1
|
Salvador-Garcia D, Jin L, Hensley A, Gölcük M, Gallaud E, Chaaban S, Port F, Vagnoni A, Planelles-Herrero VJ, McClintock MA, Derivery E, Carter AP, Giet R, Gür M, Yildiz A, Bullock SL. A force-sensitive mutation reveals a non-canonical role for dynein in anaphase progression. J Cell Biol 2024; 223:e202310022. [PMID: 38949648 PMCID: PMC11215527 DOI: 10.1083/jcb.202310022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/29/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024] Open
Abstract
The diverse roles of the dynein motor in shaping microtubule networks and cargo transport complicate in vivo analysis of its functions significantly. To address this issue, we have generated a series of missense mutations in Drosophila Dynein heavy chain. We show that mutations associated with human neurological disease cause a range of defects, including impaired cargo trafficking in neurons. We also describe a novel microtubule-binding domain mutation that specifically blocks the metaphase-anaphase transition during mitosis in the embryo. This effect is independent from dynein's canonical role in silencing the spindle assembly checkpoint. Optical trapping of purified dynein complexes reveals that this mutation only compromises motor performance under load, a finding rationalized by the results of all-atom molecular dynamics simulations. We propose that dynein has a novel function in anaphase progression that depends on it operating in a specific load regime. More broadly, our work illustrates how in vivo functions of motors can be dissected by manipulating their mechanical properties.
Collapse
Affiliation(s)
- David Salvador-Garcia
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Li Jin
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Andrew Hensley
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA
| | - Mert Gölcük
- School of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Emmanuel Gallaud
- Institut de Génétique et Développement de Rennes, Université de Rennes, Rennes, France
| | - Sami Chaaban
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Fillip Port
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Alessio Vagnoni
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Mark A. McClintock
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Emmanuel Derivery
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Andrew P. Carter
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Régis Giet
- Institut de Génétique et Développement de Rennes, Université de Rennes, Rennes, France
| | - Mert Gür
- School of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ahmet Yildiz
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Simon L. Bullock
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
2
|
Wang L, Liu WQ, Du J, Li M, Wu RF, Li M. Comparative DNA methylation reveals epigenetic adaptation to high altitude in snub-nosed monkeys. Zool Res 2024; 45:1013-1026. [PMID: 39147716 PMCID: PMC11491775 DOI: 10.24272/j.issn.2095-8137.2024.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/25/2024] [Indexed: 08/17/2024] Open
Abstract
DNA methylation plays a crucial role in environmental adaptations. Here, using whole-genome bisulfite sequencing, we generated comprehensive genome-wide DNA methylation profiles for the high-altitude Yunnan snub-nosed monkey ( Rhinopithecus bieti) and the closely related golden snub-nosed monkey ( R. roxellana). Our findings indicated a slight increase in overall DNA methylation levels in golden snub-nosed monkeys compared to Yunnan snub-nosed monkeys, suggesting a higher prevalence of hypermethylated genomic regions in the former. Comparative genomic methylation analysis demonstrated that genes associated with differentially methylated regions were involved in membrane fusion, vesicular formation and trafficking, hemoglobin function, cell cycle regulation, and neuronal differentiation. These results suggest that the high-altitude-related epigenetic modifications are extensive, involving a complete adaptation process from the inhibition of single Ca 2+ channel proteins to multiple proteins collaboratively enhancing vesicular function or inhibiting cell differentiation and proliferation. Functional assays demonstrated that overexpression or down-regulation of candidate genes, such as SNX10, TIMELESS, and CACYBP, influenced cell viability under stress conditions. Overall, this research suggests that comparing DNA methylation across closely related species can identify novel candidate genomic regions and genes associated with local adaptations, thereby deepening our understanding of the mechanisms underlying environmental adaptations.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Qiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui-Feng Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| |
Collapse
|
3
|
Córdoba-Beldad CM, Grantham J. The CCTδ subunit of the molecular chaperone CCT is required for correct localisation of p150 Glued to spindle poles during mitosis. Eur J Cell Biol 2024; 103:151430. [PMID: 38897036 DOI: 10.1016/j.ejcb.2024.151430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
Chaperonin Containing Tailless complex polypeptide 1 (CCT) is a molecular chaperone composed of eight distinct subunits that can exist as individual monomers or as components of a double oligomeric ring, which is essential for the folding of actin and tubulin and other substrates. Here we assess the role of CCT subunits in the context of cell cycle progression by individual subunit depletions upon siRNA treatment in mammalian cells. The depletion of individual CCT subunits leads to variation in the distribution of cell cycle phases and changes in mitotic index. Mitotic defects, such as unaligned chromosomes occur when CCTδ is depleted, concurrent with a reduction in spindle pole-localised p150Glued, a component of the dynactin complex and a binding partner of monomeric CCTδ. In CCTδ-depleted cells, changes in the elution profile of p150Glued are observed consistent with altered conformations and or assembly states with the dynactin complex. Addition of monomeric CCTδ, in the form of GFP-CCTδ, restores correct p150Glued localisation to the spindle poles and rescues the mitotic segregation defects that occur when CCTδ is depleted. This study demonstrates a requirement for CCTδ in its monomeric form for correct chromosome segregation via a mechanism that promotes the correct localisation of p150Glued, thus revealing further complexities to the interplay between CCT, tubulin folding and microtubule dynamics.
Collapse
Affiliation(s)
- Carmen M Córdoba-Beldad
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Julie Grantham
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden.
| |
Collapse
|
4
|
Shapiro JG, Changela N, Jang JK, Joshi JN, McKim KS. Distinct checkpoint and homolog biorientation pathways regulate meiosis I in Drosophila oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608908. [PMID: 39229242 PMCID: PMC11370425 DOI: 10.1101/2024.08.21.608908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Mitosis and meiosis have two mechanisms for regulating the accuracy of chromosome segregation: error correction and the spindle assembly checkpoint (SAC). We have investigated the function of several checkpoint proteins in meiosis I of Drosophila oocytes. Evidence of a SAC response by several of these proteins is found upon depolymerization of microtubules by colchicine. However, unattached kinetochores or errors in biorientation of homologous chromosomes does not induce a SAC response. Furthermore, the metaphase I arrest does not depend on SAC genes, suggesting the APC is inhibited even if the SAC is silenced. Two SAC proteins, ROD of the ROD-ZW10-Zwilch (RZZ) complex and MPS1, are also required for the biorientation of homologous chromosomes during meiosis I, suggesting an error correction function. Both proteins aid in preventing or correcting erroneous attachments and depend on SPC105R for localization to the kinetochore. We have defined a region of SPC105R, amino acids 123-473, that is required for ROD localization and biorientation of homologous chromosomes at meiosis I. Surprisingly, ROD removal, or "streaming", is independent of the dynein adaptor Spindly and is not linked to the stabilization of end-on attachments. Instead, meiotic RZZ streaming appears to depend on cell cycle stage and may be regulated independently of kinetochore attachment or biorientation status. We also show that dynein adaptor Spindly is also required for biorientation at meiosis I, and surprisingly, the direction of RZZ streaming.
Collapse
Affiliation(s)
- Joanatta G Shapiro
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Neha Changela
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Janet K Jang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Jay N Joshi
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kim S McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
5
|
Zhai Y, Wu F, Xu X, Zhao P, Xin L, Li M, Zong Y, Yang Z, Li Z, Wang L, Chen B. Silencing of spindle apparatus coiled-coil protein 1 suppressed the progression of hepatocellular carcinoma through farnesyltransferase-beta and increased drug sensitivity. Heliyon 2024; 10:e34484. [PMID: 39148981 PMCID: PMC11324819 DOI: 10.1016/j.heliyon.2024.e34484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the major cause of cancer-associated mortality worldwide. Despite great advances have been made on the treatment of HCC, the survival rate of patients remains poor. Spindle apparatus coiled-coil protein 1 (SPDL1) is involved in the development of various cancers in humans. However, the role of SPDL1 in HCC remains unclear. In this study, we found high expression of SPDL1 in HCC tissues as compared to normal samples. In vitro, silencing of SPDL1 induced HCC cell apoptosis, and suppressed HCC cell propagation and migration. In vivo, knockdown of SPDL1 inhibited the tumor growth of HCC cells. These findings indicated the tumor-promoting role of SPDL1 in HCC. Mechanistically, we identified farnesyltransferase-beta (FNTB) as the downstream target protein of SPDL1 based on immunoprecipitation and mass spectrometry, which were confirmed by western blotting. Rescue assay determined that FNTB played a tumor promoting role in SPDL1-trigger HCC cell growth. Overexpression of FNTB recovered HCC cell viability and migration in SPDL1 knockdown cells. We also found that silencing of SPDL1 increased the sensitivity of Huh7 cells to sorafenib and lenvatinib, suggesting that SPDL1 is a new therapeutic target in HCC. Collectivity, the present study identified a new axis SPDL1/FNTB involved in the progression of HCC. Hence, SPDL1/FNTB is a potential target for the treatment of HCC.
Collapse
Affiliation(s)
- Yirui Zhai
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fan Wu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xin Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Pan Zhao
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lingxia Xin
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Mengyuan Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuan Zong
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhuanbo Yang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhuoran Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bo Chen
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
6
|
Feng Y, Tang D, Wang J. Emerging role and function of SPDL1 in human health and diseases. Open Med (Wars) 2024; 19:20240922. [PMID: 38623460 PMCID: PMC11017184 DOI: 10.1515/med-2024-0922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 04/17/2024] Open
Abstract
SPDL1 (spindle apparatus coiled-coil protein 1), also referred to as CCDC99, is a recently identified gene involved in cell cycle regulation. SPDL1 encodes a protein, hSpindly, which plays a critical role in the maintenance of spindle checkpoint silencing during mitosis. hSpindly coordinates microtubule attachment by promoting kinesin recruitment and mitotic checkpoint signaling. Moreover, the protein performs numerous biological functions in vivo and its aberrant expression is closely associated with abnormal neuronal development, pulmonary interstitial fibrosis, and malignant tumor development. In this review, we provide an overview of studies that reveal the characteristics of SPDL1 and of the protein encoded by it, as well as its biological and tumor-promoting functions.
Collapse
Affiliation(s)
- Yuejiao Feng
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Anhui, 230022, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Donghao Tang
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Anhui, 230022, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jie Wang
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Anhui, 230022, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| |
Collapse
|
7
|
Wu J, Raas MW, Alcaraz PS, Vos HR, Tromer EC, Snel B, Kops GJ. A farnesyl-dependent structural role for CENP-E in expansion of the fibrous corona. J Cell Biol 2024; 223:e202303007. [PMID: 37934467 PMCID: PMC10630089 DOI: 10.1083/jcb.202303007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/18/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023] Open
Abstract
Correct chromosome segregation during cell division depends on proper connections between spindle microtubules and kinetochores. During prometaphase, kinetochores are temporarily covered with a dense protein meshwork known as the fibrous corona. Formed by oligomerization of ROD/ZW10/ZWILCH-SPINDLY (RZZ-S) complexes, the fibrous corona promotes spindle assembly, chromosome orientation, and spindle checkpoint signaling. The molecular requirements for formation of the fibrous corona are not fully understood. Here, we show that the fibrous corona depends on the mitotic kinesin CENP-E and that poorly expanded fibrous coronas after CENP-E depletion are functionally compromised. This previously unrecognized role for CENP-E does not require its motor activity but instead is driven by farnesyl modification of its C-terminal kinetochore- and microtubule-binding domain. We show that in cells, CENP-E binds Spindly and recruits RZZ-S complexes to ectopic locations in a farnesyl-dependent manner. CENP-E is recruited to kinetochores following RZZ-S, and-while not required for RZZ-S oligomerization per se-promotes subsequent fibrous corona expansion. Our comparative genomics analyses suggest that the farnesylation motif in CENP-E orthologs emerged alongside the full RZZ-S module in an ancestral lineage close to the fungi-animal split (Obazoa), revealing potential conservation of the mechanisms for fibrous corona formation. Our results show that proper spindle assembly has a potentially conserved non-motor contribution from the kinesin CENP-E through stabilization of the fibrous corona meshwork during its formation.
Collapse
Affiliation(s)
- Jingchao Wu
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
- University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Maximilian W.D. Raas
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Paula Sobrevals Alcaraz
- Oncode Institute, Utrecht, Netherlands
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Utrecht, Netherlands
| | - Harmjan R. Vos
- Oncode Institute, Utrecht, Netherlands
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Utrecht, Netherlands
| | - Eelco C. Tromer
- Faculty of Science and Engineering, Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Geert J.P.L. Kops
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
- University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
8
|
Sorensen Turpin CG, Sloan D, LaForest M, Klebanow LU, Mitchell D, Severson AF, Bembenek JN. Securin Regulates the Spatiotemporal Dynamics of Separase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571338. [PMID: 38168402 PMCID: PMC10760073 DOI: 10.1101/2023.12.12.571338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Separase is a key regulator of the metaphase to anaphase transition with multiple functions. Separase cleaves cohesin to allow chromosome segregation and localizes to vesicles to promote exocytosis in mid-anaphase. The anaphase promoting complex/cyclosome (APC/C) activates separase by ubiquitinating its inhibitory chaperone, securin, triggering its degradation. How this pathway controls the exocytic function of separase has not been investigated. During meiosis I, securin is degraded over several minutes, while separase rapidly relocalizes from kinetochore structures at the spindle and cortex to sites of action on chromosomes and vesicles at anaphase onset. The loss of cohesin coincides with the relocalization of separase to the chromosome midbivalent at anaphase onset. APC/C depletion prevents separase relocalization, while securin depletion causes precocious separase relocalization. Expression of non-degradable securin inhibits chromosome segregation, exocytosis, and separase localization to vesicles but not to the anaphase spindle. We conclude that APC/C mediated securin degradation controls separase localization. This spatiotemporal regulation will impact the effective local concentration of separase for more precise targeting of substrates in anaphase.
Collapse
Affiliation(s)
- Christopher G. Sorensen Turpin
- Current Address: Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Dillon Sloan
- Current Address: Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Marian LaForest
- Current Address: Columbia University, Herbert Irving Comprehensive Cancer Center, NYC, New York, United States of America
| | | | - Diana Mitchell
- Current Address: Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Aaron F. Severson
- Current Address: Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
| | - Joshua N. Bembenek
- Current Address: Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
9
|
Cmentowski V, Ciossani G, d'Amico E, Wohlgemuth S, Owa M, Dynlacht B, Musacchio A. RZZ-Spindly and CENP-E form an integrated platform to recruit dynein to the kinetochore corona. EMBO J 2023; 42:e114838. [PMID: 37984321 PMCID: PMC10711656 DOI: 10.15252/embj.2023114838] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023] Open
Abstract
Chromosome biorientation on the mitotic spindle is prerequisite to errorless genome inheritance. CENP-E (kinesin-7) and dynein-dynactin (DD), microtubule motors with opposite polarity, promote biorientation from the kinetochore corona, a polymeric structure whose assembly requires MPS1 kinase. The corona's building block consists of ROD, Zwilch, ZW10, and the DD adaptor Spindly (RZZS). How CENP-E and DD are scaffolded and mutually coordinated in the corona remains unclear. Here, we show that when corona assembly is prevented through MPS1 inhibition, CENP-E is absolutely required to retain RZZS at kinetochores. An RZZS phosphomimetic mutant bypasses this requirement, demonstrating the existence of a second receptor for polymeric RZZS. With active MPS1, CENP-E is dispensable for corona expansion, but strictly required for physiological kinetochore accumulation of DD. Thus, we identify the corona as an integrated scaffold where CENP-E kinesin controls DD kinetochore loading for coordinated bidirectional transport of chromosome cargo.
Collapse
Affiliation(s)
- Verena Cmentowski
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
- Centre for Medical Biotechnology, Faculty of BiologyUniversity Duisburg‐EssenEssenGermany
| | - Giuseppe Ciossani
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
- Present address:
European Institute of OncologyMilanItaly
| | - Ennio d'Amico
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
- Present address:
Division of Structural StudiesMRC Laboratory of Molecular BiologyCambridgeUK
| | - Sabine Wohlgemuth
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Mikito Owa
- Department of PathologyNew York University Cancer Institute, New York University School of MedicineNew YorkNYUSA
| | - Brian Dynlacht
- Department of PathologyNew York University Cancer Institute, New York University School of MedicineNew YorkNYUSA
| | - Andrea Musacchio
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
- Centre for Medical Biotechnology, Faculty of BiologyUniversity Duisburg‐EssenEssenGermany
| |
Collapse
|
10
|
Eibes S, Rajendraprasad G, Guasch-Boldu C, Kubat M, Steblyanko Y, Barisic M. CENP-E activation by Aurora A and B controls kinetochore fibrous corona disassembly. Nat Commun 2023; 14:5317. [PMID: 37658044 PMCID: PMC10474297 DOI: 10.1038/s41467-023-41091-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/22/2023] [Indexed: 09/03/2023] Open
Abstract
Accurate chromosome segregation in mitosis depends on multiprotein structures called kinetochores that are built on the centromeric region of sister chromatids and serve to capture mitotic spindle microtubules. In early mitosis, unattached kinetochores expand a crescent-shaped structure called fibrous corona whose function is to facilitate initial kinetochore-microtubule attachments and chromosome transport by microtubules. Subsequently, the fibrous corona must be timely disassembled to prevent segregation errors. Although recent studies provided new insights on the molecular content and mechanism of fibrous corona assembly, it remains unknown what triggers the disassembly of the outermost and dynamic layer of the kinetochore. Here, we show that Aurora A and B kinases phosphorylate CENP-E to release it from an autoinhibited state. At kinetochores, Aurora B phosphorylates CENP-E to prevent its premature removal together with other corona proteins by dynein. At the spindle poles, Aurora A phosphorylates CENP-E to promote chromosome congression and prevent accumulation of corona proteins at the centrosomes, allowing for their intracellular redistribution. Thus, we propose the Aurora A/B-CENP-E axis as a critical element of the long-sought-for mechanism of fibrous corona disassembly that is essential for accurate chromosome segregation.
Collapse
Affiliation(s)
- Susana Eibes
- Cell Division and Cytoskeleton, Danish Cancer Institute, Copenhagen, Denmark
| | | | | | - Mirela Kubat
- Cell Division and Cytoskeleton, Danish Cancer Institute, Copenhagen, Denmark
| | - Yulia Steblyanko
- Cell Division and Cytoskeleton, Danish Cancer Institute, Copenhagen, Denmark
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Institute, Copenhagen, Denmark.
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Salvador-Garcia D, Jin L, Hensley A, Gölcük M, Gallaud E, Chaaban S, Port F, Vagnoni A, Planelles-Herrero VJ, McClintock MA, Derivery E, Carter AP, Giet R, Gür M, Yildiz A, Bullock SL. A force-sensitive mutation reveals a spindle assembly checkpoint-independent role for dynein in anaphase progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551815. [PMID: 37577480 PMCID: PMC10418259 DOI: 10.1101/2023.08.03.551815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The cytoplasmic dynein-1 (dynein) motor organizes cells by shaping microtubule networks and moving a large variety of cargoes along them. However, dynein's diverse roles complicate in vivo studies of its functions significantly. To address this issue, we have used gene editing to generate a series of missense mutations in Drosophila Dynein heavy chain (Dhc). We find that mutations associated with human neurological disease cause a range of defects in larval and adult flies, including impaired cargo trafficking in neurons. We also describe a novel mutation in the microtubule-binding domain (MTBD) of Dhc that, remarkably, causes metaphase arrest of mitotic spindles in the embryo but does not impair other dynein-dependent processes. We demonstrate that the mitotic arrest is independent of dynein's well-established roles in silencing the spindle assembly checkpoint. In vitro reconstitution and optical trapping assays reveal that the mutation only impairs the performance of dynein under load. In silico all-atom molecular dynamics simulations show that this effect correlates with increased flexibility of the MTBD, as well as an altered orientation of the stalk domain, with respect to the microtubule. Collectively, our data point to a novel role of dynein in anaphase progression that depends on the motor operating in a specific load regime. More broadly, our work illustrates how cytoskeletal transport processes can be dissected in vivo by manipulating mechanical properties of motors.
Collapse
Affiliation(s)
| | - Li Jin
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Andrew Hensley
- Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Mert Gölcük
- Department of Mechanical Engineering, Istanbul Technical University, Istanbul, 34437, Turkey
| | - Emmanuel Gallaud
- Institut de Génétique et Développement de Rennes - UMR 6290, Université de Rennes, F-35000 Rennes, France
| | - Sami Chaaban
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Fillip Port
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
- Current address: Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Alessio Vagnoni
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
- Current address: Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 9RX, UK
| | | | - Mark A. McClintock
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Emmanuel Derivery
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Andrew P. Carter
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Régis Giet
- Institut de Génétique et Développement de Rennes - UMR 6290, Université de Rennes, F-35000 Rennes, France
| | - Mert Gür
- Department of Mechanical Engineering, Istanbul Technical University, Istanbul, 34437, Turkey
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ahmet Yildiz
- Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Simon L. Bullock
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| |
Collapse
|
12
|
Abstract
Neurons are markedly compartmentalized, which makes them reliant on axonal transport to maintain their health. Axonal transport is important for anterograde delivery of newly synthesized macromolecules and organelles from the cell body to the synapse and for the retrograde delivery of signaling endosomes and autophagosomes for degradation. Dysregulation of axonal transport occurs early in neurodegenerative diseases and plays a key role in axonal degeneration. Here, we provide an overview of mechanisms for regulation of axonal transport; discuss how these mechanisms are disrupted in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, hereditary spastic paraplegia, amyotrophic lateral sclerosis, and Charcot-Marie-Tooth disease; and discuss therapeutic approaches targeting axonal transport.
Collapse
|
13
|
Cmentowski V, Ciossani G, d’Amico E, Wohlgemuth S, Owa M, Dynlacht B, Musacchio A. A mechanism that integrates microtubule motors of opposite polarity at the kinetochore corona. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538277. [PMID: 37163019 PMCID: PMC10168246 DOI: 10.1101/2023.04.25.538277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chromosome biorientation on the mitotic spindle is prerequisite to errorless genome inheritance. CENP-E (kinesin 7) and Dynein-Dynactin (DD), microtubule motors with opposite polarity, promote biorientation from the kinetochore corona, a polymeric structure whose assembly requires MPS1 kinase. The corona's building block consists of ROD, Zwilch, ZW10, and the DD adaptor Spindly (RZZS). How CENP-E and DD are scaffolded and mutually coordinated in the corona remains unclear. Here, we report near-complete depletion of RZZS and DD from kinetochores after depletion of CENP-E and the outer kinetochore protein KNL1. With inhibited MPS1, CENP-E, which we show binds directly to RZZS, is required to retain kinetochore RZZS. An RZZS phosphomimetic mutant bypasses this requirement. With active MPS1, CENP-E is dispensable for corona expansion, but strictly required for physiological kinetochore accumulation of DD. Thus, we identify the corona as an integrated scaffold where CENP-E kinesin controls DD kinetochore loading for coordinated bidirectional transport of chromosome cargo.
Collapse
Affiliation(s)
- Verena Cmentowski
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Giuseppe Ciossani
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Ennio d’Amico
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Sabine Wohlgemuth
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Mikito Owa
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Brian Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
14
|
McAinsh AD, Kops GJPL. Principles and dynamics of spindle assembly checkpoint signalling. Nat Rev Mol Cell Biol 2023:10.1038/s41580-023-00593-z. [PMID: 36964313 DOI: 10.1038/s41580-023-00593-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 03/26/2023]
Abstract
The transmission of a complete set of chromosomes to daughter cells during cell division is vital for development and tissue homeostasis. The spindle assembly checkpoint (SAC) ensures correct segregation by informing the cell cycle machinery of potential errors in the interactions of chromosomes with spindle microtubules prior to anaphase. To do so, the SAC monitors microtubule engagement by specialized structures known as kinetochores and integrates local mechanical and chemical cues such that it can signal in a sensitive, responsive and robust manner. In this Review, we discuss how SAC proteins interact to allow production of the mitotic checkpoint complex (MCC) that halts anaphase progression by inhibiting the anaphase-promoting complex/cyclosome (APC/C). We highlight recent advances aimed at understanding the dynamic signalling properties of the SAC and how it interprets various naturally occurring intermediate attachment states. Further, we discuss SAC signalling in the context of the mammalian multisite kinetochore and address the impact of the fibrous corona. We also identify current challenges in understanding how the SAC ensures high-fidelity chromosome segregation.
Collapse
Affiliation(s)
- Andrew D McAinsh
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK.
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| | - Geert J P L Kops
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
15
|
Wu J, Larreategui-Aparicio A, Lambers MLA, Bodor DL, Klaasen SJ, Tollenaar E, de Ruijter-Villani M, Kops GJPL. Microtubule nucleation from the fibrous corona by LIC1-pericentrin promotes chromosome congression. Curr Biol 2023; 33:912-925.e6. [PMID: 36720222 PMCID: PMC10017265 DOI: 10.1016/j.cub.2023.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/17/2022] [Accepted: 01/06/2023] [Indexed: 01/31/2023]
Abstract
Error-free chromosome segregation in mitosis and meiosis relies on the assembly of a microtubule-based spindle that interacts with kinetochores to guide chromosomes to the cell equator before segregation in anaphase. Microtubules sprout from nucleation sites such as centrosomes, but kinetochores can also promote microtubule formation. It is unclear, however, how kinetochore-derived microtubules are generated and what their role is in chromosome segregation. Here, we show that the transient outer-kinetochore meshwork known as the fibrous corona serves as an autonomous microtubule nucleation platform. The fibrous corona is essential for the nucleation of kinetochore-derived microtubules, and when dissociated from the core kinetochore, it retains microtubule nucleation capacity. Nucleation relies on a fibrous-corona-bound pool of the LIC1 subunit of the dynein motor complex, which interacts with the γ-tubulin-tethering protein pericentrin (PCNT). PCNT is essential for microtubule nucleation from fibrous coronas, and in centrosome-depleted cells, where nearly all mitotic nucleation occurs at fibrous coronas, chromosome congression is fully dependent on PCNT. We further show that chromosomes in bovine oocytes, which naturally lack centrosomes, have highly expanded fibrous coronas that drive chromosome-derived microtubule nucleation. Preventing fibrous corona expansion in these cells impairs chromosome congression and causes spindle assembly defects. Our results show that fibrous coronas are autonomous microtubule-organizing centers that are important for spindle assembly, which may be especially relevant in acentrosomal cells such as oocytes.
Collapse
Affiliation(s)
- Jingchao Wu
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521AL Utrecht, the Netherlands
| | - Ainhoa Larreategui-Aparicio
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, the Netherlands
| | - Maaike L A Lambers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521AL Utrecht, the Netherlands
| | - Dani L Bodor
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521AL Utrecht, the Netherlands
| | - Sjoerd J Klaasen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521AL Utrecht, the Netherlands
| | - Eveline Tollenaar
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, the Netherlands
| | - Marta de Ruijter-Villani
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, the Netherlands; Division of Woman and Baby, Department of Obstetrics and Gynecology, University Medical Centre Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - Geert J P L Kops
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521AL Utrecht, the Netherlands.
| |
Collapse
|
16
|
Abstract
The microtubule minus-end-directed motility of cytoplasmic dynein 1 (dynein), arguably the most complex and versatile cytoskeletal motor, is harnessed for diverse functions, such as long-range organelle transport in neuronal axons and spindle assembly in dividing cells. The versatility of dynein raises a number of intriguing questions, including how is dynein recruited to its diverse cargo, how is recruitment coupled to activation of the motor, how is motility regulated to meet different requirements for force production and how does dynein coordinate its activity with that of other microtubule-associated proteins (MAPs) present on the same cargo. Here, these questions will be discussed in the context of dynein at the kinetochore, the supramolecular protein structure that connects segregating chromosomes to spindle microtubules in dividing cells. As the first kinetochore-localized MAP described, dynein has intrigued cell biologists for more than three decades. The first part of this Review summarizes current knowledge about how kinetochore dynein contributes to efficient and accurate spindle assembly, and the second part describes the underlying molecular mechanisms and highlights emerging commonalities with dynein regulation at other subcellular sites.
Collapse
Affiliation(s)
- Reto Gassmann
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular - IBMC, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
17
|
GBM Cells Exhibit Susceptibility to Metformin Treatment According to TLR4 Pathway Activation and Metabolic and Antioxidant Status. Cancers (Basel) 2023; 15:cancers15030587. [PMID: 36765551 PMCID: PMC9913744 DOI: 10.3390/cancers15030587] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive brain cancer associated with poor overall survival. The metabolic status and tumor microenvironment of GBM cells have been targeted to improve therapeutic strategies. TLR4 is an important innate immune receptor capable of recognizing pathogens and danger-associated molecules. We have previously demonstrated the presence of TLR4 in GBM tumors and the decreased viability of the GBM tumor cell line after lipopolysaccharide (LPS) (TLR4 agonist) stimulation. In the present study, metformin (MET) treatment, used in combination with temozolomide (TMZ) in two GBM cell lines (U87MG and A172) and stimulated with LPS was analyzed. MET is a drug widely used for the treatment of diabetes and has been repurposed for cancer treatment owing to its anti-proliferative and anti-inflammatory actions. The aim of the study was to investigate MET and LPS treatment in two GBM cell lines with different metabolic statuses. MET treatment led to mitochondrial respiration blunting and oxidative stress with superoxide production in both cell lines, more markedly in U87MG cells. Decreased cell viability after MET + TMZ and MET + LPS + TMZ treatment was observed in both cell lines. U87MG cells exhibited apoptosis after MET + LPS + TMZ treatment, promoting increased ER stress, unfolded protein response, and BLC2 downregulation. LPS stimulation of U87MG cells led to upregulation of SOD2 and genes related to the TLR4 signaling pathway, including IL1B and CXCL8. A172 cells attained upregulated antioxidant gene expression, particularly SOD1, TXN and PRDX1-5, while MET treatment led to cell-cycle arrest. In silico analysis of the TCGA-GBM-RNASeq dataset indicated that the glycolytic plurimetabolic (GPM)-GBM subtype had a transcriptomic profile which overlapped with U87MG cells, suggesting GBM cases exhibiting this metabolic background with an activated inflammatory TLR4 pathway may respond to MET treatment. For cases with upregulated CXCL8, coding for IL8 (a pro-angiogenic factor), combination treatment with an IL8 inhibitor may improve tumor growth control. The A172 cell line corresponded to the mitochondrial (MTC)-GBM subtype, where MET plus an antioxidant inhibitor, such as anti-SOD1, may be indicated as a combinatory therapy.
Collapse
|
18
|
Fischer ES. Kinetochore‐catalyzed MCC
formation: A structural perspective. IUBMB Life 2022; 75:289-310. [PMID: 36518060 DOI: 10.1002/iub.2697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
The spindle assembly checkpoint (SAC) is a cellular surveillance mechanism that functions to ensure accurate chromosome segregation during mitosis. Macromolecular complexes known as kinetochores, act as the interface of sister chromatid attachment to spindle microtubules. In response to unattached kinetochores, the SAC activates its effector, the mitotic checkpoint complex (MCC), which delays mitotic exit until all sister chromatid pairs have achieved successful attachment to the bipolar mitotic spindle. Formation of the MCC (composed of Mad2, BubR1, Bub3 and Cdc20) is regulated by an Mps1 kinase-dependent phosphorylation signaling cascade which assembles and repositions components of the MCC onto a catalytic scaffold. This scaffold functions to catalyze the conversion of the HORMA-domain protein Mad2 from an "inactive" open-state (O-Mad2) into an "active" closed-Mad2 (C-Mad2), and simultaneous Cdc20 binding. Here, our current understanding of the molecular mechanisms underlying the kinetic barrier to C-Mad2:Cdc20 formation will be reviewed. Recent progress in elucidating the precise molecular choreography orchestrated by the catalytic scaffold to rapidly assemble the MCC will be examined, and unresolved questions will be highlighted. Ultimately, understanding how the SAC rapidly activates the checkpoint not only provides insights into how cells maintain genomic integrity during mitosis, but also provides a paradigm for how cells can utilize molecular switches, including other HORMA domain-containing proteins, to make rapid changes to a cell's physiological state.
Collapse
Affiliation(s)
- Elyse S. Fischer
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus Cambridge UK
| |
Collapse
|
19
|
Matković J, Ghosh S, Ćosić M, Eibes S, Barišić M, Pavin N, Tolić IM. Kinetochore- and chromosome-driven transition of microtubules into bundles promotes spindle assembly. Nat Commun 2022; 13:7307. [PMID: 36435852 PMCID: PMC9701229 DOI: 10.1038/s41467-022-34957-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/11/2022] [Indexed: 11/28/2022] Open
Abstract
Mitotic spindle assembly is crucial for chromosome segregation and relies on bundles of microtubules that extend from the poles and overlap in the middle. However, how these structures form remains poorly understood. Here we show that overlap bundles arise through a network-to-bundles transition driven by kinetochores and chromosomes. STED super-resolution microscopy reveals that PRC1-crosslinked microtubules initially form loose arrays, which become rearranged into bundles. Kinetochores promote microtubule bundling by lateral binding via CENP-E/kinesin-7 in an Aurora B-regulated manner. Steric interactions between the bundle-associated chromosomes at the spindle midplane drive bundle separation and spindle widening. In agreement with experiments, theoretical modeling suggests that bundles arise through competing attractive and repulsive mechanisms. Finally, perturbation of overlap bundles leads to inefficient correction of erroneous kinetochore-microtubule attachments. Thus, kinetochores and chromosomes drive coarsening of a uniform microtubule array into overlap bundles, which promote not only spindle formation but also chromosome segregation fidelity.
Collapse
Affiliation(s)
- Jurica Matković
- grid.4905.80000 0004 0635 7705Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Subhadip Ghosh
- grid.4808.40000 0001 0657 4636Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Mateja Ćosić
- grid.4905.80000 0004 0635 7705Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Susana Eibes
- grid.417390.80000 0001 2175 6024Cell Division and Cytoskeleton, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Marin Barišić
- grid.417390.80000 0001 2175 6024Cell Division and Cytoskeleton, Danish Cancer Society Research Center, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XDepartment of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nenad Pavin
- grid.4808.40000 0001 0657 4636Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Iva M. Tolić
- grid.4905.80000 0004 0635 7705Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
20
|
d'Amico EA, Ud Din Ahmad M, Cmentowski V, Girbig M, Müller F, Wohlgemuth S, Brockmeyer A, Maffini S, Janning P, Vetter IR, Carter AP, Perrakis A, Musacchio A. Conformational transitions of the Spindly adaptor underlie its interaction with Dynein and Dynactin. J Cell Biol 2022; 221:213466. [PMID: 36107127 PMCID: PMC9481740 DOI: 10.1083/jcb.202206131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022] Open
Abstract
Cytoplasmic Dynein 1, or Dynein, is a microtubule minus end-directed motor. Dynein motility requires Dynactin and a family of activating adaptors that stabilize the Dynein-Dynactin complex and promote regulated interactions with cargo in space and time. How activating adaptors limit Dynein activation to specialized subcellular locales is unclear. Here, we reveal that Spindly, a mitotic Dynein adaptor at the kinetochore corona, exists natively in a closed conformation that occludes binding of Dynein-Dynactin to its CC1 box and Spindly motif. A structure-based analysis identified various mutations promoting an open conformation of Spindly that binds Dynein-Dynactin. A region of Spindly downstream from the Spindly motif and not required for cargo binding faces the CC1 box and stabilizes the intramolecular closed conformation. This region is also required for robust kinetochore localization of Spindly, suggesting that kinetochores promote Spindly activation to recruit Dynein. Thus, our work illustrates how specific Dynein activation at a defined cellular locale may require multiple factors.
Collapse
Affiliation(s)
- Ennio A d'Amico
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Misbha Ud Din Ahmad
- Oncode Institute and Department of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Verena Cmentowski
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | | | - Franziska Müller
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sabine Wohlgemuth
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Andreas Brockmeyer
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Stefano Maffini
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Petra Janning
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Ingrid R Vetter
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | - Anastassis Perrakis
- Oncode Institute and Department of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
21
|
Vazquez-Pianzola P, Beuchle D, Saro G, Hernández G, Maldonado G, Brunßen D, Meister P, Suter B. Female meiosis II and pronuclear fusion require the microtubule transport factor Bicaudal D. Development 2022; 149:275749. [DOI: 10.1242/dev.199944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/25/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Bicaudal D (BicD) is a dynein adaptor that transports different cargoes along microtubules. Reducing the activity of BicD specifically in freshly laid Drosophila eggs by acute protein degradation revealed that BicD is needed to produce normal female meiosis II products, to prevent female meiotic products from re-entering the cell cycle, and for pronuclear fusion. Given that BicD is required to localize the spindle assembly checkpoint (SAC) components Mad2 and BubR1 to the female meiotic products, it appears that BicD functions to localize these components to control metaphase arrest of polar bodies. BicD interacts with Clathrin heavy chain (Chc), and both proteins localize to centrosomes, mitotic spindles and the tandem spindles during female meiosis II. Furthermore, BicD is required to localize clathrin and the microtubule-stabilizing factors transforming acidic coiled-coil protein (D-TACC/Tacc) and Mini spindles (Msps) correctly to the meiosis II spindles, suggesting that failure to localize these proteins may perturb SAC function. Furthermore, immediately after the establishment of the female pronucleus, D-TACC and Caenorhabditis elegans BicD, tacc and Chc are also needed for pronuclear fusion, suggesting that the underlying mechanism might be more widely used across species.
Collapse
Affiliation(s)
| | - Dirk Beuchle
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Gabriella Saro
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Greco Hernández
- Instituto Nacional de Cancerología (INCan) 2 Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer , , 14080-Tlalpan, Mexico City , Mexico
| | - Giovanna Maldonado
- Instituto Nacional de Cancerología (INCan) 2 Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer , , 14080-Tlalpan, Mexico City , Mexico
| | - Dominique Brunßen
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Peter Meister
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Beat Suter
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| |
Collapse
|
22
|
Raisch T, Ciossani G, d’Amico E, Cmentowski V, Carmignani S, Maffini S, Merino F, Wohlgemuth S, Vetter IR, Raunser S, Musacchio A. Structure of the RZZ complex and molecular basis of Spindly-driven corona assembly at human kinetochores. EMBO J 2022; 41:e110411. [PMID: 35373361 PMCID: PMC9058546 DOI: 10.15252/embj.2021110411] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/09/2022] Open
Abstract
In metazoans, a ≈1 megadalton (MDa) multiprotein complex comprising the dynein-dynactin adaptor Spindly and the ROD-Zwilch-ZW10 (RZZ) complex is the building block of a fibrous biopolymer, the kinetochore fibrous corona. The corona assembles on mitotic kinetochores to promote microtubule capture and spindle assembly checkpoint (SAC) signaling. We report here a high-resolution cryo-EM structure that captures the essential features of the RZZ complex, including a farnesyl-binding site required for Spindly binding. Using a highly predictive in vitro assay, we demonstrate that the SAC kinase MPS1 is necessary and sufficient for corona assembly at supercritical concentrations of the RZZ-Spindly (RZZS) complex, and describe the molecular mechanism of phosphorylation-dependent filament nucleation. We identify several structural requirements for RZZS polymerization in rings and sheets. Finally, we identify determinants of kinetochore localization and corona assembly of Spindly. Our results describe a framework for the long-sought-for molecular basis of corona assembly on metazoan kinetochores.
Collapse
Affiliation(s)
- Tobias Raisch
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Giuseppe Ciossani
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
- Present address:
European Institute of OncologyMilanItaly
| | - Ennio d’Amico
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Verena Cmentowski
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Sara Carmignani
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Stefano Maffini
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Felipe Merino
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
- Present address:
Department of Protein EvolutionMax Planck Institute for Developmental BiologyTübingenGermany
| | - Sabine Wohlgemuth
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Ingrid R Vetter
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Stefan Raunser
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Andrea Musacchio
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
- Centre for Medical BiotechnologyFaculty of BiologyUniversity Duisburg‐EssenEssenGermany
| |
Collapse
|
23
|
Zhou Y, Lei D, Hu G, Luo F. A Cell Cycle-Related 13-mRNA Signature to Predict Prognosis in Hepatocellular Carcinoma. Front Oncol 2022; 12:760190. [PMID: 35419294 PMCID: PMC8995863 DOI: 10.3389/fonc.2022.760190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
We aimed to propose a cell cycle-related multi/mRNA signature (CCS) for prognosis prediction and uncover new tumor-driver genes for hepatocellular carcinoma (HCC). Cell cycle-related gene sets and HCC samples with mRNA-Seq data were retrieved from public sources. The genes differentially expressed in HCCs relative to normal peritumoral tissues were extracted through statistical analysis. The CCS was constructed by Cox regression analyses. Predictive capacity and clinical practicality of the signature were evaluated and validated. The expression of the function-unknown genes in the CCS was determined by RT-qPCR. Candidate gene TICRR was selected for subsequent validation through functional experiments. A cell cycle-related 13-mRNA signature was generated from the exploratory cohort [The Cancer Genome Atlas (TCGA), n = 371)]. HCC cases were classified as high- vs. low-risk groups per overall survival (OS) [hazard ratio (HR) = 2.699]. Significantly, the CCS exhibited great predictive value for prognosis in three independent cohorts, particularly in GSE76427 cohort [area under the curve (AUC) = 0.835/0.822/0.808/0.821/0.826 at 1/2/3/4/5 years]. The nomogram constructed by integrating clinicopathological features with the CCS indicated high accuracy and practicability. Significant enrichment of tumorigenesis-associated pathways was observed in the high-risk patients by Gene Set Enrichment Analysis (GSEA). RT-qPCR revealed that TICRR was overexpressed in HCC samples. Increased TICRR expression implied poor prognosis in HCC patients. Furthermore, depletion of TICRR in HCC cells decreased cell proliferation and the G1/S transition. In conclusion, the established 13-CCS had efficacy in prognostic prediction of HCC patients. Additionally, TICRR was demonstrated as a tumor-driver gene for this deadly disease.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dengliang Lei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gangli Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Klimaszewska-Wiśniewska A, Buchholz K, Durślewicz J, Villodre ES, Gagat M, Grzanka D. SPDL1 Is an Independent Predictor of Patient Outcome in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23031819. [PMID: 35163739 PMCID: PMC8836361 DOI: 10.3390/ijms23031819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 02/05/2023] Open
Abstract
Spindle Apparatus Coiled-Coil Protein 1 (SPDL1) is a relatively recently identified coiled-coil domain containing protein and an important determinant of DNA fidelity by ensuring faithful mitosis. Hence, SPDL1 is suspected to underlie genomic (in-)stability in human cancers, yet its exact roles in these diseases remain largely underexplored. Given that genomic instability (GIN) is a crucial feature in colorectal cancer (CRC), we primarily asked whether the expression of this protein may account for differences in clinicopathological features and survival rates of CRC patients. Protein expression was evaluated by immunohistochemistry in the institutional tissue microarray (TMA), and gene expression by the analysis of publicly available datasets. To place the prognostic relevance in a predicted biological context, gene co-expression set around SPDL1 identified by public data mining was annotated and assessed for enrichment in gene ontology (GO) categories, BRITE hierarchies, and Reactome pathways. The comparison with adjacent normal tissue revealed a high expression of SPDL1 protein in a subset of tumor cases (48.84%), and these had better prognosis than the SPDL1-low expression counterpart even after adjustment for multiple confounders. SPDL1-high expression within tumors was associated with a median 56-month survival advantage, but not with any clinicopathological characteristics of our cohort. In the TCGA cohort, SPDL1 was overexpressed in tumor tissue and positively associated with improved survival, chromosome instability phenotype, and various GIN markers. In addition to the genes critically involved in the cell cycle and mitosis, a gene set co-expressed with SPDL1 contained checkpoint members of both chromosome segregation and DNA replication, as well as those associated with defective DNA repair, and retrograde vesicle-mediated transport. In conclusion, SPDL1 is an independent predictor of CRC patient survival in a possible connection with chromosomal instability.
Collapse
Affiliation(s)
- Anna Klimaszewska-Wiśniewska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (K.B.); (J.D.); (D.G.)
- Correspondence: ; Tel.: +48-52-585-42-00; Fax: +48-52-585-40-49
| | - Karolina Buchholz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (K.B.); (J.D.); (D.G.)
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland;
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (K.B.); (J.D.); (D.G.)
| | - Emilly Schlee Villodre
- Department of Breast Medical Oncology and MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland;
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (K.B.); (J.D.); (D.G.)
| |
Collapse
|
25
|
Samejima I, Spanos C, Samejima K, Rappsilber J, Kustatscher G, Earnshaw WC. Mapping the invisible chromatin transactions of prophase chromosome remodeling. Mol Cell 2022; 82:696-708.e4. [PMID: 35090599 PMCID: PMC8823707 DOI: 10.1016/j.molcel.2021.12.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/03/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023]
Abstract
We have used a combination of chemical genetics, chromatin proteomics, and imaging to map the earliest chromatin transactions during vertebrate cell entry into mitosis. Chicken DT40 CDK1as cells undergo synchronous mitotic entry within 15 min following release from a 1NM-PP1-induced arrest in late G2. In addition to changes in chromatin association with nuclear pores and the nuclear envelope, earliest prophase is dominated by changes in the association of ribonucleoproteins with chromatin, particularly in the nucleolus, where pre-rRNA processing factors leave chromatin significantly before RNA polymerase I. Nuclear envelope barrier function is lost early in prophase, and cytoplasmic proteins begin to accumulate on the chromatin. As a result, outer kinetochore assembly appears complete by nuclear envelope breakdown (NEBD). Most interphase chromatin proteins remain associated with chromatin until NEBD, after which their levels drop sharply. An interactive proteomic map of chromatin transactions during mitotic entry is available as a resource at https://mitoChEP.bio.ed.ac.uk.
Collapse
Affiliation(s)
- Itaru Samejima
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Kumiko Samejima
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK; Technische Universität Berlin, Chair of Bioanalytics, 10623 Berlin, Germany
| | - Georg Kustatscher
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
26
|
Song P, Wusiman D, Li F, Wu X, Guo L, Li W, Gao S, He J. Pan-cancer analysis combined with experiments explores the oncogenic role of spindle apparatus coiled-coil protein 1 (SPDL1). Cancer Cell Int 2022; 22:49. [PMID: 35093072 PMCID: PMC8801078 DOI: 10.1186/s12935-022-02461-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background The function of spindle apparatus coiled-coil protein 1 (SPDL1) as a cancer-promoting gene has been reported in a number of studies. However, the pan-cancer analysis of SPDL1 is still lacking. Here, we performed this pan-cancer analysis to evaluate the expression and prognostic value of SPDL1 and gain insights into the association between SPDL1 and immune infiltration. Methods In this study, based on the datasets of The cancer genome atlas (TCGA), Gene expression omnibus (GEO), The Genotype-Tissue Expression (GTEx) and Clinical Proteomic Tumor Analysis Consortium (CPTAC), we used R4.1.0 software and the online tools, including TIMER2.0, GEPIA2, cBioPortal, Modbase, UALCAN, MEXPRESS, STRING, Ensembl, NCBI, HPA, Oncomine, PhosphoNET and the Kaplan-Meier plotter, to explore the potential oncogenic roles of SPDL1. The expression of SPDL1 was also further verified by immunohistochemistry (IHC) in lung adenocarcinoma (LUAD) tissues. Results SPDL1 was overexpressed in most tumors compared with adjacent normal tissues, and SPDL1 expression was significantly correlated with the prognosis in most tumor types. The main type of genetic mutation of SPDL1 was missense mutation and the frequency of R318Q/W mutation was highest (4/119). The expression of SPDL1 was closely associated with genomic instability. The SPDL1 phosphorylation levels in S555 was enhanced in ovarian cancer. The SPDL1 expression was positively correlated with the immune infiltration of CD8+ T-cells and cancer-associated fibroblasts (CAFs) in most of the tumor types. Nuclear division, organelle fission and chromosome segregation were involved in the functional mechanisms of SPDL1. Conclusions These findings suggested that SPDL1 might serve as a biomarker for poor prognosis and immune infiltration in cancers, shedding new light on therapeutics of cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02461-w.
Collapse
|
27
|
Barbosa J, Sunkel CE, Conde C. The Role of Mitotic Kinases and the RZZ Complex in Kinetochore-Microtubule Attachments: Doing the Right Link. Front Cell Dev Biol 2022; 10:787294. [PMID: 35155423 PMCID: PMC8832123 DOI: 10.3389/fcell.2022.787294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/13/2022] [Indexed: 12/31/2022] Open
Abstract
During mitosis, the interaction of kinetochores (KTs) with microtubules (MTs) drives chromosome congression to the spindle equator and supports the segregation of sister chromatids. Faithful genome partition critically relies on the ability of chromosomes to establish and maintain proper amphitelic end-on attachments, a configuration in which sister KTs are connected to robust MT fibers emanating from opposite spindle poles. Because the capture of spindle MTs by KTs is error prone, cells use mechanisms that sense and correct inaccurate KT-MT interactions before committing to segregate sister chromatids in anaphase. If left unresolved, these errors can result in the unequal distribution of chromosomes and lead to aneuploidy, a hallmark of cancer. In this review, we provide an overview of the molecular strategies that monitor the formation and fine-tuning of KT-MT attachments. We describe the complex network of proteins that operates at the KT-MT interface and discuss how AURORA B and PLK1 coordinate several concurrent events so that the stability of KT-MT attachments is precisely modulated throughout mitotic progression. We also outline updated knowledge on how the RZZ complex is regulated to ensure the formation of end-on attachments and the fidelity of mitosis.
Collapse
Affiliation(s)
- João Barbosa
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Claudio E. Sunkel
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Carlos Conde
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
28
|
Kumari A, Kumar C, Pergu R, Kumar M, Mahale SP, Wasnik N, Mylavarapu SVS. Phosphorylation and Pin1 binding to the LIC1 subunit selectively regulate mitotic dynein functions. J Cell Biol 2021; 220:212736. [PMID: 34709360 PMCID: PMC8562849 DOI: 10.1083/jcb.202005184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 05/13/2021] [Accepted: 09/22/2021] [Indexed: 01/31/2023] Open
Abstract
The dynein motor performs multiple functions in mitosis by engaging with a wide cargo spectrum. One way to regulate dynein's cargo-binding selectivity is through the C-terminal domain (CTD) of its light intermediate chain 1 subunit (LIC1), which binds directly with cargo adaptors. Here we show that mitotic phosphorylation of LIC1-CTD at its three cdk1 sites is required for proper mitotic progression, for dynein loading onto prometaphase kinetochores, and for spindle assembly checkpoint inactivation in human cells. Mitotic LIC1-CTD phosphorylation also engages the prolyl isomerase Pin1 predominantly to Hook2-dynein-Nde1-Lis1 complexes, but not to dynein-spindly-dynactin complexes. LIC1-CTD dephosphorylation abrogates dynein-Pin1 binding, promotes prophase centrosome-nuclear envelope detachment, and impairs metaphase chromosome congression and mitotic Golgi fragmentation, without affecting interphase membrane transport. Phosphomutation of a conserved LIC1-CTD SP site in zebrafish leads to early developmental defects. Our work reveals that LIC1-CTD phosphorylation differentially regulates distinct mitotic dynein pools and suggests the evolutionary conservation of this phosphoregulation.
Collapse
Affiliation(s)
- Amrita Kumari
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Manipal Academy of Higher Education, Manipal Karnataka, India
| | - Chandan Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India
| | - Rajaiah Pergu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Manipal Academy of Higher Education, Manipal Karnataka, India
| | - Megha Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Council of Scientific and Industrial Research, Centre for Cellular and Molecular Biology, Habsiguda, Hyderabad, Telangana, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Sagar P Mahale
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Manipal Academy of Higher Education, Manipal Karnataka, India
| | - Neeraj Wasnik
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Manipal Academy of Higher Education, Manipal Karnataka, India
| |
Collapse
|
29
|
Monteiro L, Silva P, Delgado L, Amaral B, Garcês F, Salazar F, Pacheco JJ, Lopes C, Bousbaa H, Warnakulasuriya S. Expression of spindle assembly checkpoint proteins BubR1 and Mad2 expression as potential biomarkers of malignant transformation of oral leukoplakia: an observational cohort study. Med Oral Patol Oral Cir Bucal 2021; 26:e719-e728. [PMID: 34704983 PMCID: PMC8601638 DOI: 10.4317/medoral.24511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
Background The Spindle Assembly Checkpoint (SAC) is a surveillance mechanism essential to ensure the accuracy of chromosome segregation during mitosis. Our aim was to evaluate the expression of SAC proteins in oral carcinogenesis, and to assess their potential in predicting malignant transformation of oral leukoplakia. Material and Methods We analysed the immunoexpression of BubR1, Mad2, Bub3, and Spindly proteins in 64 oral biopsies from 52 oral leukoplakias and 12 normal tissues. Univariate and multivariate analysis were performed to evaluate predictive factors for malignant transformation (MT). Results We observed that BubR1 and Mad2 were more highly expressed in high dysplasia grade lesions than in low grade or normal tissues (P<0.05). High expression of Spindly was significantly correlated with a high Ki-67 score (P=0.004). Six (11.5%) oral leukoplakias underwent malignant transformation. In univariate analysis, the binary dysplasia grade (high grade) (P<0.001) was associated with a higher risk of malignant transformation as well as high BubR1 (P<0.001) and high Mad2 (P=0.013) expression. In multivariate analysis, high expression of BubR1 and Mad2 when combined showed an increased risk for malignant transformation (P=0.013; HR of 4.6, 95% CI of 1.4-15.1). Conclusions Our findings reveal that BubR1 and Mad2 were associated with an increased risk for malignant transformation independently of histological grade and could be potential and useful predictive risk markers of malignant transformation in oral leukoplakias. Key words:BubR1, Mad2, Spindly, Bub3, Oral Leukoplakia, epithelial dysplasia, Oral squamous cell carcinoma.
Collapse
Affiliation(s)
- L Monteiro
- Rua Central de Gandra, 1317 4585-116 Gandra PRD, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lara-Gonzalez P, Pines J, Desai A. Spindle assembly checkpoint activation and silencing at kinetochores. Semin Cell Dev Biol 2021; 117:86-98. [PMID: 34210579 PMCID: PMC8406419 DOI: 10.1016/j.semcdb.2021.06.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism that promotes accurate chromosome segregation in mitosis. The checkpoint senses the attachment state of kinetochores, the proteinaceous structures that assemble onto chromosomes in mitosis in order to mediate their interaction with spindle microtubules. When unattached, kinetochores generate a diffusible inhibitor that blocks the activity of the anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase required for sister chromatid separation and exit from mitosis. Work from the past decade has greatly illuminated our understanding of the mechanisms by which the diffusible inhibitor is assembled and how it inhibits the APC/C. However, less is understood about how SAC proteins are recruited to kinetochores in the absence of microtubule attachment, how the kinetochore catalyzes formation of the diffusible inhibitor, and how attachments silence the SAC at the kinetochore. Here, we summarize current understanding of the mechanisms that activate and silence the SAC at kinetochores and highlight open questions for future investigation.
Collapse
Affiliation(s)
- Pablo Lara-Gonzalez
- Ludwig Institute for Cancer Research, USA; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | | | - Arshad Desai
- Ludwig Institute for Cancer Research, USA; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
31
|
Habu T, Kim J. Dynein intermediate chain 2c (DNCI2c) complex is essential for exiting Mad2-dependent spindle assembly checkpoint. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119120. [PMID: 34400173 DOI: 10.1016/j.bbamcr.2021.119120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
The Mad2 protein plays a key role in the spindle assembly checkpoint (SAC) function. The SAC pathway delays mitotic progression into anaphase until all kinetochores attach to the spindle during mitosis. The formation of the Mad2-p31comet complex correlates with the completion of spindle attachment and the entry into anaphase during mitosis. Herein, we showed that dynein intermediate chain 2c (DNCI2c)-a subunit of dynein motor protein-forms an immunocomplex with p31comet during mitosis. DNCI2c-knockdown resulted in prolonged mitotic arrest in a Mad2-dependent manner. Furthermore, DNCI2c-knockdown-induced mitotic arrest was not rescued by p31comet overexpression. However, the combination of p31comet overexpression with the mitotic drug treatment reversed the mitotic arrest in DNCI2c-knockdown. Together, these results indicate that the DNCI2c-p31comet complex plays an important role in exiting Mad2-dependent SAC.
Collapse
Affiliation(s)
- Toshiyuki Habu
- Department of Food Sciences and Nutrition, School of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo 663-8558, Japan.
| | - Jiyeong Kim
- Department of Food Sciences and Nutrition, School of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo 663-8558, Japan
| |
Collapse
|
32
|
Kops GJPL, Snel B, Tromer EC. Evolutionary Dynamics of the Spindle Assembly Checkpoint in Eukaryotes. Curr Biol 2021; 30:R589-R602. [PMID: 32428500 DOI: 10.1016/j.cub.2020.02.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The tremendous diversity in eukaryotic life forms can ultimately be traced back to evolutionary modifications at the level of molecular networks. Deep understanding of these modifications will not only explain cellular diversity, but will also uncover different ways to execute similar processes and expose the evolutionary 'rules' that shape the molecular networks. Here, we review the evolutionary dynamics of the spindle assembly checkpoint (SAC), a signaling network that guards fidelity of chromosome segregation. We illustrate how the interpretation of divergent SAC systems in eukaryotic species is facilitated by combining detailed molecular knowledge of the SAC and extensive comparative genome analyses. Ultimately, expanding this to other core cellular systems and experimentally interrogating such systems in organisms from all major lineages may start outlining the routes to and eventual manifestation of the cellular diversity of eukaryotic life.
Collapse
Affiliation(s)
- Geert J P L Kops
- Oncode Institute, Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands.
| | - Eelco C Tromer
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
33
|
Cui H, Ali MY, Goyal P, Zhang K, Loh JY, Trybus KM, Solmaz SR. Coiled-coil registry shifts in the F684I mutant of Bicaudal D result in cargo-independent activation of dynein motility. Traffic 2021; 21:463-478. [PMID: 32378283 DOI: 10.1111/tra.12734] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 11/28/2022]
Abstract
The dynein adaptor Drosophila Bicaudal D (BicD) is auto-inhibited and activates dynein motility only after cargo is bound, but the underlying mechanism is elusive. In contrast, we show that the full-length BicD/F684I mutant activates dynein processivity even in the absence of cargo. Our X-ray structure of the C-terminal domain of the BicD/F684I mutant reveals a coiled-coil registry shift; in the N-terminal region, the two helices of the homodimer are aligned, whereas they are vertically shifted in the wild-type. One chain is partially disordered and this structural flexibility is confirmed by computations, which reveal that the mutant transitions back and forth between the two registries. We propose that a coiled-coil registry shift upon cargo-binding activates BicD for dynein recruitment. Moreover, the human homolog BicD2/F743I exhibits diminished binding of cargo adaptor Nup358, implying that a coiled-coil registry shift may be a mechanism to modulate cargo selection for BicD2-dependent transport pathways.
Collapse
Affiliation(s)
- Heying Cui
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| | - M Yusuf Ali
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Puja Goyal
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| | - Kaiqi Zhang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| | - Jia Ying Loh
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Sozanne R Solmaz
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| |
Collapse
|
34
|
Renda F, Khodjakov A. Role of spatial patterns and kinetochore architecture in spindle morphogenesis. Semin Cell Dev Biol 2021; 117:75-85. [PMID: 33836948 PMCID: PMC8762378 DOI: 10.1016/j.semcdb.2021.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/30/2022]
Abstract
Mitotic spindle is a self-assembling macromolecular machine responsible for the faithful segregation of chromosomes during cell division. Assembly of the spindle is believed to be governed by the 'Search & Capture' (S&C) principle in which dynamic microtubules explore space in search of kinetochores while the latter capture microtubules and thus connect chromosomes to the spindle. Due to the stochastic nature of the encounters between kinetochores and microtubules, the time required for incorporating all chromosomes into the spindle is profoundly affected by geometric constraints, such as the size and shape of kinetochores as well as their distribution in space at the onset of spindle assembly. In recent years, several molecular mechanisms that control these parameters have been discovered. It is now clear that stochastic S&C takes place in structured space, where components are optimally distributed and oriented to minimize steric hindrances. Nucleation of numerous non-centrosomal microtubules near kinetochores accelerates capture, while changes in the kinetochore architecture at various stages of spindle assembly promote proper connection of sister kinetochores to the opposite spindle poles. Here we discuss how the concerted action of multiple facilitating mechanisms ensure that the spindle assembles rapidly yet with a minimal number of errors.
Collapse
Affiliation(s)
- Fioranna Renda
- Biggs Laboratory, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12237, United States.
| | - Alexey Khodjakov
- Biggs Laboratory, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12237, United States; Rensselaer Polytechnic Institute, Troy, NY 12180, United States.
| |
Collapse
|
35
|
Klimaszewska-Wiśniewska A, Buchholz K, Neska-Długosz I, Durślewicz J, Grzanka D, Zabrzyński J, Sopońska P, Grzanka A, Gagat M. Expression of Genomic Instability-Related Molecules: Cyclin F, RRM2 and SPDL1 and Their Prognostic Significance in Pancreatic Adenocarcinoma. Cancers (Basel) 2021; 13:859. [PMID: 33670609 PMCID: PMC7922901 DOI: 10.3390/cancers13040859] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022] Open
Abstract
In the present study, we aimed to assess the selected components of cell cycle machinery, checkpoint, DNA repair, and synthesis, namely RRM2, cyclin F, and SPDL1 in pancreatic adenocarcinomas (PAC) by in-house immunohistochemistry (IHC) and bioinformatic analysis of public datasets, in terms of expression, correlation with clinicopathological parameters, and patient survival. Sixty eight patients with pancreatic ductal adenocarcinoma (PDAC) were included in our cohort study, and IHC was performed on tissue macroarrays. RNA-Seq-based transcriptome data for 177 PACs were retrieved from the Cancer Genome Atlas (TCGA). We found cyclin F, RRM2, and SPDL1 to be overexpressed at both protein and mRNA levels in tumor tissues compared to respective controls. Based on TCGA dataset, we have demonstrated that CCNF, RRM2, and SPDL1 are potent independent prognostic markers for poor overall survival, both by themselves and even more in combination with each other. Furthermore, high CCNF mRNA expression was associated with features of cancer progression. By contrast, overexpression of cyclin F or SPDL1 proteins denoted a good prognosis in PDAC patients; however, in the case of the former protein, the results did not reach statistical significance. Specifically, high levels of SPDL1 protein emerged as the most powerful independent prognostic factor associated with a better outcome. If validated, the CCNF/RRM2/SPDL1 three-gene panel developed in this study, as well as SPDL1 protein, may provide significant clinical implications for the prognosis prediction of PAC patients.
Collapse
Affiliation(s)
- Anna Klimaszewska-Wiśniewska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.B.); (I.N.-D.); (J.D.); (D.G.); (J.Z.)
| | - Karolina Buchholz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.B.); (I.N.-D.); (J.D.); (D.G.); (J.Z.)
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (A.G.); (M.G.)
| | - Izabela Neska-Długosz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.B.); (I.N.-D.); (J.D.); (D.G.); (J.Z.)
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.B.); (I.N.-D.); (J.D.); (D.G.); (J.Z.)
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.B.); (I.N.-D.); (J.D.); (D.G.); (J.Z.)
| | - Jan Zabrzyński
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.B.); (I.N.-D.); (J.D.); (D.G.); (J.Z.)
- Department of General Orthopaedics, Musculoskeletal Oncology and Trauma Surgery, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| | - Paulina Sopońska
- Department of Obstetrics, Gynaecology and Oncology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland;
| | - Alina Grzanka
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (A.G.); (M.G.)
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (A.G.); (M.G.)
| |
Collapse
|
36
|
Abstract
Accurate chromosome segregation is required for cell survival and organismal development. During mitosis, the spindle assembly checkpoint acts as a safeguard to maintain the high fidelity of mitotic chromosome segregation by monitoring the attachment of kinetochores to the mitotic spindle. Bub1 is a conserved kinase critical for the spindle assembly checkpoint. Bub1 also facilitates chromosome alignment and contributes to the regulation of mitotic duration. Here, focusing on the spindle assembly checkpoint and on chromosome alignment, we summarize the primary literature on Bub1, discussing its structure and functional domains, as well its regulation and roles in mitosis. In addition, we discuss recent evidence for roles of Bub1 beyond mitosis regulation in TGFβ signaling and telomere replication. Finally, we discuss the involvement of Bub1 in human diseases, especially in cancer, and the potential of using Bub1 as a drug target for therapeutic applications.
Collapse
Affiliation(s)
- Taekyung Kim
- Department of Biology Education, Pusan National University, Busan, Korea
| | - Anton Gartner
- IBS Center for Genomic Integrity, Ulsan, Korea.,School of Life Sciences, Ulsan National Institute of Science and Technology
| |
Collapse
|
37
|
Bloomfield M, Chen J, Cimini D. Spindle Architectural Features Must Be Considered Along With Cell Size to Explain the Timing of Mitotic Checkpoint Silencing. Front Physiol 2021; 11:596263. [PMID: 33584330 PMCID: PMC7877541 DOI: 10.3389/fphys.2020.596263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/23/2020] [Indexed: 11/25/2022] Open
Abstract
Mitosis proceeds through a defined series of events that is largely conserved, but the amount of time needed for their completion can vary in different cells and organisms. In many systems, mitotic duration depends on the time required to satisfy and silence the spindle assembly checkpoint (SAC), also known as the mitotic checkpoint. Because SAC silencing involves trafficking SAC molecules among kinetochores, spindle, and cytoplasm, the size and geometry of the spindle relative to cell volume are expected to affect mitotic duration by influencing the timing of SAC silencing. However, the relationship between SAC silencing, cell size, and spindle dimensions is unclear. To investigate this issue, we used four DLD-1 tetraploid (4N) clones characterized by small or large nuclear and cell size. We found that the small 4N clones had longer mitotic durations than the parental DLD-1 cells and that this delay was due to differences in their metaphase duration. Leveraging a previous mathematical model for spatiotemporal regulation of SAC silencing, we show that the difference in metaphase duration, i.e., SAC silencing time, can be explained by the distinct spindle microtubule densities and sizes of the cell, spindle, and spindle poles in the 4N clones. Lastly, we demonstrate that manipulating spindle geometry can alter mitotic and metaphase duration, consistent with a model prediction. Our results suggest that spindle size does not always scale with cell size in mammalian cells and cell size is not sufficient to explain the differences in metaphase duration. Only when a number of spindle architectural features are considered along with cell size can the kinetics of SAC silencing, and hence mitotic duration, in the different clones be explained.
Collapse
Affiliation(s)
- Mathew Bloomfield
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Jing Chen
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Daniela Cimini
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
38
|
The Disordered Spindly C-terminus Interacts with RZZ Subunits ROD-1 and ZWL-1 in the Kinetochore through the Same Sites in C. Elegans. J Mol Biol 2021; 433:166812. [PMID: 33450249 DOI: 10.1016/j.jmb.2021.166812] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 11/24/2022]
Abstract
Spindly is a dynein adaptor involved in chromosomal segregation during cell division. While Spindly's N-terminal domain binds to the microtubule motor dynein and its activator dynactin, the C-terminal domain (Spindly-C) binds its cargo, the ROD/ZW10/ZWILCH (RZZ) complex in the outermost layer of the kinetochore. In humans, Spindly-C binds to ROD, while in C. elegans Spindly-C binds to both Zwilch (ZWL-1) and ROD-1. Here, we employed various biophysical techniques to characterize the structure, dynamics and interaction sites of C. elegans Spindly-C. We found that despite the overall disorder, there are two regions with variable α-helical propensity. One of these regions is located in the C-terminal half and is compact; the second is sparsely populated in the N-terminal half. The interactions with both ROD-1 and ZWL-1 are mostly mediated by the same two sequentially remote disordered segments of Spindly-C, which are C-terminally adjacent to the helical regions. The findings suggest that the Spindly-C binding sites on ROD-1 in the ROD-1/ZWL-1 complex context are either shielded or conformationally weakened by the presence of ZWL-1 such that only ZWL-1 directly interacts with Spindly-C in C. elegans.
Collapse
|
39
|
Xiang X, Qiu R. Cargo-Mediated Activation of Cytoplasmic Dynein in vivo. Front Cell Dev Biol 2020; 8:598952. [PMID: 33195284 PMCID: PMC7649786 DOI: 10.3389/fcell.2020.598952] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Cytoplasmic dynein-1 is a minus-end-directed microtubule motor that transports a variety of cargoes including early endosomes, late endosomes and other organelles. In many cell types, dynein accumulates at the microtubule plus end, where it interacts with its cargo to be moved toward the minus end. Dynein binds to its various cargoes via the dynactin complex and specific cargo adapters. Dynactin and some of the coiled-coil-domain-containing cargo adapters not only link dynein to cargo but also activate dynein motility, which implies that dynein is activated by its cellular cargo. Structural studies indicate that a dynein dimer switches between the autoinhibited phi state and an open state; and the binding of dynactin and a cargo adapter to the dynein tails causes the dynein motor domains to have a parallel configuration, allowing dynein to walk processively along a microtubule. Recently, the dynein regulator LIS1 has been shown to be required for dynein activation in vivo, and its mechanism of action involves preventing dynein from switching back to the autoinhibited state. In this review, we will discuss our current understanding of dynein activation and point out the gaps of knowledge on the spatial regulation of dynein in live cells. In addition, we will emphasize the importance of studying a complete set of dynein regulators for a better understanding of dynein regulation in vivo.
Collapse
Affiliation(s)
- Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, United States
| | | |
Collapse
|
40
|
Hara M, Fukagawa T. Dynamics of kinetochore structure and its regulations during mitotic progression. Cell Mol Life Sci 2020; 77:2981-2995. [PMID: 32052088 PMCID: PMC11104943 DOI: 10.1007/s00018-020-03472-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 12/27/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Faithful chromosome segregation during mitosis in eukaryotes requires attachment of the kinetochore, a large protein complex assembled on the centromere of each chromosome, to the spindle microtubules. The kinetochore is a structural interface for the microtubule attachment and provides molecular surveillance mechanisms that monitor and ensure the precise microtubule attachment as well, including error correction and spindle assembly checkpoint. During mitotic progression, the kinetochore undergoes dynamic morphological changes that are observable through electron microscopy as well as through fluorescence microscopy. These structural changes might be associated with the kinetochore function. In this review, we summarize how the dynamics of kinetochore morphology are associated with its functions and discuss recent findings on the switching of protein interaction networks in the kinetochore during cell cycle progression.
Collapse
Affiliation(s)
- Masatoshi Hara
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| |
Collapse
|
41
|
Menant A, Karess RE. Mutations in the Drosophila rough deal gene affecting RZZ kinetochore function. Biol Cell 2020; 112:300-315. [PMID: 32602944 DOI: 10.1111/boc.201900105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND The RZZ complex, composed of the proteins Rough-Deal (Rod), Zw10 and Zwilch, plays a central role in the spindle assembly checkpoint (SAC), which assures proper sister chromatid segregation during mitosis. RZZ contributes to the regulation of the spindle assembly checkpoint by helping to recruit Mad1-Mad2 and the microtubule motor dynein to unattached kinetochores. It is an important component of the outer kinetochore and specifically the fibrous corona whose expansion is believed to facilitate microtubule capture. How RZZ carries out its diverse activities is only poorly understood. The C-terminal region of the Rod subunit is relatively well-conserved across metazoan phylogeny, but no function has been attributed to it. RESULTS To explore the importance of the Rod_C domain in RZZ function in Drosophila, we generated a series of point mutations in a stretch of 200 residues within this domain and we report here their phenotypes. Several of the mutations profoundly disrupt recruitment of RZZ to kinetochores, including one in a temperature-sensitive manner, while still retaining the capacity to assemble into a complex with Zw10 and Zwilch. Others affect aspects of dynein activity or recruitment at the kinetochore. CONCLUSIONS AND SIGNIFICANCE These results suggest that the Rod_C domain participates in the protein interactions necessary for RZZ recruitment and functionality at kinetochores.
Collapse
Affiliation(s)
- Alexandra Menant
- Université de Paris, CNRS, Institut Jacques Monod, 15 rue Hélène Brion, Paris, 75013, France
| | - Roger E Karess
- Université de Paris, CNRS, Institut Jacques Monod, 15 rue Hélène Brion, Paris, 75013, France
| |
Collapse
|
42
|
Barbosa J, Conde C, Sunkel C. RZZ-SPINDLY-DYNEIN: you got to keep 'em separated. Cell Cycle 2020; 19:1716-1726. [PMID: 32544383 PMCID: PMC7469663 DOI: 10.1080/15384101.2020.1780382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 10/24/2022] Open
Abstract
To maintain genome stability, chromosomes must be equally distributed among daughter cells at the end of mitosis. The accuracy of chromosome segregation requires sister-kinetochores to stably attach to microtubules emanating from opposite spindle poles. However, initial kinetochore-microtubule interactions are able to turnover so that defective attachment configurations that typically arise during early mitosis may be corrected. Growing evidence supports a role for the RZZ complex in preventing the stabilization of erroneous kinetochore-microtubule attachments. This inhibitory function of RZZ toward end-on attachments is relieved by DYNEIN-mediated transport of the complex as chromosomes congress and appropriate interactions with microtubules are established. However, it remains unclear how DYNEIN is antagonized to prevent premature RZZ removal. We recently described a new mechanism that sheds new light on this matter. We found that POLO kinase phosphorylates the DYNEIN adaptor SPINDLY to promote the uncoupling between RZZ and DYNEIN. Elevated POLO activity during prometaphase ensures that RZZ is retained at kinetochores to allow the dynamic turnover of kinetochore-microtubule interactions and prevent the stabilization of erroneous attachments. Here, we discuss additional interpretations to explain a model for POLO-dependent regulation of the RZZ-SPINDLY-DYNEIN module during mitosis.
Collapse
Affiliation(s)
- João Barbosa
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
| | - Carlos Conde
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
| | - Claudio Sunkel
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciência Biomédicas Abel Salazar da Universidade do Porto, Porto, Portugal
| |
Collapse
|
43
|
Kinetochore protein Spindly controls microtubule polarity in Drosophila axons. Proc Natl Acad Sci U S A 2020; 117:12155-12163. [PMID: 32430325 DOI: 10.1073/pnas.2005394117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Microtubule polarity in axons and dendrites defines the direction of intracellular transport in neurons. Axons contain arrays of uniformly polarized microtubules with plus-ends facing the tips of the processes (plus-end-out), while dendrites contain microtubules with a minus-end-out orientation. It has been shown that cytoplasmic dynein, targeted to cortical actin, removes minus-end-out microtubules from axons. Here we have identified Spindly, a protein known for recruitment of dynein to kinetochores in mitosis, as a key factor required for dynein-dependent microtubule sorting in axons of Drosophila neurons. Depletion of Spindly affects polarity of axonal microtubules in vivo and in primary neuronal cultures. In addition to these defects, depletion of Spindly in neurons causes major collapse of axonal patterning in the third-instar larval brain as well as severe coordination impairment in adult flies. These defects can be fully rescued by full-length Spindly, but not by variants with mutations in its dynein-binding site. Biochemical analysis demonstrated that Spindly binds F-actin, suggesting that Spindly serves as a link between dynein and cortical actin in axons. Therefore, Spindly plays a critical role during neurodevelopment by mediating dynein-driven sorting of axonal microtubules.
Collapse
|
44
|
Barbosa J, Martins T, Bange T, Tao L, Conde C, Sunkel C. Polo regulates Spindly to prevent premature stabilization of kinetochore-microtubule attachments. EMBO J 2020; 39:e100789. [PMID: 31849090 PMCID: PMC6960449 DOI: 10.15252/embj.2018100789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
Accurate chromosome segregation in mitosis requires sister kinetochores to bind to microtubules from opposite spindle poles. The stability of kinetochore-microtubule attachments is fine-tuned to prevent or correct erroneous attachments while preserving amphitelic interactions. Polo kinase has been implicated in both stabilizing and destabilizing kinetochore-microtubule attachments. However, the mechanism underlying Polo-destabilizing activity remains elusive. Here, resorting to an RNAi screen in Drosophila for suppressors of a constitutively active Polo mutant, we identified a strong genetic interaction between Polo and the Rod-ZW10-Zwilch (RZZ) complex, whose kinetochore accumulation has been shown to antagonize microtubule stability. We find that Polo phosphorylates Spindly and impairs its ability to bind to Zwilch. This precludes dynein-mediated removal of the RZZ from kinetochores and consequently delays the formation of stable end-on attachments. We propose that high Polo-kinase activity following mitotic entry directs the RZZ complex to minimize premature stabilization of erroneous attachments, whereas a decrease in active Polo in later mitotic stages allows the formation of stable amphitelic spindle attachments. Our findings demonstrate that Polo tightly regulates the RZZ-Spindly-dynein module during mitosis to ensure the fidelity of chromosome segregation.
Collapse
Affiliation(s)
- João Barbosa
- IBMC—Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do PortoPortoPortugal
| | | | - Tanja Bange
- MPI für molekulare PhysiologieDortmundGermany
| | - Li Tao
- Department of BiologyUniversity of HawaiiHiloHIUSA
| | - Carlos Conde
- IBMC—Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do PortoPortoPortugal
| | - Claudio Sunkel
- IBMC—Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do PortoPortoPortugal
- ICBAS—Instituto de Ciência Biomédica de Abel SalazarUniversidade do PortoPortoPortugal
| |
Collapse
|
45
|
Pauleau AL, Bergner A, Kajtez J, Erhardt S. The checkpoint protein Zw10 connects CAL1-dependent CENP-A centromeric loading and mitosis duration in Drosophila cells. PLoS Genet 2019; 15:e1008380. [PMID: 31553715 PMCID: PMC6779278 DOI: 10.1371/journal.pgen.1008380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/07/2019] [Accepted: 08/22/2019] [Indexed: 11/18/2022] Open
Abstract
A defining feature of centromeres is the presence of the histone H3 variant CENP-A that replaces H3 in a subset of centromeric nucleosomes. In Drosophila cultured cells CENP-A deposition at centromeres takes place during the metaphase stage of the cell cycle and strictly depends on the presence of its specific chaperone CAL1. How CENP-A loading is restricted to mitosis is unknown. We found that overexpression of CAL1 is associated with increased CENP-A levels at centromeres and uncouples CENP-A loading from mitosis. Moreover, CENP-A levels inversely correlate with mitosis duration suggesting crosstalk of CENP-A loading with the regulatory machinery of mitosis. Mitosis length is influenced by the spindle assembly checkpoint (SAC), and we found that CAL1 interacts with the SAC protein and RZZ complex component Zw10 and thus constitutes the anchor for the recruitment of RZZ. Therefore, CAL1 controls CENP-A incorporation at centromeres both quantitatively and temporally, connecting it to the SAC to ensure mitotic fidelity. Segregation of DNA during mitosis is a highly regulated process necessary to ensure the faithful transmission of genetic material to new daughter cells. Centromeric chromatin, which is defined by the presence of the histone H3 variant CENP-A, mediates the interaction of chromosomes with the spindle apparatus. In most organisms, CENP-A incorporation into centromeric chromatin is uncoupled from DNA replication and depends on specialized loading mechanisms and chaperones. In Drosophila cells, CENP-A loading takes place during mitosis and is mediated by its loading factor CAL1. We show that CAL1 controls the amount as well as the timing of CENP-A incorporation into centromeric chromatin. Moreover, CENP-A loading inversely correlates with the duration of mitosis. Mitosis length is influenced by the spindle assembly checkpoint, which ensures that all centromeres are attached correctly to the microtubule spindle. We identified the checkpoint protein and RZZ component Zw10 as a new interactor of CAL1. This interaction establishes a connection between CENP-A loading and mitosis control. We hypothesize that this crosstalk between CENP-A loading and spindle assembly checkpoint ensures that mitosis does not proceed until a sufficient amount of CENP-A is incorporated, thereby safeguarding centromere function and chromosome segregation.
Collapse
Affiliation(s)
- Anne-Laure Pauleau
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- DKFZ-ZMBH-Alliance, Heidelberg, Germany
- CellNetworks Excellence Cluster, Heidelberg University, Heidelberg, Germany
| | - Andrea Bergner
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- DKFZ-ZMBH-Alliance, Heidelberg, Germany
- CellNetworks Excellence Cluster, Heidelberg University, Heidelberg, Germany
| | - Janko Kajtez
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Sylvia Erhardt
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- DKFZ-ZMBH-Alliance, Heidelberg, Germany
- CellNetworks Excellence Cluster, Heidelberg University, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
46
|
Alex A, Piano V, Polley S, Stuiver M, Voss S, Ciossani G, Overlack K, Voss B, Wohlgemuth S, Petrovic A, Wu Y, Selenko P, Musacchio A, Maffini S. Electroporated recombinant proteins as tools for in vivo functional complementation, imaging and chemical biology. eLife 2019; 8:48287. [PMID: 31310234 PMCID: PMC6656429 DOI: 10.7554/elife.48287] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023] Open
Abstract
Delivery of native or chemically modified recombinant proteins into mammalian cells shows promise for functional investigations and various technological applications, but concerns that sub-cellular localization and functional integrity of delivered proteins may be affected remain high. Here, we surveyed batch electroporation as a delivery tool for single polypeptides and multi-subunit protein assemblies of the kinetochore, a spatially confined and well-studied subcellular structure. After electroporation into human cells, recombinant fluorescent Ndc80 and Mis12 multi-subunit complexes exhibited native localization, physically interacted with endogenous binding partners, and functionally complemented depleted endogenous counterparts to promote mitotic checkpoint signaling and chromosome segregation. Farnesylation is required for kinetochore localization of the Dynein adaptor Spindly. In cells with chronically inhibited farnesyl transferase activity, in vitro farnesylation and electroporation of recombinant Spindly faithfully resulted in robust kinetochore localization. Our data show that electroporation is well-suited to deliver synthetic and chemically modified versions of functional proteins, and, therefore, constitutes a promising tool for applications in chemical and synthetic biology.
Collapse
Affiliation(s)
- Amal Alex
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Valentina Piano
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Soumitra Polley
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Marchel Stuiver
- In-Cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Berlin, Germany
| | - Stephanie Voss
- Chemical Genomics Centre, Max Planck Society, Dortmund, Germany
| | - Giuseppe Ciossani
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Katharina Overlack
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Beate Voss
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sabine Wohlgemuth
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Arsen Petrovic
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Yaowen Wu
- Chemical Genomics Centre, Max Planck Society, Dortmund, Germany.,Department of Chemistry, Umeå University, Umeå, Sweden
| | - Philipp Selenko
- In-Cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Berlin, Germany.,Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Stefano Maffini
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
47
|
Silva PMA, Delgado ML, Ribeiro N, Florindo C, Tavares ÁA, Ribeiro D, Lopes C, do Amaral B, Bousbaa H, Monteiro LS. Spindly and Bub3 expression in oral cancer: Prognostic and therapeutic implications. Oral Dis 2019; 25:1291-1301. [PMID: 30866167 DOI: 10.1111/odi.13089] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/24/2019] [Accepted: 03/07/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Bub3 and Spindly are essential proteins required for the activation and inactivation of the spindle assembly checkpoint, respectively. Here, we explored the clinicopathological significance and the therapeutic potential of the opposing roles of the two proteins in oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS Bub3 and Spindly expression was evaluated by immunohistochemistry in 62 tissue microarrays from OSCC and by real-time PCR in OSCC cell lines and in normal human oral keratinocytes. The results were analyzed as to their clinicopathological significance. RNA interference-mediated Spindly or Bub3 inhibition was combined with cisplatin treatment, and the effect on the viability of OSCC cells was assessed. RESULTS Overexpression of Bub3 and Spindly was detected in OSCC patients. High expression of Spindly, Bub3, or both was an independent prognostic indicator for cancer-specific survival and was associated with increased cellular proliferation. Accordingly, Bub3 and Spindly were upregulated in OSCC cells comparatively to their normal counterpart. Inhibition of Bub3 or Spindly was cytotoxic to OSCC cells and enhanced their chemosensitivity to cisplatin. CONCLUSIONS The data point out Bub3 and Spindly as potential markers of proliferation and prognosis, and highlight the potential therapeutic benefit of combining their inhibition with cisplatin.
Collapse
Affiliation(s)
- Patrícia M A Silva
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, CESPU, Gandra, Portugal
| | - Maria Leonor Delgado
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, CESPU, Gandra, Portugal
| | - Nilza Ribeiro
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, CESPU, Gandra, Portugal
| | - Cláudia Florindo
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal.,Departamento Ciências Biomédicas e Medicina, University of Algarve, Faro, Portugal
| | - Álvaro A Tavares
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal.,Departamento Ciências Biomédicas e Medicina, University of Algarve, Faro, Portugal
| | - Diana Ribeiro
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, CESPU, Gandra, Portugal
| | - Carlos Lopes
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, CESPU, Gandra, Portugal.,Molecular Pathology and Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), Porto University, Porto, Portugal
| | - Barbas do Amaral
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, CESPU, Gandra, Portugal.,Stomatology Department, Oporto Hospitalar Centre, Hospital de Santo António, Porto, Portugal
| | - Hassan Bousbaa
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, CESPU, Gandra, Portugal.,Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Matosinhos, Portugal
| | - Luís Silva Monteiro
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, CESPU, Gandra, Portugal
| |
Collapse
|
48
|
Abstract
Cytoplasmic dynein-1 (hereafter dynein) is an essential cellular motor that drives the movement of diverse cargos along the microtubule cytoskeleton, including organelles, vesicles and RNAs. A long-standing question is how a single form of dynein can be adapted to a wide range of cellular functions in both interphase and mitosis. Recent progress has provided new insights - dynein interacts with a group of activating adaptors that provide cargo-specific and/or function-specific regulation of the motor complex. Activating adaptors such as BICD2 and Hook1 enhance the stability of the complex that dynein forms with its required activator dynactin, leading to highly processive motility toward the microtubule minus end. Furthermore, activating adaptors mediate specific interactions of the motor complex with cargos such as Rab6-positive vesicles or ribonucleoprotein particles for BICD2, and signaling endosomes for Hook1. In this Cell Science at a Glance article and accompanying poster, we highlight the conserved structural features found in dynein activators, the effects of these activators on biophysical parameters, such as motor velocity and stall force, and the specific intracellular functions they mediate.
Collapse
Affiliation(s)
- Mara A Olenick
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
49
|
Centrosome Loss Triggers a Transcriptional Program To Counter Apoptosis-Induced Oxidative Stress. Genetics 2019; 212:187-211. [PMID: 30867197 DOI: 10.1534/genetics.119.302051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
Centrosomes play a critical role in mitotic spindle assembly through their role in microtubule nucleation and bipolar spindle assembly. Loss of centrosomes can impair the ability of some cells to properly conduct mitotic division, leading to chromosomal instability, cell stress, and aneuploidy. Multiple aspects of the cellular response to mitotic error associated with centrosome loss appear to involve activation of JNK signaling. To further characterize the transcriptional effects of centrosome loss, we compared gene expression profiles of wild-type and acentrosomal cells from Drosophila wing imaginal discs. We found elevation of expression of JNK target genes, which we verified at the protein level. Consistent with this, the upregulated gene set showed significant enrichment for the AP-1 consensus DNA-binding sequence. We also found significant elevation in expression of genes regulating redox balance. Based on those findings, we examined oxidative stress after centrosome loss, revealing that acentrosomal wing cells have significant increases in reactive oxygen species (ROS). We then performed a candidate genetic screen and found that one of the genes upregulated in acentrosomal cells, glucose-6-phosphate dehydrogenase, plays an important role in buffering acentrosomal cells against increased ROS and helps protect those cells from cell death. Our data and other recent studies have revealed a complex network of signaling pathways, transcriptional programs, and cellular processes that epithelial cells use to respond to stressors, like mitotic errors, to help limit cell damage and maintain normal tissue development.
Collapse
|
50
|
Dwivedi D, Kumari A, Rathi S, Mylavarapu SVS, Sharma M. The dynein adaptor Hook2 plays essential roles in mitotic progression and cytokinesis. J Cell Biol 2019; 218:871-894. [PMID: 30674580 PMCID: PMC6400558 DOI: 10.1083/jcb.201804183] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/29/2018] [Accepted: 12/07/2018] [Indexed: 12/16/2022] Open
Abstract
Hook proteins are evolutionarily conserved dynein adaptors that promote assembly of highly processive dynein-dynactin motor complexes. Mammals express three Hook paralogs, namely Hook1, Hook2, and Hook3, that have distinct subcellular localizations and expectedly, distinct cellular functions. Here we demonstrate that Hook2 binds to and promotes dynein-dynactin assembly specifically during mitosis. During the late G2 phase, Hook2 mediates dynein-dynactin localization at the nuclear envelope (NE), which is required for centrosome anchoring to the NE. Independent of its binding to dynein, Hook2 regulates microtubule nucleation at the centrosome; accordingly, Hook2-depleted cells have reduced astral microtubules and spindle positioning defects. Besides the centrosome, Hook2 localizes to and recruits dynactin and dynein to the central spindle. Dynactin-dependent targeting of centralspindlin complex to the midzone is abrogated upon Hook2 depletion; accordingly, Hook2 depletion results in cytokinesis failure. We find that the zebrafish Hook2 homologue promotes dynein-dynactin association and was essential for zebrafish early development. Together, these results suggest that Hook2 mediates assembly of the dynein-dynactin complex and regulates mitotic progression and cytokinesis.
Collapse
Affiliation(s)
- Devashish Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Amrita Kumari
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, Faridabad, India.,Affiliated to Manipal Academy of Higher Education, Manipal, India
| | - Siddhi Rathi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, Faridabad, India.,Affiliated to Manipal Academy of Higher Education, Manipal, India
| | - Mahak Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| |
Collapse
|