1
|
Palmer EM, Snoddy CA, York PM, Davis SM, Hunter MF, Krishnan N. Enhanced Age-Dependent Motor Impairment in Males of Drosophila melanogaster Modeling Spinocerebellar Ataxia Type 1 Is Linked to Dysregulation of a Matrix Metalloproteinase. BIOLOGY 2024; 13:854. [PMID: 39596808 PMCID: PMC11591802 DOI: 10.3390/biology13110854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
Over the past two decades, Drosophila melanogaster has proven to be successful in modeling the polyglutamine (polyQ) (caused by CAG repeats) family of neurodegenerative disorders, including the faithful recapitulation of pathological features such as polyQ length-dependent formation of protein aggregates and progressive neuronal degeneration. In this study, pan-neuronal expression of human Ataxin-1 with long polyQ repeat of 82 amino acids was driven using an elav-GAL4 driver line. This would essentially model the polyQ disease spinocerebellar ataxia type 1 (SCA1). Longevity and behavioral analysis of male flies expressing human Ataxin-1 revealed compromised lifespan and accelerated locomotor activity deficits both in diurnal activity and negative geotaxis response compared to control flies. Interestingly, this decline in motor response was coupled to an enhancement of matrix metalloproteinase 1 (dMMP1) expression together with declining expression of extracellular matrix (ECM) fibroblast growth factor (FGF) signaling by hedgehog (Hh) and branchless (bnl) and a significant decrease in expression of survival motor neuron gene (dsmn) in old (30 d) flies. Taken together, our results indicate a role for dysregulation of matrix metalloproteinase in polyQ disease with consequent impact on ECM signaling factors, as well as SMN at the neuromuscular junction causing overt physiological and behavioral deficits.
Collapse
Affiliation(s)
| | | | | | | | | | - Natraj Krishnan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
2
|
Leckie J, Yokota T. Potential of Cell-Penetrating Peptide-Conjugated Antisense Oligonucleotides for the Treatment of SMA. Molecules 2024; 29:2658. [PMID: 38893532 PMCID: PMC11173757 DOI: 10.3390/molecules29112658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a severe neuromuscular disorder that is caused by mutations in the survival motor neuron 1 (SMN1) gene, hindering the production of functional survival motor neuron (SMN) proteins. Antisense oligonucleotides (ASOs), a versatile DNA-like drug, are adept at binding to target RNA to prevent translation or promote alternative splicing. Nusinersen is an FDA-approved ASO for the treatment of SMA. It effectively promotes alternative splicing in pre-mRNA transcribed from the SMN2 gene, an analog of the SMN1 gene, to produce a greater amount of full-length SMN protein, to compensate for the loss of functional protein translated from SMN1. Despite its efficacy in ameliorating SMA symptoms, the cellular uptake of these ASOs is suboptimal, and their inability to penetrate the CNS necessitates invasive lumbar punctures. Cell-penetrating peptides (CPPs), which can be conjugated to ASOs, represent a promising approach to improve the efficiency of these treatments for SMA and have the potential to transverse the blood-brain barrier to circumvent the need for intrusive intrathecal injections and their associated adverse effects. This review provides a comprehensive analysis of ASO therapies, their application for the treatment of SMA, and the encouraging potential of CPPs as delivery systems to improve ASO uptake and overall efficiency.
Collapse
Affiliation(s)
- Jamie Leckie
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Sciences Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
3
|
Bahl AS, Verma VK, Prajapati V, Bhatia J, Arya DS. In-silico Assessment of Polyherbal Oils as Anti-diabetic Therapeutics. Curr Comput Aided Drug Des 2024; 20:673-684. [PMID: 37873913 DOI: 10.2174/0115734099267172231012070353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Diabetes mellitus (DM) is characterized by elevated blood glucose levels either due to insufficient insulin production, defective insulin action, or both. It affects nearly 537 million individuals worldwide. Pharmacological treatment involves the use of oral antidiabetic agents as mono or combination therapy that effectively aids in controlling hyperglycemia. Despite providing therapeutic benefits, these medications limit their use owing to adverse side effects. Certain natural products, including essential oils, have promising anti-diabetic properties. OBJECTIVE The present study explores the effectiveness of two polyherbal oils and their compound towards the treatment of DM based on an In-silico approach to drug investigations Methods: Compounds present in the polyherbal oil formulation were identified using GCMS/ MS analysis. Selected compounds undergo molecular docking with the receptor, and proteins play an important role in DM. The potential compounds showing higher interactions than the known inhibitors or inducers were evaluated using molecular dynamic simulations RMSD value. RESULTS The compounds identified through GC-MS analysis possess anti-diabetic and antiinflammatory properties. With the aid of in silico prediction methods, compounds such as geraniol, cinnamaldehyde, anethole, caryophyllene, terpinyl acetate, cymene, linalool, menthol, Phenol,2-methoxy-3-(2-propenyl), and 2,6- octadienal,3,7-dimethyl were identified as strong binders of GLUT4 and insulin receptor proteins. Geraniol and Phenol,2-methoxy-3-(2-propenyl) interaction with GLUT4 were of particular importance owing to their conformational stability. CONCLUSION Our data suggest an agonistic effect of compounds on target proteins aiding in enhanced insulin activity and could serve as a potential anti-diabetic agent.
Collapse
Affiliation(s)
- Amul S Bahl
- Department of Research, Development and Innovation, God's Own Store LLP, New Delhi, 110065, India
| | - Vipin Kumar Verma
- Deptartment of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Vaishali Prajapati
- Deptartment of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jagriti Bhatia
- Deptartment of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Dharamvir Singh Arya
- Deptartment of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
4
|
Zhu Z, Qin S, Zhang T, He M, Zheng W, Zhao T, Gao M, Chen Z, Zhou B, Xia G, Wang C. Pre-granulosa cell-derived FGF23 protects oocytes from premature apoptosis during primordial follicle formation by inhibiting p38 MAPK in mice. J Biol Chem 2023:104776. [PMID: 37142227 DOI: 10.1016/j.jbc.2023.104776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023] Open
Abstract
A large number of oocytes in the perinatal ovary in rodents get lost for unknown reasons. The granulosa cell-oocyte mutual communication is pivotal for directing formation of the primordial follicle, however little is known if paracrine factors participate in modulating programmed oocyte death perinatally. We report here that pre-granulosa cell-derived fibroblast growth factor 23 (FGF23) functioned in preventing oocyte apoptosis in the perinatal mouse ovary. Our results showed that FGF23 was exclusively expressed in pre-granulosa cells while fibroblast growth factor receptors (FGFRs) were specifically expressed in the oocytes in perinatal ovaries. FGFR1 was one of the representative receptors in mediating FGF23 signaling during the formation of the primordial follicle. In cultured ovaries, the number of alive oocytes declines significantly, accompanied by the activation of the p38 MAPK signaling pathway, under the condition of FGFR1 disruption by specific inhibitors of FGFR1 or silencing of Fgf23. As a result, oocyte apoptosis increased and eventually led to a decrease in the number of germ cells in perinatal ovaries following the treatments. In the perinatal mouse ovary, pre-granulosa cell-derived FGF23 binds to FGFR1 and activates at least, the p38 MAPK signaling pathway, thereby regulating the level of apoptosis during primordial follicle formation. This study re-emphasizes the importance of granulosa cell - oocyte mutual communication in modulating primordial follicle formation and supporting oocyte survival under physiological conditions.
Collapse
Affiliation(s)
- Zijian Zhu
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shaogang Qin
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tuo Zhang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Meina He
- College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Wenying Zheng
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ting Zhao
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meng Gao
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziqi Chen
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bo Zhou
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guoliang Xia
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Chao Wang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Lobb-Rabe M, DeLong K, Salazar RJ, Zhang R, Wang Y, Carrillo RA. Dpr10 and Nocte are required for Drosophila motor axon pathfinding. Neural Dev 2022; 17:10. [PMID: 36271407 PMCID: PMC9585758 DOI: 10.1186/s13064-022-00165-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
The paths axons travel to reach their targets and the subsequent synaptic connections they form are highly stereotyped. How cell surface proteins (CSPs) mediate these processes is not completely understood. The Drosophila neuromuscular junction (NMJ) is an ideal system to study how pathfinding and target specificity are accomplished, as the axon trajectories and innervation patterns are known and easily visualized. Dpr10 is a CSP required for synaptic partner choice in the neuromuscular and visual circuits and for axon pathfinding in olfactory neuron organization. In this study, we show that Dpr10 is also required for motor axon pathfinding. To uncover how Dpr10 mediates this process, we used immunoprecipitation followed by mass spectrometry to identify Dpr10 associated proteins. One of these, Nocte, is an unstructured, intracellular protein implicated in circadian rhythm entrainment. We mapped nocte expression in larvae and found it widely expressed in neurons, muscles, and glia. Cell-specific knockdown suggests nocte is required presynaptically to mediate motor axon pathfinding. Additionally, we found that nocte and dpr10 genetically interact to control NMJ assembly, suggesting that they function in the same molecular pathway. Overall, these data reveal novel roles for Dpr10 and its newly identified interactor, Nocte, in motor axon pathfinding and provide insight into how CSPs regulate circuit assembly.
Collapse
Affiliation(s)
- Meike Lobb-Rabe
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Katherine DeLong
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
| | - Rio J Salazar
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Ruiling Zhang
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Yupu Wang
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Robert A Carrillo
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL, 60637, USA.
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA.
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
6
|
Lauri A, Fasano G, Venditti M, Dallapiccola B, Tartaglia M. In vivo Functional Genomics for Undiagnosed Patients: The Impact of Small GTPases Signaling Dysregulation at Pan-Embryo Developmental Scale. Front Cell Dev Biol 2021; 9:642235. [PMID: 34124035 PMCID: PMC8194860 DOI: 10.3389/fcell.2021.642235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/12/2021] [Indexed: 12/24/2022] Open
Abstract
While individually rare, disorders affecting development collectively represent a substantial clinical, psychological, and socioeconomic burden to patients, families, and society. Insights into the molecular mechanisms underlying these disorders are required to speed up diagnosis, improve counseling, and optimize management toward targeted therapies. Genome sequencing is now unveiling previously unexplored genetic variations in undiagnosed patients, which require functional validation and mechanistic understanding, particularly when dealing with novel nosologic entities. Functional perturbations of key regulators acting on signals' intersections of evolutionarily conserved pathways in these pathological conditions hinder the fine balance between various developmental inputs governing morphogenesis and homeostasis. However, the distinct mechanisms by which these hubs orchestrate pathways to ensure the developmental coordinates are poorly understood. Integrative functional genomics implementing quantitative in vivo models of embryogenesis with subcellular precision in whole organisms contribute to answering these questions. Here, we review the current knowledge on genes and mechanisms critically involved in developmental syndromes and pediatric cancers, revealed by genomic sequencing and in vivo models such as insects, worms and fish. We focus on the monomeric GTPases of the RAS superfamily and their influence on crucial developmental signals and processes. We next discuss the effectiveness of exponentially growing functional assays employing tractable models to identify regulatory crossroads. Unprecedented sophistications are now possible in zebrafish, i.e., genome editing with single-nucleotide precision, nanoimaging, highly resolved recording of multiple small molecules activity, and simultaneous monitoring of brain circuits and complex behavioral response. These assets permit accurate real-time reporting of dynamic small GTPases-controlled processes in entire organisms, owning the potential to tackle rare disease mechanisms.
Collapse
Affiliation(s)
- Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | | | | | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
7
|
Yeates CJ, Frank CA. Homeostatic Depression Shows Heightened Sensitivity to Synaptic Calcium. Front Cell Neurosci 2021; 15:618393. [PMID: 34025355 PMCID: PMC8139420 DOI: 10.3389/fncel.2021.618393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/13/2021] [Indexed: 12/18/2022] Open
Abstract
Synapses and circuits rely on homeostatic forms of regulation in order to transmit meaningful information. The Drosophila melanogaster neuromuscular junction (NMJ) is a well-studied synapse that shows robust homeostatic control of function. Most prior studies of homeostatic plasticity at the NMJ have centered on presynaptic homeostatic potentiation (PHP). PHP happens when postsynaptic muscle neurotransmitter receptors are impaired, triggering retrograde signaling that causes an increase in presynaptic neurotransmitter release. As a result, normal levels of evoked excitation are maintained. The counterpart to PHP at the NMJ is presynaptic homeostatic depression (PHD). Overexpression of the Drosophila vesicular glutamate transporter (VGlut) causes an increase in the amplitude of spontaneous events. PHD happens when the synapse responds to the challenge by decreasing quantal content (QC) during evoked neurotransmissionagain, resulting in normal levels of postsynaptic excitation. We hypothesized that there may exist a class of molecules that affects both PHP and PHD. Impairment of any such molecule could hurt a synapses ability to respond to any significant homeostatic challenge. We conducted an electrophysiology-based screen for blocks of PHD. We did not observe a block of PHD in the genetic conditions screened, but we found loss-of-function conditions that led to a substantial deficit in evoked amplitude when combined with VGlut overexpression. The conditions causing this phenotype included a double heterozygous loss-of-function condition for genes encoding the inositol trisphosphate receptor (IP3R itpr) and ryanodine receptor (RyR). IP3Rs and RyRs gate calcium release from intracellular stores. Pharmacological agents targeting IP3R and RyR recapitulated the genetic losses of these factors, as did lowering calcium levels from other sources. Our data are consistent with the idea that the homeostatic signaling process underlying PHD is especially sensitive to levels of calcium at the presynapse.
Collapse
Affiliation(s)
- Catherine J Yeates
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
| | - C Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States.,Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
8
|
Abstract
Fibroblast growth factor 23 (FGF23) is a phosphotropic hormone that belongs to a subfamily of endocrine FGFs with evolutionarily conserved functions in worms and fruit flies. FAM20C phosphorylates FGF23 post-translationally, targeting it to proteolysis through subtilisin-like proprotein convertase FURIN, resulting in secretion of FGF23 fragments. O-glycosylation of FGF23 through GALNT3 appears to prevent proteolysis, resulting in secretion of biologically active intact FGF23. In the circulation, FGF23 may undergo further processing by plasminogen activators. Crystal structures show that the ectodomain of the cognate FGF23 receptor FGFR1c binds with the ectodomain of the co-receptor alpha-KLOTHO. The KLOTHO-FGFR1c double heterodimer creates a high-affinity binding site for the FGF23 C-terminus. The topology of FGF23 deviates from that of paracrine FGFs, resulting in poor affinity for heparan sulphate, which may explain why FGF23 diffuses freely in the bone matrix to enter the bloodstream following its secretion by cells of osteoblastic lineage. Intact FGF23 signalling by this canonical pathway activates FRS2/RAS/RAF/MEK/ERK1/2. It reduces serum phosphate by inhibiting 1,25-dihydroxyvitamin D synthesis, suppressing intestinal phosphate absorption, and by downregulating the transporters NPT2a and NPT2c, suppressing phosphate reabsorption in the proximal tubules. The physiological role of FGF23 fragments, which may be inhibitory, remains unclear. Pharmacological and genetic activation of canonical FGF23 signalling causes hypophosphatemic disorders, while its inhibition results in hyperphosphatemic disorders. Non-canonical FGF23 signalling through binding and activation of FGFR3/FGFR4/calcineurin/NFAT in an alpha-KLOTHO-independent fashion mainly occurs at extremely elevated circulating FGF23 levels and may contribute to mortality due to cardiovascular disease and left ventricular hypertrophy in chronic kidney disease.
Collapse
Affiliation(s)
- Bryan B Ho
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Clemens Bergwitz
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Chou VT, Johnson SA, Van Vactor D. Synapse development and maturation at the drosophila neuromuscular junction. Neural Dev 2020; 15:11. [PMID: 32741370 PMCID: PMC7397595 DOI: 10.1186/s13064-020-00147-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Synapses are the sites of neuron-to-neuron communication and form the basis of the neural circuits that underlie all animal cognition and behavior. Chemical synapses are specialized asymmetric junctions between a presynaptic neuron and a postsynaptic target that form through a series of diverse cellular and subcellular events under the control of complex signaling networks. Once established, the synapse facilitates neurotransmission by mediating the organization and fusion of synaptic vesicles and must also retain the ability to undergo plastic changes. In recent years, synaptic genes have been implicated in a wide array of neurodevelopmental disorders; the individual and societal burdens imposed by these disorders, as well as the lack of effective therapies, motivates continued work on fundamental synapse biology. The properties and functions of the nervous system are remarkably conserved across animal phyla, and many insights into the synapses of the vertebrate central nervous system have been derived from studies of invertebrate models. A prominent model synapse is the Drosophila melanogaster larval neuromuscular junction, which bears striking similarities to the glutamatergic synapses of the vertebrate brain and spine; further advantages include the simplicity and experimental versatility of the fly, as well as its century-long history as a model organism. Here, we survey findings on the major events in synaptogenesis, including target specification, morphogenesis, and the assembly and maturation of synaptic specializations, with a emphasis on work conducted at the Drosophila neuromuscular junction.
Collapse
Affiliation(s)
- Vivian T Chou
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Seth A Johnson
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - David Van Vactor
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Guangming G, Junhua G, Chenchen Z, Yang M, Wei X. Neurexin and Neuroligins Maintain the Balance of Ghost and Satellite Boutons at the Drosophila Neuromuscular Junction. Front Neuroanat 2020; 14:19. [PMID: 32581727 PMCID: PMC7296126 DOI: 10.3389/fnana.2020.00019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/26/2020] [Indexed: 11/22/2022] Open
Abstract
Neurexins and neuroligins are common synaptic adhesion molecules that are associated with autism and interact with each other in the synaptic cleft. The Drosophila neuromuscular junction (NMJ) bouton is a well-known model system in neuroscience, and ghost and satellite boutons, respectively, indicate the poor development and overgrowth of the NMJ boutons. However, the Drosophila neurexin (DNrx) and Drosophila neuroligins (DNlgs) are mainly observed in type Ib boutons, indicating the ultrastructural and developmental phenotypes of the Drosophila NMJ. Here, we identified the ultrastructural and developmental features of ghost and satellite boutons by utilizing dneurexin (dnrx) and dneuroligins (dnlgs) fly mutants and other associated fly strains. Ghost boutons contain synaptic vesicles with multiple diameters but very rarely contain T-bar structures and swollen or thin subsynaptic reticulum (SSR) membranes. The muscle cell membrane is invaginated at different sites, stretches to the ghost bouton from different directions, forms several layers that enwrap the ghost bouton, and then branches into the complex SSR. Satellite boutons share a common SSR membrane and present either a typical profile in which a main bouton is encircled by small boutons or two atypical profiles in which the small boutons are grouped together or distributed in beads without a main bouton. Electron and confocal microscopy data showed that dnrx, dnlg1, dnlg2, dnlg3, and dnlg4 mutations led to ghost boutons; the overexpression of dnrx, dnlg1, dnlg2, dnlg3, and dnlg4 led to satellite boutons; and the dnlg2;dnlg3 double mutation also led to satellite boutons. These results suggested that DNrx and DNlgs jointly maintain the development and function of NMJ boutons by regulating the balance of ghost and satellite boutons in Drosophila.
Collapse
Affiliation(s)
- Gan Guangming
- School of Medicine, Southeast University, Nanjing, China.,The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Geng Junhua
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Zhang Chenchen
- School of Medicine, Southeast University, Nanjing, China.,The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Mou Yang
- School of Medicine, Southeast University, Nanjing, China
| | - Xie Wei
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China.,Institute of Life Sciences, The Collaborative Innovation Center for Brain Science, Southeast University, Nanjing, China
| |
Collapse
|
11
|
Maccallini P, Bavasso F, Scatolini L, Bucciarelli E, Noviello G, Lisi V, Palumbo V, D'Angeli S, Cacchione S, Cenci G, Ciapponi L, Wakefield JG, Gatti M, Raffa GD. Intimate functional interactions between TGS1 and the Smn complex revealed by an analysis of the Drosophila eye development. PLoS Genet 2020; 16:e1008815. [PMID: 32453722 PMCID: PMC7289441 DOI: 10.1371/journal.pgen.1008815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/11/2020] [Accepted: 04/30/2020] [Indexed: 11/27/2022] Open
Abstract
Trimethylguanosine synthase 1 (TGS1) is a conserved enzyme that mediates formation of the trimethylguanosine cap on several RNAs, including snRNAs and telomerase RNA. Previous studies have shown that TGS1 binds the Survival Motor Neuron (SMN) protein, whose deficiency causes spinal muscular atrophy (SMA). Here, we analyzed the roles of the Drosophila orthologs of the human TGS1 and SMN genes. We show that the Drosophila TGS1 protein (dTgs1) physically interacts with all subunits of the Drosophila Smn complex (Smn, Gem2, Gem3, Gem4 and Gem5), and that a human TGS1 transgene rescues the mutant phenotype caused by dTgs1 loss. We demonstrate that both dTgs1 and Smn are required for viability of retinal progenitor cells and that downregulation of these genes leads to a reduced eye size. Importantly, overexpression of dTgs1 partially rescues the eye defects caused by Smn depletion, and vice versa. These results suggest that the Drosophila eye model can be exploited for screens aimed at the identification of genes and drugs that modify the phenotypes elicited by Tgs1 and Smn deficiency. These modifiers could help to understand the molecular mechanisms underlying SMA pathogenesis and devise new therapies for this genetic disease. We explored the functional relationships between TGS1 and SMN using Drosophila as model organism. TGS1 is an enzyme that modifies the structure of the 5’-end of several RNAs, including telomerase RNA and the small nuclear RNAs (snRNAs) that are required for messenger RNA maturation. The SMN protein regulates snRNAs biogenesis and mutations in human SMN cause Spinal Muscular Atrophy (SMA), a devastating disorder characterized by neurodegeneration, progressive paralysis and death. We show that mutations in the Drosophila TGS1 (dTgs1) gene cause lethality, which is rescued by a human TGS1 transgene. We also show that the dTgs1 protein physically interacts with all subunits of the Smn complex, and that downregulation of either dTgs1 or Smn leads to a reduced Drosophila eye size. Notably, overexpression of dTgs1 partially rescues the eye defects caused by Smn knockdown, and vice versa, indicating that these genes cooperate in eye development. These results suggest that the eye model can be exploited for screens aimed at detection of chemical and genetic modifiers of the eye mutant phenotype elicited by dTgs1 and Smn deficiency, providing new clues about SMA pathogenesis and potential therapies.
Collapse
Affiliation(s)
- Paolo Maccallini
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Francesca Bavasso
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Livia Scatolini
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | | | - Gemma Noviello
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Veronica Lisi
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Valeria Palumbo
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Simone D'Angeli
- Dipartimento di Biologia Ambientale, Sapienza University of Rome, Rome, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Giovanni Cenci
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
- Fondazione Cenci Bolognetti, Istituto Pasteur, Rome, Italy
| | - Laura Ciapponi
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - James G. Wakefield
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, United Kingdom
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
- Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Rome, Italy
- * E-mail: (MG); (GDR)
| | - Grazia Daniela Raffa
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
- * E-mail: (MG); (GDR)
| |
Collapse
|
12
|
Catinozzi M, Mallik M, Frickenhaus M, Been M, Sijlmans C, Kulshrestha D, Alexopoulos I, Weitkunat M, Schnorrer F, Storkebaum E. The Drosophila FUS ortholog cabeza promotes adult founder myoblast selection by Xrp1-dependent regulation of FGF signaling. PLoS Genet 2020; 16:e1008731. [PMID: 32302304 PMCID: PMC7190187 DOI: 10.1371/journal.pgen.1008731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/29/2020] [Accepted: 03/20/2020] [Indexed: 11/18/2022] Open
Abstract
The number of adult myofibers in Drosophila is determined by the number of founder myoblasts selected from a myoblast pool, a process governed by fibroblast growth factor (FGF) signaling. Here, we show that loss of cabeza (caz) function results in a reduced number of adult founder myoblasts, leading to a reduced number and misorientation of adult dorsal abdominal muscles. Genetic experiments revealed that loss of caz function in both adult myoblasts and neurons contributes to caz mutant muscle phenotypes. Selective overexpression of the FGF receptor Htl or the FGF receptor-specific signaling molecule Stumps in adult myoblasts partially rescued caz mutant muscle phenotypes, and Stumps levels were reduced in caz mutant founder myoblasts, indicating FGF pathway deregulation. In both adult myoblasts and neurons, caz mutant muscle phenotypes were mediated by increased expression levels of Xrp1, a DNA-binding protein involved in gene expression regulation. Xrp1-induced phenotypes were dependent on the DNA-binding capacity of its AT-hook motif, and increased Xrp1 levels in founder myoblasts reduced Stumps expression. Thus, control of Xrp1 expression by Caz is required for regulation of Stumps expression in founder myoblasts, resulting in correct founder myoblast selection.
Collapse
Affiliation(s)
- Marica Catinozzi
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Moushami Mallik
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Marie Frickenhaus
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Marije Been
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Céline Sijlmans
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Divita Kulshrestha
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Ioannis Alexopoulos
- General Instruments Department, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Manuela Weitkunat
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Frank Schnorrer
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
- Aix Marseille University, CNRS, IBDM, Marseille, France
| | - Erik Storkebaum
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Faculty of Medicine, University of Muenster, Muenster, Germany
| |
Collapse
|
13
|
Chou VT, Johnson S, Long J, Vounatsos M, Van Vactor D. dTACC restricts bouton addition and regulates microtubule organization at the Drosophila neuromuscular junction. Cytoskeleton (Hoboken) 2020; 77:4-15. [PMID: 31702858 PMCID: PMC7027520 DOI: 10.1002/cm.21578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/11/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022]
Abstract
Regulation of the synaptic cytoskeleton is essential to proper neuronal development and wiring. Perturbations in neuronal microtubules (MTs) are associated with numerous pathologies, yet it remains unclear how changes in MTs may be coupled to synapse morphogenesis. Studies have identified many MT regulators that promote synapse growth. However, less is known about the factors that restrict growth, despite the potential links of synaptic overgrowth to severe neurological conditions. Here, we report that dTACC, which is implicated in MT assembly and stability, prevents synapse overgrowth at the Drosophila neuromuscular junction by restricting addition of new boutons throughout larval development. dTACC localizes to the axonal MT lattice and is required to maintain tubulin levels and the integrity of higher-order MT structures in motor axon terminals. While previous reports have demonstrated the roles of MT-stabilizing proteins in promoting synapse growth, our findings suggest that in certain contexts, MT stabilization may correlate with restricted growth.
Collapse
Affiliation(s)
- Vivian T. Chou
- Department of Cell Biology and Program in NeuroscienceBlavatnik Institute, Harvard Medical SchoolBostonMassachusetts
| | - Seth Johnson
- Department of Cell Biology and Program in NeuroscienceBlavatnik Institute, Harvard Medical SchoolBostonMassachusetts
| | - Jennifer Long
- Department of Cell Biology and Program in NeuroscienceBlavatnik Institute, Harvard Medical SchoolBostonMassachusetts
| | - Maxime Vounatsos
- Department of Cell Biology and Program in NeuroscienceBlavatnik Institute, Harvard Medical SchoolBostonMassachusetts
| | - David Van Vactor
- Department of Cell Biology and Program in NeuroscienceBlavatnik Institute, Harvard Medical SchoolBostonMassachusetts
| |
Collapse
|
14
|
Yella SST, Kumar RN, Ayyanna C, Varghese AM, Amaravathi P, Vangoori Y. The combined effect of Trigonella foenum seeds and Coriandrum sativum leaf extracts in alloxan-induced diabetes mellitus wistar albino rats. Bioinformation 2019; 15:716-722. [PMID: 31831953 PMCID: PMC6900327 DOI: 10.6026/97320630015716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 11/23/2022] Open
Abstract
Diabetes mellitus is a group of heterogeneous disorders commonly presenting with episodes of hyperglycemia and glucose intolerance, as a result of lack of insulin,
ineffective insulin action, and/or both. It is our interest to study the effect of ethanolic extract of Trigonella foenum seeds (fenugreek) and Coriandrum sativum leaves
(dhaniya) or its combination in alloxan induced diabetes mellitus wistar albino rats. Rats were randomly separated into six groups where group 1 animals received 2% acacia,
group 2 animals received alloxan dose of 150 mg/kg, group 3 animals received glibenclamide dose of 0.5 mg/kg and group 4, 5 and 6 animals received ethanolic extracts of
Trigonella foenum seeds, Coriandrum sativum leaves and combination of both extracts at the dose of 100mg/kg for 21 days. Different biochemical parameters such as hepatic and renal
biomarkers and histopathology of pancreas were studied. Combination of both extracts showed significant decrease in blood glucose, cholesterol, triglycerides, LDL, VLDL levels,
SGOT, SGPT, urea, creatinine and increase in HDL levels and body weight than individual extracts. Thus, we show the antidiabetic activity of poly herbal formulation using
biochemical and histo pathological data.
Collapse
Affiliation(s)
| | | | - Chakali Ayyanna
- Department of Pharmacology, Santhiram College of Pharmacy, Nandyal, Andhra Pradesh, India, 518501
| | - Anjaly Mary Varghese
- Department of Pharmacology, CES College of pharmacy, Kurnool, Andhra Pradesh,India, 518001
| | - P Amaravathi
- Department of Pharmacology, CES College of pharmacy, Kurnool, Andhra Pradesh,India, 518001
| | - Yakaiah Vangoori
- Department of Pharmacology, Santhiram Medical College and General Hospital, Nandyal, Andhra Pradesh, India, 518502
| |
Collapse
|
15
|
Aquilina B, Cauchi RJ. Modelling motor neuron disease in fruit flies: Lessons from spinal muscular atrophy. J Neurosci Methods 2018; 310:3-11. [DOI: 10.1016/j.jneumeth.2018.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/06/2018] [Accepted: 04/07/2018] [Indexed: 12/25/2022]
|
16
|
Maretina MA, Zheleznyakova GY, Lanko KM, Egorova AA, Baranov VS, Kiselev AV. Molecular Factors Involved in Spinal Muscular Atrophy Pathways as Possible Disease-modifying Candidates. Curr Genomics 2018; 19:339-355. [PMID: 30065610 PMCID: PMC6030859 DOI: 10.2174/1389202919666180101154916] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023] Open
Abstract
Spinal Muscular Atrophy (SMA) is a neuromuscular disorder caused by mutations in the SMN1 gene. Being a monogenic disease, it is characterized by high clinical heterogeneity. Variations in penetrance and severity of symptoms, as well as clinical discrepancies between affected family members can result from modifier genes influence on disease manifestation. SMN2 gene copy number is known to be the main phenotype modifier and there is growing evidence of additional factors contributing to SMA severity. Potential modifiers of spinal muscular atrophy can be found among the wide variety of different factors, such as multiple proteins interacting with SMN or promoting motor neuron survival, epigenetic modifications, transcriptional or splicing factors influencing SMN2 expression. Study of these factors enables to reveal mechanisms underlying SMA pathology and can have pronounced clinical application.
Collapse
Affiliation(s)
- Marianna A. Maretina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
- Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russia
| | - Galina Y. Zheleznyakova
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska Universitetssjukhuset, 171 76 Stockholm, Sweden
| | - Kristina M. Lanko
- Saint Petersburg State Institute of Technology, Moskovsky prospect, 26, Saint Petersburg190013, Russia
| | - Anna A. Egorova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
| | - Vladislav S. Baranov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
- Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russia
| | - Anton V. Kiselev
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
| |
Collapse
|
17
|
Genetic screen identifies a requirement for SMN in mRNA localisation within the Drosophila oocyte. BMC Res Notes 2018; 11:378. [PMID: 29895323 PMCID: PMC5998591 DOI: 10.1186/s13104-018-3496-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/06/2018] [Indexed: 01/07/2023] Open
Abstract
Objective Spinal muscular atrophy (SMA) results from insufficient levels of the survival motor neuron (SMN) protein. Drosophila is conducive to large-scale genetic-modifier screens which can reveal novel pathways underpinning the disease mechanism. We tested the ability of a large collection of genomic deletions to enhance SMN-dependent lethality. To test our design, we asked whether our study can identify loci containing genes identified in previous genetic screens. Our objective was to find a common link between genes flagged in independent screens, which would allow us to expose novel functions for SMN in vivo. Results Out of 128 chromosome deficiency lines, 12 (9.4%) were found to consistently depress adult viability when crossed to SMN loss-of-function heterozygotes. In their majority, the enhancing deletions harboured genes that were previously identified as genetic modifiers, hence, validating the design of the screen. Importantly, gene overlap allowed us to flag genes with a role in post-transcriptional regulation of mRNAs that are crucial for determining the axes of the oocyte and future embryo. We find that SMN is also required for the correct localisation of gurken and oskar mRNAs in oocytes. These findings extend the role of SMN in oogenesis by identifying a key requirement for mRNA trafficking. Electronic supplementary material The online version of this article (10.1186/s13104-018-3496-1) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Deregulation of ZPR1 causes respiratory failure in spinal muscular atrophy. Sci Rep 2017; 7:8295. [PMID: 28811488 PMCID: PMC5557895 DOI: 10.1038/s41598-017-07603-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/28/2017] [Indexed: 12/03/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by the low levels of survival motor neuron (SMN) protein and is characterized by motor neuron degeneration and muscle atrophy. Respiratory failure causes death in SMA but the underlying molecular mechanism is unknown. The zinc finger protein ZPR1 interacts with SMN. ZPR1 is down regulated in SMA patients. We report that ZPR1 functions downstream of SMN to regulate HoxA5 levels in phrenic motor neurons that control respiration. Spatiotemporal inactivation of Zpr1 gene in motor neurons down-regulates HoxA5 and causes defects in the function of phrenic motor neurons that results in respiratory failure and perinatal lethality in mice. Modulation in ZPR1 levels directly correlates and influences levels of HoxA5 transcription. In SMA mice, SMN-deficiency causes down-regulation of ZPR1 and HoxA5 that result in degeneration of phrenic motor neurons. Identification of ZPR1 and HoxA5 as potential targets provides a paradigm for developing strategies to treat respiratory distress in SMA.
Collapse
|
19
|
Di Giorgio ML, Esposito A, Maccallini P, Micheli E, Bavasso F, Gallotta I, Vernì F, Feiguin F, Cacchione S, McCabe BD, Di Schiavi E, Raffa GD. WDR79/TCAB1 plays a conserved role in the control of locomotion and ameliorates phenotypic defects in SMA models. Neurobiol Dis 2017; 105:42-50. [PMID: 28502804 DOI: 10.1016/j.nbd.2017.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/19/2017] [Accepted: 05/10/2017] [Indexed: 12/22/2022] Open
Abstract
SMN (Survival Motor Neuron) deficiency is the predominant cause of spinal muscular atrophy (SMA), a severe neurodegenerative disorder that can lead to progressive paralysis and death. Although SMN is required in every cell for proper RNA metabolism, the reason why its loss is especially critical in the motor system is still unclear. SMA genetic models have been employed to identify several modifiers that can ameliorate the deficits induced by SMN depletion. Here we focus on WDR79/TCAB1, a protein important for the biogenesis of several RNA species that has been shown to physically interact with SMN in human cells. We show that WDR79 depletion results in locomotion defects in both Drosophila and Caenorhabditis elegans similar to those elicited by SMN depletion. Consistent with this observation, we find that SMN overexpression rescues the WDR79 loss-of-function phenotype in flies. Most importantly, we also found that WDR79 overexpression ameliorates the locomotion defects induced by SMN depletion in both flies and worms. Our results collectively suggest that WDR79 and SMN play evolutionarily conserved cooperative functions in the nervous system and suggest that WDR79/TCAB1 may have the potential to modify SMA pathogenesis.
Collapse
Affiliation(s)
- Maria Laura Di Giorgio
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | | | - Paolo Maccallini
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Emanuela Micheli
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Francesca Bavasso
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Ivan Gallotta
- Institute of Genetics and Biophysics - ABT, CNR, Naples, Italy
| | - Fiammetta Vernì
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Fabian Feiguin
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Stefano Cacchione
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | | | - Elia Di Schiavi
- Institute of Genetics and Biophysics - ABT, CNR, Naples, Italy; Institute of Bioscience and Bioresources, CNR, Naples, Italy
| | - Grazia Daniela Raffa
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
20
|
Singh RN, Howell MD, Ottesen EW, Singh NN. Diverse role of survival motor neuron protein. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2017; 1860:299-315. [PMID: 28095296 PMCID: PMC5325804 DOI: 10.1016/j.bbagrm.2016.12.008] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 12/23/2016] [Accepted: 12/30/2016] [Indexed: 02/07/2023]
Abstract
The multifunctional Survival Motor Neuron (SMN) protein is required for the survival of all organisms of the animal kingdom. SMN impacts various aspects of RNA metabolism through the formation and/or interaction with ribonucleoprotein (RNP) complexes. SMN regulates biogenesis of small nuclear RNPs, small nucleolar RNPs, small Cajal body-associated RNPs, signal recognition particles and telomerase. SMN also plays an important role in DNA repair, transcription, pre-mRNA splicing, histone mRNA processing, translation, selenoprotein synthesis, macromolecular trafficking, stress granule formation, cell signaling and cytoskeleton maintenance. The tissue-specific requirement of SMN is dictated by the variety and the abundance of its interacting partners. Reduced expression of SMN causes spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. SMA displays a broad spectrum ranging from embryonic lethality to an adult onset. Aberrant expression and/or localization of SMN has also been associated with male infertility, inclusion body myositis, amyotrophic lateral sclerosis and osteoarthritis. This review provides a summary of various SMN functions with implications to a better understanding of SMA and other pathological conditions.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States.
| | - Matthew D Howell
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| |
Collapse
|
21
|
Cell death regulates muscle fiber number. Dev Biol 2016; 415:87-97. [PMID: 27131625 DOI: 10.1016/j.ydbio.2016.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/18/2016] [Accepted: 04/24/2016] [Indexed: 11/23/2022]
Abstract
Cell death can have both cell autonomous and non-autonomous roles in normal development. Previous studies have shown that the central cell death regulators grim and reaper are required for the developmentally important elimination of stem cells and neurons in the developing central nervous system (CNS). Here we show that cell death in the nervous system is also required for normal muscle development. In the absence of grim and reaper, there is an increase in the number of fibers in the ventral abdominal muscles in the Drosophila adult. This phenotype can be partially recapitulated by inhibition of cell death specifically in the CNS, indicating a non-autonomous role for neuronal death in limiting muscle fiber number. We also show that FGFs produced in the cell death defective nervous system are required for the increase in muscle fiber number. Cell death in the muscle lineage during pupal stages also plays a role in specifying fiber number. Our work suggests that FGFs from the CNS act as a survival signal for muscle founder cells. Thus, proper muscle fiber specification requires cell death in both the nervous system and in the developing muscle itself.
Collapse
|
22
|
Förthmann B, Grothe C, Claus P. A nuclear odyssey: fibroblast growth factor-2 (FGF-2) as a regulator of nuclear homeostasis in the nervous system. Cell Mol Life Sci 2015; 72:1651-62. [PMID: 25552245 PMCID: PMC11113852 DOI: 10.1007/s00018-014-1818-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/10/2014] [Accepted: 12/19/2014] [Indexed: 01/07/2023]
Abstract
Nuclear localization of classical growth factors is a well-known phenomenon but still remains a molecular and cellular conundrum. Fibroblast growth factor-2 (FGF-2) is an excellent example of a protein which functions as an extracellular molecule involved in canonical receptor tyrosine kinase signaling as well as displaying intracellular functions. Paracrine and nuclear functions are two important sides of the same protein. FGF-2 is expressed in isoforms with different molecular weights from one mRNA species. In rodents, all of these isoforms become imported to the nucleus. In this review, we discuss structural and functional aspects of FGF-2 isoforms in the nervous system. The nuclear odyssey of FGF-2 is reflected by nuclear dynamics, localization to nuclear bodies such as nucleoli, binding to chromatin and engagement in various protein interactions. Recently discovered molecular partnerships of the isoforms shed light on their nuclear functions, thereby greatly extending our knowledge of the multifaceted functions of FGF-2.
Collapse
Affiliation(s)
- Benjamin Förthmann
- Department of Neuroanatomy, Institute of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Claudia Grothe
- Department of Neuroanatomy, Institute of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
- Center for Systems Neuroscience, 30625 Hannover, Germany
| | - Peter Claus
- Department of Neuroanatomy, Institute of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
- Center for Systems Neuroscience, 30625 Hannover, Germany
| |
Collapse
|
23
|
Edens BM, Ajroud-Driss S, Ma L, Ma YC. Molecular mechanisms and animal models of spinal muscular atrophy. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1852:685-92. [PMID: 25088406 DOI: 10.1016/j.bbadis.2014.07.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/27/2022]
Abstract
Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality, is characterized by the degeneration of spinal motor neurons and muscle atrophy. Although the genetic cause of SMA has been mapped to the Survival Motor Neuron1 (SMN1) gene, mechanisms underlying selective motor neuron degeneration in SMA remain largely unknown. Here we review the latest developments and our current understanding of the molecular mechanisms underlying SMA pathogenesis, focusing on the animal model systems that have been developed, as well as new diagnostic and treatment strategies that have been identified using these model systems. This article is part of a special issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
Affiliation(s)
- Brittany M Edens
- Departments of Pediatrics, Neurology and Physiology, Northwestern University Feinberg School of Medicine, Lurie Children's Hospital of Chicago Research Center, IL 60611, Chicago
| | | | - Long Ma
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Yong-Chao Ma
- Departments of Pediatrics, Neurology and Physiology, Northwestern University Feinberg School of Medicine, Lurie Children's Hospital of Chicago Research Center, IL 60611, Chicago.
| |
Collapse
|
24
|
Petchi RR, Vijaya C, Parasuraman S. Antidiabetic activity of polyherbal formulation in streptozotocin - nicotinamide induced diabetic wistar rats. J Tradit Complement Med 2014; 4:108-17. [PMID: 24860734 PMCID: PMC4003700 DOI: 10.4103/2225-4110.126174] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Glycosmis pentaphylla, Tridax procumbens, and Mangifera indica are well-known plants available throughout India and they are commonly used for the treatment of various diseases including diabetes mellitus. The antidiabetic activity of the individual plant parts is well known, but the synergistic or combined effects are unclear. The concept of polyherbalism has been highlighted in Sharangdhar Samhita, an Ayurvedic literature dating back to 1300 AD. Polyherbal formulations enhance the therapeutic action and reduce the concentrations of single herbs, thereby reducing adverse events. The aim of the present study is to formulate a polyherbal formulation and evaluate its antidiabetic potential in animals. The polyherbal formulation was formulated using the ethanol extracts of the stem bark of G. pentaphylla, whole plant of T. procumbens, and leaves of M. indica. The polyherbal formulation contains the ethanol extracts of G. pentaphylla, T. procumbens, and M. indica in the ratio of 2:2:1. The quality of the finished product was evaluated as per the World Health Organization's guidelines for the quality control of herbal materials. The quality testing parameters of the polyherbal formulation were within the limits. Fingerprint analysis of the polyherbal formulation showed effective separation at 366 nm, and it revealed that the active compound present in the polyherbal formulation and the active compounds present in all the three extracts were the same. The acute toxicity studies of the polyherbal formulation did not show any toxic symptoms in doses up to 2000 mg/kg over 14 days. The oral antidiabetic activity of the polyherbal formulation (250 and 500 mg/kg) was screened against streptozotocin (50 mg/kg; i.p.) + nicotinamide (120 mg/kg; i.p.) induced diabetes mellitus in rats. The investigational drug was administered for 21 consecutive days, and the effect of the polyherbal formulation on blood glucose levels was studied at regular intervals. At the end of the study, the blood samples were collected from all the animals for biochemical estimation, and the animals were sacrificed and the liver and pancreatic tissues were collected for histopathologic analysis. Polyherbal formulation showed significant antidiabetic activity at 250 and 500 mg/kg, respectively, and this effect was comparable with that of glibenclamide. The antidiabetic activity of polyherbal formulation is supported by biochemical and histopathologic analysis.
Collapse
Affiliation(s)
| | - Chockalingam Vijaya
- Department of Pharmacology, Ultra College of Pharmacy, Madurai - 625020, Tamil Nadu, India
| | - Subramani Parasuraman
- Unit of Pharmacology, Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
| |
Collapse
|
25
|
Charng WL, Yamamoto S, Bellen HJ. Shared mechanisms between Drosophila peripheral nervous system development and human neurodegenerative diseases. Curr Opin Neurobiol 2014; 27:158-64. [PMID: 24762652 DOI: 10.1016/j.conb.2014.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 02/21/2014] [Accepted: 03/09/2014] [Indexed: 10/25/2022]
Abstract
Signaling pathways and cellular processes that regulate neural development are used post-developmentally for proper function and maintenance of the nervous system. Genes that have been studied in the context of the development of Drosophila peripheral nervous system (PNS) and neuromuscular junction (NMJ) have been identified as players in the pathogenesis of human neurodegenerative diseases, including spinocerebellar ataxia, amyotrophic lateral sclerosis, and spinal muscular atrophy. Hence, by unraveling the molecular mechanisms that underlie proneural induction, cell fate determination, axonal targeting, dendritic branching, and synapse formation in Drosophila, novel features related to these disorders have been revealed. In this review, we summarize and discuss how studies of Drosophila PNS and NMJ development have provided guidance in experimental approaches for these diseases.
Collapse
Affiliation(s)
- Wu-Lin Charng
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, BCM, Houston, TX 77030, USA; Howard Hughes Medical Institute, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Guruharsha KG, Obar RA, Mintseris J, Aishwarya K, Krishnan RT, Vijayraghavan K, Artavanis-Tsakonas S. Drosophila protein interaction map (DPiM): a paradigm for metazoan protein complex interactions. Fly (Austin) 2013; 6:246-53. [PMID: 23222005 PMCID: PMC3519659 DOI: 10.4161/fly.22108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proteins perform essential cellular functions as part of protein complexes, often in conjunction with RNA, DNA, metabolites and other small molecules. The genome encodes thousands of proteins but not all of them are expressed in every cell type; and expressed proteins are not active at all times. Such diversity of protein expression and function accounts for the level of biological intricacy seen in nature. Defining protein-protein interactions in protein complexes, and establishing the when, what and where of potential interactions, is therefore crucial to understanding the cellular function of any protein-especially those that have not been well studied by traditional molecular genetic approaches. We generated a large-scale resource of affinity-tagged expression-ready clones and used co-affinity purification combined with tandem mass-spectrometry to identify protein partners of nearly 5,000 Drosophila melanogaster proteins. The resulting protein complex "map" provided a blueprint of metazoan protein complex organization. Here we describe how the map has provided valuable insights into protein function in addition to generating hundreds of testable hypotheses. We also discuss recent technological advancements that will be critical in addressing the next generation of questions arising from the map.
Collapse
Affiliation(s)
- K G Guruharsha
- Department of Cell Biology; Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Genetic circuitry of Survival motor neuron, the gene underlying spinal muscular atrophy. Proc Natl Acad Sci U S A 2013; 110:E2371-80. [PMID: 23757500 DOI: 10.1073/pnas.1301738110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The clinical severity of the neurodegenerative disorder spinal muscular atrophy (SMA) is dependent on the levels of functional Survival Motor Neuron (SMN) protein. Consequently, current strategies for developing treatments for SMA generally focus on augmenting SMN levels. To identify additional potential therapeutic avenues and achieve a greater understanding of SMN, we applied in vivo, in vitro, and in silico approaches to identify genetic and biochemical interactors of the Drosophila SMN homolog. We identified more than 300 candidate genes that alter an Smn-dependent phenotype in vivo. Integrating the results from our genetic screens, large-scale protein interaction studies, and bioinformatic analysis, we define a unique interactome for SMN that provides a knowledge base for a better understanding of SMA.
Collapse
|
28
|
Muha V, Müller HAJ. Functions and Mechanisms of Fibroblast Growth Factor (FGF) Signalling in Drosophila melanogaster. Int J Mol Sci 2013; 14:5920-37. [PMID: 23493057 PMCID: PMC3634451 DOI: 10.3390/ijms14035920] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/05/2013] [Accepted: 03/12/2013] [Indexed: 01/19/2023] Open
Abstract
Intercellular signalling via growth factors plays an important role in controlling cell differentiation and cell movements during the development of multicellular animals. Fibroblast Growth Factor (FGF) signalling induces changes in cellular behaviour allowing cells in the embryo to move, to survive, to divide or to differentiate. Several examples argue that FGF signalling is used in multi-step morphogenetic processes to achieve and maintain a transitional state of the cells required for the control of cell fate. In the genetic model Drosophila melanogaster, FGF signalling via the receptor tyrosine kinases Heartless (Htl) and Breathless (Btl) is particularly well studied. These FGF receptors affect gene expression, cell shape and cell–cell interactions during mesoderm layer formation, caudal visceral muscle (CVM) formation, tracheal morphogenesis and glia differentiation. Here, we will address the current knowledge of the biological functions of FGF signalling in the fly on the tissue, at a cellular and molecular level.
Collapse
Affiliation(s)
- Villö Muha
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD15EH, Scotland, UK.
| | | |
Collapse
|
29
|
Dani N, Nahm M, Lee S, Broadie K. A targeted glycan-related gene screen reveals heparan sulfate proteoglycan sulfation regulates WNT and BMP trans-synaptic signaling. PLoS Genet 2012; 8:e1003031. [PMID: 23144627 PMCID: PMC3493450 DOI: 10.1371/journal.pgen.1003031] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/26/2012] [Indexed: 12/14/2022] Open
Abstract
A Drosophila transgenic RNAi screen targeting the glycan genome, including all N/O/GAG-glycan biosynthesis/modification enzymes and glycan-binding lectins, was conducted to discover novel glycan functions in synaptogenesis. As proof-of-product, we characterized functionally paired heparan sulfate (HS) 6-O-sulfotransferase (hs6st) and sulfatase (sulf1), which bidirectionally control HS proteoglycan (HSPG) sulfation. RNAi knockdown of hs6st and sulf1 causes opposite effects on functional synapse development, with decreased (hs6st) and increased (sulf1) neurotransmission strength confirmed in null mutants. HSPG co-receptors for WNT and BMP intercellular signaling, Dally-like Protein and Syndecan, are differentially misregulated in the synaptomatrix of these mutants. Consistently, hs6st and sulf1 nulls differentially elevate both WNT (Wingless; Wg) and BMP (Glass Bottom Boat; Gbb) ligand abundance in the synaptomatrix. Anterograde Wg signaling via Wg receptor dFrizzled2 C-terminus nuclear import and retrograde Gbb signaling via synaptic MAD phosphorylation and nuclear import are differentially activated in hs6st and sulf1 mutants. Consequently, transcriptional control of presynaptic glutamate release machinery and postsynaptic glutamate receptors is bidirectionally altered in hs6st and sulf1 mutants, explaining the bidirectional change in synaptic functional strength. Genetic correction of the altered WNT/BMP signaling restores normal synaptic development in both mutant conditions, proving that altered trans-synaptic signaling causes functional differentiation defects.
Collapse
Affiliation(s)
- Neil Dani
- Department of Biological Sciences and Department of Cell and Developmental Biology, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Minyeop Nahm
- Department of Cell and Developmental Biology, Seoul National University, Seoul, Republic of Korea
| | - Seungbok Lee
- Department of Cell and Developmental Biology, Seoul National University, Seoul, Republic of Korea
| | - Kendal Broadie
- Department of Biological Sciences and Department of Cell and Developmental Biology, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
30
|
Behavioral and electrophysiological outcomes of tissue-specific Smn knockdown in Drosophila melanogaster. Brain Res 2012; 1489:66-80. [PMID: 23103409 DOI: 10.1016/j.brainres.2012.10.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/17/2012] [Accepted: 10/19/2012] [Indexed: 11/23/2022]
Abstract
Severe reduction in Survival Motor Neuron 1 (SMN1) protein in humans causes Spinal Muscular Atrophy (SMA), a debilitating childhood disease that leads to progressive impairment of the neuro-muscular system. Although previous studies have attempted to identify the tissue(s) in which SMN1 loss most critically leads to disease, tissue-specific functions for this widely expressed protein still remain unclear. Here, we have leveraged RNA interference methods to manipulate SMN function selectively in Drosophila neurons or muscles followed by behavioral and electrophysiological analysis. High resolution measurement of motor performance shows profound alterations in locomotor patterns following pan-neuronal knockdown of SMN. Further, locomotor phenotypes can be elicited by SMN knockdown in motor neurons, supporting previous demonstrations of motor neuron-specific SMN function in mice. Electrophysiologically, SMN modulation in muscles reveals largely normal synaptic transmission, quantal release and trans-synaptic homeostatic compensation at the larval neuro-muscular junction. Neuronal SMN knockdown does not alter baseline synaptic transmission, the dynamics of synaptic depletion or acute homeostatic compensation. However, chronic glutamate receptor-dependent developmental homeostasis at the neuro-muscular junction is strongly attenuated following reduction of SMN in neurons. Together, these results support a distributed model of SMN function with distinct neuron-specific roles that are likely to be compromised following global loss of SMN in patients. While complementary to, and in broad agreement with, recent mouse studies that suggest a strong necessity for SMN in neurons, our results uncover a hitherto under-appreciated role for SMN in homeostatic regulatory mechanisms at motor synapses.
Collapse
|
31
|
Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy. J Neurosci 2012; 32:8703-15. [PMID: 22723710 DOI: 10.1523/jneurosci.0204-12.2012] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.
Collapse
|
32
|
Crawford TO, Paushkin SV, Kobayashi DT, Forrest SJ, Joyce CL, Finkel RS, Kaufmann P, Swoboda KJ, Tiziano D, Lomastro R, Li RH, Trachtenberg FL, Plasterer T, Chen KS. Evaluation of SMN protein, transcript, and copy number in the biomarkers for spinal muscular atrophy (BforSMA) clinical study. PLoS One 2012; 7:e33572. [PMID: 22558076 PMCID: PMC3338744 DOI: 10.1371/journal.pone.0033572] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 02/15/2012] [Indexed: 12/17/2022] Open
Abstract
Background The universal presence of a gene (SMN2) nearly identical to the mutated SMN1 gene responsible for Spinal Muscular Atrophy (SMA) has proved an enticing incentive to therapeutics development. Early disappointments from putative SMN-enhancing agent clinical trials have increased interest in improving the assessment of SMN expression in blood as an early “biomarker” of treatment effect. Methods A cross-sectional, single visit, multi-center design assessed SMN transcript and protein in 108 SMA and 22 age and gender-matched healthy control subjects, while motor function was assessed by the Modified Hammersmith Functional Motor Scale (MHFMS). Enrollment selectively targeted a broad range of SMA subjects that would permit maximum power to distinguish the relative influence of SMN2 copy number, SMA type, present motor function, and age. Results SMN2 copy number and levels of full-length SMN2 transcripts correlated with SMA type, and like SMN protein levels, were lower in SMA subjects compared to controls. No measure of SMN expression correlated strongly with MHFMS. A key finding is that SMN2 copy number, levels of transcript and protein showed no correlation with each other. Conclusion This is a prospective study that uses the most advanced techniques of SMN transcript and protein measurement in a large selectively-recruited cohort of individuals with SMA. There is a relationship between measures of SMN expression in blood and SMA type, but not a strong correlation to motor function as measured by the MHFMS. Low SMN transcript and protein levels in the SMA subjects relative to controls suggest that these measures of SMN in accessible tissues may be amenable to an “early look” for target engagement in clinical trials of putative SMN-enhancing agents. Full length SMN transcript abundance may provide insight into the molecular mechanism of phenotypic variation as a function of SMN2 copy number. Trial Registry Clinicaltrials.gov NCT00756821
Collapse
Affiliation(s)
- Thomas O Crawford
- Departments of Neurology and Pediatrics, The Johns Hopkins University, Baltimore, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Renvoisé B, Quérol G, Verrier ER, Burlet P, Lefebvre S. A role for protein phosphatase PP1γ in SMN complex formation and subnuclear localization to Cajal bodies. J Cell Sci 2012; 125:2862-74. [PMID: 22454514 DOI: 10.1242/jcs.096255] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The spinal muscular atrophy (SMA) gene product SMN forms with gem-associated protein 2-8 (Gemin2-8) and unrip (also known as STRAP) the ubiquitous survival motor neuron (SMN) complex, which is required for the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs), their nuclear import and their localization to subnuclear domain Cajal bodies (CBs). The concentration of the SMN complex and snRNPs in CBs is reduced upon SMN deficiency in SMA cells. Subcellular localization of the SMN complex is regulated in a phosphorylation-dependent manner and the precise mechanisms remain poorly understood. Using co-immunoprecipitation in HeLa cell extracts and in vitro protein binding assays, we show here that the SMN complex and its component Gemin8 interact directly with protein phosphatase PP1γ. Overexpression of Gemin8 in cells increases the number of CBs and results in targeting of PP1γ to CBs. Moreover, depletion of PP1γ by RNA interference enhances the localization of the SMN complex and snRNPs to CBs. Consequently, the interaction between SMN and Gemin8 increases in cytoplasmic and nuclear extracts of PP1γ-depleted cells. Two-dimensional protein gel electrophoresis revealed that SMN is hyperphosphorylated in nuclear extracts of PP1γ-depleted cells and expression of PP1γ restores these isoforms. Notably, SMN deficiency in SMA leads to the aberrant subcellular localization of Gemin8 and PP1γ in the atrophic skeletal muscles, suggesting that the function of PP1γ is likely to be affected in disease. Our findings reveal a role of PP1γ in the formation of the SMN complex and the maintenance of CB integrity. Finally, we propose Gemin8 interaction with PP1γ as a target for therapeutic intervention in SMA.
Collapse
Affiliation(s)
- Benoît Renvoisé
- Laboratoire de Biologie Cellulaire des Membranes, Programme de Biologie Cellulaire, Institut Jacques-Monod, UMR 7592 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Hélène Brion, 75205 Paris cedex 13, France
| | | | | | | | | |
Collapse
|
34
|
Hensel N, Ratzka A, Brinkmann H, Klimaschewski L, Grothe C, Claus P. Analysis of the fibroblast growth factor system reveals alterations in a mouse model of spinal muscular atrophy. PLoS One 2012; 7:e31202. [PMID: 22348054 PMCID: PMC3278439 DOI: 10.1371/journal.pone.0031202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/04/2012] [Indexed: 12/02/2022] Open
Abstract
The monogenetic disease Spinal Muscular Atrophy (SMA) is characterized by a progressive loss of motoneurons leading to muscle weakness and atrophy due to severe reduction of the Survival of Motoneuron (SMN) protein. Several models of SMA show deficits in neurite outgrowth and maintenance of neuromuscular junction (NMJ) structure. Survival of motoneurons, axonal outgrowth and formation of NMJ is controlled by neurotrophic factors such as the Fibroblast Growth Factor (FGF) system. Besides their classical role as extracellular ligands, some FGFs exert also intracellular functions controlling neuronal differentiation. We have previously shown that intracellular FGF-2 binds to SMN and regulates the number of a subtype of nuclear bodies which are reduced in SMA patients. In the light of these findings, we systematically analyzed the FGF-system comprising five canonical receptors and 22 ligands in a severe mouse model of SMA. In this study, we demonstrate widespread alterations of the FGF-system in both muscle and spinal cord. Importantly, FGF-receptor 1 is upregulated in spinal cord at a pre-symptomatic stage as well as in a mouse motoneuron-like cell-line NSC34 based model of SMA. Consistent with that, phosphorylations of FGFR-downstream targets Akt and ERK are increased. Moreover, ERK hyper-phosphorylation is functionally linked to FGFR-1 as revealed by receptor inhibition experiments. Our study shows that the FGF system is dysregulated at an early stage in SMA and may contribute to the SMA pathogenesis.
Collapse
Affiliation(s)
- Niko Hensel
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Andreas Ratzka
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Hella Brinkmann
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Lars Klimaschewski
- Division of Neuroanatomy, Innsbruck Medical University, Innsbruck, Austria
| | - Claudia Grothe
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Peter Claus
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
- * E-mail:
| |
Collapse
|
35
|
Bricceno KV, Fischbeck KH, Burnett BG. Neurogenic and myogenic contributions to hereditary motor neuron disease. NEURODEGENER DIS 2012; 9:199-209. [PMID: 22327341 DOI: 10.1159/000335311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/23/2011] [Indexed: 12/21/2022] Open
Abstract
Spinal muscular atrophy and spinal and bulbar muscular atrophy are characterized by lower motor neuron loss and muscle atrophy. Although it is accepted that motor neuron loss is a primary event in disease pathogenesis, inherent defects in muscle may also contribute to the disease progression and severity. In this review, we discuss the relative contributions of primary pathological processes in the motor axons, neuromuscular junctions and muscle to disease manifestations. Characterizing these contributions helps us to better understand the disease mechanisms and to better target therapeutic intervention.
Collapse
Affiliation(s)
- Katherine V Bricceno
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
36
|
A muscle-specific p38 MAPK/Mef2/MnSOD pathway regulates stress, motor function, and life span in Drosophila. Dev Cell 2011; 21:783-95. [PMID: 22014527 DOI: 10.1016/j.devcel.2011.09.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 07/06/2011] [Accepted: 09/09/2011] [Indexed: 12/30/2022]
Abstract
Molecular mechanisms that concordantly regulate stress, life span, and aging remain incompletely understood. Here, we demonstrate that in Drosophila, a p38 MAP kinase (p38K)/Mef2/MnSOD pathway is a coregulator of stress and life span. Hence, overexpression of p38K extends life span in a MnSOD-dependent manner, whereas inhibition of p38K causes early lethality and precipitates age-related motor dysfunction and stress sensitivity, that is rescued through muscle-restricted (but not neuronal) add-back of p38K. Additionally, mutations in p38K are associated with increased protein carbonylation and Nrf2-dependent transcription, while adversely affecting metabolic response to hypoxia. Mechanistically, p38K modulates expression of the mitochondrial MnSOD enzyme through the transcription factor Mef2, and predictably, perturbations in MnSOD modify p38K-dependent phenotypes. Thus, our results uncover a muscle-restricted p38K-Mef2-MnSOD signaling module that influences life span and stress, distinct from the insulin/JNK/FOXO pathway. We propose that potentiating p38K might be instrumental in restoring the mitochondrial detoxification machinery and combating stress-induced aging.
Collapse
|
37
|
Buckingham M, Liu JL. U bodies respond to nutrient stress in Drosophila. Exp Cell Res 2011; 317:2835-44. [DOI: 10.1016/j.yexcr.2011.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 09/01/2011] [Accepted: 09/04/2011] [Indexed: 10/17/2022]
|
38
|
Broadie K, Baumgartner S, Prokop A. Extracellular matrix and its receptors in Drosophila neural development. Dev Neurobiol 2011; 71:1102-30. [PMID: 21688401 PMCID: PMC3192297 DOI: 10.1002/dneu.20935] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extracellular matrix (ECM) and matrix receptors are intimately involved in most biological processes. The ECM plays fundamental developmental and physiological roles in health and disease, including processes underlying the development, maintenance, and regeneration of the nervous system. To understand the principles of ECM-mediated functions in the nervous system, genetic model organisms like Drosophila provide simple, malleable, and powerful experimental platforms. This article provides an overview of ECM proteins and receptors in Drosophila. It then focuses on their roles during three progressive phases of neural development: (1) neural progenitor proliferation, (2) axonal growth and pathfinding, and (3) synapse formation and function. Each section highlights known ECM and ECM-receptor components and recent studies done in mutant conditions to reveal their in vivo functions, all illustrating the enormous opportunities provided when merging work on the nervous system with systematic research into ECM-related gene functions.
Collapse
Affiliation(s)
- Kendal Broadie
- Departments of Biological Sciences and Cell and Developmental Biology, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232 USA
| | - Stefan Baumgartner
- Department of Experimental Medical Sciences, Lund University, BMC B12, 22184 Lund, Sweden
| | - Andreas Prokop
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
39
|
Grice SJ, Sleigh JN, Liu JL, Sattelle DB. Invertebrate models of spinal muscular atrophy: insights into mechanisms and potential therapeutics. Bioessays 2011; 33:956-65. [PMID: 22009672 DOI: 10.1002/bies.201100082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Invertebrate genetic models with their tractable neuromuscular systems are effective vehicles for the study of human nerve and muscle disorders. This is exemplified by insights made into spinal muscular atrophy (SMA) using the fruit fly Drosophila melanogaster and the nematode worm Caenorhabditis elegans. For speed and economy, these invertebrates offer convenient, whole-organism platforms for genetic screening as well as RNA interference (RNAi) and chemical library screens, permitting the rapid testing of hypotheses related to disease mechanisms and the exploration of new therapeutic routes and drug candidates. Here, we discuss recent developments encompassing synaptic physiology, RNA processing, and screening of compound and genome-scale RNAi libraries, showcasing the importance of invertebrate SMA models.
Collapse
Affiliation(s)
- Stuart J Grice
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
40
|
Mutsaers CA, Wishart TM, Lamont DJ, Riessland M, Schreml J, Comley LH, Murray LM, Parson SH, Lochmüller H, Wirth B, Talbot K, Gillingwater TH. Reversible molecular pathology of skeletal muscle in spinal muscular atrophy. Hum Mol Genet 2011; 20:4334-44. [PMID: 21840928 DOI: 10.1093/hmg/ddr360] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Low levels of full-length survival motor neuron (SMN) protein cause the motor neuron disease, spinal muscular atrophy (SMA). Although motor neurons undoubtedly contribute directly to SMA pathogenesis, the role of muscle is less clear. We demonstrate significant disruption to the molecular composition of skeletal muscle in pre-symptomatic severe SMA mice, in the absence of any detectable degenerative changes in lower motor neurons and with a molecular profile distinct from that of denervated muscle. Functional cluster analysis of proteomic data and phospho-histone H2AX labelling of DNA damage revealed increased activity of cell death pathways in SMA muscle. Robust upregulation of voltage-dependent anion-selective channel protein 2 (Vdac2) and downregulation of parvalbumin in severe SMA mice was confirmed in a milder SMA mouse model and in human patient muscle biopsies. Molecular pathology of skeletal muscle was ameliorated in mice treated with the FDA-approved histone deacetylase inhibitor, suberoylanilide hydroxamic acid. We conclude that intrinsic pathology of skeletal muscle is an important and reversible event in SMA and also suggest that muscle proteins have the potential to act as novel biomarkers in SMA.
Collapse
Affiliation(s)
- Chantal A Mutsaers
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|