1
|
Domingues N, Catarino S, Cristóvão B, Rodrigues L, Carvalho FA, Sarmento MJ, Zuzarte M, Almeida J, Ribeiro-Rodrigues T, Correia-Rodrigues Â, Fernandes F, Rodrigues-Santos P, Aasen T, Santos NC, Korolchuk VI, Gonçalves T, Milosevic I, Raimundo N, Girão H. Connexin43 promotes exocytosis of damaged lysosomes through actin remodelling. EMBO J 2024; 43:3627-3649. [PMID: 39044100 PMCID: PMC11377567 DOI: 10.1038/s44318-024-00177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
A robust and efficient cellular response to lysosomal membrane damage prevents leakage from the lysosome lumen into the cytoplasm. This response is understood to happen through either lysosomal membrane repair or lysophagy. Here we report exocytosis as a third response mechanism to lysosomal damage, which is further potentiated when membrane repair or lysosomal degradation mechanisms are impaired. We show that Connexin43 (Cx43), a protein canonically associated with gap junctions, is recruited from the plasma membrane to damaged lysosomes, promoting their secretion and accelerating cell recovery. The effects of Cx43 on lysosome exocytosis are mediated by a reorganization of the actin cytoskeleton that increases plasma membrane fluidity and decreases cell stiffness. Furthermore, we demonstrate that Cx43 interacts with the actin nucleator Arp2, the activity of which was shown to be necessary for Cx43-mediated actin rearrangement and lysosomal exocytosis following damage. These results define a novel mechanism of lysosomal quality control whereby Cx43-mediated actin remodelling potentiates the secretion of damaged lysosomes.
Collapse
Affiliation(s)
- Neuza Domingues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Steve Catarino
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Beatriz Cristóvão
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Lisa Rodrigues
- Univ Coimbra, Center for Neurosciences and Cell Biology (CNC), Coimbra, Portugal
| | - Filomena A Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Maria João Sarmento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Mónica Zuzarte
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Jani Almeida
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
- Univ Coimbra, Center for Neurosciences and Cell Biology (CNC), Coimbra, Portugal
| | - Teresa Ribeiro-Rodrigues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Ânia Correia-Rodrigues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Fábio Fernandes
- Institute for Bioengineering and Biosciences (IBB) and Associate Laboratory i4HB-Institute for Health and Bioeconomy, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Paulo Rodrigues-Santos
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
- Univ Coimbra, Center for Neurosciences and Cell Biology (CNC), Coimbra, Portugal
| | - Trond Aasen
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Teresa Gonçalves
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Univ Coimbra, Center for Neurosciences and Cell Biology (CNC), Coimbra, Portugal
| | - Ira Milosevic
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
- University of Oxford, Centre for Human Genetics, Nuffield Department of Medicine, Oxford, UK
| | - Nuno Raimundo
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Henrique Girão
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal.
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal.
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Rodríguez‐Ruiz L, Lozano‐Gil JM, Naranjo‐Sánchez E, Martínez‐Balsalobre E, Martínez‐López A, Lachaud C, Blanquer M, Phung TK, García‐Moreno D, Cayuela ML, Tyrkalska SD, Pérez‐Oliva AB, Mulero V. ZAKα/P38 kinase signaling pathway regulates hematopoiesis by activating the NLRP1 inflammasome. EMBO Mol Med 2023; 15:e18142. [PMID: 37675820 PMCID: PMC10565642 DOI: 10.15252/emmm.202318142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
Chronic inflammatory diseases are associated with hematopoietic lineage bias, including neutrophilia and anemia. We have recently identified that the canonical inflammasome mediates the cleavage of the master erythroid transcription factor GATA1 in hematopoietic stem and progenitor cells (HSPCs). We report here that genetic inhibition of Nlrp1 resulted in reduced number of neutrophils and increased erythrocyte counts in zebrafish larvae. We also found that the NLRP1 inflammasome in human cells was inhibited by LRRFIP1 and FLII, independently of DPP9, and both inhibitors regulated hematopoiesis. Mechanistically, erythroid differentiation resulted in ribosomal stress-induced activation of the ZAKα/P38 kinase axis which, in turn, phosphorylated and promoted the assembly of NLRP1 in both zebrafish and human. Finally, inhibition of Zaka with the FDA/EMA-approved drug Nilotinib alleviated neutrophilia in a zebrafish model of neutrophilic inflammation and promoted erythroid differentiation and GATA1 accumulation in K562 cells. In conclusion, our results reveal that the NLRP1 inflammasome regulates hematopoiesis and pave the way to develop novel therapeutic strategies for the treatment of hematopoietic alterations associated with chronic inflammatory and rare diseases.
Collapse
Affiliation(s)
- Lola Rodríguez‐Ruiz
- Departmento de Biología Celular e Histología, Facultad de BiologíaUniversidad de MurciaMurciaSpain
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
| | - Juan M Lozano‐Gil
- Departmento de Biología Celular e Histología, Facultad de BiologíaUniversidad de MurciaMurciaSpain
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
| | - Elena Naranjo‐Sánchez
- Departmento de Biología Celular e Histología, Facultad de BiologíaUniversidad de MurciaMurciaSpain
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
- Hospital Clínico Universitario Virgen de la ArrixacaMurciaSpain
| | - Elena Martínez‐Balsalobre
- Departmento de Biología Celular e Histología, Facultad de BiologíaUniversidad de MurciaMurciaSpain
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
- Hospital Clínico Universitario Virgen de la ArrixacaMurciaSpain
| | - Alicia Martínez‐López
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
| | - Christophe Lachaud
- Aix‐Marseille University, Inserm, CNRS, Institut Paoli‐Calmettes, CRCMMarseilleFrance
| | - Miguel Blanquer
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Hospital Clínico Universitario Virgen de la ArrixacaMurciaSpain
- Departamento de Medicina y Unidad de Terapia Celular y Trasplante Hematopoyético, Facultad de MedicinaUniversidad de MurciaMurciaSpain
| | - Toan K Phung
- MRC PPU, Sir James Black Centre, School of Life SciencesUniversity of DundeeDundeeUK
| | - Diana García‐Moreno
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
| | - María L Cayuela
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
- Hospital Clínico Universitario Virgen de la ArrixacaMurciaSpain
| | - Sylwia D Tyrkalska
- Departmento de Biología Celular e Histología, Facultad de BiologíaUniversidad de MurciaMurciaSpain
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
| | - Ana B Pérez‐Oliva
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
| | - Victoriano Mulero
- Departmento de Biología Celular e Histología, Facultad de BiologíaUniversidad de MurciaMurciaSpain
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
3
|
Mamsa R, Prabhavalkar KS, Bhatt LK. Crosstalk between NLRP3 inflammasome and calpain in Alzheimer's disease. Eur J Neurosci 2023; 58:3719-3731. [PMID: 37652164 DOI: 10.1111/ejn.16139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
Amyloid plaques are considered to be the pathological hallmark of Alzheimer's disease (AD). Neuroinflammation further aggravates the pathogenesis of Alzheimer's disease. Calpains and NOD-like receptor protein-3 (NLRP3) inflammasomes are involved in the neuroinflammatory pathway and affect the progression of Alzheimer's disease. Hyperactivation of calpains is responsible for the activation of NLRP3 inflammasome, thereby affecting each other's molecular mechanism and causing astrogliosis, microgliosis, and neuronal dysfunction. Further, calpain hyperactivation is also associated with calcium homeostasis that acts as one of the triggers in the activation of NLRP3 inflammasome. Calpain activity is required for the maturation of interleukin-1β, a key mediator of neuroinflammatory responses. The membrane potential/calcium/calpain/caspase-1 axis acts as an unconventional regulator of inflammasomes. The complex crosstalk between NLRP3 inflammasome and calpain leads to a series of events. Targeting the molecular mechanism associated with calpain-NLRP3 inflammasome activation and regulation can be a therapeutic and prophylactic perspective towards Alzheimer's disease. This review discusses calpains and NLRP3 inflammasome crosstalk in the pathogenesis of AD.
Collapse
Affiliation(s)
- Rumaiza Mamsa
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Kedar S Prabhavalkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
4
|
Li X, Jiang Q, Song G, Barkestani MN, Wang Q, Wang S, Fan M, Fang C, Jiang B, Johnson J, Geirsson A, Tellides G, Pober JS, Jane-Wit D. A ZFYVE21-Rubicon-RNF34 signaling complex promotes endosome-associated inflammasome activity in endothelial cells. Nat Commun 2023; 14:3002. [PMID: 37225719 PMCID: PMC10209169 DOI: 10.1038/s41467-023-38684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 05/10/2023] [Indexed: 05/26/2023] Open
Abstract
Internalization of complement membrane attack complexes (MACs) assembles NLRP3 inflammasomes in endothelial cells (EC) and promotes IL-β-mediated tissue inflammation. Informed by proteomics analyses of FACS-sorted inflammasomes, we identify a protein complex modulating inflammasome activity on endosomes. ZFVYE21, a Rab5 effector, partners with Rubicon and RNF34, forming a "ZRR" complex that is stabilized in a Rab5- and ZFYVE21-dependent manner on early endosomes. There, Rubicon competitively disrupts inhibitory associations between caspase-1 and its pseudosubstrate, Flightless I (FliI), while RNF34 ubiquitinylates and degradatively removes FliI from the signaling endosome. The concerted actions of the ZRR complex increase pools of endosome-associated caspase-1 available for activation. The ZRR complex is assembled in human tissues, its associated signaling responses occur in three mouse models in vivo, and the ZRR complex promotes inflammation in a skin model of chronic rejection. The ZRR signaling complex reflects a potential therapeutic target for attenuating inflammasome-mediated tissue injury.
Collapse
Affiliation(s)
- Xue Li
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Quan Jiang
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Guiyu Song
- VA Connecticut Healthcare System, West Haven, CT, USA.
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Mahsa Nouri Barkestani
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Qianxun Wang
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Shaoxun Wang
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Matthew Fan
- Yale College, Yale University, New Haven, CT, USA
| | - Caodi Fang
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Bo Jiang
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
- Dept of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Dept of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Justin Johnson
- Dept of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Arnar Geirsson
- Dept of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - George Tellides
- Dept of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Jordan S Pober
- Dept of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Dan Jane-Wit
- VA Connecticut Healthcare System, West Haven, CT, USA.
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Dept of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Paidimuddala B, Cao J, Nash G, Xie Q, Wu H, Zhang L. Mechanism of NAIP-NLRC4 inflammasome activation revealed by cryo-EM structure of unliganded NAIP5. Nat Struct Mol Biol 2023; 30:159-166. [PMID: 36604500 PMCID: PMC10576962 DOI: 10.1038/s41594-022-00889-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/03/2022] [Indexed: 01/07/2023]
Abstract
The nucleotide-binding domain (NBD), leucine rich repeat (LRR) domain containing protein family (NLR family) apoptosis inhibitory proteins (NAIPs) are cytosolic receptors that play critical roles in the host defense against bacterial infection. NAIPs interact with conserved bacterial ligands and activate the NLR family caspase recruitment domain containing protein 4 (NLRC4) to initiate the NAIP-NLRC4 inflammasome pathway. Here we found the process of NAIP activation is completely different from NLRC4. Our cryo-EM structure of unliganded mouse NAIP5 adopts an unprecedented wide-open conformation, with the nucleating surface fully exposed and accessible to recruit inactive NLRC4. Upon ligand binding, the winged helix domain (WHD) of NAIP5 undergoes roughly 20° rotation to form a steric clash with the inactive NLRC4, which triggers the conformational change of NLRC4 from inactive to active state. We also show the rotation of WHD places the 17-18 loop at a position that directly bind the active NLRC4 and stabilize the NAIP5-NLRC4 complex. Overall, these data provide structural mechanisms of inactive NAIP5, the process of NAIP5 activation and NAIP-dependent NLRC4 activation.
Collapse
Affiliation(s)
- Bhaskar Paidimuddala
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Jianhao Cao
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Grady Nash
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Qing Xie
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Liman Zhang
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA.
| |
Collapse
|
6
|
Mills SJ, Ahangar P, Thomas HM, Hofma BR, Murray RZ, Cowin AJ. Flightless I Negatively Regulates Macrophage Surface TLR4, Delays Early Inflammation, and Impedes Wound Healing. Cells 2022; 11:cells11142192. [PMID: 35883634 PMCID: PMC9318993 DOI: 10.3390/cells11142192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 01/27/2023] Open
Abstract
TLR4 plays a pivotal role in orchestrating inflammation and tissue repair. Its expression has finally been balanced to initiate the early, robust immune response necessary for efficient repair without excessively amplifying and prolonging inflammation, which impairs healing. Studies show Flightless I (Flii) is an immunomodulator that negatively regulates macrophage TLR4 signalling. Using macrophages from Flii+/−, WT, and FliiTg/Tg mice, we have shown that elevated Flii reduces early TLR4 surface expression, delaying and reducing subsequent TNF secretions. In contrast, reduced Flii increases surface TLR4, leading to an earlier robust TNF peak. In Flii+/− mice, TLR4 levels peak earlier during wound repair, and overall healing is accelerated. Fewer neutrophils, monocytes and macrophages are recruited to Flii+/− wounds, leading to fewer TNF-positive macrophages, alongside an early peak and a robust shift to M2 anti-inflammatory, reparative Ym1+ and IL-10+ macrophages. Importantly, in diabetic mice, high Flii levels are found in plasma and unwounded skin, with further increases observed in their wounds, which have impaired healing. Lowering Flii in diabetic mice results in an earlier shift to M2 macrophages and improved healing. Overall, this suggests Flii regulation of TLR4 reduces early inflammation and decreases the M2 macrophage phenotype, leading to impaired healing.
Collapse
Affiliation(s)
- Stuart J. Mills
- Regenerative Medicine, Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide SA 5095, Australia; (P.A.); (H.M.T.); (B.R.H.)
- Correspondence: (S.J.M.); (A.J.C.); Tel.: +61-8-8302-3896 (S.J.M.)
| | - Parinaz Ahangar
- Regenerative Medicine, Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide SA 5095, Australia; (P.A.); (H.M.T.); (B.R.H.)
| | - Hannah M. Thomas
- Regenerative Medicine, Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide SA 5095, Australia; (P.A.); (H.M.T.); (B.R.H.)
| | - Benjamin R. Hofma
- Regenerative Medicine, Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide SA 5095, Australia; (P.A.); (H.M.T.); (B.R.H.)
| | - Rachael Z. Murray
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane QLD 4059, Australia;
| | - Allison J. Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide SA 5095, Australia; (P.A.); (H.M.T.); (B.R.H.)
- Correspondence: (S.J.M.); (A.J.C.); Tel.: +61-8-8302-3896 (S.J.M.)
| |
Collapse
|
7
|
Joshi H, Almgren-Bell A, Anaya EP, Todd EM, Van Dyken SJ, Seth A, McIntire KM, Singamaneni S, Sutterwala F, Morley SC. L-plastin enhances NLRP3 inflammasome assembly and bleomycin-induced lung fibrosis. Cell Rep 2022; 38:110507. [PMID: 35294888 PMCID: PMC8998782 DOI: 10.1016/j.celrep.2022.110507] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/06/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Macrophage adhesion and stretching have been shown to induce interleukin (IL)-1β production, but the mechanism of this mechanotransduction remains unclear. Here we specify the molecular link between mechanical tension on tissue-resident macrophages and activation of the NLRP3 inflammasome, which governs IL-1β production. NLRP3 activation enhances antimicrobial defense, but excessive NLRP3 activity causes inflammatory tissue damage in conditions such as pulmonary fibrosis and acute respiratory distress syndrome. We find that the actin-bundling protein L-plastin (LPL) significantly enhances NLRP3 assembly. Specifically, LPL enables apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) oligomerization during NLRP3 assembly by stabilizing ASC interactions with the kinase Pyk2, a component of cell-surface adhesive structures called podosomes. Upon treatment with exogenous NLRP3 activators, lung-resident alveolar macrophages (AMs) lacking LPL exhibit reduced caspase-1 activity, IL-1β cleavage, and gasdermin-D processing. LPL−/− mice display resistance to bleomycin-induced lung injury and fibrosis. These findings identify the LPL-Pyk2-ASC pathway as a target for modulation in NLRP3-mediated inflammatory conditions. In this study, Joshi et al. identify a crucial modulator, L-plastin, in lung inflammation. L-plastin supports the macrophage inflammatory response to enhance lung fibrosis during lung injury by connecting inflammation and mechanical stimuli in a process called mechanotransduction. The findings from this study will help determine efficient targets for diagnosis and treatment of lung inflammatory diseases.
Collapse
Affiliation(s)
- Hemant Joshi
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Immunobiology, Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alison Almgren-Bell
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Immunobiology, Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Edgar P Anaya
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Immunobiology, Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elizabeth M Todd
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Immunobiology, Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven J Van Dyken
- Division of Immunobiology, Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anushree Seth
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Katherine M McIntire
- Division of Immunobiology, Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Fayyaz Sutterwala
- Division of Infectious Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sharon C Morley
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Immunobiology, Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
Bombaci G, Sarangdhar MA, Andina N, Tardivel A, Yu ECW, Mackie GM, Pugh M, Ozan VB, Banz Y, Spinetti T, Hirzel C, Youd E, Schefold JC, Taylor G, Gazdhar A, Bonadies N, Angelillo-Scherrer A, Schneider P, Maslowski KM, Allam R. LRR-protein RNH1 dampens the inflammasome activation and is associated with COVID-19 severity. Life Sci Alliance 2022; 5:5/6/e202101226. [PMID: 35256513 PMCID: PMC8922048 DOI: 10.26508/lsa.202101226] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
RNH1 prevents inflammation by inhibiting inflammasome activation through controlling caspase-1 protein levels. In COVID-19 patients, RNH1 expression levels were negatively associated with disease severity and inflammation, suggesting a role for RNH1 in SARS-CoV-2–mediated inflammation and pathology. Inflammasomes are cytosolic innate immune sensors of pathogen infection and cellular damage that induce caspase-1–mediated inflammation upon activation. Although inflammation is protective, uncontrolled excessive inflammation can cause inflammatory diseases and can be detrimental, such as in coronavirus disease (COVID-19). However, the underlying mechanisms that control inflammasome activation are incompletely understood. Here we report that the leucine-rich repeat (LRR) protein ribonuclease inhibitor (RNH1), which shares homology with LRRs of NLRP (nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing) proteins, attenuates inflammasome activation. Deletion of RNH1 in macrophages increases interleukin (IL)-1β production and caspase-1 activation in response to inflammasome stimulation. Mechanistically, RNH1 decreases pro-IL-1β expression and induces proteasome-mediated caspase-1 degradation. Corroborating this, mouse models of monosodium urate (MSU)-induced peritonitis and lipopolysaccharide (LPS)-induced endotoxemia, which are dependent on caspase-1, respectively, show increased neutrophil infiltration and lethality in Rnh1−/− mice compared with wild-type mice. Furthermore, RNH1 protein levels were negatively related with disease severity and inflammation in hospitalized COVID-19 patients. We propose that RNH1 is a new inflammasome regulator with relevance to COVID-19 severity.
Collapse
Affiliation(s)
- Giuseppe Bombaci
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Mayuresh Anant Sarangdhar
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Nicola Andina
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Aubry Tardivel
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Eric Chi-Wang Yu
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | - Gillian M Mackie
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Matthew Pugh
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Vedat Burak Ozan
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yara Banz
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Thibaud Spinetti
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cedric Hirzel
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Esther Youd
- School of Medicine, Dentistry and Nursing, Forensic Medicine and Science. University of Glasgow, Scotland, UK
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Graham Taylor
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Amiq Gazdhar
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nicolas Bonadies
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Anne Angelillo-Scherrer
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | - Kendle M Maslowski
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Ramanjaneyulu Allam
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Xu J, Wang P, Li Z, Li Z, Han D, Wen M, Zhao Q, Zhang L, Ma Y, Liu W, Jiang M, Zhang X, Cao X. IRF3-binding lncRNA-ISIR strengthens interferon production in viral infection and autoinflammation. Cell Rep 2021; 37:109926. [PMID: 34731629 DOI: 10.1016/j.celrep.2021.109926] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/26/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
Interferon regulatory factor 3 (IRF3) is an essential transductor for initiation of many immune responses. Here, we show that lncRNA-ISIR directly binds IRF3 to promote its phosphorylation, dimerization, and nuclear translocation, along with enhanced target gene productions. In vivo lncRNA-ISIR deficiency results in reduced IFN production, uncontrolled viral replication, and increased mortality. The human homolog, AK131315, also binds IRF3 and promotes its activation. More important, AK131315 expression is positively correlated with type I interferon (IFN-I) level and severity in patients with lupus. Mechanistically, in resting cells, IRF3 is bound to suppressor protein Flightless-1 (Fli-1), which keeps its inactive state. Upon infection, IFN-I-induced lncRNA-ISIR binds IRF3 at DNA-binding domain in cytoplasm and removes Fli-1's association from IRF3, consequently facilitating IRF3 activation. Our results demonstrate that IFN-I-inducible lncRNA-ISIR feedback strengthens IRF3 activation by removing suppressive Fli-1 in immune responses, revealing a method of lncRNA-mediated modulation of transcription factor (TF) activation.
Collapse
Affiliation(s)
- Junfang Xu
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Pin Wang
- National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Medical University, Shanghai 200433, China.
| | - Zemeng Li
- National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Zhiqing Li
- National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Dan Han
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Mingyue Wen
- National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Qihang Zhao
- National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Lianfeng Zhang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Yuanwu Ma
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Wei Liu
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Minghong Jiang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xuan Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xuetao Cao
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China; National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Medical University, Shanghai 200433, China; Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing 100021, China.
| |
Collapse
|
10
|
Evavold CL, Hafner-Bratkovič I, Devant P, D'Andrea JM, Ngwa EM, Boršić E, Doench JG, LaFleur MW, Sharpe AH, Thiagarajah JR, Kagan JC. Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway. Cell 2021; 184:4495-4511.e19. [PMID: 34289345 PMCID: PMC8380731 DOI: 10.1016/j.cell.2021.06.028] [Citation(s) in RCA: 224] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 06/04/2021] [Accepted: 06/23/2021] [Indexed: 12/26/2022]
Abstract
The process of pyroptosis is mediated by inflammasomes and a downstream effector known as gasdermin D (GSDMD). Upon cleavage by inflammasome-associated caspases, the N-terminal domain of GSDMD forms membrane pores that promote cytolysis. Numerous proteins promote GSDMD cleavage, but none are known to be required for pore formation after GSDMD cleavage. Herein, we report a forward genetic screen that identified the Ragulator-Rag complex as being necessary for GSDMD pore formation and pyroptosis in macrophages. Mechanistic analysis revealed that Ragulator-Rag is not required for GSDMD cleavage upon inflammasome activation but rather promotes GSDMD oligomerization in the plasma membrane. Defects in GSDMD oligomerization and pore formation can be rescued by mitochondrial poisons that stimulate reactive oxygen species (ROS) production, and ROS modulation impacts the ability of inflammasome pathways to promote pore formation downstream of GSDMD cleavage. These findings reveal an unexpected link between key regulators of immunity (inflammasome-GSDMD) and metabolism (Ragulator-Rag).
Collapse
Affiliation(s)
- Charles L Evavold
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Iva Hafner-Bratkovič
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, 1000 Ljubljana, Slovenia
| | - Pascal Devant
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jasmin M D'Andrea
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Elsy M Ngwa
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Elvira Boršić
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - John G Doench
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Martin W LaFleur
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Jay R Thiagarajah
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Arellanes-Robledo J, Ibrahim J, Reyes-Gordillo K, Shah R, Leckey L, Lakshman MR. Flightless-I is a potential biomarker for the early detection of alcoholic liver disease. Biochem Pharmacol 2021; 183:114323. [PMID: 33166508 PMCID: PMC8614159 DOI: 10.1016/j.bcp.2020.114323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) is closely linked to oxidative stress induction. Antioxidant enzymes balance oxidative stress and function as intermediary signaling regulators. Nucleoredoxin (NXN), an antioxidant enzyme, regulates physiological processes through redox-sensitive interactions. NXN interacts with myeloid differentiation primary response gene-88 (MYD88) and flightless-I (FLII) to regulate toll-like receptor 4 (TLR4)/MYD88 pathway activation, but FLII also regulates key cell processes and is secreted into the bloodstream. However, the effects of chronic ethanol consumption recapitulated by either ethanol alone or in combination with lipopolysaccharides (LPS), as a two-hit ALD model, on FLII/NXN/MYD88 complex and FLII secretion have not been explored yet. In this study, we have demonstrated that ethanol feeding increased FLII protein levels, its nuclear translocation and plasma secretion, and modified its tissue distribution both in vivo and in vitro ALD models. Ethanol increased MYD88/FLII interaction ratio, and decreased NXN/MYD88 interaction ratio but this was partially reverted by two-hit model. While ethanol and two-hit model increased MYD88/TLR4 interaction ratio, two-hit model significantly decreased FLII nuclear translocation and its plasma secretion. Ethanol and LPS provoked similar effects in vitro; however, NXN overexpression partially reverted these alterations, and ethanol alone increased FLII secretion into culture medium. In summary, by analyzing the response of FLII/NXN/MYD88 complex during ALD early progression both in vivo and in vitro, we have discovered that the effects of chronic ethanol consumption disrupt this complex and identified FLII as a candidate non-invasive plasma biomarker for the early detection of ALD.
Collapse
Affiliation(s)
- Jaime Arellanes-Robledo
- Lipid Research Laboratory, VA Medical Center, Washington, D.C., USA; Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, D.C., USA; Laboratory of Hepatic Diseases, National Institute of Genomic Medicine - INMEGEN, CDMX, Mexico; Directorate of Cátedras, National Council of Science and Technology - CONACYT, CDMX, Mexico.
| | - Joseph Ibrahim
- Lipid Research Laboratory, VA Medical Center, Washington, D.C., USA; Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, D.C., USA
| | - Karina Reyes-Gordillo
- Lipid Research Laboratory, VA Medical Center, Washington, D.C., USA; Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, D.C., USA
| | - Ruchi Shah
- Lipid Research Laboratory, VA Medical Center, Washington, D.C., USA; Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, D.C., USA; Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Leslie Leckey
- Lipid Research Laboratory, VA Medical Center, Washington, D.C., USA; Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, D.C., USA
| | - M Raj Lakshman
- Lipid Research Laboratory, VA Medical Center, Washington, D.C., USA; Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, D.C., USA
| |
Collapse
|
12
|
Strudwick XL, Cowin AJ. Multifunctional Roles of the Actin-Binding Protein Flightless I in Inflammation, Cancer and Wound Healing. Front Cell Dev Biol 2020; 8:603508. [PMID: 33330501 PMCID: PMC7732498 DOI: 10.3389/fcell.2020.603508] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/30/2020] [Indexed: 11/20/2022] Open
Abstract
Flightless I is an actin-binding member of the gelsolin family of actin-remodeling proteins that inhibits actin polymerization but does not possess actin severing ability. Flightless I functions as a regulator of many cellular processes including proliferation, differentiation, apoptosis, and migration all of which are important for many physiological processes including wound repair, cancer progression and inflammation. More than simply facilitating cytoskeletal rearrangements, Flightless I has other important roles in the regulation of gene transcription within the nucleus where it interacts with nuclear hormone receptors to modulate cellular activities. In conjunction with key binding partners Leucine rich repeat in the Flightless I interaction proteins (LRRFIP)1/2, Flightless I acts both synergistically and competitively to regulate a wide range of cellular signaling including interacting with two of the most important inflammatory pathways, the NLRP3 inflammasome and the MyD88-TLR4 pathways. In this review we outline the current knowledge about this important cytoskeletal protein and describe its many functions across a range of health conditions and pathologies. We provide perspectives for future development of Flightless I as a potential target for clinical translation and insights into potential therapeutic approaches to manipulate Flightless I functions.
Collapse
Affiliation(s)
- Xanthe L Strudwick
- Regenerative Medicine, Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| |
Collapse
|
13
|
Pintér R, Huber T, Bukovics P, Gaszler P, Vig AT, Tóth MÁ, Gazsó-Gerhát G, Farkas D, Migh E, Mihály J, Bugyi B. The Activities of the Gelsolin Homology Domains of Flightless-I in Actin Dynamics. Front Mol Biosci 2020; 7:575077. [PMID: 33033719 PMCID: PMC7509490 DOI: 10.3389/fmolb.2020.575077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Flightless-I is a unique member of the gelsolin superfamily alloying six gelsolin homology domains and leucine-rich repeats. Flightless-I is an established regulator of the actin cytoskeleton, however, its biochemical activities in actin dynamics are still largely elusive. To better understand the biological functioning of Flightless-I we studied the actin activities of Drosophila Flightless-I by in vitro bulk fluorescence spectroscopy and single filament fluorescence microscopy, as well as in vivo genetic approaches. Flightless-I was found to interact with actin and affects actin dynamics in a calcium-independent fashion in vitro. Our work identifies the first three gelsolin homology domains (1–3) of Flightless-I as the main actin-binding site; neither the other three gelsolin homology domains (4–6) nor the leucine-rich repeats bind actin. Flightless-I inhibits polymerization by high-affinity (∼nM) filament barbed end capping, moderately facilitates nucleation by low-affinity (∼μM) monomer binding, and does not sever actin filaments. Our work reveals that in the presence of profilin Flightless-I is only able to cap actin filament barbed ends but fails to promote actin assembly. In line with the in vitro data, while gelsolin homology domains 4–6 have no effect on in vivo actin polymerization, overexpression of gelsolin homology domains 1–3 prevents the formation of various types of actin cables in the developing Drosophila egg chambers. We also show that the gelsolin homology domains 4–6 of Flightless-I interact with the C-terminus of Drosophila Disheveled-associated activator of morphogenesis formin and negatively regulates its actin assembly activity.
Collapse
Affiliation(s)
- Réka Pintér
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Huber
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Bukovics
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Gaszler
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary
| | - Andrea Teréz Vig
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary
| | - Mónika Ágnes Tóth
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary
| | - Gabriella Gazsó-Gerhát
- Biological Research Centre Szeged, Institute of Genetics, Szeged, Hungary.,Faculty of Science and Informatics, Doctoral School in Biology, University of Szeged, Szeged, Hungary
| | - Dávid Farkas
- Biological Research Centre Szeged, Institute of Genetics, Szeged, Hungary
| | - Ede Migh
- Biological Research Centre Szeged, Institute of Genetics, Szeged, Hungary
| | - József Mihály
- Biological Research Centre Szeged, Institute of Genetics, Szeged, Hungary
| | - Beáta Bugyi
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary.,Szentágothai Research Center, Pécs, Hungary
| |
Collapse
|
14
|
Goddard PJ, Sanchez-Garrido J, Slater SL, Kalyan M, Ruano-Gallego D, Marchès O, Fernández LÁ, Frankel G, Shenoy AR. Enteropathogenic Escherichia coli Stimulates Effector-Driven Rapid Caspase-4 Activation in Human Macrophages. Cell Rep 2020; 27:1008-1017.e6. [PMID: 31018119 PMCID: PMC6486487 DOI: 10.1016/j.celrep.2019.03.100] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/20/2019] [Accepted: 03/27/2019] [Indexed: 12/20/2022] Open
Abstract
Microbial infections can stimulate the assembly of inflammasomes, which activate caspase-1. The gastrointestinal pathogen enteropathogenic Escherichia coli (EPEC) causes localized actin polymerization in host cells. Actin polymerization requires the binding of the bacterial adhesin intimin to Tir, which is delivered to host cells via a type 3 secretion system (T3SS). We show that EPEC induces T3SS-dependent rapid non-canonical NLRP3 inflammasome activation in human macrophages. Notably, caspase-4 activation by EPEC triggers pyroptosis and cytokine processing through the NLRP3-caspase-1 inflammasome. Mechanistically, caspase-4 activation requires the detection of LPS and EPEC-induced actin polymerization, either via Tir tyrosine phosphorylation and the phosphotyrosine-binding adaptor NCK or Tir and the NCK-mimicking effector TccP. An engineered E. coli K12 could reconstitute Tir-intimin signaling, which is necessary and sufficient for inflammasome activation, ruling out the involvement of other virulence factors. Our studies reveal a crosstalk between caspase-4 and caspase-1 that is cooperatively stimulated by LPS and effector-driven actin polymerization. EPEC bacteria expressing virulence genes induce rapid human macrophage pyroptosis Bacterial LPS sensing by caspase-4 activates NLRP3-caspase-1 inflammasomes Actin polymerization driven by Tir-intimin signaling promotes pyroptosis Caspase-1 mediates cytokine processing and gasdermin D cleavage, leading to pyroptosis
Collapse
Affiliation(s)
- Philippa J Goddard
- Department of Life Sciences, Medical Research Council Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK; Department of Medicine, Medical Research Council Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK
| | - Julia Sanchez-Garrido
- Department of Medicine, Medical Research Council Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK
| | - Sabrina L Slater
- Department of Life Sciences, Medical Research Council Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK
| | - Mohini Kalyan
- Department of Medicine, Medical Research Council Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK
| | - David Ruano-Gallego
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Olivier Marchès
- Department of Life Sciences, Medical Research Council Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Gad Frankel
- Department of Life Sciences, Medical Research Council Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK
| | - Avinash R Shenoy
- Department of Medicine, Medical Research Council Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK.
| |
Collapse
|
15
|
Flightless-1 inhibits ER stress-induced apoptosis in colorectal cancer cells by regulating Ca 2+ homeostasis. Exp Mol Med 2020; 52:940-950. [PMID: 32504039 PMCID: PMC7338537 DOI: 10.1038/s12276-020-0448-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) stress response is an adaptive mechanism that is activated upon disruption of ER homeostasis and protects the cells against certain harmful environmental stimuli. However, critical and prolonged cell stress triggers cell death. In this study, we demonstrate that Flightless-1 (FliI) regulates ER stress-induced apoptosis in colon cancer cells by modulating Ca2+ homeostasis. FliI was highly expressed in both colon cell lines and colorectal cancer mouse models. In a mouse xenograft model using CT26 mouse colorectal cancer cells, tumor formation was slowed due to elevated levels of apoptosis in FliI-knockdown (FliI-KD) cells. FliI-KD cells treated with ER stress inducers, thapsigargin (TG), and tunicamycin exhibited activation of the unfolded protein response (UPR) and induction of UPR-related gene expression, which eventually triggered apoptosis. FliI-KD increased the intracellular Ca2+ concentration, and this upregulation was caused by accelerated ER-to-cytosolic efflux of Ca2+. The increase in intracellular Ca2+ concentration was significantly blocked by dantrolene and tetracaine, inhibitors of ryanodine receptors (RyRs). Dantrolene inhibited TG-induced ER stress and decreased the rate of apoptosis in FliI-KD CT26 cells. Finally, we found that knockdown of FliI decreased the levels of sorcin and ER Ca2+ and that TG-induced ER stress was recovered by overexpression of sorcin in FliI-KD cells. Taken together, these results suggest that FliI regulates sorcin expression, which modulates Ca2+ homeostasis in the ER through RyRs. Our findings reveal a novel mechanism by which FliI influences Ca2+ homeostasis and cell survival during ER stress. A cytoskeletal protein that helps tumors avoid cell death offers a promising new drug target for fighting cancer. A team led by Jang Hyun Choi and Sun Sil Choi of the Ulsan National Institute of Science and Technology, South Korea, detailed how a protein called Flightless I (FliI) that normally regulates the remodeling of structural filaments in the cell can, in colorectal cancer cells, serve as a tumor promoter through its action on calcium levels. Typically, cells respond to chronic stress by altering calcium signaling to promote their own death. In tumors, however, FliI maintains normal calcium levels to enhance cell survival even in the face of chemotherapy and other stressful stimuli. Suppressing FliI activity could thus help sensitize cancer cells to other stress- and death-inducing drug regimens.
Collapse
|
16
|
Sanchez‐Garrido J, Slater SL, Clements A, Shenoy AR, Frankel G. Vying for the control of inflammasomes: The cytosolic frontier of enteric bacterial pathogen-host interactions. Cell Microbiol 2020; 22:e13184. [PMID: 32185892 PMCID: PMC7154749 DOI: 10.1111/cmi.13184] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/13/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022]
Abstract
Enteric pathogen-host interactions occur at multiple interfaces, including the intestinal epithelium and deeper organs of the immune system. Microbial ligands and activities are detected by host sensors that elicit a range of immune responses. Membrane-bound toll-like receptors and cytosolic inflammasome pathways are key signal transducers that trigger the production of pro-inflammatory molecules, such as cytokines and chemokines, and regulate cell death in response to infection. In recent years, the inflammasomes have emerged as a key frontier in the tussle between bacterial pathogens and the host. Inflammasomes are complexes that activate caspase-1 and are regulated by related caspases, such as caspase-11, -4, -5 and -8. Importantly, enteric bacterial pathogens can actively engage or evade inflammasome signalling systems. Extracellular, vacuolar and cytosolic bacteria have developed divergent strategies to subvert inflammasomes. While some pathogens take advantage of inflammasome activation (e.g. Listeria monocytogenes, Helicobacter pylori), others (e.g. E. coli, Salmonella, Shigella, Yersinia sp.) deploy a range of virulence factors, mainly type 3 secretion system effectors, that subvert or inhibit inflammasomes. In this review we focus on inflammasome pathways and their immune functions, and discuss how enteric bacterial pathogens interact with them. These studies have not only shed light on inflammasome-mediated immunity, but also the exciting area of mammalian cytosolic immune surveillance.
Collapse
Affiliation(s)
| | | | | | - Avinash R. Shenoy
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology & InfectionImperial College LondonLondonUK
| | - Gad Frankel
- Department of Life SciencesImperial College LondonLondonUK
| |
Collapse
|
17
|
Abstract
Caspases are a family of conserved cysteine proteases that play key roles in programmed cell death and inflammation. In multicellular organisms, caspases are activated via macromolecular signaling complexes that bring inactive procaspases together and promote their proximity-induced autoactivation and proteolytic processing. Activation of caspases ultimately results in programmed execution of cell death, and the nature of this cell death is determined by the specific caspases involved. Pioneering new research has unraveled distinct roles and cross talk of caspases in the regulation of programmed cell death, inflammation, and innate immune responses. In-depth understanding of these mechanisms is essential to foster the development of precise therapeutic targets to treat autoinflammatory disorders, infectious diseases, and cancer. This review focuses on mechanisms governing caspase activation and programmed cell death with special emphasis on the recent progress in caspase cross talk and caspase-driven gasdermin D-induced pyroptosis.
Collapse
Affiliation(s)
- Sannula Kesavardhana
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA; , ,
| | - R K Subbarao Malireddi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA; , ,
| | | |
Collapse
|
18
|
Zhang Y, Rong H, Zhang FX, Wu K, Mu L, Meng J, Xiao B, Zamponi GW, Shi Y. A Membrane Potential- and Calpain-Dependent Reversal of Caspase-1 Inhibition Regulates Canonical NLRP3 Inflammasome. Cell Rep 2020; 24:2356-2369.e5. [PMID: 30157429 PMCID: PMC6201321 DOI: 10.1016/j.celrep.2018.07.098] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/06/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023] Open
Abstract
The NLRP3 inflammasome senses a range of cellular disturbances, although no consensus exists regarding a common mechanism. Canonical NLRP3 activation is blocked by high extracellular K+, regardless of the activating signal. We report here that canonical NLRP3 activation leads to Ca2+ flux and increased calpain activity. Activated calpain releases a pool of Caspase-1 sequestered by the cytoskeleton to regulate NLRP3 activation. Using electrophysiological recording, we found that resting-state eukaryotic membrane potential (MP) is required for this calpain activity, and depolarization by high extracellular K+ or artificial hyperpolarization results in the inhibition of calpain. Therefore, the MP/Ca2+/calpain/ Caspase-1 axis acts as an independent regulatory mechanism for NLRP3 activity. This finding provides mechanistic insight into high K+-mediated inhibition of NLRP3 activation, and it offers an alternative model of NLRP3 inflammasome activation that does not involve K+ efflux. Zhang et al. find that, in canonical NLRP inflammasome activation, calpain activity is essential for releasing caspase-1 from flightless-1 and the cytoskeleton. Membrane depolarization, such as under high extracellular K+ or hyperpolarization, impairs this activity. This work provides insight into extracellular K+ -mediated inhibition of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yifei Zhang
- Institute for Immunology, Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hua Rong
- Institute for Immunology, Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fang-Xiong Zhang
- Department of Physiology and Pharmacology, Cumming School of Medicine and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Kun Wu
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Libing Mu
- Institute for Immunology, Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junchen Meng
- Institute for Immunology, Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bailong Xiao
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Yan Shi
- Institute for Immunology, Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China; Department of Microbiology, Immunology & Infectious Diseases and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
19
|
|
20
|
Mishra PK, Adameova A, Hill JA, Baines CP, Kang PM, Downey JM, Narula J, Takahashi M, Abbate A, Piristine HC, Kar S, Su S, Higa JK, Kawasaki NK, Matsui T. Guidelines for evaluating myocardial cell death. Am J Physiol Heart Circ Physiol 2019; 317:H891-H922. [PMID: 31418596 DOI: 10.1152/ajpheart.00259.2019] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell death is a fundamental process in cardiac pathologies. Recent studies have revealed multiple forms of cell death, and several of them have been demonstrated to underlie adverse cardiac remodeling and heart failure. With the expansion in the area of myocardial cell death and increasing concerns over rigor and reproducibility, it is important and timely to set a guideline for the best practices of evaluating myocardial cell death. There are six major forms of regulated cell death observed in cardiac pathologies, namely apoptosis, necroptosis, mitochondrial-mediated necrosis, pyroptosis, ferroptosis, and autophagic cell death. In this article, we describe the best methods to identify, measure, and evaluate these modes of myocardial cell death. In addition, we discuss the limitations of currently practiced myocardial cell death mechanisms.
Collapse
Affiliation(s)
- Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Adriana Adameova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University of Bratislava, Bratislava, Slovakia
| | - Joseph A Hill
- Departments of Medicine (Cardiology) and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Christopher P Baines
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Peter M Kang
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - James M Downey
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Jagat Narula
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai Hospital, New York, New York
| | - Masafumi Takahashi
- Division of Inflammation Research, Center of Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Antonio Abbate
- Virginia Commonwealth University, Pauley Heart Center, Richmond, Virginia
| | - Hande C Piristine
- Department of Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sumit Kar
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shi Su
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jason K Higa
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Nicholas K Kawasaki
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Takashi Matsui
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| |
Collapse
|
21
|
Carpentier SJ, Ni M, Duggan JM, James RG, Cookson BT, Hamerman JA. The signaling adaptor BCAP inhibits NLRP3 and NLRC4 inflammasome activation in macrophages through interactions with Flightless-1. Sci Signal 2019; 12:12/581/eaau0615. [PMID: 31088976 DOI: 10.1126/scisignal.aau0615] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
B cell adaptor for phosphoinositide 3-kinase (PI3K) (BCAP) is a signaling adaptor that activates the PI3K pathway downstream of B cell receptor signaling in B cells and Toll-like receptor (TLR) signaling in macrophages. BCAP binds to the regulatory p85 subunit of class I PI3K and is a large, multidomain protein. We used proteomic analysis to identify other BCAP-interacting proteins in macrophages and found that BCAP specifically associated with the caspase-1 pseudosubstrate inhibitor Flightless-1 and its binding partner leucine-rich repeat flightless-interacting protein 2. Because these proteins inhibit the NLRP3 inflammasome, we investigated the role of BCAP in inflammasome function. Independent of its effects on TLR priming, BCAP inhibited NLRP3- and NLRC4-induced caspase-1 activation, cell death, and IL-1β release from macrophages. Accordingly, caspase-1-dependent clearance of a Yersinia pseudotuberculosis mutant was enhanced in BCAP-deficient mice. Mechanistically, BCAP delayed the recruitment and activation of pro-caspase-1 within the NLRP3/ASC preinflammasome through its association with Flightless-1. Thus, BCAP is a multifunctional signaling adaptor that inhibits key pathogen-sensing pathways in macrophages.
Collapse
Affiliation(s)
- Samuel J Carpentier
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Minjian Ni
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Jeffrey M Duggan
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101, USA.,Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Richard G James
- Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Brad T Cookson
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA.,Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jessica A Hamerman
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101, USA. .,Department of Immunology, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
22
|
Joshi H, Morley SC. Cells under stress: The mechanical environment shapes inflammasome responses to danger signals. J Leukoc Biol 2019; 106:119-125. [PMID: 30645000 DOI: 10.1002/jlb.3mir1118-417r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 12/11/2022] Open
Abstract
Many intracellular signals, such as host danger-associated molecules and bacterial toxins during infection, elicit inflammasome activation. However, the mechanical environment in tissues may also influence the sensitivity of various inflammasomes to activation. The cellular mechanical environment is determined by the extracellular tissue stiffness, or its inverse, tissue compliance. Tissue stiffness is sensed by the intracellular cytoskeleton through a process termed mechanotransduction. Thus, extracellular compliance and the intracellular cytoskeleton may regulate the sensitivity of inflammasome activation. Control of proinflammatory signaling by tissue compliance may contribute to the pathogenesis of diseases such as ventilator-induced lung injury during bacterial pneumonia and tissue fibrosis in inflammatory disorders. The responsible signaling cascades in inflammasome activation pathways and mechanotransduction crosstalk are not yet fully understood. This rather different immunomodulatory perspective will be reviewed and open questions discussed here.
Collapse
Affiliation(s)
- Hemant Joshi
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA.,Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sharon Celeste Morley
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA.,Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
23
|
He JP, Hou PP, Chen QT, Wang WJ, Sun XY, Yang PB, Li YP, Yao LM, Li X, Jiang XD, Chien KY, Zhang ZM, Wu QW, Cowin AJ, Wu Q, Chen HZ. Flightless-I Blocks p62-Mediated Recognition of LC3 to Impede Selective Autophagy and Promote Breast Cancer Progression. Cancer Res 2018; 78:4853-4864. [PMID: 29898994 DOI: 10.1158/0008-5472.can-17-3835] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/19/2018] [Accepted: 06/06/2018] [Indexed: 11/16/2022]
Abstract
p62 is a receptor that facilitates selective autophagy by interacting simultaneously with cargoes and LC3 protein on the autophagosome to maintain cellular homeostasis. However, the regulatory mechanism(s) behind this process and its association with breast cancer remain to be elucidated. Here, we report that Flightless-I (FliI), a novel p62-interacting protein, promotes breast cancer progression by impeding selective autophagy. FliI was highly expressed in clinical breast cancer samples, and heterozygous deletion of FliI retarded the development of mammary tumors in PyVT mice. FliI induced p62-recruited cargoes into Triton X-100 insoluble fractions (TI) to form aggregates, thereby blocking p62 recognition of LC3 and hindering p62-dependent selective autophagy. This function of Flil was reinforced by Akt-mediated phosphorylation at Ser436 and inhibited by phosphorylation of Ulk1 at Ser64. Obstruction of autophagic clearance of p62-recruited cargoes by FliI was associated with the accumulation of oxidative damage on proteins and DNA, which could contribute to the development of cancer. Heterozygous knockout of FliI facilitated selectively autophagic clearance of aggregates, abatement of ROS levels, and protein oxidative damage, ultimately retarding mammary cancer progression. In clinical breast cancer samples, Akt-mediated phosphorylation of FliI at Ser436 negatively correlated with long-term prognosis, while Ulk1-induced FliI phosphorylation at Ser64 positively correlated with clinical outcome. Together, this work demonstrates that FliI functions as a checkpoint protein for selective autophagy in the crosstalk between FliI and p62-recruited cargoes, and its phosphorylation may serve as a prognostic marker for breast cancer.Significance: Flightless-I functions as a checkpoint protein for selective autophagy by interacting with p62 to block its recognition of LC3, leading to tumorigenesis in breast cancer.Cancer Res; 78(17); 4853-64. ©2018 AACR.
Collapse
Affiliation(s)
- Jian-Ping He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, P.R. China
| | - Pei-Pei Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, P.R. China
| | - Qi-Tao Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, P.R. China
| | - Wei-Jia Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, P.R. China
| | - Xiao-Yu Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, P.R. China
| | - Peng-Bo Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, P.R. China
| | - Ying-Ping Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, P.R. China
| | - Lu-Ming Yao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, P.R. China
| | - Xiaotong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, P.R. China
| | - Xin-Dong Jiang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, P.R. China
| | - Kun-Yi Chien
- Molecular Medicine Research Center, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Zhi-Ming Zhang
- Department of Breast Surgery, the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, China
| | - Qiu-Wan Wu
- Department of Breast Surgery, the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, China
| | - Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Qiao Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, P.R. China
| | - Hang-Zi Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, P.R. China.
| |
Collapse
|
24
|
Wang C, Chen K, Liao S, Gu W, Lian X, Zhang J, Gao X, Liu X, Wang T, He QY, Zhang G, Liu L. The flightless I protein interacts with RNA-binding proteins and is involved in the genome-wide mRNA post-transcriptional regulation in lung carcinoma cells. Int J Oncol 2017; 51:347-361. [PMID: 28498392 DOI: 10.3892/ijo.2017.3995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/24/2017] [Indexed: 11/06/2022] Open
Abstract
The flightless I protein (FLII) belongs to the gelsolin family. Its function has been associated with actin remodeling, embryonic development, wound repair, and more recently with cancer. The structure of FLII is characterized by the N-terminal leucine-rich repeats (LRR) and C-terminal gesolin related repeated units that are both protein-protein inter-action domains, suggesting that FLII may exert its function by interaction with other proteins. Therefore, systematic study of protein interactions of FLII in cells is important for the understanding of FLII functions. In this study, we found that FLII was downregulated in lung carcinoma cell lines H1299 and A549 as compared with normal HBE (human bronchial epithelial) cell line. The investigation of FLII interactome in H1299 cells revealed that 74 of the total 132 putative FLII interactors are involved in RNA post-transcriptional modification and trafficking. Furthermore, by using high-throughput transcriptome and translatome sequencing combined with cell fractionation, we showed that the overexpression or knockdown of FLII impacts on the overall nuclear export, and translation of mRNAs. IPA analysis revealed that the majority of these target mRNAs encode the proteins whose functions are reminiscent of those previously reported for FLII, suggesting that the post-transcriptional regulation of mRNA might be a major mechanism of action for FLII.
Collapse
Affiliation(s)
- Cuihua Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Kezhi Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Shengyou Liao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Wei Gu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xinlei Lian
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jing Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xuejuan Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xiaohui Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Tong Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Gong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Langxia Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
25
|
Kopecki Z, Yang GN, Jackson JE, Melville EL, Calley MP, Murrell DF, Darby IA, O'Toole EA, Samuel MS, Cowin AJ. Cytoskeletal protein Flightless I inhibits apoptosis, enhances tumor cell invasion and promotes cutaneous squamous cell carcinoma progression. Oncotarget 2017; 6:36426-40. [PMID: 26497552 PMCID: PMC4742187 DOI: 10.18632/oncotarget.5536] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 10/09/2015] [Indexed: 01/08/2023] Open
Abstract
Flightless I (Flii) is an actin remodeling protein that affects cellular processes including adhesion, proliferation and migration. In order to determine the role of Flii during carcinogenesis, squamous cell carcinomas (SCCs) were induced in Flii heterozygous (Flii+/-), wild-type and Flii overexpressing (FliiTg/Tg) mice by intradermal injection of 3-methylcholanthrene (MCA). Flii levels were further assessed in biopsies from human SCCs and the human SCC cell line (MET-1) was used to determine the effect of Flii on cellular invasion. Flii was highly expressed in human SCC biopsies particularly by the invading cells at the tumor edge. FliiTg/Tg mice developed large, aggressive SCCs in response to MCA. In contrast Flii+/- mice had significantly smaller tumors that were less invasive. Intradermal injection of Flii neutralizing antibodies during SCC initiation and progression significantly reduced the size of the tumors and, in vitro, decreased cellular sphere formation and invasion. Analysis of the tumors from the Flii overexpressing mice showed reduced caspase I and annexin V expression suggesting Flii may negatively regulate apoptosis within these tumors. These studies therefore suggest that Flii enhances SCC tumor progression by decreasing apoptosis and enhancing tumor cell invasion. Targeting Flii may be a potential strategy for reducing the severity of SCCs.
Collapse
Affiliation(s)
- Zlatko Kopecki
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Gink N Yang
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Jessica E Jackson
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Elizabeth L Melville
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Matthew P Calley
- Centre for Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Dedee F Murrell
- Department of Dermatology, St. George Hospital and University of New South Wales, Sydney, New South Wales, Australia
| | - Ian A Darby
- School of Medical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Edel A O'Toole
- Centre for Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Michael S Samuel
- Centre for Cancer Biology, an alliance between SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
26
|
Kopecki Z, Ludwig RJ, Cowin AJ. Cytoskeletal Regulation of Inflammation and Its Impact on Skin Blistering Disease Epidermolysis Bullosa Acquisita. Int J Mol Sci 2016; 17:ijms17071116. [PMID: 27420054 PMCID: PMC4964491 DOI: 10.3390/ijms17071116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 01/10/2023] Open
Abstract
Actin remodelling proteins regulate cytoskeletal cell responses and are important in both innate and adaptive immunity. These responses play a major role in providing a fine balance in a cascade of biological events that results in either protective acute inflammation or chronic inflammation that leads to a host of diseases including autoimmune inflammation mediated epidermolysis bullosa acquisita (EBA). This review describes the role of the actin cytoskeleton and in particular the actin remodelling protein called Flightless I (Flii) in regulating cellular inflammatory responses and its subsequent effect on the autoimmune skin blistering disease EBA. It also outlines the potential of an antibody based therapy for decreasing Flii expression in vivo to ameliorate the symptoms associated with EBA.
Collapse
Affiliation(s)
- Zlatko Kopecki
- Future Industries Institute, Regenerative Medicine, University of South Australia, Mawson Lakes 5095, Adelaide, Australia.
| | - Ralf J Ludwig
- Institute of Experimental Dermatology, University of Lubeck, Lubeck 23562, Germany.
| | - Allison J Cowin
- Future Industries Institute, Regenerative Medicine, University of South Australia, Mawson Lakes 5095, Adelaide, Australia.
| |
Collapse
|
27
|
Stein R, Kapplusch F, Heymann MC, Russ S, Staroske W, Hedrich CM, Rösen-Wolff A, Hofmann SR. Enzymatically Inactive Procaspase 1 stabilizes the ASC Pyroptosome and Supports Pyroptosome Spreading during Cell Division. J Biol Chem 2016; 291:18419-29. [PMID: 27402835 DOI: 10.1074/jbc.m116.718668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Indexed: 01/03/2023] Open
Abstract
Caspase-1 is a key player during the initiation of pro-inflammatory innate immune responses, activating pro-IL-1β in so-called inflammasomes. A subset of patients with recurrent febrile episodes and systemic inflammation of unknown origin harbor mutations in CASP1 encoding caspase-1. CASP1 variants result in reduced enzymatic activity of caspase-1 and impaired IL-1β secretion. The apparent paradox of reduced IL-1β secretion but systemic inflammation led to the hypothesis that CASP1 mutations may result in variable protein interaction clusters, thus activating alternative signaling pathways. To test this hypothesis, we established and characterized an in vitro system of transduced immortalized murine macrophages expressing either WT or enzymatically inactive (p.C284A) procaspase-1 fusion reporter proteins. Macrophages with variant p.C284A caspase-1 did not secrete IL-1β and exhibited reduced inflammatory cell death, referred to as pyroptosis. Caspase-1 and apoptosis-associated speck-like protein containing a CARD (ASC) formed cytosolic macromolecular complexes (so-called pyroptosomes) that were significantly increased in number and size in cells carrying the p.C284A caspase-1 variant compared with WT caspase-1. Furthermore, enzymatically inactive caspase-1 interacted with ASC longer and with increased intensity compared with WT caspase-1. Applying live cell imaging, we documented for the first time that pyroptosomes containing enzymatically inactive variant p.C284A caspase-1 spread during cell division. In conclusion, variant p.C284A caspase-1 stabilizes pyroptosome formation, potentially enhancing inflammation by two IL-1β-independent mechanisms: pyroptosomes convey an enhanced inflammatory stimulus through the recruitment of additional proteins (such as RIP2, receptor interacting protein kinase 2), which is further amplified through pyroptosome and cell division.
Collapse
Affiliation(s)
- Robert Stein
- From the Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, and
| | - Franz Kapplusch
- From the Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, and
| | | | - Susanne Russ
- From the Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, and
| | - Wolfgang Staroske
- Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Angela Rösen-Wolff
- From the Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, and
| | - Sigrun Ruth Hofmann
- From the Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, and
| |
Collapse
|
28
|
Stewart MK, Cookson BT. Evasion and interference: intracellular pathogens modulate caspase-dependent inflammatory responses. Nat Rev Microbiol 2016; 14:346-59. [PMID: 27174147 DOI: 10.1038/nrmicro.2016.50] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pathogens have evolved to complete the virulence cycle of colonization, replication and dissemination in intimate association with a complex network of extracellular and intracellular surveillance systems that guard tissue spaces. In this Review, we discuss the strategies used by bacteria and viruses to evade or inhibit intracellular detection that is coupled to pro-inflammatory caspase-dependent protective responses. Such strategies include alterations of lipopolysaccharide (LPS) structures, the regulated expression of components of type III secretion systems, and the utilization of proteins that inhibit inflammasome formation, the enzymatic activity of caspases and cytokine signalling. Inflammation is crucial in response to exposure to pathogens, but is potentially damaging and thus tightly regulated. The threshold for the activation of pro-inflammatory caspases is determined by the immediate stimulus in the context of previous signals. Pathogen, genetic and situational factors modulate this threshold, which determines the ability of the host to resist infection while minimizing harm.
Collapse
Affiliation(s)
- Mary K Stewart
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| | - Brad T Cookson
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA.,Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
29
|
The Roles of RNase-L in Antimicrobial Immunity and the Cytoskeleton-Associated Innate Response. Int J Mol Sci 2016; 17:ijms17010074. [PMID: 26760998 PMCID: PMC4730318 DOI: 10.3390/ijms17010074] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/21/2015] [Accepted: 01/04/2016] [Indexed: 12/26/2022] Open
Abstract
The interferon (IFN)-regulated endoribonuclease RNase-L is involved in multiple aspects of the antimicrobial innate immune response. It is the terminal component of an RNA cleavage pathway in which dsRNA induces the production of RNase-L-activating 2-5A by the 2′-5′-oligoadenylate synthetase. The active nuclease then cleaves ssRNAs, both cellular and viral, leading to downregulation of their expression and the generation of small RNAs capable of activating retinoic acid-inducible gene-I (RIG-I)-like receptors or the nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome. This leads to IFNβ expression and IL-1β activation respectively, in addition to broader effects on immune cell function. RNase-L is also one of a growing number of innate immune components that interact with the cell cytoskeleton. It can bind to several cytoskeletal proteins, including filamin A, an actin-binding protein that collaborates with RNase-L to maintain the cellular barrier to viral entry. This antiviral activity is independent of catalytic function, a unique mechanism for RNase-L. We also describe here the interaction of RNase-L with the E3 ubiquitin ligase and scaffolding protein, ligand of nump protein X (LNX), a regulator of tight junction proteins. In order to better understand the significance and context of these novel binding partners in the antimicrobial response, other innate immune protein interactions with the cytoskeleton are also discussed.
Collapse
|
30
|
Wang T, Song W, Chen Y, Chen R, Liu Z, Wu L, Li M, Yang J, Wang L, Liu J, Ye Z, Wang C, Chen K. Flightless I Homolog Represses Prostate Cancer Progression through Targeting Androgen Receptor Signaling. Clin Cancer Res 2015; 22:1531-44. [PMID: 26527749 DOI: 10.1158/1078-0432.ccr-15-1632] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/25/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Flightless I (FLII), member of the gelsolin superfamily of actin-remodeling proteins, functions as a transcriptional coregulator. We aim to evaluate a tumor-suppressive function of FLII in regulating androgen receptor (AR) in prostate cancer progression. EXPERIMENTAL DESIGN We examined FLII protein and mRNA expression in clinical prostate cancer specimens by immunohistochemistry. Kaplan-Meier analysis was conducted to evaluate the difference in disease-overall survival associated with the expression levels of FLII and AR. Prostate cancer cells stably expressing FLII or shRNA knockdown were used for functional analyses. Immunoprecipitation, Luciferase reporter, and immunofluorescence staining assays were performed to examine the functional interaction between FLII and AR. RESULTS Our analysis of the expression levels of FLII in a clinical gene expression array dataset showed that the expression of FLII was positively correlated with the overall survival of prostate cancer patients exhibiting high levels of AR expression. Examination of protein and mRNA levels of FLII showed a significant decrease of FLII expression in human prostate cancers. AR and FLII formed a complex in a ligand-dependent manner through the ligand-binding domain (LBD) of AR. Subsequently, we observed a competitive binding to AR between FLII and the ligand. FLII inhibited AR transactivation and decreased AR nuclear localization. Furthermore, FLII contributed to castration-sensitive and castration-resistant prostate cancer cell growth through AR-dependent signaling, and reintroduction of FLII in prostate cancer cells sensitized the cells to bicalutamide and enzalutamide treatment. CONCLUSIONS FLII plays a tumor-suppressive role and serves as a crucial determinant of resistance of prostate cancer to endocrine therapies.
Collapse
Affiliation(s)
- Tao Wang
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Song
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuan Chen
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruibao Chen
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuo Liu
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Licheng Wu
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingchao Li
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Yang
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhangqun Ye
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chenguang Wang
- Key Laboratory of Tianjin Radiation and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Ke Chen
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
31
|
The cytoskeleton in cell-autonomous immunity: structural determinants of host defence. Nat Rev Immunol 2015; 15:559-73. [PMID: 26292640 DOI: 10.1038/nri3877] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton--actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement--have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence.
Collapse
|
32
|
Arora PD, Wang Y, Bresnick A, Janmey PA, McCulloch CA. Flightless I interacts with NMMIIA to promote cell extension formation, which enables collagen remodeling. Mol Biol Cell 2015; 26:2279-97. [PMID: 25877872 PMCID: PMC4462945 DOI: 10.1091/mbc.e14-11-1536] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/09/2015] [Indexed: 01/14/2023] Open
Abstract
The role of the actin-capping protein flightless I in collagen remodeling by mouse fibroblasts is examined. Flightless and nonmuscle myosin IIA cooperate to enable collagen phagocytosis. We examined the role of the actin-capping protein flightless I (FliI) in collagen remodeling by mouse fibroblasts. FliI-overexpressing cells exhibited reduced spreading on collagen but formed elongated protrusions that stained for myosin10 and fascin and penetrated pores of collagen-coated membranes. Inhibition of Cdc42 blocked formation of cell protrusions. In FliI-knockdown cells, transfection with constitutively active Cdc42 did not enable protrusion formation. FliI-overexpressing cells displayed increased uptake and degradation of exogenous collagen and strongly compacted collagen fibrils, which was blocked by blebbistatin. Mass spectrometry analysis of FliI immunoprecipitates showed that FliI associated with nonmuscle myosin IIA (NMMIIA), which was confirmed by immunoprecipitation. GFP-FliI colocalized with NMMIIA at cell protrusions. Purified FliI containing gelsolin-like domains (GLDs) 1–6 capped actin filaments efficiently, whereas FliI GLD 2–6 did not. Binding assays showed strong interaction of purified FliI protein (GLD 1–6) with the rod domain of NMMIIA (kD = 0.146 μM), whereas FliI GLD 2–6 showed lower binding affinity (kD = 0.8584 μM). Cells expressing FliI GLD 2–6 exhibited fewer cell extensions, did not colocalize with NMMIIA, and showed reduced collagen uptake compared with cells expressing FliI GLD 1–6. We conclude that FliI interacts with NMMIIA to promote cell extension formation, which enables collagen remodeling in fibroblasts.
Collapse
Affiliation(s)
- Pamma D Arora
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Yongqiang Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Anne Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461
| | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Christopher A McCulloch
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada
| |
Collapse
|
33
|
Zhang S, Qiu W, Chen YG, Yuan FH, Li CZ, Yan H, Weng SP, He JG. Flightless-I (FliI) is a potential negative regulator of the Toll pathway in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2015; 42:413-425. [PMID: 25449702 DOI: 10.1016/j.fsi.2014.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/10/2014] [Accepted: 10/17/2014] [Indexed: 06/04/2023]
Abstract
Flightless-I (FliI) is a protein negatively modulates the Toll-like receptor (TLR) pathway through interacting with Myeloid differentiation factor 88 (MyD88). To investigate the function of FliI in innate immune responses in invertebrates, Litopenaeus vannamei FliI (LvFliI) was identified and characterized. The full-length cDNA of LvFliI is 4, 304 bp long, with an open reading frame (ORF) encoding a putative protein of 1292 amino acids, including 12 leucine-rich repeat (LRR) domains at the N-terminus and 6 gelsolin homology (GEL) domains at the C-terminus. The LvFliI protein was located in the cytoplasm and LvFliI mRNA was constitutively expressed in healthy L. vannamei, with the highest expression level in the muscle. LvFliI could be up-regulated in hemocytes after lipopolysaccharide (LPS), poly I:C, CpG-ODN2006, Vibrio parahaemolyticus, Staphylococcus aureus, and white spot syndrome virus (WSSV) challenges, suggesting a stimulation response of LvFliI to bacterial and immune stimulant challenges. Upon LPS stimulation, overexpression of LvFliI in Drosophila Schneider 2 cells led to downregulation of Drosophila and shrimp antimicrobial peptide (AMP) genes. Knockdown of LvFliI by RNA interference (RNAi) resulted in an increase of the expression of three shrimp AMP genes (PEN2, crustin, and Lyz1). However, the mortality rates of LvFliI-knockdown shrimp in response to V. parahaemolyticus, S. aureus or WSSV infections were not significantly different from those of the control group. Taken together, all the results suggested that LvFliI may play a negative role in TLR signaling response in L. vannamei.
Collapse
Affiliation(s)
- Shuang Zhang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Wei Qiu
- School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 51027, PR China
| | - Yong-gui Chen
- School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 51027, PR China
| | - Feng-Hua Yuan
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Chao-Zheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Hui Yan
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Shao-Ping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Jian-Guo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 51027, PR China.
| |
Collapse
|
34
|
Ge W, Li D, Gao Y, Cao X. The Roles of Lysosomes in Inflammation and Autoimmune Diseases. Int Rev Immunol 2014; 34:415-31. [DOI: 10.3109/08830185.2014.936587] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
LRRFIP2 negatively regulates NLRP3 inflammasome activation in macrophages by promoting Flightless-I-mediated caspase-1 inhibition. Nat Commun 2014; 4:2075. [PMID: 23942110 PMCID: PMC3753543 DOI: 10.1038/ncomms3075] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/30/2013] [Indexed: 01/07/2023] Open
Abstract
The NLRP3 inflammasome is the most characterized inflammasome activated by cellular infection or stress, which is responsible for the maturation of proinflammatory cytokines IL-1β and IL-18. The precise molecular mechanism for negative regulation of NLRP3 inflammasome activation needs to be further defined. Here we identify leucine-rich repeat Fli-I-interacting protein 2 (LRRFIP2) as an NLRP3-associated protein and an inhibitor for NLRP3 inflammasome activation. LRRFIP2 binds to NLRP3 via its N terminus upon NLRP3 inflammasome activation, and also interacts with Flightless-I, a pseudosubstrate of caspase-1, via its Coil motif. Knockdown of Flightless-I significantly promotes NLRP3 inflammasome activation. LRRFIP2 enhances the interaction between Flightless-I and caspase-1, facilitating the inhibitory effect of Flightless-I on caspase-1 activation. Furthermore, silencing of Flightless-I abrogates the inhibitory effect of LRRFIP2 on NLRP3 inflammasome. These data demonstrate that LRRFIP2 inhibits NLRP3 inflammasome activation by recruiting the caspase-1 inhibitor Flightless-I, thus outlining a new mechanism for negative regulation of NLRP3 inflammasome. Inflammasomes promote the maturation of inflammatory cytokines in response to signals associated with damage and infection, but it remains unclear how these signals are attenuated. Here, the authors show that the NLRP3 inflammasome is inhibited by LRRFIP2 through recruitment of the protein Flightless I.
Collapse
|
36
|
Py BF, Jin M, Desai BN, Penumaka A, Zhu H, Kober M, Dietrich A, Lipinski MM, Henry T, Clapham DE, Yuan J. Caspase-11 controls interleukin-1β release through degradation of TRPC1. Cell Rep 2014; 6:1122-1128. [PMID: 24630989 PMCID: PMC4239700 DOI: 10.1016/j.celrep.2014.02.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 10/23/2013] [Accepted: 02/10/2014] [Indexed: 12/16/2022] Open
Abstract
Caspase-11 is a highly inducible caspase that controls both inflammatory responses and cell death. Caspase-11 controls interleukin 1β (IL-1β) secretion by potentiating caspase-1 activation and induces caspase-1-independent pyroptosis downstream of noncanonical NLRP3 inflammasome activators such as lipopolysaccharide (LPS) and Gram-negative bacteria. However, we still know very little about the downstream mechanism of caspase-11 in regulating inflammation because the known substrates of caspase-11 are only other caspases. Here, we identify the cationic channel subunit transient receptor potential channel 1 (TRPC1) as a substrate of caspase-11. TRPC1 deficiency increases the secretion of IL-1β without modulating caspase-1 cleavage or cell death in cultured macrophages. Consistently, trpc1−/− mice show higher IL-1β secretion in the sepsis model of intraperitoneal LPS injection. Altogether, our data suggest that caspase-11 modulates the cationic channel composition of the cell and thus regulates the unconventional secretion pathway in a manner independent of caspase-1.
Collapse
Affiliation(s)
- Bénédicte F Py
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Claude Bernard Lyon 1 University, 69007 Lyon, France
| | - Mingzhi Jin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Bimal N Desai
- Department of Cardiology, Howard Hughes Medical Institute, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anirudh Penumaka
- Department of Cardiology, Howard Hughes Medical Institute, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hong Zhu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Maike Kober
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander Dietrich
- Walther Straub Institute of Pharmacology and Toxicology, German Lung Center (DZL), Ludwig Maximilian University Munich, 80336 Munich, Germany
| | - Marta M Lipinski
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Henry
- International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Claude Bernard Lyon 1 University, 69007 Lyon, France
| | - David E Clapham
- Department of Cardiology, Howard Hughes Medical Institute, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Kopecki Z, Yang GN, Arkell RM, Jackson JE, Melville E, Iwata H, Ludwig RJ, Zillikens D, Murrell DF, Cowin AJ. Flightless I over-expression impairs skin barrier development, function and recovery following skin blistering. J Pathol 2014; 232:541-52. [PMID: 24375017 DOI: 10.1002/path.4323] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/10/2013] [Accepted: 12/20/2013] [Indexed: 01/08/2023]
Abstract
Development of an intact epidermis is critical for maintaining the integrity of the skin. Patients with epidermolysis bullosa (EB) experience multiple erosions, which breach the epidermal barrier and lead to increased microbial colocalization of wounds, infections and sepsis. The cytoskeletal protein Flightless I (Flii) is a known regulator of both development and wound healing. Using Flii(+/-), WT and Flii(Tg/Tg) mice, we investigated the effect of altering Flii levels in embryos and adult mice on the development of the epidermal barrier and, consequently, how this affects the integrity of the skin in EB. Flii over-expression resulted in delayed formation of the epidermal barrier in embryos and decreased expression of tight junction (TJ) proteins Claudin-1 and ZO-2. Increased intercellular space and transepidermal water loss was observed in Flii(Tg)(/Tg) adult mouse skin, while Flii(Tg/Tg) keratinocytes showed altered TJ protein localization and reduced transepithelial resistance. Flii is increased in the blistered skin of patients with EB, and over-expression of Flii in experimental EBA showed impaired Claudin-1 and -4 TJ protein expression and delayed recovery of functional barrier post-blistering. Immunoprecipitation confirmed Flii associated with TJ proteins and in vivo actin assays showed that the effect of Flii on actin polymerization underpinned the impaired barrier function observed in Flii(Tg/Tg) mice. These results therefore demonstrate an important role for Flii in the development and regulation of the epidermal barrier, which may contribute to the impaired healing and skin fragility of EB patients.
Collapse
Affiliation(s)
- Zlatko Kopecki
- Centre for Regenerative Medicine, Mawson Institute, University of South Australia, Adelaide, Australia; Women's and Children's Health Research Institute, Adelaide, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ruzehaji N, Kopecki Z, Melville E, Appleby SL, Bonder CS, Arkell RM, Fitridge R, Cowin AJ. Attenuation of flightless I improves wound healing and enhances angiogenesis in a murine model of type 1 diabetes. Diabetologia 2014; 57:402-12. [PMID: 24292564 DOI: 10.1007/s00125-013-3107-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/18/2013] [Indexed: 10/26/2022]
Abstract
AIMS/HYPOTHESIS Skin lesions and ulcerations are severe complications of diabetes that often result in leg amputations. In this study we investigated the function of the cytoskeletal protein flightless I (FLII) in diabetic wound healing. We hypothesised that overexpression of FLII would have a negative effect on diabetic wound closure and modulation of this protein using specific FLII-neutralising antibodies (FnAb) would enhance cellular proliferation, migration and angiogenesis within the diabetic wound. METHODS Using a streptozotocin-induced model of diabetes we investigated the effect of altered FLII levels through Flii genetic knockdown, overexpression or treatment with FnAb on wound healing. Diabetic wounds were assessed using histology, immunohistochemistry and biochemical analysis. In vitro and in vivo assays of angiogenesis were used to assess the angiogenic response. RESULTS FLII levels were elevated in the wounds of both diabetic mice and humans. Reduction in the level of FLII improved healing of murine diabetic wounds and promoted a robust pro-angiogenic response with significantly elevated von Willebrand factor (vWF) and vascular endothelial growth factor (VEGF)-positive endothelial cell infiltration. Diabetic mouse wounds treated intradermally with FnAb showed improved healing and a significantly increased rate of re-epithelialisation. FnAb improved the angiogenic response through enhanced formation of capillary tubes and functional neovasculature. Reducing the level of FLII led to increased numbers of mature blood vessels, increased recruitment of smooth muscle actin-α-positive cells and improved tight junction formation. CONCLUSIONS/INTERPRETATION Reducing the level of FLII in a wound may be a potential therapeutic approach for the treatment of diabetic foot ulcers.
Collapse
Affiliation(s)
- Nadira Ruzehaji
- Women's and Children's Health Research Institute, Adelaide, SA, Australia
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Bliska JB, Wang X, Viboud GI, Brodsky IE. Modulation of innate immune responses by Yersinia type III secretion system translocators and effectors. Cell Microbiol 2013; 15:1622-31. [PMID: 23834311 DOI: 10.1111/cmi.12164] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/21/2013] [Accepted: 07/01/2013] [Indexed: 12/13/2022]
Abstract
The innate immune system of mammals responds to microbial infection through detection of conserved molecular determinants called 'pathogen-associated molecular patterns' (PAMPs). Pathogens use virulence factors to counteract PAMP-directed responses. The innate immune system can in turn recognize signals generated by virulence factors, allowing for a heightened response to dangerous pathogens. Many Gram-negative bacterial pathogens encode type III secretion systems (T3SSs) that translocate effector proteins, subvert PAMP-directed responses and are critical for infection. A plasmid-encoded T3SS in the human-pathogenic Yersinia species translocates seven effectors into infected host cells. Delivery of effectors by the T3SS requires plasma membrane insertion of two translocators, which are thought to form a channel called a translocon. Studies of the Yersinia T3SS have provided key advances in our understanding of how innate immune responses are generated by perturbations in plasma membrane and other signals that result from translocon insertion. Additionally, studies in this system revealed that effectors function to inhibit innateimmune responses resulting from insertion of translocons into plasma membrane. Here, we review these advances with the goal of providing insight into how a T3SS can activate and inhibit innate immune responses, allowing a virulent pathogen to bypass host defences.
Collapse
Affiliation(s)
- James B Bliska
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | | | | |
Collapse
|
40
|
The Yersinia virulence effector YopM binds caspase-1 to arrest inflammasome assembly and processing. Cell Host Microbe 2013; 12:799-805. [PMID: 23245324 DOI: 10.1016/j.chom.2012.10.020] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/16/2012] [Accepted: 10/19/2012] [Indexed: 12/18/2022]
Abstract
Inflammasome assembly activates caspase-1 and initiates the inflammatory cell death program pyroptosis, which is protective against numerous pathogens. Consequently, several pathogens, including the plague causing bacterium Yersinia pestis, avoid activating this pathway to enhance their virulence. However, bacterial molecules that directly modulate the inflammasome have yet to be identified. Examining the contribution of Yersinia type III secretion effectors to caspase-1 activation, we identified the leucine-rich repeat effector YopM as a potent antagonist of both caspase-1 activity and activation. YopM directly binds caspase-1, which both inhibits caspase-1 activity and sequesters it to block formation of the mature inflammasome. Caspase-1 activation antagonizes Yersinia survival in vivo, and consequently YopM inhibition of caspase-1 is required for Yersinia pathogenesis. Thus, a bacterium obstructs pyroptosis utilizing a direct mechanism of caspase-1 inhibition that is distinct from known viral or host inhibitors.
Collapse
|
41
|
The influence of Flightless I on Toll-like-receptor-mediated inflammation in a murine model of diabetic wound healing. BIOMED RESEARCH INTERNATIONAL 2013; 2013:389792. [PMID: 23555084 PMCID: PMC3595111 DOI: 10.1155/2013/389792] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/07/2013] [Accepted: 01/07/2013] [Indexed: 02/06/2023]
Abstract
Impaired wound healing and ulceration represent a serious complication of both type 1 and type 2 diabetes. Cytoskeletal protein Flightless I (Flii) is an important inhibitor of wound repair, and reduced Flii gene expression in fibroblasts increased migration, proliferation, and adhesion. As such it has the ability to influence all phases of wound healing including inflammation, remodelling and angiogenesis. Flii has the potential to modulate inflammation through its interaction with MyD88 which it an adaptor protein for TLR4. To assess the effect of Flii on the inflammatory response of diabetic wounds, we used a murine model of streptozocin-induced diabetes and Flii genetic mice. Increased levels of Flii were detected in Flii transgenic murine wounds resulting in impaired healing which was exacerbated when diabetes was induced. When Flii levels were reduced in diabetic wounds of Flii-deficient mice, healing was improved and decreased levels of TLR4 were observed. In contrast, increasing the level of Flii in diabetic mouse wounds led to increased TLR4 and NF- κ B production. Treatment of murine diabetic wounds with neutralising antibodies to Flii led to an improvement in healing with decreased expression of TLR4. Decreasing the level of Flii in diabetic wounds may therefore reduce the inflammatory response and improve healing.
Collapse
|
42
|
Cowin AJ, Lei N, Franken L, Ruzehaji N, Offenhäuser C, Kopecki Z, Murray RZ. Lysosomal secretion of Flightless I upon injury has the potential to alter inflammation. Commun Integr Biol 2013; 5:546-9. [PMID: 23336022 PMCID: PMC3541319 DOI: 10.4161/cib.21928] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Intracellular Flightless I (Flii), a gelsolin family member, has been found to have roles modulating actin regulation, transcriptional regulation and inflammation. In vivo Flii can regulate wound healing responses. We have recently shown that a pool of Flii is secreted by fibroblasts and macrophages, cells typically found in wounds, and its secretion can be upregulated upon wounding. We show that secreted Flii can bind to the bacterial cell wall component lipopolysaccharide and has the potential to regulate inflammation. We now show that secreted Flii is present in both acute and chronic wound fluid.
Collapse
Affiliation(s)
- Allison J Cowin
- Women's and Children's Health Research Institute; North Adelaide; SA Australia ; Discipline of Paediatrics; The University of Adelaide; Adelaide, SA Australia
| | | | | | | | | | | | | |
Collapse
|
43
|
Rodriguez-Rocha H, Garcia Garcia A, Zavala-Flores L, Li S, Madayiputhiya N, Franco R. Glutaredoxin 1 protects dopaminergic cells by increased protein glutathionylation in experimental Parkinson's disease. Antioxid Redox Signal 2012; 17:1676-93. [PMID: 22816731 PMCID: PMC3474191 DOI: 10.1089/ars.2011.4474] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Chronic exposure to environmental toxicants, such as paraquat, has been suggested as a risk factor for Parkinson's disease (PD). Although dopaminergic cell death in PD is associated with oxidative damage, the molecular mechanisms involved remain elusive. Glutaredoxins (GRXs) utilize the reducing power of glutathione to modulate redox-dependent signaling pathways by protein glutathionylation. We aimed to determine the role of GRX1 and protein glutathionylation in dopaminergic cell death. RESULTS In dopaminergic cells, toxicity induced by paraquat or 6-hydroxydopamine (6-OHDA) was inhibited by GRX1 overexpression, while its knock-down sensitized cells to paraquat-induced cell death. Dopaminergic cell death was paralleled by protein deglutathionylation, and this was reversed by GRX1. Mass spectrometry analysis of immunoprecipitated glutathionylated proteins identified the actin binding flightless-1 homolog protein (FLI-I) and the RalBP1-associated Eps domain-containing protein 2 (REPS2/POB1) as targets of glutathionylation in dopaminergic cells. Paraquat induced the degradation of FLI-I and REPS2 proteins, which corresponded with the activation of caspase 3 and cell death progression. GRX1 overexpression reduced both the degradation and deglutathionylation of FLI-I and REPS2, while stable overexpression of REPS2 reduced paraquat toxicity. A decrease in glutathionylated proteins and REPS2 levels was also observed in the substantia nigra of mice treated with paraquat. INNOVATION We have identified novel protein targets of glutathionylation in dopaminergic cells and demonstrated the protective role of GRX1-mediated protein glutathionylation against paraquat-induced toxicity. CONCLUSIONS These results demonstrate a protective role for GRX1 and increased protein glutathionylation in dopaminergic cell death induced by paraquat, and identify a novel protective role for REPS2.
Collapse
|
44
|
Kopecki Z, Ruzehaji N, Turner C, Iwata H, Ludwig RJ, Zillikens D, Murrell DF, Cowin AJ. Topically applied flightless I neutralizing antibodies improve healing of blistered skin in a murine model of epidermolysis bullosa acquisita. J Invest Dermatol 2012; 133:1008-16. [PMID: 23223144 DOI: 10.1038/jid.2012.457] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epidermolysis bullosa (EB) is a chronic inheritable disease that leads to severe blistering and fibrosis. Previous studies have shown that the actin cytoskeletal protein flightless I (Flii) impairs wound healing associated with EB. Using a mouse model of EB acquisita (EBA), the effect of "mopping up" Flii using Flii-neutralizing antibodies (FnAbs) before, during, and after blister formation was determined. FnAbs, incorporated into a cream vehicle and applied topically to the skin, penetrated into the basal epidermis and upper papillary dermis but were not detected in serum or other organs and did not alter neutrophil or macrophage infiltration into the blistered skin. Histological assessment of blister severity showed that treatment of early-stage blisters with FnAb cream reduced their severity and improved their rate of healing. Treatment of established blisters with FnAb cream also improved healing and restored the skin's tensile strength toward that of normal skin. Repeated application of FnAbs to EBA skin before the onset of blistering reduced the severity of skin blistering. Independent of when the FnAbs were applied, skin barrier function and wound healing were improved and skin fragility was reduced, suggesting that FnAbs could potentially improve healing of patients with EB.
Collapse
Affiliation(s)
- Zlatko Kopecki
- Women's and Children's Health Research Institute, North Adelaide, South Australia, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Inflammasomes are multiprotein complexes that detect and respond to foreign and endogenous danger signals by activating caspase-1; active caspase-1, in turn, matures the pro-inflammatory IL-1β family cytokines by cleaving their pro-forms into the biologically active cytokines. The upstream mechanisms leading to inflammasome activation, in particular for the NRLP3 inflammasome, remain poorly understood. Lu and colleagues identify a new function of Protein Kinase R (PKR) for activating the NLRP1, NLRP3, NLRC4 and AIM2 inflammasomes, thus identifying a potential new target for treating inflammasome-mediated diseases.
Collapse
|
46
|
Jackson JE, Kopecki Z, Adams DH, Cowin AJ. Flii neutralizing antibodies improve wound healing in porcine preclinical studies. Wound Repair Regen 2012; 20:523-36. [PMID: 22672080 DOI: 10.1111/j.1524-475x.2012.00802.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 02/27/2012] [Indexed: 12/27/2022]
Abstract
Wound healing is an important area of widely unmet medical need, with millions of procedures carried out worldwide which could potentially benefit from a product to improve the wound repair process. Our studies investigating the actin-remodeling protein Flightless I (Flii) show it to be an important regulator of wound healing. Flii-deficient mice have enhanced wound healing in comparison to Flii overexpressing mice which have impaired wound healing. For the first time, we show that a Flightless I neutralizing monoclonal antibody (FnAb) therapy is effective in a large animal model of wound repair. Porcine 5 cm incisional and 6.25 cm(2) excisional wounds were treated with FnAb at the time of wounding and for two subsequent days. The wounds were dressed in Tegaderm dressings and left to heal by secondary intention for 7 and 35 days, respectively. At the relevant end points, the wounds were excised and processed for histological analysis. Parameters of wound area, collagen deposition, and scar appearance were analyzed. The results show that treatment with FnAb accelerates reepithelialization and improves the macroscopic appearance of early scars. FnAbs have the potential to enhance wound repair and reduce scar formation.
Collapse
Affiliation(s)
- Jessica E Jackson
- Women's and Children's Health Research Institute, North Adelaide, South Australia, Australia.
| | | | | | | |
Collapse
|
47
|
Mohammad I, Arora PD, Naghibzadeh Y, Wang Y, Li J, Mascarenhas W, Janmey PA, Dawson JF, McCulloch CA. Flightless I is a focal adhesion-associated actin-capping protein that regulates cell migration. FASEB J 2012; 26:3260-72. [PMID: 22581781 DOI: 10.1096/fj.11-202051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The role of adhesion-associated actin-binding proteins in cell migration is not well defined. In mouse fibroblasts we screened for focal adhesion-associated proteins that were isolated with collagen-coated beads and detected by tandem mass spectrometry. We identified flightless I (FliI) as an actin-binding protein in focal adhesion fractions, which was verified by immunoblotting. By confocal microscopy most FliI was distributed throughout the cytosol and in focal adhesions. By sedimentation assays and in vitro binding assays, we found that FliI associates with actin filaments and actin monomers. Assays using purified proteins showed that FliI inhibits actin polymerization and caps but does not sever actin filaments. Cells with FliI knockdown or cells overexpressing FliI migrated more or less rapidly, respectively, than wild-type controls. Compared with controls, cells with FliI knockdown were less adherent than wild-type cells, exhibited reduced numbers of focal adhesions containing activated β1 integrins and vinculin, and exhibited increased incorporation of actin monomers into nascent filaments at focal adhesions. These data indicate that FliI regulates cell migration through its localization to focal adhesions and its ability to cap actin filaments, which collectively affect focal adhesion maturation.
Collapse
Affiliation(s)
- Ibrahim Mohammad
- Matrix Dynamics Group, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lei N, Franken L, Ruzehaji N, Offenhäuser C, Cowin AJ, Murray RZ. Flightless, secreted through a late endosome/lysosome pathway, binds LPS and dampens cytokine secretion. J Cell Sci 2012; 125:4288-96. [DOI: 10.1242/jcs.099507] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Flightless (Flii) is upregulated in response to wounding and has been shown to function in wound closure and scarring. In macrophages intracellular Flii negatively modulates TLR signalling and dampens cytokine production. We now show that Flii is constitutively secreted from macrophages and fibroblasts and is present in human plasma. Secretion from fibroblasts is upregulated in response to scratch wounding and LPS-activated macrophages also temporally upregulate their secretion of Flii. Using siRNA, wild-type and mutant proteins we show that Flii is secreted via a late endosomal/lysosomal pathway that is regulated by Rab7 and Stx11. Flii contains 11 leucine rich repeat (LRR) domains in its N-terminus that have nearly 50% similarity to those in the extracellular pathogen binding portion of Toll-like receptor 4 (TLR4). We show secreted Flii can also bind LPS and has the ability to alter macrophage activation. LPS activation of macrophages in Flii depleted conditioned media leads to enhanced macrophage activation and increased TNF secretion compared to cells activated in the presence of Flii. These results show secreted Flii binds to LPS and in doing so alters macrophage activation and cytokine secretion, suggesting that like the intracellular pool of Flii, secreted Flii also has the ability to alter inflammation.
Collapse
|
49
|
Muñoz M, Corrales FJ, Caamaño JN, Díez C, Trigal B, Mora MI, Martín D, Carrocera S, Gómez E. Proteome of the Early Embryo–Maternal Dialogue in the Cattle Uterus. J Proteome Res 2011; 11:751-66. [DOI: 10.1021/pr200969a] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Marta Muñoz
- Centro de Biotecnología
Animal - SERIDA Camino de Rioseco, 1225
La Olla − Deva 33394 Gijón, Asturias, Spain
| | - Fernando J. Corrales
- Centro de Investigación Médica Aplicada (CIMA), Avda Pío XII,
55 31008, Pamplona, Navarra, Spain
| | - José N. Caamaño
- Centro de Biotecnología
Animal - SERIDA Camino de Rioseco, 1225
La Olla − Deva 33394 Gijón, Asturias, Spain
| | - Carmen Díez
- Centro de Biotecnología
Animal - SERIDA Camino de Rioseco, 1225
La Olla − Deva 33394 Gijón, Asturias, Spain
| | - Beatriz Trigal
- Centro de Biotecnología
Animal - SERIDA Camino de Rioseco, 1225
La Olla − Deva 33394 Gijón, Asturias, Spain
| | - María I. Mora
- Centro de Investigación Médica Aplicada (CIMA), Avda Pío XII,
55 31008, Pamplona, Navarra, Spain
| | - David Martín
- Centro de Biotecnología
Animal - SERIDA Camino de Rioseco, 1225
La Olla − Deva 33394 Gijón, Asturias, Spain
| | - Susana Carrocera
- Centro de Biotecnología
Animal - SERIDA Camino de Rioseco, 1225
La Olla − Deva 33394 Gijón, Asturias, Spain
| | - Enrique Gómez
- Centro de Biotecnología
Animal - SERIDA Camino de Rioseco, 1225
La Olla − Deva 33394 Gijón, Asturias, Spain
| |
Collapse
|
50
|
Kopecki Z, Arkell RM, Strudwick XL, Hirose M, Ludwig RJ, Kern JS, Bruckner-Tuderman L, Zillikens D, Murrell DF, Cowin AJ. Overexpression of the Flii
gene increases dermal-epidermal blistering in an autoimmune ColVII mouse model of epidermolysis bullosa acquisita. J Pathol 2011; 225:401-13. [PMID: 21984127 DOI: 10.1002/path.2973] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 07/18/2011] [Indexed: 11/06/2022]
Affiliation(s)
- Zlatko Kopecki
- Women's and Children's Health Research Institute, 72 King William Road, North Adelaide, SA, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|