1
|
Maclay T, Whalen J, Johnson M, Freudenreich CH. The DNA Replication Checkpoint Targets the Kinetochore for Relocation of Collapsed Forks to the Nuclear Periphery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599319. [PMID: 38948692 PMCID: PMC11212917 DOI: 10.1101/2024.06.17.599319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Hairpin forming expanded CAG/CTG repeats pose significant challenges to DNA replication which can lead to replication fork collapse. Long CAG/CTG repeat tracts relocate to the nuclear pore complex to maintain their integrity. Forks impeded by DNA structures are known to activate the DNA damage checkpoint, thus we asked whether checkpoint proteins play a role in relocation of collapsed forks to the nuclear periphery in S. cerevisiae . We show that relocation of a (CAG/CTG) 130 tract is dependent on activation of the Mrc1/Rad53 replication checkpoint. Further, checkpoint-mediated phosphorylation of the kinetochore protein Cep3 is required for relocation, implicating detachment of the centromere from the spindle pole body. Activation of this pathway leads to DNA damage-induced microtubule recruitment to the repeat. These data suggest a role for the DNA replication checkpoint in facilitating movement of collapsed replication forks to the nuclear periphery by centromere release and microtubule-directed motion. Highlights The DNA replication checkpoint initiates relocation of a structure-forming CAG repeat tract to the nuclear pore complex (NPC)The importance of Mrc1 (hClaspin) implicates fork uncoupling as the initial checkpoint signalPhosphorylation of the Cep3 kinetochore protein by Dun1 kinase allows for centromere release, which is critical for collapsed fork repositioningDamage-inducible nuclear microtubules (DIMs) colocalize with the repeat locus and are required for relocation to the NPCEstablishes a new role for the DNA replication and DNA damage checkpoint response to trigger repositioning of collapsed forks within the nucleus.
Collapse
|
2
|
Li S, Kasciukovic T, Tanaka TU. Kinetochore-microtubule error correction for biorientation: lessons from yeast. Biochem Soc Trans 2024; 52:29-39. [PMID: 38305688 PMCID: PMC10903472 DOI: 10.1042/bst20221261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024]
Abstract
Accurate chromosome segregation in mitosis relies on sister kinetochores forming stable attachments to microtubules (MTs) extending from opposite spindle poles and establishing biorientation. To achieve this, erroneous kinetochore-MT interactions must be resolved through a process called error correction, which dissolves improper kinetochore-MT attachment and allows new interactions until biorientation is achieved. The Aurora B kinase plays key roles in driving error correction by phosphorylating Dam1 and Ndc80 complexes, while Mps1 kinase, Stu2 MT polymerase and phosphatases also regulate this process. Once biorientation is formed, tension is applied to kinetochore-MT interaction, stabilizing it. In this review article, we discuss the mechanisms of kinetochore-MT interaction, error correction and biorientation. We focus mainly on recent insights from budding yeast, where the attachment of a single MT to a single kinetochore during biorientation simplifies the analysis of error correction mechanisms.
Collapse
Affiliation(s)
- Shuyu Li
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Taciana Kasciukovic
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Tomoyuki U. Tanaka
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| |
Collapse
|
3
|
Muir KW, Batters C, Dendooven T, Yang J, Zhang Z, Burt A, Barford D. Structural mechanism of outer kinetochore Dam1-Ndc80 complex assembly on microtubules. Science 2023; 382:1184-1190. [PMID: 38060647 PMCID: PMC7615550 DOI: 10.1126/science.adj8736] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
Kinetochores couple chromosomes to the mitotic spindle to segregate the genome during cell division. An error correction mechanism drives the turnover of kinetochore-microtubule attachments until biorientation is achieved. The structural basis for how kinetochore-mediated chromosome segregation is accomplished and regulated remains an outstanding question. In this work, we describe the cryo-electron microscopy structure of the budding yeast outer kinetochore Ndc80 and Dam1 ring complexes assembled onto microtubules. Complex assembly occurs through multiple interfaces, and a staple within Dam1 aids ring assembly. Perturbation of key interfaces suppresses yeast viability. Force-rupture assays indicated that this is a consequence of impaired kinetochore-microtubule attachment. The presence of error correction phosphorylation sites at Ndc80-Dam1 ring complex interfaces and the Dam1 staple explains how kinetochore-microtubule attachments are destabilized and reset.
Collapse
Affiliation(s)
- Kyle W. Muir
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Christopher Batters
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Tom Dendooven
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jing Yang
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ziguo Zhang
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Alister Burt
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - David Barford
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
4
|
Sankaranarayanan SR, Polisetty SD, Das K, Dumbrepatil A, Medina-Pritchard B, Singleton M, Jeyaprakash AA, Sanyal K. Functional plasticity in chromosome-microtubule coupling on the evolutionary time scale. Life Sci Alliance 2023; 6:e202201720. [PMID: 37793775 PMCID: PMC10551642 DOI: 10.26508/lsa.202201720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023] Open
Abstract
The Dam1 complex is essential for mitotic progression across evolutionarily divergent fungi. Upon analyzing amino acid (aa) sequences of Dad2, a Dam1 complex subunit, we identified a conserved 10-aa-long Dad2 signature sequence (DSS). An arginine residue (R126) in the DSS is essential for viability in Saccharomyces cerevisiae that possesses point centromeres. The corresponding arginine residues are functionally important but not essential for viability in Candida albicans and Cryptococcus neoformans; both carry several kilobases long regional centromeres. The purified recombinant Dam1 complex containing either Dad2ΔDSS or Dad2R126A failed to bind microtubules (MTs) or form any visible rings like the WT complex. Intriguingly, functional analysis revealed that the requirement of the conserved arginine residue for chromosome biorientation and mitotic progression reduced with increasing centromere length. We propose that plasticity of the invariant arginine of Dad2 in organisms with regional centromeres is achieved by conditional elevation of the kinetochore protein(s) to enable multiple kinetochore MTs to bind to each chromosome. The capacity of a chromosome to bind multiple kinetochore MTs may mask the deleterious effects of such lethal mutations.
Collapse
Affiliation(s)
- Sundar Ram Sankaranarayanan
- https://ror.org/0538gdx71 Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Satya Dev Polisetty
- https://ror.org/0538gdx71 Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Kuladeep Das
- https://ror.org/0538gdx71 Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Arti Dumbrepatil
- https://ror.org/0538gdx71 Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Bethan Medina-Pritchard
- https://ror.org/01nrxwf90 Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Martin Singleton
- https://ror.org/01nrxwf90 Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - A Arockia Jeyaprakash
- https://ror.org/01nrxwf90 Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
- Gene Center and Department of Biochemistry, Ludwig-Maximilian-Universität, Munich, Germany
| | - Kaustuv Sanyal
- https://ror.org/0538gdx71 Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
5
|
Li S, Garcia-Rodriguez LJ, Tanaka TU. Chromosome biorientation requires Aurora B's spatial separation from its outer kinetochore substrates, but not its turnover at kinetochores. Curr Biol 2023; 33:4557-4569.e3. [PMID: 37788666 DOI: 10.1016/j.cub.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/14/2023] [Accepted: 09/01/2023] [Indexed: 10/05/2023]
Abstract
For correct chromosome segregation in mitosis, sister kinetochores must interact with microtubules from opposite spindle poles (biorientation). For this, aberrant kinetochore-microtubule interaction must be resolved (error correction) by Aurora B kinase. Once biorientation is formed, tension is applied on kinetochore-microtubule interaction, stabilizing this interaction. The mechanism for this tension-dependent process has been debated. Here, we study how Aurora B localizations at different kinetochore sites affect the biorientation establishment and maintenance in budding yeast. Without the physiological Aurora B-INCENP recruitment mechanisms, engineered recruitment of Aurora B-INCENP to the inner kinetochore, but not to the outer kinetochore, prior to biorientation supports the subsequent biorientation establishment. Moreover, when the physiological Aurora B-INCENP recruitment mechanisms are present, an engineered Aurora B-INCENP recruitment to the outer kinetochore, but not to the inner kinetochore, during metaphase (after biorientation establishment) disrupts biorientation, which is dependent on the Aurora B kinase activity. These results suggest that the spatial separation of Aurora B from its outer kinetochore substrates is required to stabilize kinetochore-microtubule interaction when biorientation is formed and tension is applied on this interaction. Meanwhile, Aurora B exhibits dynamic turnover on the centromere/kinetochore during early mitosis, a process thought to be crucial for error correction and biorientation. However, using the engineered Aurora B-INCENP recruitment to the inner kinetochore, we demonstrate that, even without such a turnover, Aurora B-INCENP can efficiently support biorientation. Our study provides important insights into how Aurora B promotes error correction for biorientation in a tension-dependent manner.
Collapse
Affiliation(s)
- Shuyu Li
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Luis J Garcia-Rodriguez
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Tomoyuki U Tanaka
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
6
|
Shah S, Mittal P, Kumar D, Mittal A, Ghosh SK. Evidence of kinesin motors involved in stable kinetochore assembly during early meiosis. Mol Biol Cell 2023; 34:ar107. [PMID: 37556230 PMCID: PMC10559306 DOI: 10.1091/mbc.e22-12-0569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
During mitosis, the budding yeast, kinetochores remain attached to microtubules, except for a brief period during S phase. Sister-kinetochores separate into two clusters (bilobed organization) upon stable end-on attachment to microtubules emanating from opposite spindle poles. However, in meiosis, the outer kinetochore protein (Ndc80) reassembles at the centromeres much later after prophase I, establishing new kinetochore-microtubule attachments. Perhaps due to this, despite homolog bi-orientation, we observed that the Ndc80 are linearly dispersed between spindle poles during metaphase I of meiosis. The presence of end-on attachment marker Dam1 as a cluster near each pole suggests one of the other possibilities that the pole-proximal and pole-distal kinetochores are attached end-on and laterally to the microtubules, respectively. Colocalization studies of kinetochores and kinesin motors suggest that budding yeast kinesin 5, Cin8, and Kip1 perhaps localize to the end-on attached kinetochores while kinesin 8 and Kip3 resides at all the kinetochores. Our findings, including kinesin 5 and Ndc80 coappearance after prophase I and reduced Ndc80 levels in cin8 null mutant, suggest that kinesin motors are crucial for kinetochore reassembly and stability during early meiosis. Thus, this work reports yet another meiosis specific function of kinesin motors.
Collapse
Affiliation(s)
- Seema Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Priyanka Mittal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Deepanshu Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Anjani Mittal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Santanu K. Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
7
|
Gudimchuk NB, Alexandrova VV. Measuring and modeling forces generated by microtubules. Biophys Rev 2023; 15:1095-1110. [PMID: 37974983 PMCID: PMC10643784 DOI: 10.1007/s12551-023-01161-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023] Open
Abstract
Tubulins are essential proteins, which are conserved across all eukaryotic species. They polymerize to form microtubules, cytoskeletal components of paramount importance for cellular mechanics. The microtubules combine an extraordinarily high flexural rigidity and a non-equilibrium behavior, manifested in their intermittent assembly and disassembly. These chemically fueled dynamics allow microtubules to generate significant pushing and pulling forces at their ends to reposition intracellular organelles, remodel membranes, bear compressive forces, and transport chromosomes during cell division. In this article, we review classical and recent studies, which have allowed the quantification of microtubule-generated forces. The measurements, to which we owe most of the quantitative information about microtubule forces, were carried out in biochemically reconstituted systems in vitro. We also discuss how mathematical and computational modeling has contributed to the interpretations of these results and shaped our understanding of the mechanisms of force production by tubulin polymerization and depolymerization.
Collapse
Affiliation(s)
- Nikita B. Gudimchuk
- Department of Physics, Lomonosov Moscow State University, Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
- Pskov State University, Pskov, Russia
| | - Veronika V. Alexandrova
- Department of Physics, Lomonosov Moscow State University, Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
| |
Collapse
|
8
|
Parmar S, Gonzalez SJ, Heckel JM, Mukherjee S, McClellan M, Clarke DJ, Johansson M, Tank D, Geisness A, Wood DK, Gardner MK. Robust microtubule dynamics facilitate low-tension kinetochore detachment in metaphase. J Cell Biol 2023; 222:e202202085. [PMID: 37166419 PMCID: PMC10182774 DOI: 10.1083/jcb.202202085] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/07/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
During mitosis, sister chromatids are stretched apart at their centromeres via their attachment to oppositely oriented kinetochore microtubules. This stretching generates inwardly directed tension across the separated sister centromeres. The cell leverages this tension signal to detect and then correct potential errors in chromosome segregation, via a mechanical tension signaling pathway that detaches improperly attached kinetochores from their microtubules. However, the sequence of events leading up to these detachment events remains unknown. In this study, we used microfluidics to sustain and observe low-tension budding yeast metaphase spindles over multiple hours, allowing us to elucidate the tension history prior to a detachment event. We found that, under conditions in which kinetochore phosphorylation weakens low-tension kinetochore-microtubule connections, the mechanical forces produced via the dynamic growth and shortening of microtubules is required to efficiently facilitate detachment events. Our findings underscore the critical role of robust kinetochore microtubule dynamics in ensuring the fidelity of chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Sneha Parmar
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Samuel J. Gonzalez
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Julia M. Heckel
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Soumya Mukherjee
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Mark McClellan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Duncan J. Clarke
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Marnie Johansson
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Damien Tank
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Athena Geisness
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - David K. Wood
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Melissa K. Gardner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
9
|
Zahm JA, Jenni S, Harrison SC. Structure of the Ndc80 complex and its interactions at the yeast kinetochore-microtubule interface. Open Biol 2023; 13:220378. [PMID: 36883282 PMCID: PMC9993044 DOI: 10.1098/rsob.220378] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/08/2023] [Indexed: 03/09/2023] Open
Abstract
The conserved Ndc80 kinetochore complex, Ndc80c, is the principal link between mitotic spindle microtubules and centromere-associated proteins. We used AlphaFold 2 (AF2) to obtain predictions of the Ndc80 'loop' structure and of the Ndc80 : Nuf2 globular head domains that interact with the Dam1 subunit of the heterodecameric DASH/Dam1 complex (Dam1c). The predictions guided design of crystallizable constructs, with structures close to the predicted ones. The Ndc80 'loop' is a stiff, α-helical 'switchback' structure; AF2 predictions and positions of preferential cleavage sites indicate that flexibility within the long Ndc80c rod occurs instead at a hinge closer to the globular head. Conserved stretches of the Dam1 C terminus bind Ndc80c such that phosphorylation of Dam1 serine residues 257, 265 and 292 by the mitotic kinase Ipl1/Aurora B can release this contact during error correction of mis-attached kinetochores. We integrate the structural results presented here into our current molecular model of the kinetochore-microtubule interface. The model illustrates how multiple interactions between Ndc80c, DASH/Dam1c and the microtubule lattice stabilize kinetochore attachments.
Collapse
Affiliation(s)
- Jacob A. Zahm
- Department of Biological Chemistry and Molecular Pharmacology, and
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, and
| | - Stephen C. Harrison
- Department of Biological Chemistry and Molecular Pharmacology, and
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Bunning AR, Gupta Jr. ML. The importance of microtubule-dependent tension in accurate chromosome segregation. Front Cell Dev Biol 2023; 11:1096333. [PMID: 36755973 PMCID: PMC9899852 DOI: 10.3389/fcell.2023.1096333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Accurate chromosome segregation is vital for cell and organismal viability. The mitotic spindle, a bipolar macromolecular machine composed largely of dynamic microtubules, is responsible for chromosome segregation during each cell replication cycle. Prior to anaphase, a bipolar metaphase spindle must be formed in which each pair of chromatids is attached to microtubules from opposite spindle poles. In this bipolar configuration pulling forces from the dynamic microtubules can generate tension across the sister kinetochores. The tension status acts as a signal that can destabilize aberrant kinetochore-microtubule attachments and reinforces correct, bipolar connections. Historically it has been challenging to isolate the specific role of tension in mitotic processes due to the interdependency of attachment and tension status at kinetochores. Recent technical and experimental advances have revealed new insights into how tension functions during mitosis. Here we summarize the evidence that tension serves as a biophysical signal that unifies multiple aspects of kinetochore and centromere function to ensure accurate chromosome segregation.
Collapse
|
11
|
Favre-Bulle IA, Scott EK. Optical tweezers across scales in cell biology. Trends Cell Biol 2022; 32:932-946. [PMID: 35672197 PMCID: PMC9588623 DOI: 10.1016/j.tcb.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 01/21/2023]
Abstract
Optical tweezers (OT) provide a noninvasive approach for delivering minute physical forces to targeted objects. Controlling such forces in living cells or in vitro preparations allows for the measurement and manipulation of numerous processes relevant to the form and function of cells. As such, OT have made important contributions to our understanding of the structures of proteins and nucleic acids, the interactions that occur between microscopic structures within cells, the choreography of complex processes such as mitosis, and the ways in which cells interact with each other. In this review, we highlight recent contributions made to the field of cell biology using OT and provide basic descriptions of the physics, the methods, and the equipment that made these studies possible.
Collapse
Affiliation(s)
- Itia A Favre-Bulle
- Queensland Brain Institute, The University of Queensland, 4067, Brisbane, Australia; School of Mathematics and Physics, The University of Queensland, 4067, Brisbane, Australia.
| | - Ethan K Scott
- Queensland Brain Institute, The University of Queensland, 4067, Brisbane, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
12
|
Flores RL, Peterson ZE, Zelter A, Riffle M, Asbury CL, Davis TN. Three interacting regions of the Ndc80 and Dam1 complexes support microtubule tip-coupling under load. J Cell Biol 2022; 221:213102. [PMID: 35353161 DOI: 10.1083/jcb.202107016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/20/2021] [Accepted: 03/07/2022] [Indexed: 01/15/2023] Open
Abstract
Accurate mitosis requires kinetochores to make persistent, load-bearing attachments to dynamic microtubule tips, thereby coupling chromosome movements to tip growth and shortening. This tip-coupling behavior depends on the conserved Ndc80 complex and, in budding yeast, on the Dam1 complex, which bind each other directly via three distinct interacting regions. The functional relevance of these multiple interactions was mysterious. Here we show that interactions between two of these regions support the high rupture strengths that occur when applied force is rapidly increased and also support the stability of tip-coupling when force is held constant over longer durations. The contribution of either of these two regions to tip-coupling is reduced by phosphorylation by Aurora B kinase. The third interaction region makes no apparent contribution to rupture strength, but its phosphorylation by Aurora B kinase specifically decreases the long-term stability of tip-coupling. The specific reduction of long-term stability relative to short-term strength might have important implications for mitotic error correction.
Collapse
Affiliation(s)
- Rachel L Flores
- Department of Biochemistry, University of Washington, Seattle, WA
| | | | - Alex Zelter
- Department of Biochemistry, University of Washington, Seattle, WA
| | - Michael Riffle
- Department of Biochemistry, University of Washington, Seattle, WA
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, WA
| |
Collapse
|
13
|
SWAP, SWITCH, and STABILIZE: Mechanisms of Kinetochore–Microtubule Error Correction. Cells 2022; 11:cells11091462. [PMID: 35563768 PMCID: PMC9104000 DOI: 10.3390/cells11091462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022] Open
Abstract
For correct chromosome segregation in mitosis, eukaryotic cells must establish chromosome biorientation where sister kinetochores attach to microtubules extending from opposite spindle poles. To establish biorientation, any aberrant kinetochore–microtubule interactions must be resolved in the process called error correction. For resolution of the aberrant interactions in error correction, kinetochore–microtubule interactions must be exchanged until biorientation is formed (the SWAP process). At initiation of biorientation, the state of weak kinetochore–microtubule interactions should be converted to the state of stable interactions (the SWITCH process)—the conundrum of this conversion is called the initiation problem of biorientation. Once biorientation is established, tension is applied on kinetochore–microtubule interactions, which stabilizes the interactions (the STABILIZE process). Aurora B kinase plays central roles in promoting error correction, and Mps1 kinase and Stu2 microtubule polymerase also play important roles. In this article, we review mechanisms of error correction by considering the SWAP, SWITCH, and STABILIZE processes. We mainly focus on mechanisms found in budding yeast, where only one microtubule attaches to a single kinetochore at biorientation, making the error correction mechanisms relatively simpler.
Collapse
|
14
|
Doodhi H, Tanaka TU. Swap and stop - Kinetochores play error correction with microtubules: Mechanisms of kinetochore-microtubule error correction: Mechanisms of kinetochore-microtubule error correction. Bioessays 2022; 44:e2100246. [PMID: 35261042 PMCID: PMC9344824 DOI: 10.1002/bies.202100246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/30/2022]
Abstract
Correct chromosome segregation in mitosis relies on chromosome biorientation, in which sister kinetochores attach to microtubules from opposite spindle poles prior to segregation. To establish biorientation, aberrant kinetochore–microtubule interactions must be resolved through the error correction process. During error correction, kinetochore–microtubule interactions are exchanged (swapped) if aberrant, but the exchange must stop when biorientation is established. In this article, we discuss recent findings in budding yeast, which have revealed fundamental molecular mechanisms promoting this “swap and stop” process for error correction. Where relevant, we also compare the findings in budding yeast with mechanisms in higher eukaryotes. Evidence suggests that Aurora B kinase differentially regulates kinetochore attachments to the microtubule end and its lateral side and switches relative strength of the two kinetochore–microtubule attachment modes, which drives the exchange of kinetochore–microtubule interactions to resolve aberrant interactions. However, Aurora B kinase, recruited to centromeres and inner kinetochores, cannot reach its targets at kinetochore–microtubule interface when tension causes kinetochore stretching, which stops the kinetochore–microtubule exchange once biorientation is established.
Collapse
Affiliation(s)
- Harinath Doodhi
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
15
|
Iemura K, Yoshizaki Y, Kuniyasu K, Tanaka K. Attenuated Chromosome Oscillation as a Cause of Chromosomal Instability in Cancer Cells. Cancers (Basel) 2021; 13:cancers13184531. [PMID: 34572757 PMCID: PMC8470601 DOI: 10.3390/cancers13184531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chromosomal instability (CIN), a condition in which chromosome missegregation occurs at high rates, is widely seen in cancer cells. Causes of CIN in cancer cells are not fully understood. A recent report suggests that chromosome oscillation, an iterative chromosome motion typically seen in metaphase around the spindle equator, is attenuated in cancer cells, and is associated with CIN. Chromosome oscillation promotes the correction of erroneous kinetochore-microtubule attachments through phosphorylation of Hec1, a kinetochore protein that binds to microtubules, by Aurora A kinase residing on the spindle. In this review, we focused on this unappreciated link between chromosome oscillation and CIN. Abstract Chromosomal instability (CIN) is commonly seen in cancer cells, and related to tumor progression and poor prognosis. Among the causes of CIN, insufficient correction of erroneous kinetochore (KT)-microtubule (MT) attachments plays pivotal roles in various situations. In this review, we focused on the previously unappreciated role of chromosome oscillation in the correction of erroneous KT-MT attachments, and its relevance to the etiology of CIN. First, we provided an overview of the error correction mechanisms for KT-MT attachments, especially the role of Aurora kinases in error correction by phosphorylating Hec1, which connects MT to KT. Next, we explained chromosome oscillation and its underlying mechanisms. Then we introduced how chromosome oscillation is involved in the error correction of KT-MT attachments, based on recent findings. Chromosome oscillation has been shown to promote Hec1 phosphorylation by Aurora A which localizes to the spindle. Finally, we discussed the link between attenuated chromosome oscillation and CIN in cancer cells. This link underscores the role of chromosome dynamics in mitotic fidelity, and the mutual relationship between defective chromosome dynamics and CIN in cancer cells that can be a target for cancer therapy.
Collapse
|
16
|
Regulation of microtubule dynamics, mechanics and function through the growing tip. Nat Rev Mol Cell Biol 2021; 22:777-795. [PMID: 34408299 DOI: 10.1038/s41580-021-00399-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Microtubule dynamics and their control are essential for the normal function and division of all eukaryotic cells. This plethora of functions is, in large part, supported by dynamic microtubule tips, which can bind to various intracellular targets, generate mechanical forces and couple with actin microfilaments. Here, we review progress in the understanding of microtubule assembly and dynamics, focusing on new information about the structure of microtubule tips. First, we discuss evidence for the widely accepted GTP cap model of microtubule dynamics. Next, we address microtubule dynamic instability in the context of structural information about assembly intermediates at microtubule tips. Three currently discussed models of microtubule assembly and dynamics are reviewed. These are considered in the context of established facts and recent data, which suggest that some long-held views must be re-evaluated. Finally, we review structural observations about the tips of microtubules in cells and describe their implications for understanding the mechanisms of microtubule regulation by associated proteins, by mechanical forces and by microtubule-targeting drugs, prominently including cancer chemotherapeutics.
Collapse
|
17
|
Böhm M, Killinger K, Dudziak A, Pant P, Jänen K, Hohoff S, Mechtler K, Örd M, Loog M, Sanchez-Garcia E, Westermann S. Cdc4 phospho-degrons allow differential regulation of Ame1 CENP-U protein stability across the cell cycle. eLife 2021; 10:67390. [PMID: 34308839 PMCID: PMC8341979 DOI: 10.7554/elife.67390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/24/2021] [Indexed: 02/05/2023] Open
Abstract
Kinetochores are multi-subunit protein assemblies that link chromosomes to microtubules of the mitotic and meiotic spindle. It is still poorly understood how efficient, centromere-dependent kinetochore assembly is accomplished from hundreds of individual protein building blocks in a cell cycle-dependent manner. Here, by combining comprehensive phosphorylation analysis of native Ctf19CCAN subunits with biochemical and functional assays in the model system budding yeast, we demonstrate that Cdk1 phosphorylation activates phospho-degrons on the essential subunit Ame1CENP-U, which are recognized by the E3 ubiquitin ligase complex SCF-Cdc4. Gradual phosphorylation of degron motifs culminates in M-phase and targets the protein for degradation. Binding of the Mtw1Mis12 complex shields the proximal phospho-degron, protecting kinetochore-bound Ame1 from the degradation machinery. Artificially increasing degron strength partially suppresses the temperature sensitivity of a cdc4 mutant, while overexpression of Ame1-Okp1 is toxic in SCF mutants, demonstrating the physiological importance of this mechanism. We propose that phospho-regulated clearance of excess CCAN subunits facilitates efficient centromere-dependent kinetochore assembly. Our results suggest a novel strategy for how phospho-degrons can be used to regulate the assembly of multi-subunit complexes.
Collapse
Affiliation(s)
- Miriam Böhm
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Kerstin Killinger
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Alexander Dudziak
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Pradeep Pant
- Department of Computational Biochemistry, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Karolin Jänen
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Simone Hohoff
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Karl Mechtler
- IMP - Research Institute of Molecular Pathology, Vienna, Austria.,Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria.,Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Mihkel Örd
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mart Loog
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Elsa Sanchez-Garcia
- Department of Computational Biochemistry, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Stefan Westermann
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
18
|
Doodhi H, Kasciukovic T, Clayton L, Tanaka TU. Aurora B switches relative strength of kinetochore-microtubule attachment modes for error correction. J Cell Biol 2021; 220:211981. [PMID: 33851957 PMCID: PMC8050843 DOI: 10.1083/jcb.202011117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/03/2021] [Accepted: 03/17/2021] [Indexed: 11/24/2022] Open
Abstract
To establish chromosome biorientation, aberrant kinetochore–microtubule interaction must be resolved (error correction) by Aurora B kinase. Aurora B differentially regulates kinetochore attachment to the microtubule plus end and its lateral side (end-on and lateral attachment, respectively). However, it is still unclear how kinetochore–microtubule interactions are exchanged during error correction. Here, we reconstituted the budding yeast kinetochore–microtubule interface in vitro by attaching the Ndc80 complexes to nanobeads. These Ndc80C nanobeads recapitulated in vitro the lateral and end-on attachments of authentic kinetochores on dynamic microtubules loaded with the Dam1 complex. This in vitro assay enabled the direct comparison of lateral and end-on attachment strength and showed that Dam1 phosphorylation by Aurora B makes the end-on attachment weaker than the lateral attachment. Similar reconstitutions with purified kinetochore particles were used for comparison. We suggest the Dam1 phosphorylation weakens interaction with the Ndc80 complex, disrupts the end-on attachment, and promotes the exchange to a new lateral attachment, leading to error correction.
Collapse
Affiliation(s)
- Harinath Doodhi
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Taciana Kasciukovic
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Lesley Clayton
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
19
|
Meyer RE, Tipton AR, LaVictoire R, Gorbsky GJ, Dawson DS. Mps1 promotes poleward chromosome movements in meiotic prometaphase. Mol Biol Cell 2021; 32:1020-1032. [PMID: 33788584 PMCID: PMC8101486 DOI: 10.1091/mbc.e20-08-0525-t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In prophase of meiosis I, homologous chromosomes pair and become connected by cross-overs. Chiasmata, the connections formed by cross-overs, enable the chromosome pair, called a bivalent, to attach as a single unit to the spindle. When the meiotic spindle forms in prometaphase, most bivalents are associated with one spindle pole and then go through a series of oscillations on the spindle, attaching to and detaching from microtubules until the partners of the bivalent become bioriented—attached to microtubules from opposite sides of the spindle. The conserved kinase, Mps1, is essential for the bivalents to be pulled by microtubules across the spindle in prometaphase. Here we show that MPS1 is needed for efficient triggering of the migration of microtubule-attached kinetochores toward the poles and promotes microtubule depolymerization. Our data support the model Mps1 acts at the kinetochore to coordinate the successful attachment of a microtubule and the triggering of microtubule depolymerization to then move the chromosome.
Collapse
Affiliation(s)
- Régis E Meyer
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Aaron R Tipton
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Rebecca LaVictoire
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Gary J Gorbsky
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Dean S Dawson
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
20
|
McIntosh JR. Anaphase A. Semin Cell Dev Biol 2021; 117:118-126. [PMID: 33781672 DOI: 10.1016/j.semcdb.2021.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Anaphase A is the motion of recently separated chromosomes to the spindle pole they face. It is accompanied by the shortening of kinetochore-attached microtubules. The requisite tubulin depolymerization may occur at kinetochores, at poles, or both, depending on the species and/or the time in mitosis. These depolymerization events are local and suggest that cells regulate microtubule dynamics in specific places, presumably by the localization of relevant enzymes and microtubule-associated proteins to specific loci, such as pericentriolar material and outer kinetochores. Motor enzymes can contribute to anaphase A, both by altering microtubule stability and by pushing or pulling microtubules through the cell. The generation of force on chromosomes requires couplings that can both withstand the considerable force that spindles can generate and simultaneously permit tubulin addition and loss. This chapter reviews literature on the molecules that regulate anaphase microtubule dynamics, couple dynamic microtubules to kinetochores and poles, and generate forces for microtubule and chromosome motion.
Collapse
Affiliation(s)
- J Richard McIntosh
- Dept. of Molecular, Cellular, and Developmental Biology University of Colorado, Boulder, CO 80309-0347, USA.
| |
Collapse
|
21
|
Kornakov N, Möllers B, Westermann S. The EB1-Kinesin-14 complex is required for efficient metaphase spindle assembly and kinetochore bi-orientation. J Cell Biol 2021; 219:211447. [PMID: 33044553 PMCID: PMC7545359 DOI: 10.1083/jcb.202003072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/28/2020] [Accepted: 09/10/2020] [Indexed: 12/28/2022] Open
Abstract
Kinesin-14s are conserved molecular motors required for high-fidelity chromosome segregation, but their specific contributions to spindle function have not been fully defined. Here, we show that key functions of budding yeast Kinesin-14 Cik1-Kar3 are accomplished in a complex with Bim1 (yeast EB1). Genetic complementation of mitotic phenotypes identifies a novel KLTF peptide motif in the Cik1 N-terminus. We show that this motif is one element of a tripartite binding interface required to form a high-affinity Bim1–Cik1-Kar3 complex. Lack of Bim1-binding by Cik1-Kar3 delays cells in mitosis and impairs microtubule bundle organization and dynamics. Conversely, constitutive targeting of Cik1-Kar3 to microtubule plus ends induces the formation of nuclear microtubule bundles. Cells lacking the Bim1–Cik1-Kar3 complex rely on the conserved microtubule bundler Ase1/PRC1 for metaphase spindle organization, and simultaneous loss of plus-end targeted Kar3 and Ase1 is lethal. Our results reveal the contributions of an EB1–Kinesin-14 complex for spindle formation as a prerequisite for efficient kinetochore clustering and bi-orientation.
Collapse
Affiliation(s)
- Nikolay Kornakov
- Department of Molecular Genetics, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Bastian Möllers
- Department of Molecular Genetics, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Stefan Westermann
- Department of Molecular Genetics, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
22
|
Shake It Off: The Elimination of Erroneous Kinetochore-Microtubule Attachments and Chromosome Oscillation. Int J Mol Sci 2021; 22:ijms22063174. [PMID: 33804687 PMCID: PMC8003821 DOI: 10.3390/ijms22063174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 01/17/2023] Open
Abstract
Cell proliferation and sexual reproduction require the faithful segregation of chromosomes. Chromosome segregation is driven by the interaction of chromosomes with the spindle, and the attachment of chromosomes to the proper spindle poles is essential. Initial attachments are frequently erroneous due to the random nature of the attachment process; however, erroneous attachments are selectively eliminated. Proper attachment generates greater tension at the kinetochore than erroneous attachments, and it is thought that attachment selection is dependent on this tension. However, studies of meiotic chromosome segregation suggest that attachment elimination cannot be solely attributed to tension, and the precise mechanism of selective elimination of erroneous attachments remains unclear. During attachment elimination, chromosomes oscillate between the spindle poles. A recent study on meiotic chromosome segregation in fission yeast has suggested that attachment elimination is coupled to chromosome oscillation. In this review, the possible contribution of chromosome oscillation in the elimination of erroneous attachment is discussed in light of the recent finding.
Collapse
|
23
|
Gutierrez A, Kim JO, Umbreit NT, Asbury CL, Davis TN, Miller MP, Biggins S. Cdk1 Phosphorylation of the Dam1 Complex Strengthens Kinetochore-Microtubule Attachments. Curr Biol 2020; 30:4491-4499.e5. [PMID: 32946748 PMCID: PMC7497780 DOI: 10.1016/j.cub.2020.08.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/20/2020] [Accepted: 08/14/2020] [Indexed: 12/01/2022]
Abstract
To ensure the faithful inheritance of DNA, a macromolecular protein complex called the kinetochore sustains the connection between chromosomes and force-generating dynamic microtubules during cell division. Defects in this process lead to aneuploidy, a common feature of cancer cells and the cause of many developmental diseases [1, 2, 3, 4]. One of the major microtubule-binding activities in the kinetochore is mediated by the conserved Ndc80 complex (Ndc80c) [5, 6, 7]. In budding yeast, the retention of kinetochores on dynamic microtubule tips also depends on the essential heterodecameric Dam1 complex (Dam1c) [8, 9, 10, 11, 12, 13, 14, 15], which binds to the Ndc80c and is proposed to be a functional ortholog of the metazoan Ska complex [16, 17]. The load-bearing activity of the Dam1c depends on its ability to oligomerize, and the purified complex spontaneously self-assembles into microtubule-encircling oligomeric rings, which are proposed to function as collars that allow kinetochores to processively track the plus-end tips of microtubules and harness the forces generated by disassembling microtubules [10, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22]. However, it is unknown whether there are specific regulatory events that promote Dam1c oligomerization to ensure accurate segregation. Here, we used a reconstitution system to discover that Cdk1, the major mitotic kinase that drives the cell cycle, phosphorylates the Ask1 component of the Dam1c to increase its residence time on microtubules and enhance kinetochore-microtubule attachment strength. We propose that Cdk1 activity promotes Dam1c oligomerization to ensure that kinetochore-microtubule attachments are stabilized as kinetochores come under tension in mitosis. Cdk1 phosphorylation of Dam1c strengthens kinetochore-microtubule attachments Ask1 is the key Cdk1 target in Dam1c that enhances for kinetochore-microtubule attachments Dynamic phosphorylation of Dam1c by Cdk1 is important in vivo Cdk1 phosphorylation of Ask1 appears to promote Dam1c oligomerization
Collapse
Affiliation(s)
- Abraham Gutierrez
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA; Molecular and Cellular Biology Program, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Jae Ook Kim
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
| | - Neil T Umbreit
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
| | - Matthew P Miller
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA.
| |
Collapse
|
24
|
Structural view of the yeast Dam1 complex, a ring-shaped molecular coupler for the dynamic microtubule end. Essays Biochem 2020; 64:359-370. [PMID: 32579171 DOI: 10.1042/ebc20190079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 11/17/2022]
Abstract
In a dividing eukaryotic cell, proper chromosome segregation requires the dynamic yet persistent attachment of kinetochores to spindle microtubules. In the budding yeast Saccharomyces cerevisiae, this function is especially crucial because each kinetochore is attached to a single microtubule; consequently, loss of attachment could lead to unrecoverable chromosome loss. The highly specialized heterodecameric Dam1 protein complex achieves this coupling by assembling into a microtubule-encircling ring that glides near the end of the dynamic microtubule to mediate chromosome motion. In recent years, we have learned a great deal about the structural properties of the Dam1 heterodecamer, its mechanism of self-assembly into rings, and its tethering to the kinetochore by the elongated Ndc80 complex. The most remarkable progress has resulted from defining the fine structures of helical bundles within Dam1 heterodecamer. In this review, we critically analyze structural observations collected by diverse approaches with the goal of obtaining a unified view of Dam1 ring architecture. A considerable consistency between different studies supports a coherent model of the circular core of the Dam1 ring. However, there are persistent uncertainties about the composition of ring protrusions and flexible extensions, as well as their roles in mediating ring core assembly and interactions with the Ndc80 complex and microtubule.
Collapse
|
25
|
Mittal P, Ghule K, Trakroo D, Prajapati HK, Ghosh SK. Meiosis-Specific Functions of Kinesin Motors in Cohesin Removal and Maintenance of Chromosome Integrity in Budding Yeast. Mol Cell Biol 2020; 40:e00386-19. [PMID: 31964755 PMCID: PMC7108822 DOI: 10.1128/mcb.00386-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/20/2019] [Accepted: 12/26/2019] [Indexed: 12/31/2022] Open
Abstract
Kinesin motors provide the molecular forces at the kinetochore-microtubule interface and along the spindle to control chromosome segregation. During meiosis with two rounds of microtubule assembly-disassembly, the roles of motor proteins remain unexplored. We observed that in contrast to mitosis, Cin8 and Kip3 together are indispensable for meiosis. While examining meiosis in cin8Δ kip3Δ cells, we detected chromosome breakage in the meiosis II cells. The double mutant exhibits a delay in cohesin removal during anaphase I. Consequently, some cells fail to undergo meiosis II and form dyads, while some, as they progress through meiosis II, cause a defect in chromosome integrity. We believe that in the latter cells, an imbalance of spindle-mediated force and the simultaneous persistence of cohesin on chromosomes cause their breakage. We provide evidence that tension generated by Cin8 and Kip3 through microtubule cross-linking is essential for signaling efficient cohesin removal and the maintenance of chromosome integrity during meiosis.
Collapse
Affiliation(s)
- Priyanka Mittal
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Komal Ghule
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, India
| | - Deepika Trakroo
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, India
| | - Hemant Kumar Prajapati
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Santanu K Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, India
| |
Collapse
|
26
|
Vukušić K, Buđa R, Tolić IM. Force-generating mechanisms of anaphase in human cells. J Cell Sci 2019; 132:132/18/jcs231985. [DOI: 10.1242/jcs.231985] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
ABSTRACT
What forces drive chromosome segregation remains one of the most challenging questions in cell division. Even though the duration of anaphase is short, it is of utmost importance for genome fidelity that no mistakes are made. Seminal studies in model organisms have revealed different mechanisms operating during chromosome segregation in anaphase, but the translation of these mechanisms to human cells is not straightforward. Recent work has shown that kinetochore fiber depolymerization during anaphase A is largely motor independent, whereas spindle elongation during anaphase B is coupled to sliding of interpolar microtubules in human cells. In this Review, we discuss the current knowledge on the mechanisms of force generation by kinetochore, interpolar and astral microtubules. By combining results from numerous studies, we propose a comprehensive picture of the role of individual force-producing and -regulating proteins. Finally, by linking key concepts of anaphase to most recent data, we summarize the contribution of all proposed mechanisms to chromosome segregation and argue that sliding of interpolar microtubules and depolymerization at the kinetochore are the main drivers of chromosome segregation during early anaphase in human cells.
Collapse
Affiliation(s)
- Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Renata Buđa
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Iva M. Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
27
|
Amin MA, Agarwal S, Varma D. Mapping the kinetochore MAP functions required for stabilizing microtubule attachments to chromosomes during metaphase. Cytoskeleton (Hoboken) 2019; 76:398-412. [PMID: 31454167 DOI: 10.1002/cm.21559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022]
Abstract
In mitosis, faithful chromosome segregation is orchestrated by the dynamic interactions between the spindle microtubules (MTs) emanating from the opposite poles and the kinetochores of the chromosomes. However, the precise mechanism that coordinates the coupling of the kinetochore components to dynamic MTs has been a long-standing question. Microtubule-associated proteins (MAPs) regulate MT nucleation and dynamics, MT-mediated transport and MT cross-linking in cells. During mitosis, MAPs play an essential role not only in determining spindle length, position, and orientation but also in facilitating robust kinetochore-microtubule (kMT) attachments by linking the kinetochores to spindle MTs efficiently. The stability of MTs imparted by the MAPs is critical to ensure accurate chromosome segregation. This review primarily focuses on the specific function of nonmotor kinetochore MAPs, their recruitment to kinetochores and their MT-binding properties. We also attempt to synthesize and strengthen our understanding of how these MAPs work in coordination with the kinetochore-bound Ndc80 complex (the key component at the MT-binding interface in metaphase and anaphase) to establish stable kMT attachments and control accurate chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Mohammed A Amin
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Shivangi Agarwal
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Dileep Varma
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
28
|
Vallardi G, Cordeiro MH, Saurin AT. A Kinase-Phosphatase Network that Regulates Kinetochore-Microtubule Attachments and the SAC. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 56:457-484. [PMID: 28840249 DOI: 10.1007/978-3-319-58592-5_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The KMN network (for KNL1, MIS12 and NDC80 complexes) is a hub for signalling at the outer kinetochore. It integrates the activities of two kinases (MPS1 and Aurora B) and two phosphatases (PP1 and PP2A-B56) to regulate kinetochore-microtubule attachments and the spindle assembly checkpoint (SAC). We will first discuss each of these enzymes separately, to describe how they are regulated at kinetochores and why this is important for their primary function in controlling either microtubule attachments or the SAC. We will then discuss why inhibiting any one of them individually produces secondary effects on all the others. This cross-talk may help to explain why all enzymes have been linked to both processes, even though the direct evidence suggests they each control only one. This chapter therefore describes how a network of kinases and phosphatases work together to regulate two key mitotic processes.
Collapse
Affiliation(s)
- Giulia Vallardi
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Marilia Henriques Cordeiro
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Adrian Thomas Saurin
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
29
|
García-Rodríguez LJ, Kasciukovic T, Denninger V, Tanaka TU. Aurora B-INCENP Localization at Centromeres/Inner Kinetochores Is Required for Chromosome Bi-orientation in Budding Yeast. Curr Biol 2019; 29:1536-1544.e4. [PMID: 31006569 PMCID: PMC6509284 DOI: 10.1016/j.cub.2019.03.051] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/06/2019] [Accepted: 03/22/2019] [Indexed: 12/24/2022]
Abstract
For proper chromosome segregation in mitosis, sister kinetochores must interact with microtubules from opposite spindle poles (chromosome bi-orientation) [1, 2]. To promote bi-orientation, Aurora B kinase disrupts aberrant kinetochore-microtubule interactions [3, 4, 5, 6]. It has long been debated how Aurora B halts this action when bi-orientation is established and tension is applied across sister kinetochores. A popular explanation for it is that, upon bi-orientation, sister kinetochores are pulled in opposite directions, stretching the outer kinetochores [7, 8] and moving Aurora B substrates away from Aurora-B-localizing sites at centromeres (spatial separation model) [3, 5, 9]. This model predicts that Aurora B localization at centromeres is required for bi-orientation. However, this notion was challenged by the observation that Bir1 (yeast survivin), which recruits Ipl1-Sli15 (yeast Aurora B-INCENP) to centromeres, can become dispensable for bi-orientation [10]. This raised the possibility that Aurora B localization at centromeres is dispensable for bi-orientation. Alternatively, there might be a Bir1-independent mechanism for recruiting Ipl1-Sli15 to centromeres or inner kinetochores [5, 9]. Here, we show that the COMA inner kinetochore sub-complex physically interacts with Sli15, recruits Ipl1-Sli15 to the inner kinetochore, and promotes chromosome bi-orientation, independently of Bir1, in budding yeast. Moreover, using an engineered recruitment of Ipl1-Sli15 to the inner kinetochore when both Bir1 and COMA are defective, we show that localization of Ipl1-Sli15 at centromeres or inner kinetochores is required for bi-orientation. Our results give important insight into how Aurora B disrupts kinetochore-microtubule interaction in a tension-dependent manner to promote chromosome bi-orientation. The COMA inner kinetochore sub-complex facilitates chromosome bi-orientation COMA physically interacts with Sli15 and recruits Ipl1-Sli15 to the inner kinetochore This function of COMA is independent of Bir1 and its role supporting robust cohesion Localizing Ipl1-Sli15 at centromeres/inner kinetochores is crucial for bi-orientation
Collapse
Affiliation(s)
- Luis J García-Rodríguez
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Taciana Kasciukovic
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Viola Denninger
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
30
|
Ng CT, Deng L, Chen C, Lim HH, Shi J, Surana U, Gan L. Electron cryotomography analysis of Dam1C/DASH at the kinetochore-spindle interface in situ. J Cell Biol 2018; 218:455-473. [PMID: 30504246 PMCID: PMC6363454 DOI: 10.1083/jcb.201809088] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/25/2018] [Accepted: 10/31/2018] [Indexed: 01/01/2023] Open
Abstract
In dividing cells, depolymerizing spindle microtubules move chromosomes by pulling at their kinetochores. While kinetochore subcomplexes have been studied extensively in vitro, little is known about their in vivo structure and interactions with microtubules or their response to spindle damage. Here we combine electron cryotomography of serial cryosections with genetic and pharmacological perturbation to study the yeast chromosome segregation machinery in vivo. Each kinetochore microtubule has one (rarely, two) Dam1C/DASH outer kinetochore assemblies. Dam1C/DASH contacts the microtubule walls and does so with its flexible "bridges"; there are no contacts with the protofilaments' curved tips. In metaphase, ∼40% of the Dam1C/DASH assemblies are complete rings; the rest are partial rings. Ring completeness and binding position along the microtubule are sensitive to kinetochore attachment and tension, respectively. Our study and those of others support a model in which each kinetochore must undergo cycles of conformational change to couple microtubule depolymerization to chromosome movement.
Collapse
Affiliation(s)
- Cai Tong Ng
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore
| | - Li Deng
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore
| | - Chen Chen
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore
| | - Hong Hwa Lim
- Institute of Molecular and Cell Biology Agency for Science Technology and Research, Singapore.,Bioprocessing Technology Institute, Agency for Science Technology and Research, Singapore
| | - Jian Shi
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology Agency for Science Technology and Research, Singapore.,Bioprocessing Technology Institute, Agency for Science Technology and Research, Singapore.,Department of Pharmacology, National University of Singapore, Singapore
| | - Lu Gan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore
| |
Collapse
|
31
|
Jenni S, Harrison SC. Structure of the DASH/Dam1 complex shows its role at the yeast kinetochore-microtubule interface. Science 2018; 360:552-558. [PMID: 29724956 DOI: 10.1126/science.aar6436] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/15/2018] [Indexed: 12/13/2022]
Abstract
Kinetochores connect mitotic-spindle microtubules with chromosomes, allowing microtubule depolymerization to pull chromosomes apart during anaphase while resisting detachment as the microtubule shortens. The heterodecameric DASH/Dam1 complex (DASH/Dam1c), an essential component of yeast kinetochores, assembles into a microtubule-encircling ring. The ring associates with rodlike Ndc80 complexes to organize the kinetochore-microtubule interface. We report the cryo-electron microscopy structure (at ~4.5-angstrom resolution) of a DASH/Dam1c ring and a molecular model of its ordered components, validated by evolutionary direct-coupling analysis. Integrating this structure with that of the Ndc80 complex and with published interaction data yields a molecular picture of kinetochore-microtubule attachment, including how flexible, C-terminal extensions of DASH/Dam1c subunits project and contact widely separated sites on the Ndc80 complex rod and how phosphorylation at previously identified sites might regulate kinetochore assembly.
Collapse
Affiliation(s)
- Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA. .,Howard Hughes Medical Institute, Harvard University, 250 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
32
|
Saurin AT. Kinase and Phosphatase Cross-Talk at the Kinetochore. Front Cell Dev Biol 2018; 6:62. [PMID: 29971233 PMCID: PMC6018199 DOI: 10.3389/fcell.2018.00062] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/31/2018] [Indexed: 01/26/2023] Open
Abstract
Multiple kinases and phosphatases act on the kinetochore to control chromosome segregation: Aurora B, Mps1, Bub1, Plk1, Cdk1, PP1, and PP2A-B56, have all been shown to regulate both kinetochore-microtubule attachments and the spindle assembly checkpoint. Given that so many kinases and phosphatases converge onto two key mitotic processes, it is perhaps not surprising to learn that they are, quite literally, entangled in cross-talk. Inhibition of any one of these enzymes produces secondary effects on all the others, which results in a complicated picture that is very difficult to interpret. This review aims to clarify this picture by first collating the direct effects of each enzyme into one overarching schematic of regulation at the Knl1/Mis12/Ndc80 (KMN) network (a major signaling hub at the outer kinetochore). This schematic will then be used to discuss the implications of the cross-talk that connects these enzymes; both in terms of why it may be needed to produce the right type of kinetochore signals and why it nevertheless complicates our interpretations about which enzymes control what processes. Finally, some general experimental approaches will be discussed that could help to characterize kinetochore signaling by dissociating the direct from indirect effect of kinase or phosphatase inhibition in vivo. Together, this review should provide a framework to help understand how a network of kinases and phosphatases cooperate to regulate two key mitotic processes.
Collapse
Affiliation(s)
- Adrian T. Saurin
- Jacqui Wood Cancer Centre, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
33
|
McIntosh JR. Assessing the Contributions of Motor Enzymes and Microtubule Dynamics to Mitotic Chromosome Motions. Annu Rev Cell Dev Biol 2018; 33:1-22. [PMID: 28992437 DOI: 10.1146/annurev-cellbio-100616-060827] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During my graduate work with Keith Porter, I became fascinated by the mitotic spindle, an interest that has motivated much of my scientific work ever since. I began spindle studies by using electron microscopes, instruments that have made significant contributions to our understanding of spindle organization. Such instruments have helped to elucidate the distributions of spindle microtubules, the interactions among them, their molecular polarity, and their associations with both kinetochores and spindle poles. Our lab has also investigated some processes of spindle physiology: microtubule dynamics, the actions of microtubule-associated proteins (including motor enzymes), the character of forces generated by specific spindle components, and factors that control mitotic progression. Here, I give a personal perspective on some of this intellectual history and on what recent discoveries imply about the mechanisms of chromosome motion.
Collapse
Affiliation(s)
- J Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347;
| |
Collapse
|
34
|
Volkov VA, Huis In 't Veld PJ, Dogterom M, Musacchio A. Multivalency of NDC80 in the outer kinetochore is essential to track shortening microtubules and generate forces. eLife 2018; 7:36764. [PMID: 29629870 PMCID: PMC5940359 DOI: 10.7554/elife.36764] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 03/31/2018] [Indexed: 12/31/2022] Open
Abstract
Presence of multiple copies of the microtubule-binding NDC80 complex is an evolutionary conserved feature of kinetochores, points of attachment of chromosomes to spindle microtubules. This may enable multivalent attachments to microtubules, with implications that remain unexplored. Using recombinant human kinetochore components, we show that while single NDC80 complexes do not track depolymerizing microtubules, reconstituted particles containing the NDC80 receptor CENP-T bound to three or more NDC80 complexes do so effectively, as expected for a kinetochore force coupler. To study multivalency systematically, we engineered modules allowing incremental addition of NDC80 complexes. The modules’ residence time on microtubules increased exponentially with the number of NDC80 complexes. Modules with two or more complexes tracked depolymerizing microtubules with increasing efficiencies, and stalled and rescued microtubule depolymerization in a force-dependent manner when conjugated to cargo. Our observations indicate that NDC80, rather than through biased diffusion, tracks depolymerizing microtubules by harnessing force generated during microtubule disassembly. Before a cell divides, its genome duplicates so that each copy can be given to the daughter cells. In a dividing cell, the chromosomes – the structures that store genetic information – look like an ‘X’. This is because each chromosome is formed of two identical, rod-like, ‘sister chromatids’ which are attached by their middle. Each daughter cell should inherit one of the chromatids. As division progresses, both sister chromatids in a pair fasten to ‘microtubules’, string-like structures made of a large number of identical proteins stacked together. These strings attach each chromatids to opposite sides of the cell. Then, the ends of the microtubules that bind to a chromatid start to peel off and disassemble. The microtubules get shorter and shorter, which creates a force that pulls the chromatids apart. Microtubules latch on a chromatid via a large structure known as the kinetochore, which has tether-like protein complexes called NDC80 at its surface. NDC80 links the kinetochore with the microtubules, yet little is known about this connection. In particular, it is unclear how this complex relays the forces from the shortening microtubules to the chromatids, and how many NDC80 complexes are required for this process. To study how these proteins interact without any molecular background ‘noise’ from the cell, Volkov, Huis in ‘t Veld et al. engineered simplified versions of the microtubule-kinetochore-NDC80 connection using components of human kinetochores. These versions, named ‘modules’, contained different numbers of NDC80 complexes, from one to four copies. Volkov, Huis in ‘t Veld et al. found that single NDC80 complexes did not follow the microtubules as they shortened, while the connections with two or more NDC80 complexes did. When a few modules, each with two or three NDC80s, were closeby, they also bound to the end of the same shortening microtubule, and captured more force as a team. NDC80 complexes therefore work together to connect to microtubule ends and harness their energy. The artificial kinetochore-microtubule-NDC80 connections developed by Volkov, Huis in ‘t Veld et al. provides a new method to study how cells divide, and it could reveal how other proteins and biological processes participate in this mechanism. It could also help understand how chromatids are kept from separating incorrectly during division, which is an error that could be fatal for the cell.
Collapse
Affiliation(s)
- Vladimir A Volkov
- Department of Bionanoscience, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands
| | - Pim J Huis In 't Veld
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Marileen Dogterom
- Department of Bionanoscience, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
35
|
Kolenda C, Ortiz J, Pelzl M, Norell S, Schmeiser V, Lechner J. Unattached kinetochores drive their own capturing by sequestering a CLASP. Nat Commun 2018; 9:886. [PMID: 29491436 PMCID: PMC5830412 DOI: 10.1038/s41467-018-03108-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/17/2018] [Indexed: 12/24/2022] Open
Abstract
Kinetochores that are not attached to microtubules prevent chromosome missegregation via the spindle assembly checkpoint. We show that they also promote their own capturing. Similar to what governs the localization of spindle assembly checkpoint proteins, the phosphorylation of Spc105 by Mps1 allows unattached kinetochores to sequester Stu1 in cooperation with Slk19. The withdrawal of Stu1, a CLASP essential for spindle integrity, from microtubules and attached kinetochores disrupts the organization of the spindle and thus allows the enhanced formation of dynamic random microtubules that span the nucleus and are ideal to capture unattached kinetochores. The enhanced formation of nuclear random microtubules does not occur if Stu1 sequestering to unattached kinetochores fails and the spindle remains uncompromised. Consequently, these cells exhibit a severely decreased capturing efficiency. After the capturing event, Stu1 is relocated to the capturing microtubule and prevents precocious microtubule depolymerization as long as kinetochores are laterally or incompletely end-on attached. Kinetochores (KT) that are not attached to microtubules prevent chromosome missegregation via the spindle assembly checkpoint. Here the authors show that Mps1 localizes Stu1 at unattached KTs together with Slk19, causing a reorganization of the nuclear MT network that favors the capturing of unattached KT.
Collapse
Affiliation(s)
- Caroline Kolenda
- Biochemie-Zentrum der Universität Heidelberg, INF 328, 69120, Heidelberg, Germany
| | - Jennifer Ortiz
- Biochemie-Zentrum der Universität Heidelberg, INF 328, 69120, Heidelberg, Germany
| | - Marina Pelzl
- Biochemie-Zentrum der Universität Heidelberg, INF 328, 69120, Heidelberg, Germany
| | - Sarina Norell
- Biochemie-Zentrum der Universität Heidelberg, INF 328, 69120, Heidelberg, Germany
| | - Verena Schmeiser
- Biochemie-Zentrum der Universität Heidelberg, INF 328, 69120, Heidelberg, Germany
| | - Johannes Lechner
- Biochemie-Zentrum der Universität Heidelberg, INF 328, 69120, Heidelberg, Germany.
| |
Collapse
|
36
|
Meyer RE, Brown J, Beck L, Dawson DS. Mps1 promotes chromosome meiotic chromosome biorientation through Dam1. Mol Biol Cell 2017; 29:479-489. [PMID: 29237818 PMCID: PMC6014172 DOI: 10.1091/mbc.e17-08-0503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/01/2017] [Accepted: 12/07/2017] [Indexed: 11/11/2022] Open
Abstract
During meiosis, chromosomes attach to microtubules at their kinetochores and are moved by microtubule depolymerization. The Mps1 kinase is essential for this process. Phosphorylation of Dam1 by Mps1 allows kinetochores to move processively poleward along microtubules during the biorientation process. In budding yeast meiosis, homologous chromosomes become linked by chiasmata and then move back and forth on the spindle until they are bioriented, with the kinetochores of the partners attached to microtubules from opposite spindle poles. Certain mutations in the conserved kinase, Mps1, result in catastrophic meiotic segregation errors but mild mitotic defects. We tested whether Dam1, a known substrate of Mps1, was necessary for its critical meiotic role. We found that kinetochore–microtubule attachments are established even when Dam1 is not phosphorylated by Mps1, but that Mps1 phosphorylation of Dam1 sustains those connections. But the meiotic defects when Dam1 is not phosphorylated are not nearly as catastrophic as when Mps1 is inactivated. The results demonstrate that one meiotic role of Mps1 is to stabilize connections that have been established between kinetochores and microtubles by phosphorylating Dam1.
Collapse
Affiliation(s)
- Régis E Meyer
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Jamin Brown
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Lindsay Beck
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Dean S Dawson
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
37
|
Humphrey L, Felzer-Kim I, Joglekar AP. Stu2 acts as a microtubule destabilizer in metaphase budding yeast spindles. Mol Biol Cell 2017; 29:247-255. [PMID: 29187578 PMCID: PMC5996951 DOI: 10.1091/mbc.e17-08-0494] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 01/22/2023] Open
Abstract
Stu2 colocalizes with budding yeast kinetochores by interacting with polymerizing microtubule plus ends. Furthermore, it destabilizes these plus ends. It is proposed that Stu2-mediated destabilization contributes indirectly to the “catch-bond” activity of yeast kinetochores. The microtubule-associated protein Stu2 (XMAP215) has the remarkable ability to act either as a polymerase or as a destabilizer of the microtubule plus end. In budding yeast, it is required for the dynamicity of spindle microtubules and also for kinetochore force generation. To understand how Stu2 contributes to these distinct activities, we analyzed the contributions of its functional domains to its localization and function. We find that Stu2 colocalizes with kinetochores using its TOG domains, which bind GTP-tubulin, a coiled-coil homodimerization domain, and a domain that interacts with plus-end interacting proteins. Stu2 localization is also promoted by phosphorylation at a putative CDK1 phosphorylation site located within its microtubule-binding basic patch. Surprisingly, however, we find that kinetochore force generation is uncorrelated with the amount of kinetochore-colocalized Stu2. These and other data imply that Stu2 colocalizes with kinetochores by recognizing growing microtubule plus ends within yeast kinetochores. We propose that Stu2 destabilizes these plus ends to indirectly contribute to the “catch-bond” activity of the kinetochores.
Collapse
Affiliation(s)
- Lauren Humphrey
- Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48019
| | - Isabella Felzer-Kim
- Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48019
| | - Ajit P Joglekar
- Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48019 .,Department of Biophysics, University of Michigan, Ann Arbor, MI 48019
| |
Collapse
|
38
|
Jenni S, Dimitrova YN, Valverde R, Hinshaw SM, Harrison SC. Molecular Structures of Yeast Kinetochore Subcomplexes and Their Roles in Chromosome Segregation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:83-89. [PMID: 29167284 DOI: 10.1101/sqb.2017.82.033738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Kinetochore molecular architecture exemplifies "form follows function." The simplifications that generated the one-chromosome:one-microtubule linkage in point-centromere yeast have enabled strategies for systematic structural analysis and high-resolution visualization of many kinetochore components, leading to specific proposals for molecular mechanisms. We describe here some structural features that allow a kinetochore to remain attached to the end of a depolymerizing microtubule (MT) and some characteristics of the connections between substructures that permit very sensitive regulation by differential kinase activities. We emphasize in particular the importance of flexible connections between rod-like structural members and the integration of these members into a compliant cage-like assembly anchored on the MT by a sliding molecular ring.
Collapse
Affiliation(s)
- Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Yoana N Dimitrova
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115.,Howard Hughes Medical Institute, Boston, Massachusetts 02115
| | - Roberto Valverde
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Stephen M Hinshaw
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115.,Howard Hughes Medical Institute, Boston, Massachusetts 02115
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115.,Howard Hughes Medical Institute, Boston, Massachusetts 02115
| |
Collapse
|
39
|
Barsegov V, Ross JL, Dima RI. Dynamics of microtubules: highlights of recent computational and experimental investigations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:433003. [PMID: 28812545 DOI: 10.1088/1361-648x/aa8670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microtubules are found in most eukaryotic cells, with homologs in eubacteria and archea, and they have functional roles in mitosis, cell motility, intracellular transport, and the maintenance of cell shape. Numerous efforts have been expended over the last two decades to characterize the interactions between microtubules and the wide variety of microtubule associated proteins that control their dynamic behavior in cells resulting in microtubules being assembled and disassembled where and when they are required by the cell. We present the main findings regarding microtubule polymerization and depolymerization and review recent work about the molecular motors that modulate microtubule dynamics by inducing either microtubule depolymerization or severing. We also discuss the main experimental and computational approaches used to quantify the thermodynamics and mechanics of microtubule filaments.
Collapse
Affiliation(s)
- Valeri Barsegov
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States of America
| | | | | |
Collapse
|
40
|
Kinetochore Function from the Bottom Up. Trends Cell Biol 2017; 28:22-33. [PMID: 28985987 DOI: 10.1016/j.tcb.2017.09.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 02/06/2023]
Abstract
During a single human lifetime, nearly one quintillion chromosomes separate from their sisters and transit to their destinations in daughter cells. Unlike DNA replication, chromosome segregation has no template, and, unlike transcription, errors frequently lead to a total loss of cell viability. Rapid progress in recent years has shown how kinetochores enable faithful execution of this process by connecting chromosomal DNA to microtubules. These findings have transformed our idea of kinetochores from cytological features to immense molecular machines and now allow molecular interpretation of many long-appreciated kinetochore functions. In this review we trace kinetochore protein connectivity from chromosomal DNA to microtubules, relating new findings to important points of regulation and function.
Collapse
|
41
|
Yue Z, Komoto S, Gierlinski M, Pasquali D, Kitamura E, Tanaka TU. Mechanisms mitigating problems associated with multiple kinetochores on one microtubule in early mitosis. J Cell Sci 2017; 130:2266-2276. [PMID: 28546446 PMCID: PMC5536920 DOI: 10.1242/jcs.203000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/22/2017] [Indexed: 12/02/2022] Open
Abstract
Proper chromosome segregation in mitosis relies on correct kinetochore interaction with spindle microtubules. In early mitosis, each kinetochore usually interacts with the lateral side of each microtubule and is subsequently tethered at the microtubule end. However, since eukaryotic cells carry multiple chromosomes, multiple kinetochores could occasionally interact with a single microtubule. The consequence of this is unknown. Here, we find that, although two kinetochores (two pairs of sister kinetochores) can interact with the lateral side of one microtubule, only one kinetochore can form a sustained attachment to the microtubule end in budding yeast (Saccharomyces cerevisiae). This leads to detachment of the other kinetochore from the microtubule end (or a location in its proximity). Intriguingly, in this context, kinetochore sliding along a microtubule towards a spindle pole delays and diminishes discernible kinetochore detachment. This effect expedites collection of the entire set of kinetochores to a spindle pole. We propose that cells are equipped with the kinetochore-sliding mechanism to mitigate problems associated with multiple kinetochores on one microtubule in early mitosis. Summary: Given that eukaryotic cells carry multiple chromosomes, multiple kinetochores could occasionally interact with a single microtubule. We identify problems associated with this situation and find mechanisms mitigating these problems.
Collapse
Affiliation(s)
- Zuojun Yue
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Shinya Komoto
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Marek Gierlinski
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.,Data Analysis Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Debora Pasquali
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Etsushi Kitamura
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
42
|
Position effects influencing intrachromosomal repair of a double-strand break in budding yeast. PLoS One 2017; 12:e0180994. [PMID: 28700723 PMCID: PMC5507452 DOI: 10.1371/journal.pone.0180994] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/23/2017] [Indexed: 12/23/2022] Open
Abstract
Repair of a double-strand break (DSB) by an ectopic homologous donor sequence is subject to the three-dimensional arrangement of chromosomes in the nucleus of haploid budding yeast. The data for interchromosomal recombination suggest that searching for homology is accomplished by a random collision process, strongly influenced by the contact probability of the donor and recipient sequences. Here we explore how recombination occurs on the same chromosome and whether there are additional constraints imposed on repair. Specifically, we examined how intrachromosomal repair is affected by the location of the donor sequence along the 813-kb chromosome 2 (Chr2), with a site-specific DSB created on the right arm (position 625 kb). Repair correlates well with contact frequencies determined by chromosome conformation capture-based studies (r = 0.85). Moreover, there is a profound constraint imposed by the anchoring of the centromere (CEN2, position 238 kb) to the spindle pole body. Sequences at the same distance on either side of CEN2 are equivalently constrained in recombining with a DSB located more distally on one arm, suggesting that sequences on the opposite arm from the DSB are not otherwise constrained in their interaction with the DSB. The centromere constraint can be partially relieved by inducing transcription through the centromere to inactivate CEN2 tethering. In diploid cells, repair of a DSB via its allelic donor is strongly influenced by the presence and the position of an ectopic intrachromosomal donor.
Collapse
|
43
|
Vasileva V, Gierlinski M, Yue Z, O'Reilly N, Kitamura E, Tanaka TU. Molecular mechanisms facilitating the initial kinetochore encounter with spindle microtubules. J Cell Biol 2017; 216:1609-1622. [PMID: 28446512 PMCID: PMC5461016 DOI: 10.1083/jcb.201608122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/15/2017] [Accepted: 04/03/2017] [Indexed: 12/11/2022] Open
Abstract
The initial kinetochore (KT) encounter with a spindle microtubule (MT) is one of the rate-limiting steps in establishing proper KT–MT interaction during mitosis. This study reveals how multiple factors cooperate to facilitate the KT encounter with a spindle MT. In particular, it highlights the important roles of KT-derived MTs in this process. The initial kinetochore (KT) encounter with a spindle microtubule (MT; KT capture) is one of the rate-limiting steps in establishing proper KT–MT interaction during mitosis. KT capture is facilitated by multiple factors, such as MT extension in various directions, KT diffusion, and MT pivoting. In addition, KTs generate short MTs, which subsequently interact with a spindle MT. KT-derived MTs may facilitate KT capture, but their contribution is elusive. In this study, we find that Stu1 recruits Stu2 to budding yeast KTs, which promotes MT generation there. By removing Stu2 specifically from KTs, we show that KT-derived MTs shorten the half-life of noncaptured KTs from 48–49 s to 28–34 s. Using computational simulation, we found that multiple factors facilitate KT capture redundantly or synergistically. In particular, KT-derived MTs play important roles both by making a significant contribution on their own and by synergistically enhancing the effects of KT diffusion and MT pivoting. Our study reveals fundamental mechanisms facilitating the initial KT encounter with spindle MTs.
Collapse
Affiliation(s)
- Vanya Vasileva
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Marek Gierlinski
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.,Data Analysis Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Zuojun Yue
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Nicola O'Reilly
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London WC2A 3LY, England, UK
| | - Etsushi Kitamura
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
44
|
Asbury CL. Anaphase A: Disassembling Microtubules Move Chromosomes toward Spindle Poles. BIOLOGY 2017; 6:E15. [PMID: 28218660 PMCID: PMC5372008 DOI: 10.3390/biology6010015] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/04/2017] [Accepted: 02/10/2017] [Indexed: 11/16/2022]
Abstract
The separation of sister chromatids during anaphase is the culmination of mitosis and one of the most strikingly beautiful examples of cellular movement. It consists of two distinct processes: Anaphase A, the movement of chromosomes toward spindle poles via shortening of the connecting fibers, and anaphase B, separation of the two poles from one another via spindle elongation. I focus here on anaphase A chromosome-to-pole movement. The chapter begins by summarizing classical observations of chromosome movements, which support the current understanding of anaphase mechanisms. Live cell fluorescence microscopy studies showed that poleward chromosome movement is associated with disassembly of the kinetochore-attached microtubule fibers that link chromosomes to poles. Microtubule-marking techniques established that kinetochore-fiber disassembly often occurs through loss of tubulin subunits from the kinetochore-attached plus ends. In addition, kinetochore-fiber disassembly in many cells occurs partly through 'flux', where the microtubules flow continuously toward the poles and tubulin subunits are lost from minus ends. Molecular mechanistic models for how load-bearing attachments are maintained to disassembling microtubule ends, and how the forces are generated to drive these disassembly-coupled movements, are discussed.
Collapse
Affiliation(s)
- Charles L Asbury
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
45
|
Kim JO, Zelter A, Umbreit NT, Bollozos A, Riffle M, Johnson R, MacCoss MJ, Asbury CL, Davis TN. The Ndc80 complex bridges two Dam1 complex rings. eLife 2017; 6. [PMID: 28191870 PMCID: PMC5354518 DOI: 10.7554/elife.21069] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/11/2017] [Indexed: 12/18/2022] Open
Abstract
Strong kinetochore-microtubule attachments are essential for faithful segregation of sister chromatids during mitosis. The Dam1 and Ndc80 complexes are the main microtubule binding components of the Saccharomyces cerevisiae kinetochore. Cooperation between these two complexes enhances kinetochore-microtubule coupling and is regulated by Aurora B kinase. We show that the Ndc80 complex can simultaneously bind and bridge across two Dam1 complex rings through a tripartite interaction, each component of which is regulated by Aurora B kinase. Mutations in any one of the Ndc80p interaction regions abrogates the Ndc80 complex's ability to bind two Dam1 rings in vitro, and results in kinetochore biorientation and microtubule attachment defects in vivo. We also show that an extra-long Ndc80 complex, engineered to space the two Dam1 rings further apart, does not support growth. Taken together, our work suggests that each kinetochore in vivo contains two Dam1 rings and that proper spacing between the rings is vital.
Collapse
Affiliation(s)
- Jae Ook Kim
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Alex Zelter
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Neil T Umbreit
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Athena Bollozos
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Michael Riffle
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, Seattle, United States
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, United States
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, United States
| |
Collapse
|
46
|
Grishchuk EL. Biophysics of Microtubule End Coupling at the Kinetochore. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:397-428. [PMID: 28840247 DOI: 10.1007/978-3-319-58592-5_17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The main physiological function of mitotic kinetochores is to provide durable attachment to spindle microtubules, which segregate chromosomes in order to partition them equally between the two daughter cells. Numerous kinetochore components that can bind directly to microtubules have been identified, including ATP-dependent motors and various microtubule-associated proteins with no motor activity. A major challenge facing the field is to explain chromosome motions based on the biochemical and structural properties of these individual kinetochore components and their assemblies. This chapter reviews the molecular mechanisms responsible for the motions associated with dynamic microtubule tips at the single-molecule level, as well as the activities of multimolecular ensembles called couplers. These couplers enable persistent kinetochore motion even under load, but their exact composition and structure remain unknown. Because no natural or artificial macro-machines function in an analogous manner to these molecular nano-devices, understanding their underlying biophysical mechanisms will require conceptual advances.
Collapse
Affiliation(s)
- Ekaterina L Grishchuk
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
47
|
Chromosome biorientation produces hundreds of piconewtons at a metazoan kinetochore. Nat Commun 2016; 7:13221. [PMID: 27762268 PMCID: PMC5080440 DOI: 10.1038/ncomms13221] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/13/2016] [Indexed: 11/21/2022] Open
Abstract
High-fidelity transmission of the genome through cell division requires that all sister kinetochores bind to dynamic microtubules (MTs) from opposite spindle poles. The application of opposing forces to this bioriented configuration produces tension that stabilizes kinetochore–microtubule (kt–MT) attachments. Defining the magnitude of force that is applied to kinetochores is central to understanding the mechano-molecular underpinnings of chromosome segregation; however, existing kinetochore force measurements span orders of magnitude. Here we measure kinetochore forces by engineering two calibrated force sensors into the Drosophila kinetochore protein centromere protein (CENP)-C. Measurements of both reporters indicate that they are, on average, under ∼1–2 piconewtons (pNs) of force at metaphase. Based on estimates of the number of CENP-C molecules and MTs per Drosophila kinetochore and envisioning kinetochore linkages arranged such that they distribute forces across them, we propose that kinetochore fibres (k-fibres) exert hundreds of pNs of poleward-directed force to bioriented kinetochores. Chromosomes bind microtubules (MT) from opposite spindle poles and the generated tension stabilizes kinetochore-MT attachments. Here the authors measure kinetochore forces by engineering two force sensors and propose that kinetochore fibers exert hundreds of pNs of force to bioriented kinetochores.
Collapse
|
48
|
Abad MA, Zou J, Medina-Pritchard B, Nigg EA, Rappsilber J, Santamaria A, Jeyaprakash AA. Ska3 Ensures Timely Mitotic Progression by Interacting Directly With Microtubules and Ska1 Microtubule Binding Domain. Sci Rep 2016; 6:34042. [PMID: 27667719 PMCID: PMC5036024 DOI: 10.1038/srep34042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/07/2016] [Indexed: 12/19/2022] Open
Abstract
The establishment of physical attachment between the kinetochore and dynamic spindle microtubules, which undergo cycles of polymerization and depolymerization generating straight and curved microtubule structures, is essential for accurate chromosome segregation. The Ndc80 and Ska complexes are the major microtubule-binding factors of the kinetochore responsible for maintaining chromosome-microtubule coupling during chromosome segregation. We previously showed that the Ska1 subunit of the Ska complex binds dynamic microtubules using multiple contact sites in a mode that allows conformation-independent binding. Here, we show that the Ska3 subunit is required to modulate the microtubule binding capability of the Ska complex (i) by directly interacting with tubulin monomers and (ii) indirectly by interacting with tubulin contacting regions of Ska1 suggesting an allosteric regulation. Perturbing either the Ska3-microtubule interaction or the Ska3-Ska1 interactions negatively influences microtubule binding by the Ska complex in vitro and affects the timely onset of anaphase in cells. Thus, Ska3 employs additional modulatory elements within the Ska complex to ensure robust kinetochore-microtubule attachments and timely progression of mitosis.
Collapse
Affiliation(s)
- Maria Alba Abad
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF UK
| | - Juan Zou
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF UK
| | - Bethan Medina-Pritchard
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF UK
| | - Erich A Nigg
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF UK.,Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Anna Santamaria
- Cell Cycle and Cancer, Group of Biomedical Research in Gynaecology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - A Arockia Jeyaprakash
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF UK
| |
Collapse
|
49
|
Abstract
SUMMARYAll eukaryotic cells prepare for cell division by forming a "mitotic spindle"-a bipolar machine made from microtubules (MTs) and many associated proteins. This device organizes the already duplicated DNA so one copy of each chromosome attaches to each end of the spindle. Both formation and function of the spindle require controlled MT dynamics, as well as the actions of multiple motor enzymes. Spindle-driven motions separate the duplicated chromosomes into two distinct sets that are then moved toward opposite ends of the cell. The two cells that subsequently form by cytokinesis, therefore, contain all the genes needed to grow and divide again.
Collapse
Affiliation(s)
- J Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347
| |
Collapse
|
50
|
Drum BML, Yuan C, Li L, Liu Q, Wordeman L, Santana LF. Oxidative stress decreases microtubule growth and stability in ventricular myocytes. J Mol Cell Cardiol 2016; 93:32-43. [PMID: 26902968 PMCID: PMC4902331 DOI: 10.1016/j.yjmcc.2016.02.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/21/2016] [Accepted: 02/12/2016] [Indexed: 02/05/2023]
Abstract
Microtubules (MTs) have many roles in ventricular myocytes, including structural stability, morphological integrity, and protein trafficking. However, despite their functional importance, dynamic MTs had never been visualized in living adult myocytes. Using adeno-associated viral vectors expressing the MT-associated protein plus end binding protein 3 (EB3) tagged with EGFP, we were able to perform live imaging and thus capture and quantify MT dynamics in ventricular myocytes in real time under physiological conditions. Super-resolution nanoscopy revealed that EB1 associated in puncta along the length of MTs in ventricular myocytes. The vast (~80%) majority of MTs grew perpendicular to T-tubules at a rate of 0.06μm∗s(-1) and growth was preferentially (82%) confined to a single sarcomere. Microtubule catastrophe rate was lower near the Z-line than M-line. Hydrogen peroxide increased the rate of catastrophe of MTs ~7-fold, suggesting that oxidative stress destabilizes these structures in ventricular myocytes. We also quantified MT dynamics after myocardial infarction (MI), a pathological condition associated with increased production of reactive oxygen species (ROS). Our data indicate that the catastrophe rate of MTs increases following MI. This contributed to decreased transient outward K(+) currents by decreasing the surface expression of Kv4.2 and Kv4.3 channels after MI. On the basis of these data, we conclude that, under physiological conditions, MT growth is directionally biased and that increased ROS production during MI disrupts MT dynamics, decreasing K(+) channel trafficking.
Collapse
Affiliation(s)
- Benjamin M L Drum
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - Can Yuan
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - Lei Li
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - Qinghang Liu
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - Linda Wordeman
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - L Fernando Santana
- Deparment of Physiology & Membrane Biology, University of California School of Medicine, Davis, CA 95616, United States.
| |
Collapse
|