the acinar and duct structure of salivary glands in mice. Int J Mol Med 2019; 43:2103-2117. [PMID: 30864688 PMCID: PMC6443332 DOI: 10.3892/ijmm.2019.4126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/01/2019] [Indexed: 12/11/2022] Open
Abstract
Family with sequence similarity 20-member C (FAM20C), a recently characterized Golgi kinase, performs numerous biological functions by phosphorylating more than 100 secreted proteins. However, the role of FAM20C in the salivary glands remains undefined. The present study demonstrated that FAM20C is mainly located in the cytoplasm of duct epithelial cells in the salivary glands. Fam20cf/f; Mmtv-Cre mice were created in which Fam20c was inactivated in the salivary gland cells and observed that the number of ducts and the ductal cross-sectional area increased significantly, while the number of acinar cells was reduced. The granular convoluted tubules (GCTs) exhibited an accumulation of aberrant secretory granules, along with a reduced expression and altered distribution patterns of β nerve growth factor, α-amylase and bone morphogenetic protein (BMP) 4. This abnormality suggested that the GCT cells were immature and exhibited defects in developmental and secretory functions. In accordance with the morphological alterations and the reduced number of acinar cells, FAM20C deficiency in the salivary glands significantly decreased the salivary flow rate. The Na+, Cl− and K+ concentrations in the saliva were all significantly increased due to dysfunction of the ducts. Furthermore, Fam20c deficiency significantly increased BMP2 and BMP7 expression, decreased BMP4 expression, and attenuated the canonical and noncanonical BMP signaling pathways in the salivary glands. Collectively, the results of the present study demonstrate that FAM20C is a key regulator of acinar and duct structure and duct maturation and provide a novel avenue for investigating novel therapeutic targets for oral diseases including xerostomia.
Collapse
Affiliation(s)
- Nan Miao
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yuanbo Zhan
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yingying Xu
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Haoze Yuan
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chunlin Qin
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Feng Lin
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xiaohua Xie
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Sen Mu
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Mengtong Yuan
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Haibin Mu
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shouli Guo
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ying Li
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Bin Zhang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
17
|
Nagayach A, Singh A, Geller AI. Delivery of different genes into presynaptic and postsynaptic neocortical neurons connected by a BDNF-TrkB synapse. Brain Res 2019; 1712:16-24. [PMID: 30710509 DOI: 10.1016/j.brainres.2019.01.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 02/05/2023]
Abstract
Brain-Derived Neurotrophic Factor (BDNF) signaling through TrkB receptors has important roles in synapse formation, synaptic plasticity, learning, and specific diseases. However, it is challenging to relate BDNF-TrkB synapses to circuit physiology or learning, as BDNF-TrkB synapses are embedded in complex circuits that contain numerous neuron and synapse types. Thus, analyzing the physiology of neurons connected by BDNF-TrkB synapses would be advanced by a technology to deliver different genes into presynaptic and postsynaptic neurons, connected by a BDNF-TrkB synapse. Here, we report selective gene transfer across BDNF-TrkB synapses: The model system was the large projection from rat postrhinal to perirhinal cortex. The first gene transfer, into presynaptic neurons in postrhinal cortex, used a virus vector and standard gene transfer procedures. This vector expresses a synthetic peptide neurotransmitter composed of three domains, a dense core vesicle sorting domain, BDNF, and the His tag. Upon release, this peptide neurotransmitter binds to TrkB receptors on postsynaptic neurons. The second gene transfer, into connected postsynaptic neurons in perirhinal cortex, uses antibody-mediated, targeted gene transfer and an anti-His tag antibody, as the synthetic peptide neurotransmitter contains the His tag. Confocal microscope images showed that using untargeted gene transfer, only 10-15% of the transduced presynaptic axons were proximal to a transduced postsynaptic dendrite. But using targeted gene transfer, ∼70% of the transduced presynaptic axons were proximal to a transduced postsynaptic dendrite. This technology may support studies on the roles of neurons connected by BDNF-TrkB synapses in circuit physiology and learning.
Collapse
Affiliation(s)
- Aarti Nagayach
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Anshuman Singh
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Alfred I Geller
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Department of Phamracology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
18
|
Harno E, Gali Ramamoorthy T, Coll AP, White A. POMC: The Physiological Power of Hormone Processing. Physiol Rev 2019; 98:2381-2430. [PMID: 30156493 DOI: 10.1152/physrev.00024.2017] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pro-opiomelanocortin (POMC) is the archetypal polypeptide precursor of hormones and neuropeptides. In this review, we examine the variability in the individual peptides produced in different tissues and the impact of the simultaneous presence of their precursors or fragments. We also discuss the problems inherent in accurately measuring which of the precursors and their derived peptides are present in biological samples. We address how not being able to measure all the combinations of precursors and fragments quantitatively has affected our understanding of the pathophysiology associated with POMC processing. To understand how different ratios of peptides arise, we describe the role of the pro-hormone convertases (PCs) and their tissue specificities and consider the cellular processing pathways which enable regulated secretion of different peptides that play crucial roles in integrating a range of vital physiological functions. In the pituitary, correct processing of POMC peptides is essential to maintain the hypothalamic-pituitary-adrenal axis, and this processing can be disrupted in POMC-expressing tumors. In hypothalamic neurons expressing POMC, abnormalities in processing critically impact on the regulation of appetite, energy homeostasis, and body composition. More work is needed to understand whether expression of the POMC gene in a tissue equates to release of bioactive peptides. We suggest that this comprehensive view of POMC processing, with a focus on gaining a better understanding of the combination of peptides produced and their relative bioactivity, is a necessity for all involved in studying this fascinating physiological regulatory phenomenon.
Collapse
Affiliation(s)
- Erika Harno
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Thanuja Gali Ramamoorthy
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anthony P Coll
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anne White
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| |
Collapse
|
19
|
Dirk BS, End C, Pawlak EN, Van Nynatten LR, Jacob RA, Heit B, Dikeakos JD. PACS-1 and adaptor protein-1 mediate ACTH trafficking to the regulated secretory pathway. Biochem Biophys Res Commun 2018; 507:519-525. [PMID: 30458990 DOI: 10.1016/j.bbrc.2018.11.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
Abstract
The regulated secretory pathway is a specialized form of protein secretion found in endocrine and neuroendocrine cell types. Pro-opiomelanocortin (POMC) is a pro-hormone that utilizes this pathway to be trafficked to dense core secretory granules (DCSGs). Within this organelle, POMC is processed to multiple bioactive hormones that play key roles in cellular physiology. However, the complete set of cellular membrane trafficking proteins that mediate the correct sorting of POMC to DCSGs remain unknown. Here, we report the roles of the phosphofurin acidic cluster sorting protein - 1 (PACS-1) and the clathrin adaptor protein 1 (AP-1) in the targeting of POMC to DCSGs. Upon knockdown of PACS-1 and AP-1, POMC is readily secreted into the extracellular milieu and fails to be targeted to DCSGs.
Collapse
Affiliation(s)
- Brennan S Dirk
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Christopher End
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Emily N Pawlak
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Logan R Van Nynatten
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Rajesh Abraham Jacob
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
20
|
Stephens SB, Edwards RJ, Sadahiro M, Lin WJ, Jiang C, Salton SR, Newgard CB. The Prohormone VGF Regulates β Cell Function via Insulin Secretory Granule Biogenesis. Cell Rep 2018; 20:2480-2489. [PMID: 28877479 DOI: 10.1016/j.celrep.2017.08.050] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 07/25/2017] [Accepted: 08/15/2017] [Indexed: 12/18/2022] Open
Abstract
The prohormone VGF is expressed in neuroendocrine and endocrine tissues and regulates nutrient and energy status both centrally and peripherally. We and others have shown that VGF-derived peptides have direct action on the islet β cell as secretagogues and cytoprotective agents; however, the endogenous function of VGF in the β cell has not been described. Here, we demonstrate that VGF regulates secretory granule formation. VGF loss-of-function studies in both isolated islets and conditional knockout mice reveal a profound decrease in stimulus-coupled insulin secretion. Moreover, VGF is necessary to facilitate efficient exit of granule cargo from the trans-Golgi network and proinsulin processing. It also functions to replenish insulin granule stores following nutrient stimulation. Our data support a model in which VGF operates at a critical node of granule biogenesis in the islet β cell to coordinate insulin biosynthesis with β cell secretory capacity.
Collapse
Affiliation(s)
- Samuel B Stephens
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27704, USA; Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27704, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27704, USA.
| | - Robert J Edwards
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27704, USA
| | - Masato Sadahiro
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Wei-Jye Lin
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Cheng Jiang
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Stephen R Salton
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27704, USA; Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27704, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27704, USA; Department of Medicine, Division of Endocrinology, Duke University Medical Center, Durham, NC 27704, USA
| |
Collapse
|
21
|
Holly MK, Smith JG. Paneth Cells during Viral Infection and Pathogenesis. Viruses 2018; 10:v10050225. [PMID: 29701691 PMCID: PMC5977218 DOI: 10.3390/v10050225] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 02/07/2023] Open
Abstract
Paneth cells are major secretory cells located in the crypts of Lieberkühn in the small intestine. Our understanding of the diverse roles that Paneth cells play in homeostasis and disease has grown substantially since their discovery over a hundred years ago. Classically, Paneth cells have been characterized as a significant source of antimicrobial peptides and proteins important in host defense and shaping the composition of the commensal microbiota. More recently, Paneth cells have been shown to supply key developmental and homeostatic signals to intestinal stem cells in the crypt base. Paneth cell dysfunction leading to dysbiosis and a compromised epithelial barrier have been implicated in the etiology of Crohn’s disease and susceptibility to enteric bacterial infection. Our understanding of the impact of Paneth cells on viral infection is incomplete. Enteric α-defensins, produced by Paneth cells, can directly alter viral infection. In addition, α-defensins and other antimicrobial Paneth cell products may modulate viral infection indirectly by impacting the microbiome. Here, we discuss recent insights into Paneth cell biology, models to study their function, and the impact, both direct and indirect, of Paneth cells on enteric viral infection.
Collapse
Affiliation(s)
- Mayumi K Holly
- Department of Microbiology, University of Washington, Box 357735, 1705 NE Pacific St., Seattle, WA 98195, USA.
| | - Jason G Smith
- Department of Microbiology, University of Washington, Box 357735, 1705 NE Pacific St., Seattle, WA 98195, USA.
| |
Collapse
|
22
|
Jékely G, Melzer S, Beets I, Kadow ICG, Koene J, Haddad S, Holden-Dye L. The long and the short of it - a perspective on peptidergic regulation of circuits and behaviour. J Exp Biol 2018; 221:jeb166710. [PMID: 29439060 DOI: 10.1242/jeb.166710] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neuropeptides are the most diverse class of chemical modulators in nervous systems. They contribute to extensive modulation of circuit activity and have profound influences on animal physiology. Studies on invertebrate model organisms, including the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, have enabled the genetic manipulation of peptidergic signalling, contributing to an understanding of how neuropeptides pattern the output of neural circuits to underpin behavioural adaptation. Electrophysiological and pharmacological analyses of well-defined microcircuits, such as the crustacean stomatogastric ganglion, have provided detailed insights into neuropeptide functions at a cellular and circuit level. These approaches can be increasingly applied in the mammalian brain by focusing on circuits with a defined and identifiable sub-population of neurons. Functional analyses of neuropeptide systems have been underpinned by systematic studies to map peptidergic networks. Here, we review the general principles and mechanistic insights that have emerged from these studies. We also highlight some of the challenges that remain for furthering our understanding of the functional relevance of peptidergic modulation.
Collapse
Affiliation(s)
- Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Sarah Melzer
- Howard Hughes Medical Institute, Department of Neurobiology, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Isabel Beets
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ilona C Grunwald Kadow
- Technical University of Munich, TUM School of Life Sciences, ZIEL - Institute for Food and Health, 85354 Freising, Germany
| | - Joris Koene
- Vrije Universiteit - Ecological Science, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Sara Haddad
- Volen Center for Complex Systems, Brandeis University, Mailstop 013, 415 South Street, Waltham, MA 02454, USA
| | - Lindy Holden-Dye
- Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
23
|
Dominguez N, van Weering JRT, Borges R, Toonen RFG, Verhage M. Dense-core vesicle biogenesis and exocytosis in neurons lacking chromogranins A and B. J Neurochem 2018; 144:241-254. [PMID: 29178418 PMCID: PMC5814729 DOI: 10.1111/jnc.14263] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 11/26/2022]
Abstract
Chromogranin A and B (Cgs) are considered to be master regulators of cargo sorting for the regulated secretory pathway (RSP) and dense-core vesicle (DCV) biogenesis. To test this, we analyzed the release of neuropeptide Y (NPY)-pHluorin, a live RSP reporter, and the distribution, number, and appearance of DCVs, in mouse hippocampal neurons lacking expression of CHGA and CHGB genes. qRT-PCR analysis showed that expression of other granin family members was not significantly altered in CgA/B-/- neurons. As synaptic maturation of developing neurons depends on secretion of trophic factors in the RSP, we first analyzed neuronal development in standardized neuronal cultures. Surprisingly, dendritic and axonal length, arborization, synapse density, and synaptic vesicle accumulation in synapses were all normal in CgA/B-/- neurons. Moreover, the number of DCVs outside the soma, stained with endogenous marker Secretogranin II, the number of NPY-pHluorin puncta, and the total amount of reporter in secretory compartments, as indicated by pH-sensitive NPY-pHluorin fluorescence, were all normal in CgA/B-/- neurons. Electron microscopy revealed that synapses contained a normal number of DCVs, with a normal diameter, in CgA/B-/- neurons. In contrast, CgA/B-/- chromaffin cells contained fewer and smaller secretory vesicles with a smaller core size, as previously reported. Finally, live-cell imaging at single vesicle resolution revealed a normal number of fusion events upon bursts of action potentials in CgA/B-/- neurons. These events had normal kinetics and onset relative to the start of stimulation. Taken together, these data indicate that the two chromogranins are dispensable for cargo sorting in the RSP and DCV biogenesis in mouse hippocampal neurons.
Collapse
Affiliation(s)
- Natalia Dominguez
- Department of Clinical GeneticsCenter for Neurogenomics and Cognitive Research (CNCR)VU University Amsterdam and VU University Medical Center (VUmc)AmsterdamThe Netherlands
| | - Jan R. T. van Weering
- Department of Clinical GeneticsCenter for Neurogenomics and Cognitive Research (CNCR)VU University Amsterdam and VU University Medical Center (VUmc)AmsterdamThe Netherlands
| | - Ricardo Borges
- Unidad de FarmacologíaFacultad de MedicinaUniversidad de la LagunaTenerifeSpain
| | - Ruud F. G. Toonen
- Functional GenomicsCenter for Neurogenomics and Cognitive Research (CNCR)VU University Amsterdam and VU University Medical Center (VUmc)AmsterdamThe Netherlands
| | - Matthijs Verhage
- Department of Clinical GeneticsCenter for Neurogenomics and Cognitive Research (CNCR)VU University Amsterdam and VU University Medical Center (VUmc)AmsterdamThe Netherlands
- Functional GenomicsCenter for Neurogenomics and Cognitive Research (CNCR)VU University Amsterdam and VU University Medical Center (VUmc)AmsterdamThe Netherlands
| |
Collapse
|
24
|
Maeda Y, Kudo S, Tsushima K, Sato E, Kubota C, Kayamori A, Bochimoto H, Koga D, Torii S, Gomi H, Watanabe T, Hosaka M. Impaired Processing of Prohormones in Secretogranin III-Null Mice Causes Maladaptation to an Inadequate Diet and Stress. Endocrinology 2018; 159:1213-1227. [PMID: 29281094 DOI: 10.1210/en.2017-00636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 12/15/2017] [Indexed: 11/19/2022]
Abstract
Secretogranin III (SgIII), a member of the granin family, binds both to another granin, chromogranin A (CgA), and to a cholesterol-rich membrane that is destined for secretory granules (SGs). The knockdown of SgIII in adrenocorticotropic hormone (ACTH)-producing AtT-20 cells largely impairs the regulated secretion of CgA and ACTH. To clarify the physiological roles of SgIII in vivo, we analyzed hormone secretion and SG biogenesis in newly established SgIII-knockout (KO) mice. Although the SgIII-KO mice were viable and fertile and exhibited no overt abnormalities under ordinary rearing conditions, a high-fat/high-sucrose diet caused pronounced obesity in the mice. Furthermore, in the SgIII-KO mice compared with wild-type (WT) mice, the stimulated secretion of active insulin decreased substantially, whereas the storage of proinsulin increased in the islets. The plasma ACTH was also less elevated in the SgIII-KO mice than in the WT mice after chronic restraint stress, whereas the storage level of the precursor proopiomelanocortin in the pituitary gland was somewhat increased. These findings suggest that the lack of SgIII causes maladaptation of endocrine cells to an inadequate diet and stress by impairing the proteolytic conversion of prohormones in SGs, whereas SG biogenesis and the basal secretion of peptide hormones under ordinary conditions are ensured by the compensatory upregulation of other residual granins or factors.
Collapse
Affiliation(s)
- Yoshinori Maeda
- Department of Biotechnology, Laboratory of Molecular Life Sciences, Akita Prefectural University, Akita, Japan
| | - Saki Kudo
- Department of Biotechnology, Laboratory of Molecular Life Sciences, Akita Prefectural University, Akita, Japan
| | - Ken Tsushima
- Department of Biotechnology, Laboratory of Molecular Life Sciences, Akita Prefectural University, Akita, Japan
| | - Eri Sato
- Department of Biotechnology, Laboratory of Molecular Life Sciences, Akita Prefectural University, Akita, Japan
| | - Chisato Kubota
- Biosignal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Aika Kayamori
- Department of Biotechnology, Laboratory of Molecular Life Sciences, Akita Prefectural University, Akita, Japan
| | - Hiroki Bochimoto
- Health Care Administration Center, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Daisuke Koga
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Japan
| | - Seiji Torii
- Biosignal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hiroshi Gomi
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Tsuyoshi Watanabe
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Japan
| | - Masahiro Hosaka
- Department of Biotechnology, Laboratory of Molecular Life Sciences, Akita Prefectural University, Akita, Japan
| |
Collapse
|
25
|
Sahu BS, Manna PT, Edgar JR, Antrobus R, Mahata SK, Bartolomucci A, Borner GHH, Robinson MS. Role of clathrin in dense core vesicle biogenesis. Mol Biol Cell 2017; 28:2676-2685. [PMID: 28814506 PMCID: PMC5620375 DOI: 10.1091/mbc.e16-10-0742] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 07/13/2017] [Accepted: 08/07/2017] [Indexed: 11/11/2022] Open
Abstract
The dense core vesicles (DCVs) of neuroendocrine cells are a rich source of bioactive molecules such as peptides, hormones, and neurotransmitters, but relatively little is known about how they are formed. Using fractionation profiling, a method that combines subcellular fractionation with mass spectrometry, we identified ∼1200 proteins in PC12 cell vesicle-enriched fractions, with DCV-associated proteins showing distinct profiles from proteins associated with other types of vesicles. To investigate the role of clathrin in DCV biogenesis, we stably transduced PC12 cells with an inducible short hairpin RNA targeting clathrin heavy chain, resulting in ∼85% protein loss. DCVs could still be observed in the cells by electron microscopy, but mature profiles were approximately fourfold less abundant than in mock-treated cells. By quantitative mass spectrometry, DCV-associated proteins were found to be reduced approximately twofold in clathrin-depleted cells as a whole and approximately fivefold in vesicle-enriched fractions. Our combined data sets enabled us to identify new candidate DCV components. Secretion assays revealed that clathrin depletion causes a near-complete block in secretagogue-induced exocytosis. Taken together, our data indicate that clathrin has a function in DCV biogenesis beyond its established role in removing unwanted proteins from the immature vesicle.
Collapse
Affiliation(s)
- Bhavani S Sahu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Paul T Manna
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Sushil K Mahata
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161.,Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455
| | - Georg H H Borner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
26
|
Emperador Melero J, Nadadhur AG, Schut D, Weering JV, Heine VM, Toonen RF, Verhage M. Differential Maturation of the Two Regulated Secretory Pathways in Human iPSC-Derived Neurons. Stem Cell Reports 2017; 8:659-672. [PMID: 28238793 PMCID: PMC5355645 DOI: 10.1016/j.stemcr.2017.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 12/25/2022] Open
Abstract
Neurons communicate by regulated secretion of chemical signals from synaptic vesicles (SVs) and dense-core vesicles (DCVs). Here, we investigated the maturation of these two secretory pathways in micro-networks of human iPSC-derived neurons. These micro-networks abundantly expressed endogenous SV and DCV markers, including neuropeptides. DCV transport was microtubule dependent, preferentially anterograde in axons, and 2-fold faster in axons than in dendrites. SV and DCV secretion were strictly Ca2+ and SNARE dependent. DCV secretion capacity matured until day in vitro (DIV) 36, with intense stimulation releasing 6% of the total DCV pool, and then plateaued. This efficiency is comparable with mature mouse neurons. In contrast, SV secretion capacity continued to increase until DIV50, with substantial further increase in secretion efficiency and decrease in silent synapses. These data show that the two secretory pathways can be studied in human neurons and that they mature differentially, with DCV secretion reaching maximum efficiency when that of SVs is still low.
Collapse
Affiliation(s)
- Javier Emperador Melero
- Departments of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit (VU) Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV Amsterdam, the Netherlands
| | - Aishwarya G Nadadhur
- Departments of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit (VU) Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV Amsterdam, the Netherlands
| | - Desiree Schut
- Departments of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit (VU) Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV Amsterdam, the Netherlands
| | - Jan V Weering
- Departments of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit (VU) Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV Amsterdam, the Netherlands
| | - Vivi M Heine
- Departments of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit (VU) Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV Amsterdam, the Netherlands; Department of Pediatrics/Child Neurology, Amsterdam Neuroscience, VU Medical Center, 1081 HV Amsterdam, the Netherlands; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Ruud F Toonen
- Departments of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit (VU) Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV Amsterdam, the Netherlands.
| | - Matthijs Verhage
- Departments of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit (VU) Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
27
|
Beuret N, Hasler F, Prescianotto-Baschong C, Birk J, Rutishauser J, Spiess M. Amyloid-like aggregation of provasopressin in diabetes insipidus and secretory granule sorting. BMC Biol 2017; 15:5. [PMID: 28122547 PMCID: PMC5267430 DOI: 10.1186/s12915-017-0347-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/04/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Aggregation of peptide hormone precursors in the trans-Golgi network is an essential process in the biogenesis of secretory granules in endocrine cells. It has recently been proposed that this aggregation corresponds to the formation of functional amyloids. Our previous finding that dominant mutations in provasopressin, which cause cell degeneration and diabetes insipidus, prevent native folding and produce fibrillar aggregates in the endoplasmic reticulum (ER) might thus reflect mislocalized amyloid formation by sequences that evolved to mediate granule sorting. RESULTS Here we identified two sequences responsible for fibrillar aggregation of mutant precursors in the ER: the N-terminal vasopressin nonapeptide and the C-terminal glycopeptide. To test their role in granule sorting, the glycopeptide was deleted and/or vasopressin mutated to inactivate ER aggregation while still permitting precursor folding and ER exit. These mutations strongly reduced sorting into granules and regulated secretion in endocrine AtT20 cells. CONCLUSION The same sequences - vasopressin and the glycopeptide - mediate physiological aggregation of the wild-type hormone precursor into secretory granules and the pathological fibrillar aggregation of disease mutants in the ER. These findings support the amyloid hypothesis for secretory granule biogenesis.
Collapse
Affiliation(s)
- Nicole Beuret
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | - Franziska Hasler
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | | | - Julia Birk
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | - Jonas Rutishauser
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | - Martin Spiess
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland.
| |
Collapse
|
28
|
Plattner H. Trichocysts-Paramecium'sProjectile-like Secretory Organelles. J Eukaryot Microbiol 2016; 64:106-133. [DOI: 10.1111/jeu.12332] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/09/2016] [Accepted: 05/21/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Helmut Plattner
- Department of Biology; University of Konstanz; PO Box M625 78457 Konstanz Germany
| |
Collapse
|
29
|
Topalidou I, Cattin-Ortolá J, Pappas AL, Cooper K, Merrihew GE, MacCoss MJ, Ailion M. The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles. PLoS Genet 2016; 12:e1006074. [PMID: 27191843 PMCID: PMC4871572 DOI: 10.1371/journal.pgen.1006074] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/30/2016] [Indexed: 12/15/2022] Open
Abstract
The dense-core vesicle is a secretory organelle that mediates the regulated release of peptide hormones, growth factors, and biogenic amines. Dense-core vesicles originate from the trans-Golgi of neurons and neuroendocrine cells, but it is unclear how this specialized organelle is formed and acquires its specific cargos. To identify proteins that act in dense-core vesicle biogenesis, we performed a forward genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We previously reported the identification of two conserved proteins that interact with the small GTPase RAB-2 to control normal dense-core vesicle cargo-sorting. Here we identify several additional conserved factors important for dense-core vesicle cargo sorting: the WD40 domain protein EIPR-1 and the endosome-associated recycling protein (EARP) complex. By assaying behavior and the trafficking of dense-core vesicle cargos, we show that mutants that lack EIPR-1 or EARP have defects in dense-core vesicle cargo-sorting similar to those of mutants in the RAB-2 pathway. Genetic epistasis data indicate that RAB-2, EIPR-1 and EARP function in a common pathway. In addition, using a proteomic approach in rat insulinoma cells, we show that EIPR-1 physically interacts with the EARP complex. Our data suggest that EIPR-1 is a new interactor of the EARP complex and that dense-core vesicle cargo sorting depends on the EARP-dependent trafficking of cargo through an endosomal sorting compartment. Animal cells package and store many important signaling molecules in specialized compartments called dense-core vesicles. Molecules stored in dense-core vesicles include peptide hormones like insulin and small molecule neurotransmitters like dopamine. Defects in the release of these compounds can lead to a wide range of metabolic and mental disorders in humans, including diabetes, depression, and drug addiction. However, it is not well understood how dense-core vesicles are formed in cells and package the appropriate molecules. Here we use a genetic screen in the microscopic worm C. elegans to identify proteins that are important for early steps in the generation of dense-core vesicles, such as packaging the correct molecular cargos in the vesicles. We identify several factors that are conserved between worms and humans and point to a new role for a protein complex that had previously been shown to be important for controlling trafficking in other cellular compartments. The identification of this complex suggests new cellular trafficking events that may be important for the generation of dense-core vesicles.
Collapse
Affiliation(s)
- Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Jérôme Cattin-Ortolá
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Andrea L. Pappas
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kirsten Cooper
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Gennifer E. Merrihew
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
30
|
Tanguy E, Carmon O, Wang Q, Jeandel L, Chasserot-Golaz S, Montero-Hadjadje M, Vitale N. Lipids implicated in the journey of a secretory granule: from biogenesis to fusion. J Neurochem 2016; 137:904-12. [PMID: 26877188 DOI: 10.1111/jnc.13577] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/20/2016] [Accepted: 02/03/2016] [Indexed: 01/01/2023]
Abstract
The regulated secretory pathway begins with the formation of secretory granules by budding from the Golgi apparatus and ends by their fusion with the plasma membrane leading to the release of their content into the extracellular space, generally following a rise in cytosolic calcium. Generation of these membrane-bound transport carriers can be classified into three steps: (i) cargo sorting that segregates the cargo from resident proteins of the Golgi apparatus, (ii) membrane budding that encloses the cargo and depends on the creation of appropriate membrane curvature, and (iii) membrane fission events allowing the nascent carrier to separate from the donor membrane. These secretory vesicles then mature as they are actively transported along microtubules toward the cortical actin network at the cell periphery. The final stage known as regulated exocytosis involves the docking and the priming of the mature granules, necessary for merging of vesicular and plasma membranes, and the subsequent partial or total release of the secretory vesicle content. Here, we review the latest evidence detailing the functional roles played by lipids during secretory granule biogenesis, recruitment, and exocytosis steps. In this review, we highlight evidence supporting the notion that lipids play important functions in secretory vesicle biogenesis, maturation, recruitment, and membrane fusion steps. These effects include regulating various protein distribution and activity, but also directly modulating membrane topology. The challenges ahead to understand the pleiotropic functions of lipids in a secretory granule's journey are also discussed. This article is part of a mini review series on Chromaffin cells (ISCCB Meeting, 2015).
Collapse
Affiliation(s)
- Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique & Université de Strasbourg, Strasbourg, France
| | - Ophélie Carmon
- INSERM U982, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale, Université de Rouen, Mont-Saint-Aignan, France
| | - Qili Wang
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique & Université de Strasbourg, Strasbourg, France
| | - Lydie Jeandel
- INSERM U982, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale, Université de Rouen, Mont-Saint-Aignan, France
| | - Sylvette Chasserot-Golaz
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique & Université de Strasbourg, Strasbourg, France
| | - Maité Montero-Hadjadje
- INSERM U982, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale, Université de Rouen, Mont-Saint-Aignan, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique & Université de Strasbourg, Strasbourg, France
| |
Collapse
|
31
|
Caetano FA, Dirk BS, Tam JHK, Cavanagh PC, Goiko M, Ferguson SSG, Pasternak SH, Dikeakos JD, de Bruyn JR, Heit B. MIiSR: Molecular Interactions in Super-Resolution Imaging Enables the Analysis of Protein Interactions, Dynamics and Formation of Multi-protein Structures. PLoS Comput Biol 2015; 11:e1004634. [PMID: 26657340 PMCID: PMC4676698 DOI: 10.1371/journal.pcbi.1004634] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/27/2015] [Indexed: 11/18/2022] Open
Abstract
Our current understanding of the molecular mechanisms which regulate cellular processes such as vesicular trafficking has been enabled by conventional biochemical and microscopy techniques. However, these methods often obscure the heterogeneity of the cellular environment, thus precluding a quantitative assessment of the molecular interactions regulating these processes. Herein, we present Molecular Interactions in Super Resolution (MIiSR) software which provides quantitative analysis tools for use with super-resolution images. MIiSR combines multiple tools for analyzing intermolecular interactions, molecular clustering and image segmentation. These tools enable quantification, in the native environment of the cell, of molecular interactions and the formation of higher-order molecular complexes. The capabilities and limitations of these analytical tools are demonstrated using both modeled data and examples derived from the vesicular trafficking system, thereby providing an established and validated experimental workflow capable of quantitatively assessing molecular interactions and molecular complex formation within the heterogeneous environment of the cell. In this paper we present the software package Molecular Interactions in Super Resolution (MIiSR), which provides a series of quantitative analytical tools for measuring molecular interactions and the formation of higher-order molecular complexes in super-resolution microscopy images.
Collapse
Affiliation(s)
- Fabiana A. Caetano
- The J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute and the Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Brennan S. Dirk
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Joshua H. K. Tam
- The J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute and the Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - P. Craig Cavanagh
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Maria Goiko
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada
| | | | - Stephen H. Pasternak
- The J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute and the Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine, The University of Western Ontario, London, Ontario, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - John R. de Bruyn
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
32
|
Cawley NX, Rathod T, Young S, Lou H, Birch N, Loh YP. Carboxypeptidase E and Secretogranin III Coordinately Facilitate Efficient Sorting of Proopiomelanocortin to the Regulated Secretory Pathway in AtT20 Cells. Mol Endocrinol 2015; 30:37-47. [PMID: 26646096 DOI: 10.1210/me.2015-1166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Proopiomelanocortin (POMC) is a multivalent prohormone that can be processed into at least 7 biologically active peptide hormones. Processing can begin in the trans-Golgi network (TGN) and continues in the secretory granules of the regulated secretory pathway (RSP). Sorting of POMC into these granules is a complex process. Previously, a membrane-associated form of carboxypeptidase E (CPE) was shown to bind to POMC and facilitate its trafficking into these granules. More recently, secretogranin III (SgIII) was also found to affect POMC trafficking. Here, we show by RNA silencing that CPE and SgIII play a synergistic role in the trafficking of POMC to granules of the RSP in AtT20 cells. Reduction of either protein resulted in increased constitutive secretion of POMC and chromogranin A, which was increased even further when both proteins were reduced together, indicative of missorting at the TGN. In SgIII-reduced cells, POMC accumulated in a compartment that cofractionated and colocalized with syntaxin 6, a marker of the TGN, on sucrose density gradients and in immunocytochemistry, respectively, indicating an accumulation of this protein in the presumed sorting compartment. Regulated secretion of ACTH, as a measure of sorting and processing of POMC in mature granules, was reduced in the SgIII down-regulated cells but was increased in the CPE down-regulated cells. These results suggest that multiple sorting systems exist, providing redundancy to ensure the important task of continuous and accurate trafficking of prohormones to the granules of the RSP for the production of peptide hormones.
Collapse
Affiliation(s)
- Niamh X Cawley
- Section on Cellular Neurobiology (N.X.C., T.R., S.Y., H.L., Y.P.L.), Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4480; and School of Biological Sciences (N.B.), Centre for Brain Research and Brain Research New Zealand, Rangahau Roro Aotearoa, University of Auckland, New Zealand
| | - Trushar Rathod
- Section on Cellular Neurobiology (N.X.C., T.R., S.Y., H.L., Y.P.L.), Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4480; and School of Biological Sciences (N.B.), Centre for Brain Research and Brain Research New Zealand, Rangahau Roro Aotearoa, University of Auckland, New Zealand
| | - Sigrid Young
- Section on Cellular Neurobiology (N.X.C., T.R., S.Y., H.L., Y.P.L.), Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4480; and School of Biological Sciences (N.B.), Centre for Brain Research and Brain Research New Zealand, Rangahau Roro Aotearoa, University of Auckland, New Zealand
| | - Hong Lou
- Section on Cellular Neurobiology (N.X.C., T.R., S.Y., H.L., Y.P.L.), Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4480; and School of Biological Sciences (N.B.), Centre for Brain Research and Brain Research New Zealand, Rangahau Roro Aotearoa, University of Auckland, New Zealand
| | - Nigel Birch
- Section on Cellular Neurobiology (N.X.C., T.R., S.Y., H.L., Y.P.L.), Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4480; and School of Biological Sciences (N.B.), Centre for Brain Research and Brain Research New Zealand, Rangahau Roro Aotearoa, University of Auckland, New Zealand
| | - Y Peng Loh
- Section on Cellular Neurobiology (N.X.C., T.R., S.Y., H.L., Y.P.L.), Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4480; and School of Biological Sciences (N.B.), Centre for Brain Research and Brain Research New Zealand, Rangahau Roro Aotearoa, University of Auckland, New Zealand
| |
Collapse
|
33
|
Baum BJ, Alevizos I, Chiorini JA, Cotrim AP, Zheng C. Advances in salivary gland gene therapy - oral and systemic implications. Expert Opin Biol Ther 2015; 15:1443-54. [PMID: 26149284 DOI: 10.1517/14712598.2015.1064894] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Much research demonstrates the feasibility and efficacy of gene transfer to salivary glands. Recently, the first clinical trial targeting a salivary gland was completed, yielding positive safety and efficacy results. AREAS COVERED There are two major disorders affecting salivary glands: radiation damage following treatment for head and neck cancers and Sjögren's syndrome (SS). Salivary gland gene transfer has also been employed in preclinical studies using transgenic secretory proteins for exocrine (upper gastrointestinal tract) and endocrine (systemic) applications. EXPERT OPINION Salivary gland gene transfer is safe and can be beneficial in humans. Applications to treat and prevent radiation damage show considerable promise. A first-in-human clinical trial for the former was recently successfully completed. Studies on SS suffer from an inadequate understanding of its etiology. Proof of concept in animal models has been shown for exocrine and endocrine disorders. Currently, the most promising exocrine application is for the management of obesity. Endocrine applications are limited, as it is currently impossible to predict if systemically required transgenic proteins will be efficiently secreted into the bloodstream. This results from not understanding how secretory proteins are sorted. Future studies will likely employ ultrasound-assisted and pseudotyped adeno-associated viral vector-mediated gene transfer.
Collapse
Affiliation(s)
- Bruce J Baum
- a National Institute of Dental and Craniofacial Research, National Institutes of Health, Molecular Physiology and Therapeutics Branch , Bethesda, MD 20892-1190, USA
| | - Ilias Alevizos
- a National Institute of Dental and Craniofacial Research, National Institutes of Health, Molecular Physiology and Therapeutics Branch , Bethesda, MD 20892-1190, USA
| | - John A Chiorini
- a National Institute of Dental and Craniofacial Research, National Institutes of Health, Molecular Physiology and Therapeutics Branch , Bethesda, MD 20892-1190, USA
| | - Ana P Cotrim
- a National Institute of Dental and Craniofacial Research, National Institutes of Health, Molecular Physiology and Therapeutics Branch , Bethesda, MD 20892-1190, USA
| | - Changyu Zheng
- a National Institute of Dental and Craniofacial Research, National Institutes of Health, Molecular Physiology and Therapeutics Branch , Bethesda, MD 20892-1190, USA
| |
Collapse
|
34
|
Aroso M, Agricola B, Hacker C, Schrader M. Proteoglycans support proper granule formation in pancreatic acinar cells. Histochem Cell Biol 2015; 144:331-46. [PMID: 26105026 DOI: 10.1007/s00418-015-1339-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2015] [Indexed: 12/31/2022]
Abstract
Zymogen granules (ZG) are specialized organelles in the exocrine pancreas which allow digestive enzyme storage and regulated secretion. The molecular mechanisms of their biogenesis and the sorting of zymogens are still incompletely understood. Here, we investigated the role of proteoglycans in granule formation and secretion of zymogens in pancreatic AR42J cells, an acinar model system. Cupromeronic Blue cytochemistry and biochemical studies revealed an association of proteoglycans primarily with the granule membrane. Removal of proteoglycans by carbonate treatment led to a loss of membrane curvature indicating a supportive role in the maintenance of membrane shape and stability. Chemical inhibition of proteoglycan synthesis impaired the formation of normal electron-dense granules in AR42J cells and resulted in the formation of unusually small granule structures. These structures still contained the zymogen carboxypeptidase, a cargo molecule of secretory granules, but migrated to lighter fractions after density gradient centrifugation. Furthermore, the basal secretion of amylase was increased in AR42J cells after inhibitor treatment. In addition, irregular-shaped granules appeared in pancreatic lobules. We conclude that the assembly of a proteoglycan scaffold at the ZG membrane is supporting efficient packaging of zymogens and the proper formation of stimulus-competent storage granules in acinar cells of the pancreas.
Collapse
Affiliation(s)
- Miguel Aroso
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Brigitte Agricola
- Department of Cell Biology and Cell Pathology, University of Marburg, 35037, Marburg, Germany
| | - Christian Hacker
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Michael Schrader
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal. .,College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
35
|
Roeske C, Martinuk A, Choudhry A, Hendy GN, Gollob M, Li Q, Georgalis T, de Bold AJ. Go protein subunit Goα and the secretory process of the natriuretic peptide hormones ANF and BNP. J Mol Endocrinol 2015; 54:277-88. [PMID: 25917834 DOI: 10.1530/jme-15-0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2015] [Indexed: 12/31/2022]
Abstract
Expression of the G protein subunit Goα has been shown to be prominent in the atria of the rat heart and to be significantly associated with atrial natriuretic factor (ANF)-containing atrial-specific secretory granules by immunocytochemistry. In addition, differential expression profile analysis using oligonucleotide arrays has shown that the Goα isoform 1 (Goα1) is 2.3-fold more abundant in the atria than it is in the ventricles. In the present report, we show protein-protein interaction between Goα and ANF by yeast two-hybrid and by immunoprecipitation. A cardiac conditional Goα knockout model developed for the present study showed a 90% decrease in Goα expression and decreased atrial expression and ANF and brain natriuretic peptides (BNP) content. Expression of chromogranin A, a specific atrial granule core constituent, was not affected. Morphometric assessment of atrial tissue showed a very significant decrease in atrial-specific granule density as well as granule core electron density. Atrial electrical activity was not affected. The results obtained are compatible with the suggestion that Goα plays a role in ANF sorting during intracellular vectorial transport and with the presence of a mechanism that preserves the molar relationship between cellular ANF and BNP stores in the face of the decreased production of these hormones.
Collapse
Affiliation(s)
- Cassandra Roeske
- Cardiovascular Endocrinology LaboratoryUniversity of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7Department of Pathology and Laboratory MedicineFaculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5Experimental Therapeutics and MetabolismMcGill University Health Centre-Research Institute, and Departments of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec, CanadaToronto General Hospital200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Amy Martinuk
- Cardiovascular Endocrinology LaboratoryUniversity of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7Department of Pathology and Laboratory MedicineFaculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5Experimental Therapeutics and MetabolismMcGill University Health Centre-Research Institute, and Departments of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec, CanadaToronto General Hospital200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Asna Choudhry
- Cardiovascular Endocrinology LaboratoryUniversity of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7Department of Pathology and Laboratory MedicineFaculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5Experimental Therapeutics and MetabolismMcGill University Health Centre-Research Institute, and Departments of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec, CanadaToronto General Hospital200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Geoffrey N Hendy
- Cardiovascular Endocrinology LaboratoryUniversity of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7Department of Pathology and Laboratory MedicineFaculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5Experimental Therapeutics and MetabolismMcGill University Health Centre-Research Institute, and Departments of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec, CanadaToronto General Hospital200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Michael Gollob
- Cardiovascular Endocrinology LaboratoryUniversity of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7Department of Pathology and Laboratory MedicineFaculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5Experimental Therapeutics and MetabolismMcGill University Health Centre-Research Institute, and Departments of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec, CanadaToronto General Hospital200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Qiuji Li
- Cardiovascular Endocrinology LaboratoryUniversity of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7Department of Pathology and Laboratory MedicineFaculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5Experimental Therapeutics and MetabolismMcGill University Health Centre-Research Institute, and Departments of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec, CanadaToronto General Hospital200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Tina Georgalis
- Cardiovascular Endocrinology LaboratoryUniversity of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7Department of Pathology and Laboratory MedicineFaculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5Experimental Therapeutics and MetabolismMcGill University Health Centre-Research Institute, and Departments of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec, CanadaToronto General Hospital200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Adolfo J de Bold
- Cardiovascular Endocrinology LaboratoryUniversity of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7Department of Pathology and Laboratory MedicineFaculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5Experimental Therapeutics and MetabolismMcGill University Health Centre-Research Institute, and Departments of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec, CanadaToronto General Hospital200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4 Cardiovascular Endocrinology LaboratoryUniversity of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7Department of Pathology and Laboratory MedicineFaculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5Experimental Therapeutics and MetabolismMcGill University Health Centre-Research Institute, and Departments of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec, CanadaToronto General Hospital200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| |
Collapse
|
36
|
Kienzle C, Basnet N, Crevenna AH, Beck G, Habermann B, Mizuno N, von Blume J. Cofilin recruits F-actin to SPCA1 and promotes Ca2+-mediated secretory cargo sorting. ACTA ACUST UNITED AC 2014; 206:635-54. [PMID: 25179631 PMCID: PMC4151145 DOI: 10.1083/jcb.201311052] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The cofilin CFL-1 recruits actin to the P-type calcium ATPase SPCA1 at the trans-Golgi network, thereby activating the ATPase, promoting Ca2+ influx, and driving secretory cargo sorting. The actin filament severing protein cofilin-1 (CFL-1) is required for actin and P-type ATPase secretory pathway calcium ATPase (SPCA)-dependent sorting of secretory proteins at the trans-Golgi network (TGN). How these proteins interact and activate the pump to facilitate cargo sorting, however, is not known. We used purified proteins to assess interaction of the cytoplasmic domains of SPCA1 with actin and CFL-1. A 132–amino acid portion of the SPCA1 phosphorylation domain (P-domain) interacted with actin in a CFL-1–dependent manner. This domain, coupled to nickel nitrilotriacetic acid (Ni-NTA) agarose beads, specifically recruited F-actin in the presence of CFL-1 and, when expressed in HeLa cells, inhibited Ca2+ entry into the TGN and secretory cargo sorting. Mutagenesis of four amino acids in SPCA1 that represent the CFL-1 binding site also affected Ca2+ import into the TGN and secretory cargo sorting. Altogether, our findings reveal the mechanism of CFL-1–dependent recruitment of actin to SPCA1 and the significance of this interaction for Ca2+ influx and secretory cargo sorting.
Collapse
Affiliation(s)
| | - Nirakar Basnet
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Alvaro H Crevenna
- Physical Chemistry, Department of Chemistry and Biochemistry and Center for NanoScience (CeNS), Ludwig Maximilians University of Munich, 81377 Munich, Germany
| | - Gisela Beck
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Bianca Habermann
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Naoko Mizuno
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Julia von Blume
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
37
|
Kienzle C, von Blume J. Secretory cargo sorting at the trans-Golgi network. Trends Cell Biol 2014; 24:584-93. [DOI: 10.1016/j.tcb.2014.04.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 12/22/2022]
|
38
|
Abstract
The failure of pancreatic β‐cells to supply insulin in quantities sufficient to maintain euglycemia is a hallmark of type 2 diabetes. Perturbation of β‐cell cholesterol homeostasis, culminating in elevated intracellular cholesterol levels, impairs insulin secretion and has therefore been proposed as a mechanism contributing to β‐cell dysfunction. The manner in which this occurs, however, is unclear. Cholesterol is an essential lipid, as well as a major component of membrane rafts, and numerous proteins critical for the regulation of insulin secretion have been reported to associate with these domains. Although this suggests that alterations in membrane rafts could partially account for the reduction in insulin secretion observed when β‐cell cholesterol accumulates, this has not yet been demonstrated. In this review, we provide a brief overview of recent work implicating membrane rafts in some of the basic molecular mechanisms of insulin secretion, and discuss the insight it provides into the β‐cell dysfunction characteristic of type 2 diabetes. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2012.00200.x, 2012)
Collapse
Affiliation(s)
- Ronald Dirkx
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic "Carl Gustav Carus", Dresden University of Technology
| | - Michele Solimena
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic "Carl Gustav Carus", Dresden University of Technology ; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
39
|
Ailion M, Hannemann M, Dalton S, Pappas A, Watanabe S, Hegermann J, Liu Q, Han HF, Gu M, Goulding MQ, Sasidharan N, Schuske K, Hullett P, Eimer S, Jorgensen EM. Two Rab2 interactors regulate dense-core vesicle maturation. Neuron 2014; 82:167-80. [PMID: 24698274 DOI: 10.1016/j.neuron.2014.02.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2014] [Indexed: 12/14/2022]
Abstract
Peptide neuromodulators are released from a unique organelle: the dense-core vesicle. Dense-core vesicles are generated at the trans-Golgi and then sort cargo during maturation before being secreted. To identify proteins that act in this pathway, we performed a genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We identified two conserved Rab2-binding proteins: RUND-1, a RUN domain protein, and CCCP-1, a coiled-coil protein. RUND-1 and CCCP-1 colocalize with RAB-2 at the Golgi, and rab-2, rund-1, and cccp-1 mutants have similar defects in sorting soluble and transmembrane dense-core vesicle cargos. RUND-1 also interacts with the Rab2 GAP protein TBC-8 and the BAR domain protein RIC-19, a RAB-2 effector. In summary, a pathway of conserved proteins controls the maturation of dense-core vesicles at the trans-Golgi network.
Collapse
Affiliation(s)
- Michael Ailion
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA; Department of Biochemistry, University of Washington, Seattle WA, 98195, USA.
| | - Mandy Hannemann
- European Neuroscience Institute, 37077 Göttingen, Germany; International Max Planck Research School Molecular Biology, 37077 Göttingen, Germany
| | - Susan Dalton
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Andrea Pappas
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Shigeki Watanabe
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jan Hegermann
- European Neuroscience Institute, 37077 Göttingen, Germany; DFG research Center for Molecular Physiology of the Brain (CMPB), 37077 Göttingen, Germany
| | - Qiang Liu
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Hsiao-Fen Han
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Mingyu Gu
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Morgan Q Goulding
- Department of Biochemistry, University of Washington, Seattle WA, 98195, USA
| | | | - Kim Schuske
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Patrick Hullett
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Stefan Eimer
- European Neuroscience Institute, 37077 Göttingen, Germany; DFG research Center for Molecular Physiology of the Brain (CMPB), 37077 Göttingen, Germany
| | - Erik M Jorgensen
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
40
|
Guizzetti L, McGirr R, Dhanvantari S. Two dipolar α-helices within hormone-encoding regions of proglucagon are sorting signals to the regulated secretory pathway. J Biol Chem 2014; 289:14968-80. [PMID: 24727476 DOI: 10.1074/jbc.m114.563684] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Proglucagon is expressed in pancreatic α cells, intestinal L cells, and some hypothalamic and brainstem neurons. Tissue-specific processing of proglucagon yields three major peptide hormones as follows: glucagon in the α cells and glucagon-like peptides (GLP)-1 and -2 in the L cells and neurons. Efficient sorting and packaging into the secretory granules of the regulated secretory pathway in each cell type are required for nutrient-regulated secretion of these proglucagon-derived peptides. Our previous work suggested that proglucagon is directed into granules by intrinsic sorting signals after initial processing to glicentin and major proglucagon fragment (McGirr, R., Guizzetti, L., and Dhanvantari, S. (2013) J. Endocrinol. 217, 229-240), leading to the hypothesis that sorting signals may be present in multiple domains. In the present study, we show that the α-helices within glucagon and GLP-1, but not GLP-2, act as sorting signals by efficiently directing a heterologous secretory protein to the regulated secretory pathway. Biophysical characterization of these peptides revealed that glucagon and GLP-1 each encode a nonamphipathic, dipolar α-helix, whereas the helix in GLP-2 is not dipolar. Surprisingly, glicentin and major proglucagon fragment were sorted with different efficiencies, thus providing evidence that proglucagon is first sorted to granules prior to processing. In contrast to many other prohormones in which sorting is directed by ordered prodomains, the sorting determinants of proglucagon lie within the ordered hormone domains of glucagon and GLP-1, illustrating that each prohormone has its own sorting "signature."
Collapse
Affiliation(s)
| | - Rebecca McGirr
- the Metabolism/Diabetes and Imaging Programs, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
| | - Savita Dhanvantari
- From the Departments of Medical Biophysics, the Metabolism/Diabetes and Imaging Programs, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada Pathology, and Medicine, University of Western Ontario, London, Ontario N6A 3K7 and
| |
Collapse
|
41
|
Drosophila melanogaster as a genetic model system to study neurotransmitter transporters. Neurochem Int 2014; 73:71-88. [PMID: 24704795 DOI: 10.1016/j.neuint.2014.03.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 12/30/2022]
Abstract
The model genetic organism Drosophila melanogaster, commonly known as the fruit fly, uses many of the same neurotransmitters as mammals and very similar mechanisms of neurotransmitter storage, release and recycling. This system offers a variety of powerful molecular-genetic methods for the study of transporters, many of which would be difficult in mammalian models. We review here progress made using Drosophila to understand the function and regulation of neurotransmitter transporters and discuss future directions for its use.
Collapse
|
42
|
Gómez-Lázaro M, Rinn C, Aroso M, Amado F, Schrader M. Proteomic analysis of zymogen granules. Expert Rev Proteomics 2014; 7:735-47. [DOI: 10.1586/epr.10.31] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Fujita-Yoshigaki J, Matsuki-Fukushima M, Yokoyama M, Katsumata-Kato O. Sorting of a HaloTag protein that has only a signal peptide sequence into exocrine secretory granules without protein aggregation. Am J Physiol Gastrointest Liver Physiol 2013; 305:G685-96. [PMID: 24029466 DOI: 10.1152/ajpgi.00093.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mechanism involved in the sorting and accumulation of secretory cargo proteins, such as amylase, into secretory granules of exocrine cells remains to be solved. To clarify that sorting mechanism, we expressed a reporter protein HaloTag fused with partial sequences of salivary amylase protein in primary cultured parotid acinar cells. We found that a HaloTag protein fused with only the signal peptide sequence (Met(1)-Ala(25)) of amylase, termed SS25H, colocalized well with endogenous amylase, which was confirmed by immunofluorescence microscopy. Percoll-density gradient centrifugation of secretory granule fractions shows that the distributions of amylase and SS25H were similar. These results suggest that SS25H is transported to secretory granules and is not discriminated from endogenous amylase by the machinery that functions to remove proteins other than granule cargo from immature granules. Another reporter protein, DsRed2, that has the same signal peptide sequence also colocalized with amylase, suggesting that the sorting to secretory granules is not dependent on a characteristic of the HaloTag protein. Whereas Blue Native PAGE demonstrates that endogenous amylase forms a high-molecular-weight complex, SS25H does not participate in the complex and does not form self-aggregates. Nevertheless, SS25H was released from cells by the addition of a β-adrenergic agonist, isoproterenol, which also induces amylase secretion. These results indicate that addition of the signal peptide sequence, which is necessary for the translocation in the endoplasmic reticulum, is sufficient for the transportation and storage of cargo proteins in secretory granules of exocrine cells.
Collapse
Affiliation(s)
- Junko Fujita-Yoshigaki
- Dept. of Physiology, Nihon Univ., School of Dentistry at Matsudo, 2-870-1 Sakaecho-nishi, Matsudo, Chiba, 271-8587, Japan.
| | | | | | | |
Collapse
|
44
|
McGirr R, Guizzetti L, Dhanvantari S. The sorting of proglucagon to secretory granules is mediated by carboxypeptidase E and intrinsic sorting signals. J Endocrinol 2013; 217:229-40. [PMID: 23418362 DOI: 10.1530/joe-12-0468] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proglucagon is expressed in pancreatic alpha cells, intestinal L cells and brainstem neurons. Tissue-specific processing of proglucagon yields the peptide hormones glucagon in the alpha cell and glucagon-like peptide (GLP)-1 and GLP-2 in L cells. Both glucagon and GLP-1 are secreted in response to nutritional status and are critical for regulating glycaemia. The sorting of proglucagon to the dense-core secretory granules of the regulated secretory pathway is essential for the appropriate secretion of glucagon and GLP-1. We examined the roles of carboxypeptidase E (CPE), a prohormone sorting receptor, the processing enzymes PC1/3 and PC2 and putative intrinsic sorting signals in proglucagon sorting. In Neuro 2a cells that lacked CPE, PC1/3 and PC2, proglucagon co-localised with the Golgi marker p115 as determined by quantitative immunofluorescence microscopy. Expression of CPE, but not of PC1/3 or PC2, enhanced proglucagon sorting to granules. siRNA-mediated knockdown of CPE disrupted regulated secretion of glucagon from pancreatic-derived alphaTC1-6 cells, but not of GLP-1 from intestinal cell-derived GLUTag cells. Mutation of the PC cleavage site K70R71, the dibasic R17R18 site within glucagon or the alpha-helix of glucagon, all significantly affected the sub-cellular localisation of proglucagon. Protein modelling revealed that alpha helices corresponding to glucagon, GLP-1 and GLP-2, are arranged within a disordered structure, suggesting some flexibility in the sorting mechanism. We conclude that there are multiple mechanisms for sorting proglucagon to the regulated secretory pathway, including a role for CPE in pancreatic alpha cells, initial cleavage at K70R71 and multiple sorting signals.
Collapse
Affiliation(s)
- Rebecca McGirr
- Metabolism and Diabetes and Imaging Programs, Lawson Health Research Institute, 268 Grosvenor Street, London, Ontario, Canada
| | | | | |
Collapse
|
45
|
Blanco EH, Lagos CF, Andrés ME, Gysling K. An amphipathic alpha-helix in the prodomain of cocaine and amphetamine regulated transcript peptide precursor serves as its sorting signal to the regulated secretory pathway. PLoS One 2013; 8:e59695. [PMID: 23527253 PMCID: PMC3602189 DOI: 10.1371/journal.pone.0059695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/17/2013] [Indexed: 11/18/2022] Open
Abstract
Cocaine and Amphetamine Regulated Transcript (CART) peptides are anorexigenic neuropeptides. The L34F mutation in human CART peptide precursor (proCART) has been linked to obesity (Yanik et al. Endocrinology 147: 39, 2006). Decrease in CART peptide levels in individuals carrying the L34F mutation was attributed to proCART subcellular missorting. We studied proCART features required to enter the regulated secretory pathway. The subcellular localization and the secretion mode of monomeric EGFP fused to the full-length or truncated forms of human proCART transiently transfected in PC12 cells were analyzed. Our results showed that the N-terminal 1-41 fragment of proCART was necessary and sufficient to sort proCART to the regulated secretory pathway. In silico modeling predicted an alpha-helix structure located between residues 24-37 of proCART. Helical wheel projection of proCART alpha-helix showed an amphipathic configuration. The L34F mutation does not modify the amphipathicity of proCART alpha-helix and consistently proCARTL34F was efficiently sorted to the regulated secretory pathway. However, four additional mutations to proCARTL34F that reduced its alpha-helix amphipathicity resulted in the missorting of the mutated proCART toward the constitutive secretory pathway. These findings show that an amphipathic alpha-helix is a key cis-structure for the proCART sorting mechanism. In addition, our results indicate that the association between L34F mutation and obesity is not explained by proCART missorting.
Collapse
Affiliation(s)
- Elías H. Blanco
- Millennium Science Nucleus in Stress and Addiction, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail: (EHB); (KG)
| | - Carlos F. Lagos
- Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Estela Andrés
- Millennium Science Nucleus in Stress and Addiction, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katia Gysling
- Millennium Science Nucleus in Stress and Addiction, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail: (EHB); (KG)
| |
Collapse
|
46
|
Lin WJ, Salton SR. The regulated secretory pathway and human disease: insights from gene variants and single nucleotide polymorphisms. Front Endocrinol (Lausanne) 2013; 4:96. [PMID: 23964269 PMCID: PMC3734370 DOI: 10.3389/fendo.2013.00096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/23/2013] [Indexed: 12/15/2022] Open
Abstract
The regulated secretory pathway provides critical control of peptide, growth factor, and hormone release from neuroendocrine and endocrine cells, and neurons, maintaining physiological homeostasis. Propeptides and prohormones are packaged into dense core granules (DCGs), where they frequently undergo tissue-specific processing as the DCG matures. Proteins of the granin family are DCG components, and although their function is not fully understood, data suggest they are involved in DCG formation and regulated protein/peptide secretion, in addition to their role as precursors of bioactive peptides. Association of gene variation, including single nucleotide polymorphisms (SNPs), with neuropsychiatric, endocrine, and metabolic diseases, has implicated specific secreted proteins and peptides in disease pathogenesis. For example, a SNP at position 196 (G/A) of the human brain-derived neurotrophic factor gene dysregulates protein processing and secretion and leads to cognitive impairment. This suggests more generally that variants identified in genes encoding secreted growth factors, peptides, hormones, and proteins involved in DCG biogenesis, protein processing, and the secretory apparatus, could provide insight into the process of regulated secretion as well as disorders that result when it is impaired.
Collapse
Affiliation(s)
- Wei-Jye Lin
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen R. Salton
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Geriatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- *Correspondence: Stephen R. Salton, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1065, New York, NY 10029, USA e-mail:
| |
Collapse
|
47
|
Sun M, Watanabe T, Bochimoto H, Sakai Y, Torii S, Takeuchi T, Hosaka M. Multiple sorting systems for secretory granules ensure the regulated secretion of peptide hormones. Traffic 2012; 14:205-18. [PMID: 23171199 DOI: 10.1111/tra.12029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 11/19/2012] [Accepted: 11/21/2012] [Indexed: 01/13/2023]
Abstract
Prior to secretion, regulated peptide hormones are selectively sorted to secretory granules (SGs) at the trans-Golgi network (TGN) in endocrine cells. Secretogranin III (SgIII) appears to facilitate SG sorting process by tethering of protein aggregates containing chromogranin A (CgA) and peptide hormones to the cholesterol-rich SG membrane (SGM). Here, we evaluated the role of SgIII in SG sorting in AtT-20 cells transfected with small interfering RNA targeting SgIII. In the SgIII-knockdown cells, the intracellular retention of CgA was greatly impaired, and only a trace amount of CgA was localized within the vacuoles formed in the TGN, confirming the significance of SgIII in both the tethering of CgA-containing aggregates and the establishment of the proper SG morphology. Although the intracellular retention of proopiomelanocortin (POMC) was considerably impaired in SgIII-knockdown cells, residual adrenocorticotropic hormone (ACTH)/POMC was still localized to some few remaining SGs together with another granin protein, secretogranin II (SgII), and was secreted in a regulated manner. Biochemical analyses indicated that SgII bound directly to the SGM in a cholesterol-dependent manner and was able to retain the aggregated form of POMC, revealing a latent redundancy in the SG sorting and retention mechanisms, that ensures the regulated secretion of bioactive peptides.
Collapse
Affiliation(s)
- Meng Sun
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Cyclin-dependent kinase 5 regulates the polarized trafficking of neuropeptide-containing dense-core vesicles in Caenorhabditis elegans motor neurons. J Neurosci 2012; 32:8158-72. [PMID: 22699897 DOI: 10.1523/jneurosci.0251-12.2012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The polarized trafficking of axonal and dendritic proteins is essential for the structure and function of neurons. Cyclin-dependent kinase 5 (CDK-5) and its activator CDKA-1/p35 regulate diverse aspects of nervous system development and function. Here, we show that CDK-5 and CDKA-1/p35 are required for the polarized distribution of neuropeptide-containing dense-core vesicles (DCVs) in Caenorhabditis elegans cholinergic motor neurons. In cdk-5 or cdka-1/p35 mutants, the predominantly axonal localization of DCVs containing INS-22 neuropeptides was disrupted and DCVs accumulated in dendrites. Time-lapse microscopy in DB class motor neurons revealed decreased trafficking of DCVs in axons and increased trafficking and accumulation of DCVs in cdk-5 mutant dendrites. The polarized distribution of several axonal and dendritic markers, including synaptic vesicles, was unaltered in cdk-5 mutant DB neurons. We found that microtubule polarity is plus-end out in axons and predominantly minus-end out in dendrites of DB neurons. Surprisingly, cdk-5 mutants had increased amounts of plus-end-out microtubules in dendrites, suggesting that CDK-5 regulates microtubule orientation. However, these changes in microtubule polarity are not responsible for the increased trafficking of DCVs into dendrites. Genetic analysis of cdk-5 and the plus-end-directed axonal DCV motor unc-104/KIF1A suggest that increased trafficking of UNC-104 into dendrites cannot explain the dendritic DCV accumulation. Instead, we found that mutations in the minus-end-directed motor cytoplasmic dynein, completely block the increased DCVs observed in cdk-5 mutant dendrites without affecting microtubule polarity. We propose a model in which CDK-5 regulates DCV polarity by both promoting DCV trafficking in axons and preventing dynein-dependent DCV trafficking into dendrites.
Collapse
|
49
|
Zhang GR, Zhao H, Cao H, Li X, Geller AI. Targeted gene transfer of different genes to presynaptic and postsynaptic neocortical neurons connected by a glutamatergic synapse. Brain Res 2012; 1473:173-84. [PMID: 22820303 PMCID: PMC3442772 DOI: 10.1016/j.brainres.2012.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/28/2012] [Accepted: 07/12/2012] [Indexed: 12/24/2022]
Abstract
Genetic approaches to analyzing neuronal circuits and learning would benefit from a technology to first deliver a specific gene into presynaptic neurons, and then deliver a different gene into an identified subset of their postsynaptic neurons, connected by a specific synapse type. Here, we describe targeted gene transfer across a neocortical glutamatergic synapse, using as the model the projection from rat postrhinal to perirhinal cortex. The first gene transfer, into the presynaptic neurons in postrhinal cortex, used a virus vector and standard gene transfer procedures. The vector expresses an artificial peptide neurotransmitter containing a dense core vesicle targeting domain, a NMDA NR1 subunit binding domain (from a monoclonal antibody), and the His tag. Upon release, this peptide neurotransmitter binds to NMDA receptors on the postsynaptic neurons. Antibody-mediated targeted gene transfer to these postsynaptic neurons in perirhinal cortex used a His tag antibody, as the peptide neurotransmitter contains the His tag. Confocal microscopy showed that with untargeted gene transfer, ~3% of the transduced presynaptic axons were proximal to a transduced postsynaptic dendrite. In contrast, with targeted gene transfer, ≥ 20% of the presynaptic axons were proximal to a transduced postsynaptic dendrite. Targeting across other types of synapses might be obtained by modifying the artificial peptide neurotransmitter to contain a binding domain for a different neurotransmitter receptor. This technology may benefit elucidating how specific neurons and subcircuits contribute to circuit physiology, behavior, and learning.
Collapse
Affiliation(s)
- Guo-rong Zhang
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132, USA
| | | | | | | | | |
Collapse
|
50
|
Elias S, Delestre C, Ory S, Marais S, Courel M, Vazquez-Martinez R, Bernard S, Coquet L, Malagon MM, Driouich A, Chan P, Gasman S, Anouar Y, Montero-Hadjadje M. Chromogranin A induces the biogenesis of granules with calcium- and actin-dependent dynamics and exocytosis in constitutively secreting cells. Endocrinology 2012; 153:4444-56. [PMID: 22851679 DOI: 10.1210/en.2012-1436] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chromogranins are a family of acidic glycoproteins that play an active role in hormone and neuropeptide secretion through their crucial role in secretory granule biogenesis in neuroendocrine cells. However, the molecular mechanisms underlying their granulogenic activity are still not fully understood. Because we previously demonstrated that the expression of the major component of secretory granules, chromogranin A (CgA), is able to induce the formation of secretory granules in nonendocrine COS-7 cells, we decided to use this model to dissect the mechanisms triggered by CgA leading to the biogenesis and trafficking of such granules. Using quantitative live cell imaging, we first show that CgA-induced organelles exhibit a Ca(2+)-dependent trafficking, in contrast to native vesicle stomatitis virus G protein-containing constitutive vesicles. To identify the proteins that confer such properties to the newly formed granules, we developed CgA-stably-expressing COS-7 cells, purified their CgA-containing granules by subcellular fractionation, and analyzed the granule proteome by liquid chromatography-tandem mass spectrometry. This analysis revealed the association of several cytosolic proteins to the granule membrane, including GTPases, cytoskeleton-based molecular motors, and other proteins with actin- and/or Ca(2+)-binding properties. Furthermore, disruption of cytoskeleton affects not only the distribution and the transport but also the Ca(2+)-evoked exocytosis of the CgA-containing granules, indicating that these granules interact with microtubules and cortical actin for the regulated release of their content. These data demonstrate for the first time that the neuroendocrine factor CgA induces the recruitment of cytoskeleton-, GTP-, and Ca(2+)-binding proteins in constitutively secreting COS-7 cells to generate vesicles endowed with typical dynamics and exocytotic properties of neuroendocrine secretory granules.
Collapse
Affiliation(s)
- Salah Elias
- Institut National de la Santé et de la Recherche Médicale (Inserm) U982, University of Rouen, Mont-Saint-Aignan 76821, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|