1
|
Gosain TP, Chugh S, Rizvi ZA, Chauhan NK, Kidwai S, Thakur KG, Awasthi A, Singh R. Mycobacterium tuberculosis strain with deletions in menT3 and menT4 is attenuated and confers protection in mice and guinea pigs. Nat Commun 2024; 15:5467. [PMID: 38937463 PMCID: PMC11211403 DOI: 10.1038/s41467-024-49246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
The genome of Mycobacterium tuberculosis encodes for a large repertoire of toxin-antitoxin systems. In the present study, MenT3 and MenT4 toxins belonging to MenAT subfamily of TA systems have been functionally characterized. We demonstrate that ectopic expression of these toxins inhibits bacterial growth and this is rescued upon co-expression of their cognate antitoxins. Here, we show that simultaneous deletion of menT3 and menT4 results in enhanced susceptibility of M. tuberculosis upon exposure to oxidative stress and attenuated growth in guinea pigs and mice. We observed reduced expression of transcripts encoding for proteins that are essential or required for intracellular growth in mid-log phase cultures of ΔmenT4ΔT3 compared to parental strain. Further, the transcript levels of proteins involved in efficient bacterial clearance were increased in lung tissues of ΔmenT4ΔT3 infected mice relative to parental strain infected mice. We show that immunization of mice and guinea pigs with ΔmenT4ΔT3 confers significant protection against M. tuberculosis infection. Remarkably, immunization of mice with ΔmenT4ΔT3 results in increased antigen-specific TH1 bias and activated memory T cell response. We conclude that MenT3 and MenT4 are important for M. tuberculosis pathogenicity and strains lacking menT3 and menT4 have the potential to be explored further as vaccine candidates.
Collapse
Affiliation(s)
- Tannu Priya Gosain
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Saurabh Chugh
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Zaigham Abbas Rizvi
- Centre for Immunobiology and Immunotherapy, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Neeraj Kumar Chauhan
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Saqib Kidwai
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, 160036, India
| | - Amit Awasthi
- Centre for Immunobiology and Immunotherapy, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India.
| |
Collapse
|
2
|
Fernández-Lázaro D, Sanz B, Seco-Calvo J. The Mechanisms of Regulated Cell Death: Structural and Functional Proteomic Pathways Induced or Inhibited by a Specific Protein-A Narrative Review. Proteomes 2024; 12:3. [PMID: 38250814 PMCID: PMC10801515 DOI: 10.3390/proteomes12010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Billions of cells die in us every hour, and our tissues do not shrink because there is a natural regulation where Cell Death (CD) is balanced with cell division. The process in which cells eliminate themselves in a controlled manner is called Programmed Cell Death (PCD). The PCD plays an important role during embryonic development, in maintaining homeostasis of the body's tissues, and in the elimination of damaged cells, under a wide range of physiological and developmental stimuli. A multitude of protein mediators of PCD have been identified and signals have been found to utilize common pathways elucidating the proteins involved. This narrative review focuses on caspase-dependent and caspase-independent PCD pathways. Included are studies of caspase-dependent PCD such as Anoikis, Catastrophe Mitotic, Pyroptosis, Emperitosis, Parthanatos and Cornification, and Caspase-Independent PCD as Wallerian Degeneration, Ferroptosis, Paraptosis, Entosis, Methuosis, and Extracellular Trap Abnormal Condition (ETosis), as well as neutrophil extracellular trap abnormal condition (NETosis) and Eosinophil Extracellular Trap Abnormal Condition (EETosis). Understanding PCD from those reported in this review could shed substantial light on the processes of biological homeostasis. In addition, identifying specific proteins involved in these processes is mandatory to identify molecular biomarkers, as well as therapeutic targets. This knowledge could provide the ability to modulate the PCD response and could lead to new therapeutic interventions in a wide range of diseases.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42004 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
- SARCELLOMICS Research Group, 27071 León, Spain; (B.S.); (J.S.-C.)
| | - Begoña Sanz
- SARCELLOMICS Research Group, 27071 León, Spain; (B.S.); (J.S.-C.)
- Department of Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Jesús Seco-Calvo
- SARCELLOMICS Research Group, 27071 León, Spain; (B.S.); (J.S.-C.)
- Department of Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Institute of Biomedicine (IBIOMED), Universidad de León, 27071 León, Spain
| |
Collapse
|
3
|
Kitagawa R, Niikura Y, Becker A, Houghton PJ, Kitagawa K. EWSR1 maintains centromere identity. Cell Rep 2023; 42:112568. [PMID: 37243594 PMCID: PMC10758295 DOI: 10.1016/j.celrep.2023.112568] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 04/03/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023] Open
Abstract
The centromere is essential for ensuring high-fidelity transmission of chromosomes. CENP-A, the centromeric histone H3 variant, is thought to be the epigenetic mark of centromere identity. CENP-A deposition at the centromere is crucial for proper centromere function and inheritance. Despite its importance, the precise mechanism responsible for maintenance of centromere position remains obscure. Here, we report a mechanism to maintain centromere identity. We demonstrate that CENP-A interacts with EWSR1 (Ewing sarcoma breakpoint region 1) and EWSR1-FLI1 (the oncogenic fusion protein in Ewing sarcoma). EWSR1 is required for maintaining CENP-A at the centromere in interphase cells. EWSR1 and EWSR1-FLI1 bind CENP-A through the SYGQ2 region within the prion-like domain, important for phase separation. EWSR1 binds to R-loops through its RNA-recognition motif in vitro. Both the domain and motif are required for maintaining CENP-A at the centromere. Therefore, we conclude that EWSR1 guards CENP-A in centromeric chromatins by binding to centromeric RNA.
Collapse
Affiliation(s)
- Risa Kitagawa
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA
| | - Yohei Niikura
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA
| | - Argentina Becker
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA
| | - Katsumi Kitagawa
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA.
| |
Collapse
|
4
|
Zhang Q, Zheng H, Yang S, Feng T, Jie M, Chen H, Jiang H. Bub1 and Bub3 regulate metabolic adaptation via macrolipophagy in Drosophila. Cell Rep 2023; 42:112343. [PMID: 37027296 DOI: 10.1016/j.celrep.2023.112343] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Lipophagy, the process of selective catabolism of lipid droplets (LDs) by autophagy, maintains lipid homeostasis and provides cellular energy under metabolic adaptation, yet its underlying mechanism remains largely ambiguous. Here, we show that the Bub1-Bub3 complex, the crucial regulator involved in the whole process of chromosome alignment and separation during mitosis, controls the fasting-induced lipid catabolism in the fat body (FB) of Drosophila. Bidirectional deviations of the Bub1 or Bub3 level affect the consumption of triacylglycerol (TAG) of fat bodies and the survival rate of adult flies under starving. Moreover, Bub1 and Bub3 work together to attenuate lipid degradation via macrolipophagy upon fasting. Thus, we uncover physiological roles of the Bub1-Bub3 complex on metabolic adaptation and lipid metabolism beyond their canonical mitotic functions, providing insights into the in vivo functions and molecular mechanisms of macrolipophagy during nutrient deprivation.
Collapse
Affiliation(s)
- Qiaoqiao Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Hui Zheng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Shengye Yang
- Laboratory for Aging and Cancer Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tong Feng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Minwen Jie
- Laboratory for Aging and Cancer Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haiyang Chen
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hao Jiang
- Laboratory for Aging and Cancer Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Suleimenov M, Bekbayev S, Ten M, Suleimenova N, Tlegenova M, Nurmagambetova A, Kauanova S, Vorobjev I. Bcl-xL activity influences outcome of the mitotic arrest. Front Pharmacol 2022; 13:933112. [PMID: 36188556 PMCID: PMC9520339 DOI: 10.3389/fphar.2022.933112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubule-targeting (MT) drugs taxanes and vinca alkaloids are widely used as chemotherapeutic agents against different tumors for more than 30 years because of their ability to block mitotic progression by disrupting the mitotic spindle and activating the spindle assembly checkpoint (SAC) for a prolonged period of time. However, responses to mitotic arrest are different—some cells die during mitotic arrest, whereas others undergo mitotic slippage and survive becoming able for proliferation. Using normal fibroblasts and several cancer cell types we determined two critical doses, T1 and T2, of mitotic inhibitors (nocodazole, Taxol, and vinorelbine). T1 is the maximal dose cells can tolerate undergoing normal division, and T2 is the minimal mitostatic dose, wherein > 90% of mitotic cells are arrested in mitosis. In all studied cell lines after treatment with mitotic inhibitors in a dose above T2 cells had entered mitosis either die or undergo mitotic slippage. We show that for all three drugs used cell death during mitotic arrest and after slippage proceeded via mitochondria-dependent apoptosis. We determined two types of cancer cells: sensitive to mitotic arrest, that is, undergoing death in mitosis (DiM) frequently, and resistant to mitotic arrest, that is, undergoing mitotic slippage followed by prolonged survival. We then determined that inhibition of Bcl-xL, but not other anti-apoptotic proteins of the Bcl-2 group that regulate MOMP, make resistant cells susceptible to DiM induced by mitotic inhibitors. Combined treatment with MT drugs and highly specific Bcl-xL inhibitors A-1155643 or A-1331852 allows achieving 100% DiM in a time significantly shorter than maximal duration of mitotic arrest in all types of cultured cells tested. We further examined efficacy of sequential treatment of cultured cells using mitotic inhibitors followed by inhibitors of Bcl-xL anti-apoptotic protein and for the first time show that sensitivity to Bcl-xL inhibitors rapidly declines after mitotic slippage. Thus sequential use of mitotic inhibitors and inhibitors of Bcl-xL anti-apoptotic protein will be efficient only if the Bcl-xL inhibitor will be added before mitotic slippage occurs or soon afterward. The combined treatment proposed might be an efficient approach to anti-cancer therapy.
Collapse
Affiliation(s)
- M. Suleimenov
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - S. Bekbayev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - M. Ten
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - N. Suleimenova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - M. Tlegenova
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - A. Nurmagambetova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- School of Engineering and Digital Science, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - S. Kauanova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - I. Vorobjev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
- *Correspondence: I. Vorobjev,
| |
Collapse
|
6
|
Niikura Y, Kitagawa R, Fang L, Kitagawa K. CENP-A Ubiquitylation Is Indispensable to Cell Viability. Dev Cell 2020; 50:683-689.e6. [PMID: 31550462 DOI: 10.1016/j.devcel.2019.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/30/2019] [Accepted: 07/14/2019] [Indexed: 01/10/2023]
Abstract
CENP-A is a centromere-specific histone H3 variant that epigenetically determines centromere identity, but how CENP-A is deposited at the centromere remains obscure. We previously reported that CENP-A K124 ubiquitylation, mediated by the CUL4A-RBX1-COPS8 complex, is essential for CENP-A deposition at the centromere. However, a recent report stated that CENP-A K124R mutants show no defects in centromere localization and cell viability. In the present study, we found that EYFP tagging induces additional ubiquitylation of EYFP-CENP-A K124R, which allows the mutant protein to bind to HJURP. Using a previously developed conditional CENP-A knockout system and our CENP-A K124R knockin mutant created by the CRISPR-Cas9 system, we show that the Flag-tagged or untagged CENP-A K124R mutant is lethal. This lethality is rescued by monoubiquitin fusion, indicating that CENP-A ubiquitylation is essential for viability.
Collapse
Affiliation(s)
- Yohei Niikura
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA; MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu Province 210061, China.
| | - Risa Kitagawa
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province 210093, China
| | - Katsumi Kitagawa
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA.
| |
Collapse
|
7
|
PDGFR and IGF-1R Inhibitors Induce a G2/M Arrest and Subsequent Cell Death in Human Glioblastoma Cell Lines. Cells 2018; 7:cells7090131. [PMID: 30200644 PMCID: PMC6162497 DOI: 10.3390/cells7090131] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/25/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
Glioblastomas are highly resistant to radiation and chemotherapy. Currently, there are no effective therapies for this type of tumor. Signaling mechanisms initiated by PDGFR and IGF-1R are important in glioblastoma, and inhibition of the signal transduction pathways initiated by these receptors could be a useful alternative strategy for glioblastoma treatment. We have studied the effects of the PDGFR inhibitor JNJ-10198409 (JNJ) and the IGF-1R inhibitor picropodophyllin (PPP) in glioblastoma cell lines as well as in primary cultures derived from patients affected by this type of tumor. JNJ and PPP treatment blocked PDGFR and IGF-1R signaling respectively and reduced Akt and Erk 1/2 phosphorylation. Both inhibitors diminished cell proliferation, inducing a G2/M block of the cell cycle. Cell death induced by JNJ was caspase-dependent, Annexin-V positive and caused PARP cleavage, especially in T98 cells, suggesting an apoptotic mechanism. However, cell death induced by PPP was not completely inhibited by caspase inhibitors in all cell lines apart from LN-229 cells, indicating a caspase-independent mechanism. Several inhibitors targeted against different cell death pathways could not block this caspase-independent component, which may be a non-programmed necrotic mechanism. Apoptotic arrays performed in T98 and LN-229 cells upon JNJ and PPP treatment revealed that procaspase 3 levels were augmented by both drugs in T98 cells and only by JNJ in LN229-cells. Furthermore, XIAP and survivin levels were much higher in LN-229 cells than in T98 cells, revealing that LN-229 cells are more susceptible to undergo caspase-independent cell death mechanisms. JNJ and PPP combination was more effective than each treatment alone.
Collapse
|
8
|
Hafsi H, Dillon MT, Barker HE, Kyula JN, Schick U, Paget JT, Smith HG, Pedersen M, McLaughlin M, Harrington KJ. Combined ATR and DNA-PK Inhibition Radiosensitizes Tumor Cells Independently of Their p53 Status. Front Oncol 2018; 8:245. [PMID: 30057890 PMCID: PMC6053502 DOI: 10.3389/fonc.2018.00245] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/18/2018] [Indexed: 02/02/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a significant cause of cancer deaths. Cisplatin-based chemoradiotherapy is a standard of care for locally advanced disease. ATR and DNA-PK inhibition (DNA-PKi) are actively being investigated in clinical trials with preclinical data supporting clinical translation as radiosensitizers. Here, we hypothesized that targeting both ATR and DNA-PK with small molecule inhibitors would increase radiosensitization of HNSCC cell lines. Radiosensitization was assessed by Bliss independence analysis of colony survival data. Strong cell cycle perturbing effects were observed with ATR inhibition reversing the G2/M arrest observed for radiation-DNA-PKi. Increased apoptosis in combination groups was measured by Sub-G1 DNA populations. DNA-PKi increased radiation-induced RAD51 and gamma-H2Ax foci, with the addition of ATR inhibition reducing levels of both. A sharp increase in nuclear fragmentation after aberrant mitotic transit appears to be the main driver of decreased survival due to irradiation and dual ATR/DNA-PKi. Dual inhibition of DNA-PK and ATR represents a novel approach in combination with radiation, with efficacy appearing to be independent of p53 status. Due to toxicity concerns, careful assessment is necessary in any future translation of single or dual radiosensitization approaches. Ongoing clinical trials into the ATR inhibitor AZD6738 plus radiation, and the phenotypically similar combination of AZD6738 and the PARP inhibitor olaparib, are likely to be key in ascertaining the toxicity profile of such combinations.
Collapse
Affiliation(s)
- Hind Hafsi
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Magnus T. Dillon
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Holly E. Barker
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Joan N. Kyula
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Ulrike Schick
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
- Radiation Oncology Department, University Hospital Morvan, Brest, France
| | - James T. Paget
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Henry G. Smith
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Malin Pedersen
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Martin McLaughlin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Kevin J. Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
9
|
Murray V, Chen JK, Chung LH. The Interaction of the Metallo-Glycopeptide Anti-Tumour Drug Bleomycin with DNA. Int J Mol Sci 2018; 19:E1372. [PMID: 29734689 PMCID: PMC5983701 DOI: 10.3390/ijms19051372] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 11/17/2022] Open
Abstract
The cancer chemotherapeutic drug, bleomycin, is clinically used to treat several neoplasms including testicular and ovarian cancers. Bleomycin is a metallo-glycopeptide antibiotic that requires a transition metal ion, usually Fe(II), for activity. In this review, the properties of bleomycin are examined, especially the interaction of bleomycin with DNA. A Fe(II)-bleomycin complex is capable of DNA cleavage and this process is thought to be the major determinant for the cytotoxicity of bleomycin. The DNA sequence specificity of bleomycin cleavage is found to at 5′-GT* and 5′-GC* dinucleotides (where * indicates the cleaved nucleotide). Using next-generation DNA sequencing, over 200 million double-strand breaks were analysed, and an expanded bleomycin sequence specificity was found to be 5′-RTGT*AY (where R is G or A and Y is T or C) in cellular DNA and 5′-TGT*AT in purified DNA. The different environment of cellular DNA compared to purified DNA was proposed to be responsible for the difference. A number of bleomycin analogues have been examined and their interaction with DNA is also discussed. In particular, the production of bleomycin analogues via genetic manipulation of the modular non-ribosomal peptide synthetases and polyketide synthases in the bleomycin gene cluster is reviewed. The prospects for the synthesis of bleomycin analogues with increased effectiveness as cancer chemotherapeutic agents is also explored.
Collapse
Affiliation(s)
- Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Jon K Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Long H Chung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
10
|
Kinases Involved in Both Autophagy and Mitosis. Int J Mol Sci 2017; 18:ijms18091884. [PMID: 28858266 PMCID: PMC5618533 DOI: 10.3390/ijms18091884] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 12/23/2022] Open
Abstract
Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases), Aurora kinases, PLK-1 (polo-like kinase 1), BUB1 (budding uninhibited by benzimidazoles 1), MAPKs (mitogen-activated protein kinases), mTORC1 (mechanistic target of rapamycin complex 1), AMPK (AMP-activated protein kinase), PI3K (phosphoinositide-3 kinase) and protein kinase B (AKT). By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations.
Collapse
|
11
|
Niikura Y, Kitagawa R, Ogi H, Kitagawa K. SGT1-HSP90 complex is required for CENP-A deposition at centromeres. Cell Cycle 2017; 16:1683-1694. [PMID: 28816574 PMCID: PMC5602426 DOI: 10.1080/15384101.2017.1325039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The centromere plays an essential role in accurate chromosome segregation, and defects in its function lead to aneuploidy and thus cancer. The centromere-specific histone H3 variant CENP-A is proposed to be the epigenetic mark of the centromere, as active centromeres require CENP-A–containing nucleosomes to direct the recruitment of multiple kinetochore proteins. CENP-A K124 ubiquitylation, mediated by CUL4A-RBX1-COPS8 E3 ligase activity, is required for CENP-A deposition at the centromere. However, the mechanism that controls the E3 ligase activity of the CUL4A-RBX1-COPS8 complex remains obscure. We have discovered that the SGT1-HSP90 complex is required for recognition of CENP-A by COPS8. Thus, the SGT1-HSP90 complex contributes to the E3 ligase activity of the CUL4A complex that is necessary for CENP-A ubiquitylation and CENP-A deposition at the centromere.
Collapse
Affiliation(s)
- Yohei Niikura
- a Greehey Children's Cancer Research Institute , Department of Molecular Medicine, UT Health Science Center San Antonio School of Medicine , San Antonio , TX , USA.,b The Research Institute at Nationwide Children's Hospital , Columbus , OH , USA
| | - Risa Kitagawa
- a Greehey Children's Cancer Research Institute , Department of Molecular Medicine, UT Health Science Center San Antonio School of Medicine , San Antonio , TX , USA.,b The Research Institute at Nationwide Children's Hospital , Columbus , OH , USA
| | - Hiroo Ogi
- b The Research Institute at Nationwide Children's Hospital , Columbus , OH , USA
| | - Katsumi Kitagawa
- a Greehey Children's Cancer Research Institute , Department of Molecular Medicine, UT Health Science Center San Antonio School of Medicine , San Antonio , TX , USA.,b The Research Institute at Nationwide Children's Hospital , Columbus , OH , USA
| |
Collapse
|
12
|
Photodynamic therapy with TMPyP – Porphyrine induces mitotic catastrophe and microtubule disorganization in HeLa and G361 cells, a comprehensive view of the action of the photosensitizer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:522-537. [DOI: 10.1016/j.jphotobiol.2017.06.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 06/16/2017] [Accepted: 06/23/2017] [Indexed: 01/30/2023]
|
13
|
Sasai K, Treekitkarnmongkol W, Kai K, Katayama H, Sen S. Functional Significance of Aurora Kinases-p53 Protein Family Interactions in Cancer. Front Oncol 2016; 6:247. [PMID: 27933271 PMCID: PMC5122578 DOI: 10.3389/fonc.2016.00247] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022] Open
Abstract
Aurora kinases play critical roles in regulating spindle assembly, chromosome segregation, and cytokinesis to ensure faithful segregation of chromosomes during mitotic cell division cycle. Molecular and cell biological studies have revealed that Aurora kinases, at physiological levels, orchestrate complex sequential cellular processes at distinct subcellular locations through functional interactions with its various substrates. Aberrant expression of Aurora kinases, on the other hand, cause defects in mitotic spindle assembly, checkpoint response activation, and chromosome segregation leading to chromosomal instability. Elevated expression of Aurora kinases correlating with chromosomal instability is frequently detected in human cancers. Recent genomic profiling of about 3000 human cancer tissue specimens to identify various oncogenic signatures in The Cancer Genome Atlas project has reported that recurrent amplification and overexpression of Aurora kinase-A characterize distinct subsets of human tumors across multiple cancer types. Besides the well-characterized canonical pathway interactions of Aurora kinases in regulating assembly of the mitotic apparatus and chromosome segregation, growing evidence also supports the notion that deregulated expression of Aurora kinases in non-canonical pathways drive transformation and genomic instability by antagonizing tumor suppressor and exacerbating oncogenic signaling through direct interactions with critical proteins. Aberrant expression of the Aurora kinases–p53 protein family signaling axes appears to be critical in the abrogation of p53 protein family mediated tumor suppressor pathways frequently deregulated during oncogenic transformation process. Recent findings reveal the existence of feedback regulatory loops in mRNA expression and protein stability of these protein families and their consequences on downstream effectors involved in diverse physiological functions, such as mitotic progression, checkpoint response pathways, as well as self-renewal and pluripotency in embryonic stem cells. While these investigations have focused on the functional consequences of Aurora kinase protein family interactions with wild-type p53 family proteins, those involving Aurora kinases and mutant p53 remain to be elucidated. This article presents a comprehensive review of studies on Aurora kinases–p53 protein family interactions along with a prospective view on the possible functional consequences of Aurora kinase–mutant p53 signaling pathways in tumor cells. Additionally, we also discuss therapeutic implications of these findings in Aurora kinases overexpressing subsets of human tumors.
Collapse
Affiliation(s)
- Kaori Sasai
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Warapen Treekitkarnmongkol
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Kazuharu Kai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Hiroshi Katayama
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Subrata Sen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| |
Collapse
|
14
|
BUB1 and SURVIVIN proteins are not degraded after a prolonged mitosis and accumulate in the nuclei of HCT116 cells. Cell Death Discov 2016; 2:16079. [PMID: 27818790 PMCID: PMC5081682 DOI: 10.1038/cddiscovery.2016.79] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/24/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022] Open
Abstract
Spindle poisons activate the spindle assembly checkpoint and prevent mitotic exit until cells die or override the arrest. Several studies have focused on spindle poison-mediated cell death, but less is known about consequences in cells that survive a mitotic arrest. During mitosis, proteins such as CYCLIN B, SECURIN, BUB1 and SURVIVIN are degraded in order to allow mitotic exit, and these proteins are maintained at low levels in the next interphase. In contrast, exit from a prolonged mitosis depends only on degradation of CYCLIN B; it is not known whether the levels of other proteins decrease or remain high. Here, we analyzed the levels and localization of the BUB1 and SURVIVIN proteins in cells that escaped from a paclitaxel-mediated prolonged mitosis. We compared cells with a short arrest (HCT116 cells) with cells that spent more time in mitosis (HT29 cells) after paclitaxel treatment. BUB1 and SURVIVIN were not degraded and remained localized to the nuclei of HCT116 cells after a mitotic arrest. Moreover, BUB1 nuclear foci were observed; BUB1 did not colocalize with centromere proteins. In HT29 cells, the levels of BUB1 and SURVIVIN decreased during the arrest, and these proteins were not present in cells that reached the next interphase. Using time-lapse imaging, we observed morphological heterogeneity in HCT116 cells that escaped from the arrest; this heterogeneity was due to the cytokinesis-like mechanism by which the cells exited mitosis. Thus, our results show that high levels of BUB1 and SURVIVIN can be maintained after a mitotic arrest, which may promote resistance to cell death.
Collapse
|
15
|
Andriani GA, Almeida VP, Faggioli F, Mauro M, Tsai WL, Santambrogio L, Maslov A, Gadina M, Campisi J, Vijg J, Montagna C. Whole Chromosome Instability induces senescence and promotes SASP. Sci Rep 2016; 6:35218. [PMID: 27731420 PMCID: PMC5059742 DOI: 10.1038/srep35218] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/26/2016] [Indexed: 12/31/2022] Open
Abstract
Age-related accumulation of ploidy changes is associated with decreased expression of genes controlling chromosome segregation and cohesin functions. To determine the consequences of whole chromosome instability (W-CIN) we down-regulated the spindle assembly checkpoint component BUB1 and the mitotic cohesin SMC1A, and used four-color-interphase-FISH coupled with BrdU incorporation and analyses of senescence features to reveal the fate of W-CIN cells. We observed significant correlations between levels of not-diploid cells and senescence-associated features (SAFs). W-CIN induced DNA double strand breaks and elevated oxidative stress, but caused low apoptosis. SAFs of W-CIN cells were remarkably similar to those induced by replicative senescence but occurred in only 13 days versus 4 months. Cultures enriched with not-diploid cells acquired a senescence-associated secretory phenotype (SASP) characterized by IL1B, CXCL8, CCL2, TNF, CCL27 and other pro-inflammatory factors including a novel SASP component CLEC11A. These findings suggest that W-CIN triggers premature senescence, presumably to prevent the propagation of cells with an abnormal DNA content. Cells deviating from diploidy have the ability to communicate with their microenvironment by secretion of an array of signaling factors. Our results suggest that aneuploid cells that accumulate during aging in some mammalian tissues potentially contribute to age-related pathologies and inflammation through SASP secretion.
Collapse
Affiliation(s)
| | - Vinnycius Pereira Almeida
- Institute of Tropical Pathology and Public Health, Federal University of Goias (UFG), Goiania, GO, Brazil
| | - Francesca Faggioli
- Departments of Genetics, Albert Einstein College of Medicine, New York, United States
| | - Maurizio Mauro
- Departments of Genetics, Albert Einstein College of Medicine, New York, United States
| | - Wanxia Li Tsai
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Alexander Maslov
- Departments of Genetics, Albert Einstein College of Medicine, New York, United States
| | - Massimo Gadina
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California, USA
| | - Jan Vijg
- Departments of Genetics, Albert Einstein College of Medicine, New York, United States.,Ophthalmology and Visual Science, Albert Einstein College of Medicine, New York, United States.,Obstetrics &Gynecology and Women's Health, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | - Cristina Montagna
- Departments of Genetics, Albert Einstein College of Medicine, New York, United States.,Pathology, Albert Einstein College of Medicine, New York, United States
| |
Collapse
|
16
|
Niikura Y, Kitagawa K. Immunofluorescence Analysis of Endogenous and Exogenous Centromere-kinetochore Proteins. J Vis Exp 2016:e53732. [PMID: 26967065 PMCID: PMC4828215 DOI: 10.3791/53732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
"Centromeres" and "kinetochores" refer to the site where chromosomes associate with the spindle during cell division. Direct visualization of centromere-kinetochore proteins during the cell cycle remains a fundamental tool in investigating the mechanism(s) of these proteins. Advanced imaging methods in fluorescence microscopy provide remarkable resolution of centromere-kinetochore components and allow direct observation of specific molecular components of the centromeres and kinetochores. In addition, methods of indirect immunofluorescent (IIF) staining using specific antibodies are crucial to these observations. However, despite numerous reports about IIF protocols, few discussed in detail problems of specific centromere-kinetochore proteins.(1-4) Here we report optimized protocols to stain endogenous centromere-kinetochore proteins in human cells by using paraformaldehyde fixation and IIF staining. Furthermore, we report protocols to detect Flag-tagged exogenous CENP-A proteins in human cells subjected to acetone or methanol fixation. These methods are useful in detecting and quantifying endogenous centromere-kinetochore proteins and Flag-tagged CENP-A proteins, including those in human cells.
Collapse
Affiliation(s)
- Yohei Niikura
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital
| | - Katsumi Kitagawa
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital;
| |
Collapse
|
17
|
Asghar A, Lajeunesse A, Dulla K, Combes G, Thebault P, Nigg EA, Elowe S. Bub1 autophosphorylation feeds back to regulate kinetochore docking and promote localized substrate phosphorylation. Nat Commun 2015; 6:8364. [PMID: 26399325 PMCID: PMC4598568 DOI: 10.1038/ncomms9364] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/13/2015] [Indexed: 12/15/2022] Open
Abstract
During mitosis, Bub1 kinase phosphorylates histone H2A-T120 to promote centromere sister chromatid cohesion through recruitment of shugoshin (Sgo) proteins. The regulation and dynamics of H2A-T120 phosphorylation are poorly understood. Using quantitative phosphoproteomics we show that Bub1 is autophosphorylated at numerous sites. We confirm mitosis-specific autophosphorylation of a several residues and show that Bub1 activation is primed in interphase but fully achieved only in mitosis. Mutation of a single autophosphorylation site T589 alters kinetochore turnover of Bub1 and results in uniform H2A-T120 phosphorylation and Sgo recruitment along chromosome arms. Consequently, improper sister chromatid resolution and chromosome segregation errors are observed. Kinetochore tethering of Bub1-T589A refocuses H2A-T120 phosphorylation and Sgo1 to centromeres. Recruitment of the Bub1-Bub3-BubR1 axis to kinetochores has recently been extensively studied. Our data provide novel insight into the regulation and kinetochore residency of Bub1 and indicate that its localization is dynamic and tightly controlled through feedback autophosphorylation.
Collapse
Affiliation(s)
- Adeel Asghar
- Faculty of Medicine, Department of Molecular and Cellular Biology, Université Laval, Québec, Canada G1V 0A6.,Department of Reproduction, Mother and Youth Health, Centre de recherche du Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2
| | - Audrey Lajeunesse
- Faculty of Medicine, Department of Molecular and Cellular Biology, Université Laval, Québec, Canada G1V 0A6
| | - Kalyan Dulla
- ProQR Therapeutics N.V., Darwinweg 24, Leiden 2333 CR, The Netherlands
| | - Guillaume Combes
- Faculty of Medicine, Department of Molecular and Cellular Biology, Université Laval, Québec, Canada G1V 0A6.,Department of Reproduction, Mother and Youth Health, Centre de recherche du Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2
| | - Philippe Thebault
- Department of Reproduction, Mother and Youth Health, Centre de recherche du Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2
| | - Erich A Nigg
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel CH-4056, Switzerland
| | - Sabine Elowe
- Faculty of Medicine, Department of Molecular and Cellular Biology, Université Laval, Québec, Canada G1V 0A6.,Department of Reproduction, Mother and Youth Health, Centre de recherche du Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2
| |
Collapse
|
18
|
Urata YN, Takeshita F, Tanaka H, Ochiya T, Takimoto M. Targeted Knockdown of the Kinetochore Protein D40/Knl-1 Inhibits Human Cancer in a p53 Status-Independent Manner. Sci Rep 2015; 5:13676. [PMID: 26348410 PMCID: PMC4562263 DOI: 10.1038/srep13676] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/03/2015] [Indexed: 11/13/2022] Open
Abstract
The D40 gene encodes a kinetochore protein that plays an essential role in kinetochore formation during mitosis. Short inhibitory RNA against D40, D40 siRNA, has been shown to deplete the D40 protein in the human cancer cell line HeLa, which harbors wild-type p53, and this activity was followed by the significant inhibition of cell growth and induction of apoptotic cell death. The p53-null cancer cell line, PC-3M-luc, is also sensitive to the significant growth inhibition and cell death induced by D40 siRNA. The growth of PC-3M-luc tumors transplanted into nude mice was inhibited by the systemic administration of D40 siRNA and the atelocollagen complex. Furthermore, D40 siRNA significantly inhibited growth and induced apoptotic cell death in a cell line with a gain-of-function (GOF) mutation in p53, MDA-MB231-luc, and also inhibited the growth of tumors transplanted into mice when administered as a D40 siRNA/atelocollagen complex. These results indicated that D40 siRNA induced apoptotic cell death in human cancer cell lines, and inhibited their growth in vitro and in vivo regardless of p53 status. Therefore, D40 siRNA is a potential candidate anti-cancer reagent.
Collapse
Affiliation(s)
- Yuri N Urata
- Division of Cancer Gene Regulation, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Fumitaka Takeshita
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Department of Functional Analysis, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroki Tanaka
- Division of Cancer Gene Regulation, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Masato Takimoto
- Division of Cancer Gene Regulation, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
19
|
Wilderman A, Guo Y, Divakaruni AS, Perkins G, Zhang L, Murphy AN, Taylor SS, Insel PA. Proteomic and Metabolic Analyses of S49 Lymphoma Cells Reveal Novel Regulation of Mitochondria by cAMP and Protein Kinase A. J Biol Chem 2015. [PMID: 26203188 DOI: 10.1074/jbc.m115.658153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic AMP (cAMP), acting via protein kinase A (PKA), regulates many cellular responses, but the role of mitochondria in such responses is poorly understood. To define such roles, we used quantitative proteomic analysis of mitochondria-enriched fractions and performed functional and morphologic studies of wild-type (WT) and kin(-) (PKA-null) murine S49 lymphoma cells. Basally, 75 proteins significantly differed in abundance between WT and kin(-) S49 cells. WT, but not kin(-), S49 cells incubated with the cAMP analog 8-(4-chlorophenylthio)adenosine cAMP (CPT-cAMP) for 16 h have (a) increased expression of mitochondria-related genes and proteins, including ones in pathways of branched-chain amino acid and fatty acid metabolism and (b) increased maximal capacity of respiration on branched-chain keto acids and fatty acids. CPT-cAMP also regulates the cellular rate of ATP-utilization, as the rates of both ATP-linked respiration and proton efflux are decreased in WT but not kin(-) cells. CPT-cAMP protected WT S49 cells from glucose or glutamine deprivation, In contrast, CPT-cAMP did not protect kin(-) cells or WT cells treated with the PKA inhibitor H89 from glutamine deprivation. Under basal conditions, the mitochondrial structure of WT and kin(-) S49 cells is similar. Treatment with CPT-cAMP produced apoptotic changes (i.e. decreased mitochondrial density and size and loss of cristae) in WT, but not kin(-) cells. Together, these findings show that cAMP acts via PKA to regulate multiple aspects of mitochondrial function and structure. Mitochondrial perturbation thus likely contributes to cAMP/PKA-mediated cellular responses.
Collapse
Affiliation(s)
- Andrea Wilderman
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0626
| | - Yurong Guo
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0654
| | - Ajit S Divakaruni
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0626
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, California 92093-0608, and
| | - Lingzhi Zhang
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0626
| | - Anne N Murphy
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0626
| | - Susan S Taylor
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0626, Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0654
| | - Paul A Insel
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0626, Department of Medicine, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
20
|
Niikura Y, Kitagawa R, Ogi H, Abdulle R, Pagala V, Kitagawa K. CENP-A K124 Ubiquitylation Is Required for CENP-A Deposition at the Centromere. Dev Cell 2015; 32:589-603. [PMID: 25727006 PMCID: PMC4374629 DOI: 10.1016/j.devcel.2015.01.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 10/24/2014] [Accepted: 01/21/2015] [Indexed: 11/23/2022]
Abstract
CENP-A is a centromere-specific histone H3 variant that epigenetically determines centromere identity to ensure kinetochore assembly and proper chromosome segregation, but the precise mechanism of its specific localization within centromeric heterochromatin remains obscure. We have discovered that CUL4A-RBX1-COPS8 E3 ligase activity is required for CENP-A ubiquitylation on lysine 124 (K124) and CENP-A centromere localization. A mutation of CENP-A, K124R, reduces interaction with HJURP (a CENP-A-specific histone chaperone) and abrogates localization of CENP-A to the centromere. Addition of monoubiquitin is sufficient to restore CENP-A K124R to centromeres and the interaction with HJURP, indicating that "signaling" ubiquitylation is required for CENP-A loading at centromeres. The CUL4A-RBX1 complex is required for loading newly synthesized CENP-A and maintaining preassembled CENP-A at centromeres. Thus, CENP-A K124R ubiquitylation, mediated by the CUL4A-RBX1-COPS8 complex, is essential for CENP-A deposition at the centromere.
Collapse
Affiliation(s)
- Yohei Niikura
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Risa Kitagawa
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Hiroo Ogi
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Rashid Abdulle
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Vishwajeeth Pagala
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Katsumi Kitagawa
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine, The Ohio State University, 700 Children's Drive, Columbus, OH 43205, USA.
| |
Collapse
|
21
|
The tubulysin analogue KEMTUB10 induces apoptosis in breast cancer cells via p53, Bim and Bcl-2. J Cancer Res Clin Oncol 2015; 141:1575-83. [DOI: 10.1007/s00432-015-1921-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/16/2015] [Indexed: 01/03/2023]
|
22
|
Bah N, Maillet L, Ryan J, Dubreil S, Gautier F, Letai A, Juin P, Barillé-Nion S. Bcl-xL controls a switch between cell death modes during mitotic arrest. Cell Death Dis 2014; 5:e1291. [PMID: 24922075 PMCID: PMC4611724 DOI: 10.1038/cddis.2014.251] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/28/2014] [Accepted: 05/06/2014] [Indexed: 02/03/2023]
Abstract
Antimitotic agents such as microtubule inhibitors (paclitaxel) are widely used in cancer therapy while new agents blocking mitosis onset are currently in development. All these agents impose a prolonged mitotic arrest in cancer cells that relies on sustained activation of the spindle assembly checkpoint and may lead to subsequent cell death by incompletely understood molecular events. We have investigated the role played by anti-apoptotic Bcl-2 family members in the fate of mitotically arrested mammary tumor cells treated with paclitaxel, or depleted in Cdc20, the activator of the anaphase promoting complex. Under these conditions, a weak and delayed mitotic cell death occurs that is caspase- and Bax/Bak-independent. Moreover, BH3 profiling assays indicate that viable cells during mitotic arrest are primed to die by apoptosis and that Bcl-xL is required to maintain mitochondrial integrity. Consistently, Bcl-xL depletion, or treatment with its inhibitor ABT-737 (but not with the specific Bcl-2 inhibitor ABT-199), during mitotic arrest converts cell response to antimitotics to efficient caspase and Bax-dependent apoptosis. Apoptotic priming under conditions of mitotic arrest relies, at least in part, on the phosphorylation on serine 62 of Bcl-xL, which modulates its interaction with Bax and its sensitivity to ABT-737. The phospho-mimetic S62D-Bcl-xL mutant is indeed less efficient than the corresponding phospho-deficient S62A-Bcl-xL mutant in sequestrating Bax and in protecting cancer cells from mitotic cell death or yeast cells from Bax-induced growth inhibition. Our results provide a rationale for combining Bcl-xL targeting to antimitotic agents to improve clinical efficacy of antimitotic strategy in cancer therapy.
Collapse
Affiliation(s)
- N Bah
- Team 8 'Cell survival and Tumor Escape in Breast Cancer', UMR 892 INSERM/6299 CNRS/Université de Nantes, Institut de Recherche en Santé de l'Université de Nantes, 8 quai Moncousu, BP 70721, Nantes 1 44007, France
| | - L Maillet
- Team 8 'Cell survival and Tumor Escape in Breast Cancer', UMR 892 INSERM/6299 CNRS/Université de Nantes, Institut de Recherche en Santé de l'Université de Nantes, 8 quai Moncousu, BP 70721, Nantes 1 44007, France
| | - J Ryan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - S Dubreil
- Team 8 'Cell survival and Tumor Escape in Breast Cancer', UMR 892 INSERM/6299 CNRS/Université de Nantes, Institut de Recherche en Santé de l'Université de Nantes, 8 quai Moncousu, BP 70721, Nantes 1 44007, France
| | - F Gautier
- 1] Team 8 'Cell survival and Tumor Escape in Breast Cancer', UMR 892 INSERM/6299 CNRS/Université de Nantes, Institut de Recherche en Santé de l'Université de Nantes, 8 quai Moncousu, BP 70721, Nantes 1 44007, France [2] Institut de Cancérologie de l'Ouest (ICO), Centre de Lutte contre le Cancer René Gauducheau, Boulevard Jacques Monod, Saint Herblain-Nantes 44805, France [3] Plateforme IMPACT Biogenouest, Institut de Recherche en Santé de l'Université de Nantes, 8 quai Moncousu, BP 70721, Nantes 1 44007, France
| | - A Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - P Juin
- 1] Team 8 'Cell survival and Tumor Escape in Breast Cancer', UMR 892 INSERM/6299 CNRS/Université de Nantes, Institut de Recherche en Santé de l'Université de Nantes, 8 quai Moncousu, BP 70721, Nantes 1 44007, France [2] Institut de Cancérologie de l'Ouest (ICO), Centre de Lutte contre le Cancer René Gauducheau, Boulevard Jacques Monod, Saint Herblain-Nantes 44805, France
| | - S Barillé-Nion
- Team 8 'Cell survival and Tumor Escape in Breast Cancer', UMR 892 INSERM/6299 CNRS/Université de Nantes, Institut de Recherche en Santé de l'Université de Nantes, 8 quai Moncousu, BP 70721, Nantes 1 44007, France
| |
Collapse
|
23
|
Abstract
Mitotic catastrophe, which refers to cell death or its prologue triggered by aberrant mitosis, can be induced by a heterogeneous group of stimuli, including chromosome damage or perturbation of the mitotic apparatus. We investigated the mechanism of mitotic catastrophe and cell death induced by depletion of centrosomal proteins that perturbs microtubule organization. We transfected cells harboring wild-type or mutated p53 with siRNAs targeting Aurora A, ninein, TOG, TACC3, γ-tubulin, or pericentriolar material-1, and monitored the effects on cell death. Knockdown of Aurora A, ninein, TOG, and TACC3 led to cell death, regardless of p53 status. Knockdown of Aurora A, ninein, and TOG, led to aberrant spindle formation and subsequent cell death, which was accompanied by several features of apoptosis, including nuclear condensation and Annexin V binding in HeLa cells. During this process, cleavage of poly(ADP-ribose) polymerase-1, caspase-3, and caspase-9 was detected, but cleavage of caspase-8 was not. Cell death, monitored by time-lapse imaging, occurred during both interphase and M phase. In cells depleted of a centrosomal protein (Aurora A, ninein, or TOG), the rate of cell death was higher if the cells were cotransfected with siRNA against BubR1 or Mad2 than if they were transfected with siRNA against Bub1 or a control siRNA. These results suggest that metaphase arrest is necessary for the mitotic catastrophe and cell death caused by depletion of centrosomal proteins. Knockdown of centrosomal proteins led to increased phosphorylation of Chk2. Enhanced p-Chk2 localization was also observed at the centrosome in cells arrested in M phase, as well as in the nuclei of dying cells. Cotransfection of siRNAs against Chk2, in combination with depletion of a centrosomal protein, decreased the amount of cell death. Thus, Chk2 activity is indispensable for apoptosis after mitotic catastrophe induced by depletion of centrosomal proteins that perturbs microtubule organization.
Collapse
|
24
|
Zasadil LM, Britigan EMC, Weaver BA. 2n or not 2n: Aneuploidy, polyploidy and chromosomal instability in primary and tumor cells. Semin Cell Dev Biol 2013; 24:370-9. [PMID: 23416057 DOI: 10.1016/j.semcdb.2013.02.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/28/2013] [Accepted: 02/06/2013] [Indexed: 12/12/2022]
Abstract
Mitotic defects leading to aneuploidy have been recognized as a hallmark of tumor cells for over 100 years. Current data indicate that ∼85% of human cancers have missegregated chromosomes to become aneuploid. Some maintain a stable aneuploid karyotype, while others consistently missegregate chromosomes over multiple divisions due to chromosomal instability (CIN). Both aneuploidy and CIN serve as markers of poor prognosis in diverse human cancers. Despite this, aneuploidy is generally incompatible with viability during development, and some aneuploid karyotypes cause a proliferative disadvantage in somatic cells. In vivo, the intentional introduction of aneuploidy can promote tumors, suppress them, or do neither. Here, we summarize current knowledge of the effects of aneuploidy and CIN on proliferation and cell death in nontransformed cells, as well as on tumor promotion, suppression, and prognosis.
Collapse
Affiliation(s)
- Lauren M Zasadil
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705, USA
| | | | | |
Collapse
|
25
|
Beiral HJV, Rodrigues-Ferreira C, Fernandes AM, Gonsalez SR, Mortari NC, Takiya CM, Sorenson MM, Figueiredo-Freitas C, Galina A, Vieyra A. The impact of stem cells on electron fluxes, proton translocation, and ATP synthesis in kidney mitochondria after ischemia/reperfusion. Cell Transplant 2012; 23:207-20. [PMID: 23211430 DOI: 10.3727/096368912x659862] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Tissue damage by ischemia/reperfusion (I/R) results from a temporary cessation of blood flow followed by the restoration of circulation. The injury depresses mitochondrial respiration, increases the production of reactive oxygen species (ROS), decreases the mitochondrial transmembrane potential, and stimulates invasion by inflammatory cells. The primary objective of this work was to address the potential use of bone marrow stem cells (BMSCs) to preserve and restore mitochondrial function in the kidney after I/R. Mitochondria from renal proximal tubule cells were isolated by differential centrifugation from rat kidneys subjected to I/R (clamping of renal arteries followed by release of circulation after 30 min), without or with subcapsular administration of BMSCs. Respiration starting from mitochondrial complex II was strongly affected following I/R. However, when BMSCs were injected before ischemia or together with reperfusion, normal electron fluxes, electrochemical gradient for protons, and ATP synthesis were almost completely preserved, and mitochondrial ROS formation occurred at a low rate. In homogenates from cultured renal cells transiently treated with antimycin A, the coculture with BMSCs induced a remarkable increase in protein S-nitrosylation that was similar to that found in mitochondria isolated from I/R rats, evidence that BMSCs protected against both superoxide anion and peroxynitrite. Labeled BMSCs migrated to damaged tubules, suggesting that the injury functions as a signal to attract and host the injected BMSCs. Structural correlates of BMSC injection in kidney tissue included stimulus of tubule cell proliferation, inhibition of apoptosis, and decreased inflammatory response. Histopathological analysis demonstrated a score of complete preservation of tubular structures by BMSCs, associated with normal plasma creatinine and urinary osmolality. These key findings shed light on the mechanisms that explain, at the mitochondrial level, how stem cells prevent damage by I/R. The action of BMSCs on mitochondrial functions raises the possibility that autologous BMSCs may help prevent I/R injuries associated with transplantation and acute renal diseases.
Collapse
Affiliation(s)
- Hellen J V Beiral
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
MicroRNA-450a-3p represses cell proliferation and regulates embryo development by regulating Bub1 expression in mouse. PLoS One 2012; 7:e47914. [PMID: 23110129 PMCID: PMC3478270 DOI: 10.1371/journal.pone.0047914] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 09/18/2012] [Indexed: 12/17/2022] Open
Abstract
Bub1 is a critical component of the spindle assembly checkpoint (SAC) and closely linked to cell proliferation and differentiation. We previously found that spontaneous abortion embryos contained a low level of Bub1 protein but normal mRNA level, while the knockdown of Bub1 leads to abnormal numerical chromosomes in embryonic cells. Here, we investigated the mechanism through which governs the post-transcriptional regulation of Bub1 protein expression level. We first conducted bioinformatics analysis and identified eight putative miRNAs that may target Bub1. Luciferase reporter assay confirmed that miR-450a-3p can directly regulate Bub1 by binding to the 3′-untranslated region of Bub1 mRNA. We found that the overexpression of miR-450a-3p in mouse embryonic fibroblast (MEF) cells down-regulated Bub1 protein level, repressed cell proliferation, increased apoptosis and restricted most cells in G1 phase of the cell cycle. Furthermore, when the fertilized eggs were microinjected with miR-450a-3p mimics, the cleavage of zygotes was effectively suppressed. Our results strongly suggest that an abnormally decreased Bub1 level regulated by miRNAs may be implicated in the pathogenesis of spontaneous miscarriage. Therefore, the blockade of miR-450a-3p may be explored as a novel therapeutic strategy for preventing spontaneous miscarriages.
Collapse
|
27
|
Llovera L, Mansilla S, Portugal J. Apoptotic-like death occurs through a caspase-independent route in colon carcinoma cells undergoing mitotic catastrophe. Cancer Lett 2012; 326:114-21. [PMID: 22885806 DOI: 10.1016/j.canlet.2012.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/29/2012] [Accepted: 08/01/2012] [Indexed: 01/11/2023]
Abstract
We have examined the relationship between chemotherapy-induced mitotic catastrophe and cell death by apoptosis in both wild-type and p53(-/-) HCT116 human colon carcinoma cells treated with nanomolar concentrations of paclitaxel (PTX), a drug that acts on tubulin altering the normal development of mitosis. After treatment, HCT116 cells entered mitosis regardless of the presence of functional p53, which resulted in changes in the distribution of cells in the different phases of the cell cycle, and in cell death. In the presence of PTX, the percentage of polyploid cells observed was higher in p53-deficient cells, indicating that mitotic slippage was favored compared to wild-type cells, with the presence of large multinucleate cells. PTX caused mitotic catastrophe and about 50-60% cells that were entering an aberrant mitosis died through an apoptotic-like pathway characterized by the presence of phosphatidylserine in the outer cell membrane, which occurred in the absence of significant activation of caspases. Lack of p53 facilitated endoreduplication and polyploidy in PTX-treated cells, but cells were still killed with similar efficacy through the same apoptotic-like mechanism in the absence of caspase activity.
Collapse
Affiliation(s)
- Laia Llovera
- Instituto de Biologia Molecular de Barcelona, CSIC, Parc Cientific de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
28
|
Mok WC, Wasser S, Tan T, Lim SG. Polo-like kinase 1, a new therapeutic target in hepatocellular carcinoma. World J Gastroenterol 2012; 18:3527-36. [PMID: 22826617 PMCID: PMC3400854 DOI: 10.3748/wjg.v18.i27.3527] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 03/30/2012] [Accepted: 05/12/2012] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the role of polo-like kinase 1 (PLK1) as a therapeutic target for hepatocellular carcinoma (HCC). METHODS PLK1 gene expression was evaluated in HCC tissue and HCC cell lines. Gene knockdown with short-interfering RNA (siRNA) was used to study PLK1 gene and protein expression using real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blotting, and cell proliferation using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2(4-sulfophenyl)-2H-tetrazolium (MTS) and bromodeoxyuridine (BrdU) assays. Apoptosis was evaluated using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and caspase-inhibition assay. Huh-7 cells were transplanted into nude mice and co-cultured with PLK1 siRNA or control siRNA, and tumor progression was compared with controls. RESULTS RT-PCR showed that PLK1 was overexpressed 12-fold in tumor samples compared with controls, and also was overexpressed in Huh-7 cells. siRNA against PLK1 showed a reduction in PLK1 gene and protein expression of up to 96% in Huh-7 cells, and a reduction in cell proliferation by 68% and 92% in MTS and BrdU cell proliferation assays, respectively. There was a 3-fold increase in apoptosis events, and TUNEL staining and caspase-3 assays suggested that this was caspase-independent. The pan-caspase inhibitor Z-VAD-FMK was unable to rescue the apoptotic cells. Immnofluorescence co-localized endonuclease-G to fragmented chromosomes, implicating it in apoptosis. Huh-7 cells transplanted subcutaneously into nude mice showed tumor regression in siPLK1-treated mice, but not in controls. CONCLUSION Knockdown of PLK1 overexpression in HCC was shown to be a potential therapeutic target, leading to apoptosis through the endonuclease-G pathway.
Collapse
|
29
|
Lee CG, Park GY, Han YK, Lee JH, Chun SH, Park HY, Lim KH, Kim EG, Choi YJ, Yang K, Lee CW. Roles of 14-3-3η in mitotic progression and its potential use as a therapeutic target for cancers. Oncogene 2012; 32:1560-9. [DOI: 10.1038/onc.2012.170] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Hou H, Zhang Y, Huang Y, Yi Q, Lv L, Zhang T, Chen D, Hao Q, Shi Q. Inhibitors of phosphatidylinositol 3'-kinases promote mitotic cell death in HeLa cells. PLoS One 2012; 7:e35665. [PMID: 22545128 PMCID: PMC3335795 DOI: 10.1371/journal.pone.0035665] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/19/2012] [Indexed: 12/25/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in many biological processes, including cell cycle progression, cell growth, survival, actin rearrangement and migration, and intracellular vesicular transport. However, the involvement of the PI3K pathway in the regulation of mitotic cell death remains unclear. In this study, we treated HeLa cells with the PI3K inhibitors, 3-methyladenine (3-MA, as well as a widely used autophagy inhibitor) and wortmannin to examine their effects on cell fates using live cell imaging. Treatment with 3-MA decreased cell viability in a time- and dose-dependent manner and was associated with caspase-3 activation. Interestingly, 3-MA-induced cell death was not affected by RNA interference-mediated knockdown (KD) of beclin1 (an essential protein for autophagy) in HeLa cells, or by deletion of atg5 (an essential autophagy gene) in mouse embryonic fibroblasts (MEFs). These data indicate that cell death induced by 3-MA occurs independently of its ability to inhibit autophagy. The results from live cell imaging studies showed that the inhibition of PI3Ks increased the occurrence of lagging chromosomes and cell cycle arrest and cell death in prometaphase. Furthermore, PI3K inhibitors promoted nocodazole-induced mitotic cell death and reduced mitotic slippage. Overexpression of Akt (the downstream target of PI3K) antagonized PI3K inhibitor-induced mitotic cell death and promoted nocodazole-induced mitotic slippage. These results suggest a novel role for the PI3K pathway in regulating mitotic progression and preventing mitotic cell death and provide justification for the use of PI3K inhibitors in combination with anti-mitotic drugs to combat cancer.
Collapse
Affiliation(s)
- Heli Hou
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yingyin Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
| | - Yun Huang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qiyi Yi
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Lei Lv
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Tianwei Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
| | - Dawei Chen
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qiaomei Hao
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qinghua Shi
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
- * E-mail:
| |
Collapse
|
31
|
Imreh G, Norberg HV, Imreh S, Zhivotovsky B. Chromosomal breaks during mitotic catastrophe trigger γH2AX-ATM-p53-mediated apoptosis. J Cell Sci 2012; 124:2951-63. [PMID: 21878502 DOI: 10.1242/jcs.081612] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although the cause and outcome of mitotic catastrophe (MC) has been thoroughly investigated, precisely how the ensuing lethality is regulated during or following this process and what signals are involved remain unknown. Moreover, the mechanism of the decision of cell death modalities following MC is still not well characterised. We demonstrate here a crucial role of the γH2AX-ATM-p53 pathway in the regulation of the apoptotic outcome of MC resulting from cells entering mitosis with damaged DNA. In addition to p53 deficiency, the depletion of ATM (ataxia telangiectasia mutated), but not ATR (ataxia telangiectasia and Rad3-related protein), protected against apoptosis and shifted cell death towards necrosis. Activation of this pathway is triggered by the augmented chromosomal damage acquired during anaphase in doxorubicin-treated cells lacking 14-3-3σ (also known as epithelial cell marker protein-1 or stratifin). Moreover, cells that enter mitosis with damaged DNA encounter segregation problems because of their abnormal chromosomes, leading to defects in mitotic exit, and they therefore accumulate in G1 phase. These multi- or micronucleated cells are prevented from cycling again in a p53- and p21-dependent manner, and subsequently die. Because increased chromosomal damage resulting in extensive H2AX phosphorylation appears to be a direct cause of catastrophic mitosis, our results describe a mechanism that involves generation of additional DNA damage during MC to eliminate chromosomally unstable cells.
Collapse
Affiliation(s)
- Gabriela Imreh
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | | | | |
Collapse
|
32
|
Sato H, Yamada R, Yanagihara M, Okuzawa H, Iwata H, Kurosawa A, Ichinomiya S, Suzuki R, Okabe H, Yano T, Kumamoto T, Suzuki N, Ishikawa T, Ueno K. New 2-Aryl-1,4-naphthoquinone-1-oxime Methyl Ether Compound Induces Microtubule Depolymerization and Subsequent Apoptosis. J Pharmacol Sci 2012; 118:467-78. [DOI: 10.1254/jphs.11229fp] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
33
|
Cell fate after mitotic arrest in different tumor cells is determined by the balance between slippage and apoptotic threshold. Toxicol Appl Pharmacol 2011; 258:384-93. [PMID: 22178383 DOI: 10.1016/j.taap.2011.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/09/2011] [Accepted: 11/29/2011] [Indexed: 01/08/2023]
Abstract
Microtubule poisons and other anti-mitotic drugs induce tumor death but the molecular events linking mitotic arrest to cell death are still not fully understood. We have analyzed cell fate after mitotic arrest produced by the microtubule-destabilizing drug vincristine in a panel of human tumor cell lines showing different response to vincristine. In Jurkat, RPMI 8226 and HeLa cells, apoptosis was triggered shortly after vincristine-induced mitotic arrest. However, A549 cells, which express a great amount of Bcl-x(L) and undetectable amounts of Bak, underwent mitotic slippage prior to cell death. However, when Bcl-x(L) gene was silenced in A549 cells, vincristine induced apoptosis during mitotic arrest. Another different behavior was found in MiaPaca2 cells, where vincristine caused death by mitotic catastrophe that switched to apoptosis when cyclin B1 degradation was prevented by proteasome inhibition. Overexpression of Bcl-x(L) or silencing Bax and Bak expression delayed the onset of apoptosis in Jurkat and RPMI 8226 cells, enabling mitotic slippage and endoreduplication. In HeLa cells, overexpression of Bcl-x(L) switched cell death from apoptosis to mitotic catastrophe. Mcl-1 offered limited protection to vincristine-induced cell death and Mcl-1 degradation was not essential for vincristine-induced death. All these results, taken together, indicate that the Bcl-x(L)/Bak ratio and the ability to degrade cyclin B1 determine cell fate after mitotic arrest in the different tumor cell types.
Collapse
|
34
|
Rufini A, Agostini M, Grespi F, Tomasini R, Sayan BS, Niklison-Chirou MV, Conforti F, Velletri T, Mastino A, Mak TW, Melino G, Knight RA. p73 in Cancer. Genes Cancer 2011; 2:491-502. [PMID: 21779517 DOI: 10.1177/1947601911408890] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
p73 is a tumor suppressor belonging to the p53 family of transcription factors. Distinct isoforms are transcribed from the p73 locus. The use of 2 promoters at the N-terminus allows the expression of an isoform containing (TAp73) or not containing (ΔNp73) a complete N-terminal transactivation domain, with the latter isoform capable of a dominant negative effect over the former. In addition, both N-terminal variants are alternatively spliced at the C-terminus. TAp73 is a bona fide tumor suppressor, being able to induce cell death and cell cycle arrest; conversely, ΔNp73 shows oncogenic properties, inhibiting TAp73 and p53 functions. Here, we discuss the latest findings linking p73 to cancer. The generation of isoform specific null mice has helped in dissecting the contribution of TA versus ΔNp73 isoforms to tumorigenesis. The activity of both isoforms is regulated transcriptionally and by posttranslational modification. p73 dysfunction, particularly of TAp73, has been associated with mitotic abnormalities, which may lead to polyploidy and aneuploidy and thus contribute to tumorigenesis. Although p73 is only rarely mutated in cancer, the tumor suppressor actions of TAp73 are inhibited by mutant p53, a finding that has important implications for cancer therapy. Finally, we discuss the expression and role of p73 isoforms in human cancer, with a particular emphasis on the neuroblastoma cancer model. Broadly, the data support the hypothesis that the ratio between TAp73 and ΔNp73 is crucial for tumor progression and therapeutic response.
Collapse
Affiliation(s)
- Alessandro Rufini
- Toxicology Unit, Medical Research Council, Leicester, LE1 9HN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yang C, Wang H, Xu Y, Brinkman KL, Ishiyama H, Wong STC, Xu B. The kinetochore protein Bub1 participates in the DNA damage response. DNA Repair (Amst) 2011; 11:185-91. [PMID: 22071147 DOI: 10.1016/j.dnarep.2011.10.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The DNA damage response (DDR) and the spindle assembly checkpoint (SAC) are two critical mechanisms by which mammalian cells maintain genome stability. There is a growing body of evidence that DDR elements and SAC components crosstalk. Here we report that Bub1 (budding uninhibited by benzimidazoles 1), one of the critical kinetochore proteins essential for SAC, is required for optimal DDRs. We found that knocking-down Bub1 resulted in prolonged H2AX foci and comet tail formation as well as hypersensitivity in response to ionizing radiation (IR). Further, we found that Bub1-mediated Histone H2A Threonine 121 phosphorylation was induced after IR in an ATM-dependent manner. We demonstrated that ATM phosphorylated Bub1 on serine 314 in response to DNA damage in vivo. Finally, we showed that ATM-mediated Bub1 serine 314 phosphorylation was required for IR-induced Bub1 activation and for the optimal DDR. Together, we elucidate the molecular mechanism of DNA damage-induced Bub1 activation and highlight a critical role of Bub1 in DDR.
Collapse
Affiliation(s)
- Chunying Yang
- Department of Radiation Oncology, The Methodist Hospital Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Li S, Wan M, Cao X, Ren Y. Expression of AIF and HtrA2/Omi in small lymphocytic lymphoma and diffuse large B-cell lymphoma. Arch Pathol Lab Med 2011; 135:903-8. [PMID: 21732781 DOI: 10.5858/2010-0003-oar1.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT The pathogenesis of non-Hodgkin lymphoma may involve deregulation of apoptosis. In response to apoptotic stimuli, several proapoptotic proteins are released into the cytoplasm from the mitochondria, including second mitochondria-derived activator of caspases/direct inhibitor of apoptosis protein binding protein with low p I (Smac/DIABLO), apoptosis-inducing factor (AIF), and high temperature requirement protein A2 (HtrA2/Omi). Apoptosis-inducing factor promotes apoptosis through a caspase-independent pathway, while Smac/DIABLO and HtrA2/Omi do so through both caspase-dependent and caspase-independent pathways. Smac/DIABLO was reported to be strongly positive in diffuse large B-cell lymphoma (DLBCL) and virtually absent in small lymphocytic lymphoma/chronic lymphocytic leukemia (SLL/CLL). Little is known about the expression of AIF and HtrA2/Omi in lymphomas. OBJECTIVE To evaluate the expression of AIF and HtrA2/Omi in SLL and DLBCL. DESIGN Twenty-three DLBCLs, 20 SLLs/CLLs, and 10 benign lymph nodes were evaluated for AIF and HtrA2/Omi expression by immunohistochemical staining. RESULTS Apoptosis-inducing factor was strongly and diffusely expressed in 19 of 23 (83%) cases of DLBCL with comparable expression pattern between germinal center-like and non-germinal center-like subgroups. Apoptosis-inducing factor was weakly positive in 15 of 20 (75%) cases of SLL/CLL with increased intensity in pseudofollicles. In contrast, HtrA2/Omi was weakly expressed in SLL/CLL (17 of 20; 85%) and DLBCL (18 of 23; 78%). CONCLUSIONS The different expression level and pattern of AIF and HtrA2/Omi in SLL/CLL and DLBCL may suggest different apoptotic mechanisms involved in the pathogenesis and prognosis of these diseases. HtrA2/Omi does not appear to be a major player in the regulation of apoptosis of DLBCL and SLL/CLL.
Collapse
Affiliation(s)
- Shaoying Li
- Department of Pathology, University of Alabama at Birmingham Health System, Birmingham, USA.
| | | | | | | |
Collapse
|
37
|
Alhosin M, Ibrahim A, Boukhari A, Sharif T, Gies JP, Auger C, Schini-Kerth VB. Anti-neoplastic agent thymoquinone induces degradation of α and β tubulin proteins in human cancer cells without affecting their level in normal human fibroblasts. Invest New Drugs 2011; 30:1813-9. [PMID: 21881916 DOI: 10.1007/s10637-011-9734-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/09/2011] [Indexed: 12/27/2022]
Abstract
The microtubule-targeting agents derived from natural products, such as vinca-alkaloids and taxanes are an important family of efficient anti-cancer drugs with therapeutic benefits in both haematological and solid tumors. These drugs interfere with the assembly of microtubules of α/β tubulin heterodimers without altering their expression level. The aim of the present study was to investigate the effect of thymoquinone (TQ), a natural product present in black cumin seed oil known to exhibit putative anti-cancer activities, on α/β tubulin expression in human astrocytoma cells (cell line U87, solid tumor model) and in Jurkat cells (T lymphoblastic leukaemia cells). TQ induced a concentration- and time-dependent degradation of α/β tubulin in both cancer cell types. This degradation was associated with the up-regulation of the tumor suppressor p73 with subsequent induction of apoptosis. Interestingly, TQ had no effect on α/β tubulin protein expression in normal human fibroblast cells, which were used as a non-cancerous cell model. These data indicate that TQ exerts a selective effect towards α/β tubulin in cancer cells. In conclusion, the present findings indicate that TQ is a novel anti-microtubule drug which targets the level of α/β tubulin proteins in cancer cells. Furthermore, they highlight the interest of developing anti-cancer therapies that target directly tubulin rather than microtubules dynamics.
Collapse
Affiliation(s)
- Mahmoud Alhosin
- CNRS UMR 7213 Laboratoire de Biophotonique et Pharmacologie, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Joshi S, Braithwaite AW, Robinson PJ, Chircop M. Dynamin inhibitors induce caspase-mediated apoptosis following cytokinesis failure in human cancer cells and this is blocked by Bcl-2 overexpression. Mol Cancer 2011; 10:78. [PMID: 21708043 PMCID: PMC3142233 DOI: 10.1186/1476-4598-10-78] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 06/28/2011] [Indexed: 12/24/2022] Open
Abstract
Background The aim of both classical (e.g. taxol) and targeted anti-mitotic agents (e.g. Aurora kinase inhibitors) is to disrupt the mitotic spindle. Such compounds are currently used in the clinic and/or are being tested in clinical trials for cancer treatment. We recently reported a new class of targeted anti-mitotic compounds that do not disrupt the mitotic spindle, but exclusively block completion of cytokinesis. This new class includes MiTMAB and OcTMAB (MiTMABs), which are potent inhibitors of the endocytic protein, dynamin. Like other anti-mitotics, MiTMABs are highly cytotoxic and possess anti-proliferative properties, which appear to be selective for cancer cells. The cellular response following cytokinesis failure and the mechanistic pathway involved is unknown. Results We show that MiTMABs induce cell death specifically following cytokinesis failure via the intrinsic apoptotic pathway. This involves cleavage of caspase-8, -9, -3 and PARP, DNA fragmentation and membrane blebbing. Apoptosis was blocked by the pan-caspase inhibitor, ZVAD, and in HeLa cells stably expressing the anti-apoptotic protein, Bcl-2. This resulted in an accumulation of polyploid cells. Caspases were not cleaved in MiTMAB-treated cells that did not enter mitosis. This is consistent with the model that apoptosis induced by MiTMABs occurs exclusively following cytokinesis failure. Cytokinesis failure induced by cytochalasin B also resulted in apoptosis, suggesting that disruption of this process is generally toxic to cells. Conclusion Collectively, these data indicate that MiTMAB-induced apoptosis is dependent on both polyploidization and specific intracellular signalling components. This suggests that dynamin and potentially other cytokinesis factors are novel targets for development of cancer therapeutics.
Collapse
Affiliation(s)
- Sanket Joshi
- Children's Medical Research Institute, The University of Sydney, 214 Hawkesbury Road, Westmead, NSW 2145, Australia
| | | | | | | |
Collapse
|
39
|
Abstract
Current theories suggest that mitotic checkpoint proteins are essential for proper cellular response to taxanes, a widely-used family of chemotherapeutic compounds. We recently demonstrated that absence or depletion of protein Daxx increases cellular taxol (paclitaxel) resistance—a common trait of patients diagnosed with several malignancies, including breast cancer. Further investigation of Daxx-mediated taxol response revealed that Daxx is important for the proper timing of mitosis progression and cyclin B stability. Daxx interacts with mitotic checkpoint protein Rassf1 and partially co-localizes with this protein during mitosis. Rassf1/Daxx depletion or expression of Daxx binding domain of Rassf1 elevates cyclin B stability and increases taxol resistance in cells and mouse xenograft models. In breast cancer patients, we observed the inverse correlation between Daxx and clinical response to taxane-based chemotherapy. These data suggest that Daxx and Rassf1 define a mitotic stress checkpoint that enables cells to exit mitosis as micronucleated cells (and eventually die) when encountered with specific mitotic stress stimuli, including taxol. Surprisingly, depletion of Daxx or Rassf1 does not change activity of E3 ubiquitin ligase APC/C in in vitro settings, suggesting necessity of mitotic cellular environment for proper activation of this checkpoint. Daxx and Rassf1 may become useful predictive markers for the proper selection of patients for taxane chemotherapy.
Collapse
|
40
|
|
41
|
Barbosa J, Nascimento AV, Faria J, Silva P, Bousbaa H. The spindle assembly checkpoint: perspectives in tumorigenesis and cancer therapy. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11515-011-1122-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
42
|
Apostolov EO, Ray D, Alobuia WM, Mikhailova MV, Wang X, Basnakian AG, Shah SV. Endonuclease G mediates endothelial cell death induced by carbamylated LDL. Am J Physiol Heart Circ Physiol 2011; 300:H1997-2004. [PMID: 21460199 DOI: 10.1152/ajpheart.01311.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
End-stage kidney disease is a terminal stage of chronic kidney disease, which is associated with a high incidence of cardiovascular disease. Cardiovascular disease frequently results from endothelial injury caused by carbamylated LDL (cLDL), the product of LDL modification by urea-derived cyanate. Our previous data suggested that cLDL induces mitogen-activated protein kinase-dependent mitotic DNA fragmentation and cell death. However, the mechanism of this pathway is unknown. The current study demonstrated that cLDL-induced endothelial mitotic cell death is independent of caspase-3. The expression of endonuclease G (EndoG), the nuclease implicated in caspase-independent DNA fragmentation, was significantly increased in response to cLDL exposure to the cells. The inhibition of EndoG by RNAi protected cLDL-induced DNA fragmentation, whereas the overexpression of EndoG induced more DNA fragmentation in endothelial cells. Ex vivo experiments with primary endothelial cells isolated from wild-type (WT) and EndoG knockout (KO) mice demonstrated that EndoG KO cells are partially protected against cLDL toxicity compared with WT cells. To determine cLDL toxicity in vivo, we administered cLDL or native LDL (nLDL) intravenously to the WT and EndoG KO mice and then measured floating endothelial cells in blood using flow cytometry. The results showed an increased number of floating endothelial cells after cLDL versus nLDL injection in WT mice but not in EndoG KO mice. Finally, the inhibitors of MEK-ERK1/2 and JNK-c-jun pathways decreased cLDL-induced EndoG overexpression and DNA fragmentation. In summary, our data suggest that cLDL-induced endothelial toxicity is caspase independent and results from EndoG-dependent DNA fragmentation.
Collapse
Affiliation(s)
- Eugene O Apostolov
- Dept. of Pharmacology & Toxicology, Univ. of Arkansas for Medical Sciences, 4301 W. Markham St., Slot 638, Little Rock, AR 72205, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Kamata T, Pritchard C. Mechanisms of aneuploidy induction by RAS and RAF oncogenes. Am J Cancer Res 2011; 1:955-971. [PMID: 22016838 PMCID: PMC3196290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 03/28/2011] [Indexed: 05/31/2023] Open
Abstract
Most cancers progress with the accumulation of genetic mutations with time and this is frequently associated with the acquisition of genomic instability in the form of whole chromosome changes, chromosomal rearrangements, gene amplifications or smaller changes at the nucleotide level. Whole chromosome instability (W-CIN), characterised by aneuploidy, is a major form of genomic instability observed in human cancers and several lines of evidence now support the argument that W-CIN is a promoter of tumourigenesis rather than being a passenger event. The primary mechanism proposed for evolution of CIN is abnormalities in mitosis/cytokinesis. However, mutations in genes directly involved in controlling mitosis/cytokinesis are rare in human cancers and so the mechanisms underpinning the evolution of CIN in cancers are not currently clear. On the other hand, mutations in RAS or BRAF are frequently found in human cancers, many of which demonstrate CIN, suggesting a possible link between deregulated signaling through the RAS/RAF/MEK/ERK pathway and CIN. In this review, we focus on a potential relationship between deregulated RAS/RAF signaling and CIN, and discuss possible mechanisms connecting the two.
Collapse
Affiliation(s)
- Tamihiro Kamata
- Department of Biochemistry, University of Leicester University Road, Leicester, LEI 7RH, UK
| | | |
Collapse
|
44
|
Delavallée L, Cabon L, Galán-Malo P, Lorenzo HK, Susin SA. AIF-mediated caspase-independent necroptosis: A new chance for targeted therapeutics. IUBMB Life 2011; 63:221-32. [DOI: 10.1002/iub.432] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 01/26/2011] [Indexed: 02/07/2023]
|
45
|
Agarwal N, Tochigi Y, Adhikari AS, Cui S, Cui Y, Iwakuma T. MTBP plays a crucial role in mitotic progression and chromosome segregation. Cell Death Differ 2011; 18:1208-19. [PMID: 21274008 DOI: 10.1038/cdd.2010.189] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Murine double minute 2 (MDM2) binding protein (MTBP) has been implicated in tumor cell proliferation, but the underlying mechanisms remain unclear. The results of MTBP expression analysis during cell cycle progression demonstrated that MTBP protein was rapidly degraded during mitosis. Immunofluorescence studies revealed that a portion of MTBP was localized at the kinetochores during prometaphase. MTBP overexpression delayed mitotic progression from nuclear envelope breakdown (NEB) to anaphase onset and induced abnormal chromosome segregation such as lagging chromosomes, chromosome bridges, and multipolar chromosome segregation. Conversely, MTBP downmodulation caused an abbreviated metaphase and insufficient mitotic arrest, resulting in abnormal chromosome segregation, aneuploidy, decreased cell proliferation, senescence, and cell death, similar to that of Mad2 (mitotic arrest-deficient 2) downmodulation. Furthermore, MTBP downmodulation inhibited the accumulation of Mad1 and Mad2, but not BubR1 (budding uninhibited by benzimidazoles related 1), on the kinetochores, whereas MTBP overexpression inhibited the release of Mad2 from the metaphase kinetochores. These results may imply that MTBP has an important role in recruiting and/or retaining the Mad1/Mad2 complex at the kinetochores during prometaphase, but its degradation is required for silencing the mitotic checkpoint. Together, this study indicates that MTBP has a crucial role in proper mitotic progression and faithful chromosome segregation, providing new insights into regulation of the mitotic checkpoint.
Collapse
Affiliation(s)
- N Agarwal
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
46
|
Goto GH, Mishra A, Abdulle R, Slaughter CA, Kitagawa K. Bub1-mediated adaptation of the spindle checkpoint. PLoS Genet 2011; 7:e1001282. [PMID: 21298086 PMCID: PMC3029250 DOI: 10.1371/journal.pgen.1001282] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 12/20/2010] [Indexed: 12/27/2022] Open
Abstract
During cell division, the spindle checkpoint ensures accurate chromosome segregation by monitoring the kinetochore–microtubule interaction and delaying the onset of anaphase until each pair of sister chromosomes is properly attached to microtubules. The spindle checkpoint is deactivated as chromosomes start moving toward the spindles in anaphase, but the mechanisms by which this deactivation and adaptation to prolonged mitotic arrest occur remain obscure. Our results strongly suggest that Cdc28-mediated phosphorylation of Bub1 at T566 plays an important role for the degradation of Bub1 in anaphase, and the phosphorylation is required for adaptation of the spindle checkpoint to prolonged mitotic arrest. The spindle checkpoint protects cells from aneuploidy by monitoring the status of the kinetochore-microtubule attachment. Defects in this checkpoint pathway and in kinetochore-microtubule attachment can cause substantial aneuploidy in cells. The duration of the mitotic arrest induced by the spindle checkpoint is not indefinite: cells eventually exit from mitosis and re-enter interphase. Because continued activation of the spindle checkpoint is lethal, adaptation to the spindle checkpoint arrest is essential so that cells have a chance for survival as opposed to certain death. However, adaptation of the spindle checkpoint has a flip side—adapted cells could have an increased chance of aneuploidy due to premature mitotic exit. Thus, it is essential that this mechanism be regulated appropriately. Despite the importance of understanding the adaptation of the spindle checkpoint, little is known to date about this mechanism. We found that Cdc28-mediated phosphorylation of Bub1 at T566 plays an important role for adaptation of the spindle checkpoint, a finding providing the molecular insight on how adaptation to prolonged mitotic arrest induced by the spindle checkpoint occurs.
Collapse
Affiliation(s)
- Greicy H. Goto
- Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Ashutosh Mishra
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Rashid Abdulle
- Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Clive A. Slaughter
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Katsumi Kitagawa
- Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
47
|
Chen Y, Azad MB, Gibson SB. Methods for detecting autophagy and determining autophagy-induced cell death. Can J Physiol Pharmacol 2011; 88:285-95. [PMID: 20393593 DOI: 10.1139/y10-010] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Autophagy is an intracellular lysosomal degradation process, which in the case of macroautophagy, is characterized by the formation of double-membraned autophagosomes. Enhanced under stress conditions, autophagy can function to promote cell survival or cell death depending on the type of cellular stress. Interest in autophagy has increased substantially in the past several years as new research implicates this "self-eating" pathway in cell growth, development, and many human diseases. Various methods have been developed for detecting autophagy; however, the implementation of these methods and the interpretation of the results often vary between studies, and a more standardized approach is required. In this review, we summarize the current methods available for detecting autophagy and for determining its contribution to cell death. Furthermore, we discuss the critical points for the successful application of these methods based on experiences from our laboratory and from other research groups.
Collapse
Affiliation(s)
- Yongqiang Chen
- Department of Biochemistry and Medical Genetics, Faculty of Medicine, Manitoba Institute of Cell Biology, University of Manitoba, 675 McDermot Avenue, Winnipeg, MB R3E 0V9, Canada
| | | | | |
Collapse
|
48
|
Lai SK, Wong CH, Lee YP, Li HY. Caspase-3-mediated degradation of condensin Cap-H regulates mitotic cell death. Cell Death Differ 2010; 18:996-1004. [PMID: 21151026 DOI: 10.1038/cdd.2010.165] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mitotic death is a major form of cell death in cancer cells that have been treated with chemotherapeutic drugs. However, the mechanisms underlying this form of cell death is poorly understood. Here, we report that the loss of chromosome integrity is an important determinant of mitotic death. During prolonged mitotic arrest, caspase-3 is activated and it cleaves Cap-H, a subunit of condensin I. The depletion of Cap-H results in the loss of condensin I complex at the chromosomes, thus affecting the integrity of the chromosomes. Consequently, DNA fragmentation by caspase-activated DNase is facilitated, thus driving the cell towards mitotic death. By expressing a caspase-resistant form of Cap-H, mitotic death is abrogated and the cells are able to reenter interphase after a long mitotic delay. Taken together, we provide new insights into the molecular events that occur during mitotic death.
Collapse
Affiliation(s)
- S-K Lai
- Division of Molecular and Cell Biology, School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Singapore
| | | | | | | |
Collapse
|
49
|
Griffiths EA, Gore SD, Hooker CM, Mohammad HP, McDevitt MA, Smith BD, Karp JE, Herman JG, Carraway HE. Epigenetic differences in cytogenetically normal versus abnormal acute myeloid leukemia. Epigenetics 2010; 5:590-600. [PMID: 20671427 DOI: 10.4161/epi.5.7.12558] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Methylation of tumor suppression genes (TSGs) is common in myeloid malignancies. However, application of this as a molecular marker for risk stratification in patients with AML is limited. DESIGN AND METHODS To elucidate the impact of patterns of TSG methylation on outcome in cytogenetically normal patients, 106 samples from patients with having normal cytogenetic AML were evaluated for methylation of 12 genes by MSP. For sake of comparison, samples from patients with AML and abnormal cytogenetics (n = 63) were also evaluated. RESULTS Methylation frequencies in the whole group (n = 169) were similar to previous reports for CDH1 (31%), ER (31%), FHIT (9%), p15 (INK4b) (44%), p73 (25%), and SOCS1 (75%). Methylation of CTNNA1 was observed in 10%, CEBP-α in16%, CEBP-δ in 2%, MLH1 in 24%, MGMT in 11% and DAPK in 2% of AML samples. We find that DNA methylation was more prevalent in patients with normal compared to karyotypically abnormal AML for most genes; CEBPα (20% vs 9%), CTNNA1 (14% vs 4%), and ER (41% vs 19%) (p < 0.05 for all comparisons). In contrast, p73 was more frequently methylated in patients with karyotypic abnormalities (17% vs 38%; p < 0.05), perhaps due to specific silencing of the pro-apoptotic promoter shifting p73 gene expression to the anti-apoptotic transcript. In AML patients with normal cytogenetics, TSG methylation was not associated with event free or overall survival in a multivariate analysis. CONCLUSIONS In patients with AML, TSG methylation is more frequent in patients with normal karyotype than those with karyotypic abnormalities but does not confer independent prognostic information for patients with normal cytogenetics.
Collapse
|
50
|
Dötsch V, Bernassola F, Coutandin D, Candi E, Melino G. p63 and p73, the ancestors of p53. Cold Spring Harb Perspect Biol 2010; 2:a004887. [PMID: 20484388 DOI: 10.1101/cshperspect.a004887] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
p73 and p63 are two homologs of the tumor suppressive transcription factor p53. Given the high degree of structural similarity shared by the p53 family members, p73 and p63 can bind and activate transcription from the majority of the p53-responsive promoters. Besides overlapping functions shared with p53 (i.e., induction of apoptosis in response to cellular stress), the existence of extensive structural variability within the family determines unique roles for p63 and p73. Their crucial and specific functions in controlling development and differentiation are well exemplified by the p63 and p73 knockout mouse phenotypes. Here, we describe the contribution of p63 and p73 to human pathology with emphasis on their roles in tumorigenesis and development.
Collapse
Affiliation(s)
- V Dötsch
- Institute of Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|