1
|
Kolbin D, Stanton J, Kokkanti A, Yeh E, Bloom K. The centromere bottlebrush requires a multi-microtubule attachment. Mol Biol Cell 2025; 36:ar70. [PMID: 40266738 DOI: 10.1091/mbc.e25-02-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Pericentromeric bottlebrush converts DNA into a stiff spring through density and organization of loops relative to the mitotic spindle axis. This spring is integral to tension-sensing mechanisms required for faithful chromosome segregation. Cohesin enrichment is a hallmark of yeast pericentric loops. We used haploid yeasts engineered to contain two instead of the normal 16 chromosomes to determine the number of centromeres required for cohesin loading to form a pericentric bottlebrush. In wild-type yeasts, the mitotic spindle is 1.5 µm long and 16 centromeres appear in tight clusters. Cohesin surrounds the metaphase spindle forming a cylindrical barrel and cross-linking the radial array of chromatin loops. In the two-chromosome strain, our findings show a disrupted cohesin barrel and a longer spindle (∼2.4 µm). The reduction in spring stiffness would lead to the increase in spindle length necessary to achieve a force balance with spindle microtubules. In the two-chromosome strain kinetochores are declustered. Additionally, coordination between the clusters moving toward the poles (anaphase A) and spindle elongation (anaphase B) is abrogated resulting in a mid-anaphase pause. The lack of anaphase A suggests that release and expansion of hitherto confined DNA loops contributes to synchronous chromosome segregation in anaphase.
Collapse
Affiliation(s)
- Daniel Kolbin
- Department of Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - John Stanton
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Aryan Kokkanti
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Elaine Yeh
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
2
|
Rodemoyer B, Kariyawasam G, Subramanian V, Schmidt K. Condensin II interacts with BLM helicase in S phase to maintain genome stability. Commun Biol 2025; 8:492. [PMID: 40133469 PMCID: PMC11937517 DOI: 10.1038/s42003-025-07916-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Vertebrates possess two condensins, I and II, that are essential for chromosome condensation and segregation. Condensin II has also been implicated in maintaining genome integrity outside of mitosis, though the underlying mechanisms are unclear. Here, we found that condensin II interacts with a short linear motif in the disordered N-terminal tail of the Bloom syndrome helicase BLM, contributing to BLM association with nascent DNA and genome stability. Disrupting the BLM-condensin II interaction reduced replication speed, increased fork stalling and sister-chromatid exchanges, delayed repair of DNA double-strand breaks, and led to micronuclei. In S phase, interactions of SMC2 with other condensin II subunits and with BLM weakened temporarily, suggesting a conformational change followed by phosphorylation-induced disruption of BLM interactions with TOP2A and RPA. Our findings suggest a new way by which BLM contributes to genome integrity and implicates condensin II in interphase functions linked to genome stability.
Collapse
Affiliation(s)
- Brian Rodemoyer
- Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA
| | - Ganesha Kariyawasam
- Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA
| | - Veena Subramanian
- Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA
| | - Kristina Schmidt
- Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA.
- Cancer Biology & Evolution Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
3
|
Kolbin D, Locatelli M, Stanton J, Kesselman K, Kokkanti A, Li J, Yeh E, Bloom K. Centromeres are stress-induced fragile sites. Curr Biol 2025; 35:1197-1210.e4. [PMID: 39970915 PMCID: PMC11945498 DOI: 10.1016/j.cub.2025.01.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/12/2024] [Accepted: 01/27/2025] [Indexed: 02/21/2025]
Abstract
Centromeres are unique loci on eukaryotic chromosomes and are complexed with centromere-specific histone H3 molecules (CENP-A in mammals, Cse4 in yeast). The centromere provides the binding site for the kinetochore that captures microtubules and provides the mechanical linkage required for chromosome segregation. Centromeres encounter fluctuations in force as chromosomes jockey for position on the metaphase spindle. We have developed biological assays to examine the response of centromeres to high force. Torsional stress is induced on covalently closed DNA circles from supercoiling. Plasmid-borne centromeres with single-nucleotide inactivating mutations exhibit a high conversion frequency to plasmid dimer species. Conversion to dimers is dependent on the activity of the Rad1 single-strand endonuclease, indicative of unwinding a region of the centromere sequence in the absence of a functional kinetochore. To determine the region of unwinding, we used conditionally functional dicentric chromosomes to exert tension. Centromere DNA is exquisitely sensitive to cleavage following activation of the dicentric chromosome. Cleavage is dependent on the action of Rad1, highlighting the propensity of centromeres to unwind in response to supercoiling or mechanical stress. These studies provide mechanistic insights into the evolution of AT-rich pericentromere DNA throughout phylogeny and suggest a mechanism for stress-induced error correction at the centromere.
Collapse
Affiliation(s)
- Daniel Kolbin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Maëlle Locatelli
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John Stanton
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katie Kesselman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aryan Kokkanti
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jinghan Li
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elaine Yeh
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Flashner S, Azizkhan-Clifford J. Emerging Roles for Transcription Factors During Mitosis. Cells 2025; 14:263. [PMID: 39996736 PMCID: PMC11853531 DOI: 10.3390/cells14040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
The genome is dynamically reorganized, partitioned, and divided during mitosis. Despite their role in organizing interphase chromatin, transcription factors were largely believed to be mitotic spectators evicted from chromatin during mitosis, only able to reestablish their position on DNA upon entry into G1. However, a panoply of evidence now contradicts this early belief. Numerous transcription factors are now known to remain active during mitosis to achieve diverse purposes, including chromosome condensation, regulation of the centromere/kinetochore function, and control of centrosome homeostasis. Inactivation of transcription factors during mitosis results in chromosome segregation errors, key features of cancer. Moreover, active transcription and the production of centromere-derived transcripts during mitosis are also known to play key roles in maintaining chromosomal stability. Finally, many transcription factors are associated with chromosomal instability through poorly defined mechanisms. Herein, we will review the emerging roles of transcription factors and transcription during mitosis with a focus on their role in promoting the faithful segregation of sister chromatids.
Collapse
Affiliation(s)
| | - Jane Azizkhan-Clifford
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
5
|
Helsen J, Reza MH, Carvalho R, Sherlock G, Dey G. Spindle architecture constrains karyotype evolution. Nat Cell Biol 2024; 26:1496-1503. [PMID: 39117795 PMCID: PMC11392806 DOI: 10.1038/s41556-024-01485-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
The eukaryotic cell division machinery must rapidly and reproducibly duplicate and partition the cell's chromosomes in a carefully coordinated process. However, chromosome numbers vary dramatically between genomes, even on short evolutionary timescales. We sought to understand how the mitotic machinery senses and responds to karyotypic changes by using a series of budding yeast strains in which the native chromosomes have been successively fused. Using a combination of cell biological profiling, genetic engineering and experimental evolution, we show that chromosome fusions are well tolerated up until a critical point. Cells with fewer than five centromeres lack the necessary number of kinetochore-microtubule attachments needed to counter outward forces in the metaphase spindle, triggering the spindle assembly checkpoint and prolonging metaphase. Our findings demonstrate that spindle architecture is a constraining factor for karyotype evolution.
Collapse
Affiliation(s)
- Jana Helsen
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Md Hashim Reza
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ricardo Carvalho
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Gavin Sherlock
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
6
|
Rajam SM, Varghese PC, Shirude MB, Syed KM, Devarajan A, Natarajan K, Dutta D. Kinase activity of histone chaperone APLF maintains steady state of centrosomes in mouse embryonic stem cells. Eur J Cell Biol 2024; 103:151439. [PMID: 38968704 DOI: 10.1016/j.ejcb.2024.151439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024] Open
Abstract
Our recent studies revealed the role of mouse Aprataxin PNK-like Factor (APLF) in development. Nevertheless, the comprehensive characterization of mouse APLF remains entirely unexplored. Based on domain deletion studies, here we report that mouse APLF's Acidic Domain and Fork Head Associated (FHA) domain can chaperone histones and repair DNA like the respective human orthologs. Immunofluorescence studies in mouse embryonic stem cells showed APLF co-localized with γ-tubulin within and around the centrosomes and govern the number and integrity of centrosomes via PLK4 phosphorylation. Enzymatic analysis established mouse APLF as a kinase. Docking studies identified three putative ATP binding sites within the FHA domain. Site-directed mutagenesis showed that R37 residue within the FHA domain is indispensable for the kinase activity of APLF thereby regulating the centrosome number. These findings might assist us comprehend APLF in different pathological and developmental conditions and reveal non-canonical kinase activity of proteins harbouring FHA domains that might impact multiple cellular processes.
Collapse
Affiliation(s)
- Sruthy Manuraj Rajam
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India; Manipal Academy of Higher Education, Manipal, Karnataka State 576104, India
| | - Pallavi Chinnu Varghese
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India
| | - Mayur Balkrishna Shirude
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India; Manipal Academy of Higher Education, Manipal, Karnataka State 576104, India
| | - Khaja Mohieddin Syed
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India
| | - Anjali Devarajan
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India
| | - Kathiresan Natarajan
- Rajiv Gandhi Centre for Biotechnology (RGCB), Transdisciplinary Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India
| | - Debasree Dutta
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India.
| |
Collapse
|
7
|
Chiu K, Berrada Y, Eskndir N, Song D, Fong C, Naughton S, Chen T, Moy S, Gyurmey S, James L, Ezeiruaku C, Capistran C, Lowey D, Diwanji V, Peterson S, Parakh H, Burgess AR, Probert C, Zhu A, Anderson B, Levi N, Gerlitz G, Packard MC, Dorfman KA, Bahiru MS, Stephens AD. CTCF is essential for proper mitotic spindle structure and anaphase segregation. Chromosoma 2024; 133:183-194. [PMID: 37728741 DOI: 10.1007/s00412-023-00810-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/11/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
Mitosis is an essential process in which the duplicated genome is segregated equally into two daughter cells. CTCF has been reported to be present in mitosis and has a role in localizing CENP-E, but its importance for mitotic fidelity remains to be determined. To evaluate the importance of CTCF in mitosis, we tracked mitotic behaviors in wild-type and two different CTCF CRISPR-based genetic knockdowns. We find that knockdown of CTCF results in prolonged mitoses and failed anaphase segregation via time-lapse imaging of SiR-DNA. CTCF knockdown did not alter cell cycling or the mitotic checkpoint, which was activated upon nocodazole treatment. Immunofluorescence imaging of the mitotic spindle in CTCF knockdowns revealed disorganization via tri/tetrapolar spindles and chromosomes behind the spindle pole. Imaging of interphase nuclei showed that nuclear size increased drastically, consistent with failure to divide the duplicated genome in anaphase. Long-term inhibition of CNEP-E via GSK923295 recapitulates CTCF knockdown abnormal mitotic spindles with polar chromosomes and increased nuclear sizes. Population measurements of nuclear shape in CTCF knockdowns do not display decreased circularity or increased nuclear blebbing relative to wild-type. However, failed mitoses do display abnormal nuclear morphologies relative to successful mitoses, suggesting that population images do not capture individual behaviors. Thus, CTCF is important for both proper metaphase organization and anaphase segregation which impacts the size and shape of the interphase nucleus likely through its known role in recruiting CENP-E.
Collapse
Affiliation(s)
- Katherine Chiu
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Yasmin Berrada
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Nebiyat Eskndir
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Dasol Song
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Claire Fong
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Sarah Naughton
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Tina Chen
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Savanna Moy
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Sarah Gyurmey
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Liam James
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Chimere Ezeiruaku
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Caroline Capistran
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Daniel Lowey
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Vedang Diwanji
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Samantha Peterson
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Harshini Parakh
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Ayanna R Burgess
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Cassandra Probert
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Annie Zhu
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Bryn Anderson
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Nehora Levi
- Biology Department of Molecular Biology, Faculty of Life Sciences, Ariel University, 40700, Ariel, Israel
| | - Gabi Gerlitz
- Biology Department of Molecular Biology, Faculty of Life Sciences, Ariel University, 40700, Ariel, Israel
| | - Mary C Packard
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Katherine A Dorfman
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Michael Seifu Bahiru
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Andrew D Stephens
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
- Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
8
|
Andrade Ruiz L, Kops GJPL, Sacristan C. Vertebrate centromere architecture: from chromatin threads to functional structures. Chromosoma 2024; 133:169-181. [PMID: 38856923 PMCID: PMC11266386 DOI: 10.1007/s00412-024-00823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Centromeres are chromatin structures specialized in sister chromatid cohesion, kinetochore assembly, and microtubule attachment during chromosome segregation. The regional centromere of vertebrates consists of long regions of highly repetitive sequences occupied by the Histone H3 variant CENP-A, and which are flanked by pericentromeres. The three-dimensional organization of centromeric chromatin is paramount for its functionality and its ability to withstand spindle forces. Alongside CENP-A, key contributors to the folding of this structure include components of the Constitutive Centromere-Associated Network (CCAN), the protein CENP-B, and condensin and cohesin complexes. Despite its importance, the intricate architecture of the regional centromere of vertebrates remains largely unknown. Recent advancements in long-read sequencing, super-resolution and cryo-electron microscopy, and chromosome conformation capture techniques have significantly improved our understanding of this structure at various levels, from the linear arrangement of centromeric sequences and their epigenetic landscape to their higher-order compaction. In this review, we discuss the latest insights on centromere organization and place them in the context of recent findings describing a bipartite higher-order organization of the centromere.
Collapse
Affiliation(s)
- Lorena Andrade Ruiz
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
- University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Geert J P L Kops
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
- University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Carlos Sacristan
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands.
- University Medical Center Utrecht, Utrecht, Netherlands.
- Oncode Institute, Utrecht, Netherlands.
| |
Collapse
|
9
|
Helsen J, Reza H, Carvalho R, Sherlock G, Dey G. Spindle architecture constrains karyotype in budding yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.25.563899. [PMID: 37961714 PMCID: PMC10634821 DOI: 10.1101/2023.10.25.563899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The eukaryotic cell division machinery must rapidly and reproducibly duplicate and partition the cell's chromosomes in a carefully coordinated process. However, chromosome number varies dramatically between genomes, even on short evolutionary timescales. We sought to understand how the mitotic machinery senses and responds to karyotypic changes by using a series of budding yeast strains in which the native chromosomes have been successively fused. Using a combination of cell biological profiling, genetic engineering, and experimental evolution, we show that chromosome fusions are well tolerated up until a critical point. Cells with fewer than five centromeres lack the necessary number of kinetochore-microtubule attachments needed to counter outward forces in the metaphase spindle, triggering the spindle assembly checkpoint and prolonging metaphase. Our findings demonstrate that spindle architecture is a constraining factor for karyotype evolution.
Collapse
Affiliation(s)
- Jana Helsen
- Cell Biology and Biophysics, European Molecular Biology Laboratory; Heidelberg, 69117, Germany
- Department of Genetics, Stanford University School of Medicine; Stanford, 94305, USA
| | - Hashim Reza
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research; Bengaluru, 560064, India
| | - Ricardo Carvalho
- Cell Biology and Biophysics, European Molecular Biology Laboratory; Heidelberg, 69117, Germany
| | - Gavin Sherlock
- Department of Genetics, Stanford University School of Medicine; Stanford, 94305, USA
| | - Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory; Heidelberg, 69117, Germany
| |
Collapse
|
10
|
Sen Gupta A, Seidel C, Tsuchiya D, McKinney S, Yu Z, Smith SE, Unruh JR, Gerton JL. Defining a core configuration for human centromeres during mitosis. Nat Commun 2023; 14:7947. [PMID: 38040722 PMCID: PMC10692335 DOI: 10.1038/s41467-023-42980-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/25/2023] [Indexed: 12/03/2023] Open
Abstract
The centromere components cohesin, CENP-A, and centromeric DNA are essential for biorientation of sister chromatids on the mitotic spindle and accurate sister chromatid segregation. Insight into the 3D organization of centromere components would help resolve how centromeres function on the mitotic spindle. We use ChIP-seq and super-resolution microscopy with single particle averaging to examine the geometry of essential centromeric components on human chromosomes. Both modalities suggest cohesin is enriched at pericentromeric DNA. CENP-A localizes to a subset of the α-satellite DNA, with clusters separated by ~562 nm and a perpendicular intervening ~190 nM wide axis of cohesin in metaphase chromosomes. Differently sized α-satellite arrays achieve a similar core structure. Here we present a working model for a common core configuration of essential centromeric components that includes CENP-A nucleosomes, α-satellite DNA and pericentromeric cohesion. This configuration helps reconcile how centromeres function and serves as a foundation to add components of the chromosome segregation machinery.
Collapse
Affiliation(s)
| | - Chris Seidel
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sarah E Smith
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Biochemistry and Molecular Biology, University of Kansas, Kansas City, KS, USA.
| |
Collapse
|
11
|
Vasquez PA, Walker B, Bloom K, Kolbin D, Caughman N, Freeman R, Lysy M, Hult C, Newhall KA, Papanikolas M, Edelmaier C, Forest MG. The power of weak, transient interactions across biology: A paradigm of emergent behavior. PHYSICA D. NONLINEAR PHENOMENA 2023; 454:133866. [PMID: 38274029 PMCID: PMC10806540 DOI: 10.1016/j.physd.2023.133866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
A growing list of diverse biological systems and their equally diverse functionalities provides realizations of a paradigm of emergent behavior. In each of these biological systems, pervasive ensembles of weak, short-lived, spatially local interactions act autonomously to convey functionalities at larger spatial and temporal scales. In this article, a range of diverse systems and functionalities are presented in a cursory manner with literature citations for further details. Then two systems and their properties are discussed in more detail: yeast chromosome biology and human respiratory mucus.
Collapse
Affiliation(s)
- Paula A. Vasquez
- Department of Mathematics, University of South Carolina, United States of America
| | - Ben Walker
- Department of Mathematics, University of California at Irvine, United States of America
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, United States of America
| | - Daniel Kolbin
- Department of Biology, University of North Carolina at Chapel Hill, United States of America
| | - Neall Caughman
- Department of Mathematics, University of North Carolina at Chapel Hill, United States of America
| | - Ronit Freeman
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, United States of America
| | - Martin Lysy
- Department of Statistics and Actuarial Science, University of Waterloo, Canada
| | - Caitlin Hult
- Department of Mathematics, Gettysburg College, United States of America
| | - Katherine A. Newhall
- Department of Mathematics, University of North Carolina at Chapel Hill, United States of America
| | - Micah Papanikolas
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, United States of America
| | - Christopher Edelmaier
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, United States of America
- Center for Computational Biology, Flatiron Institute, United States of America
| | - M. Gregory Forest
- Department of Mathematics, University of North Carolina at Chapel Hill, United States of America
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, United States of America
| |
Collapse
|
12
|
Fellmeth JE, Jang JK, Persaud M, Sturm H, Changela N, Parikh A, McKim KS. A dynamic population of prophase CENP-C is required for meiotic chromosome segregation. PLoS Genet 2023; 19:e1011066. [PMID: 38019881 PMCID: PMC10721191 DOI: 10.1371/journal.pgen.1011066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/14/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
The centromere is an epigenetic mark that is a loading site for the kinetochore during meiosis and mitosis. This mark is characterized by the H3 variant CENP-A, known as CID in Drosophila. In Drosophila, CENP-C is critical for maintaining CID at the centromeres and directly recruits outer kinetochore proteins after nuclear envelope break down. These two functions, however, happen at different times in the cell cycle. Furthermore, in Drosophila and many other metazoan oocytes, centromere maintenance and kinetochore assembly are separated by an extended prophase. We have investigated the dynamics of function of CENP-C during the extended meiotic prophase of Drosophila oocytes and found that maintaining high levels of CENP-C for metaphase I requires expression during prophase. In contrast, CID is relatively stable and does not need to be expressed during prophase to remain at high levels in metaphase I of meiosis. Expression of CID during prophase can even be deleterious, causing ectopic localization to non-centromeric chromatin, abnormal meiosis and sterility. CENP-C prophase loading is required for multiple meiotic functions. In early meiotic prophase, CENP-C loading is required for sister centromere cohesion and centromere clustering. In late meiotic prophase, CENP-C loading is required to recruit kinetochore proteins. CENP-C is one of the few proteins identified in which expression during prophase is required for meiotic chromosome segregation. An implication of these results is that the failure to maintain recruitment of CENP-C during the extended prophase in oocytes would result in chromosome segregation errors in oocytes.
Collapse
Affiliation(s)
- Jessica E. Fellmeth
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Janet K. Jang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Manisha Persaud
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Hannah Sturm
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Neha Changela
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Aashka Parikh
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kim S. McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
13
|
Sen Gupta A, Seidel C, Tsuchiya D, McKinney S, Yu Z, Smith S, Unruh J, Gerton JL. Defining a core configuration for human centromeres during mitosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.539634. [PMID: 37214893 PMCID: PMC10197669 DOI: 10.1101/2023.05.10.539634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The biorientation of sister chromatids on the mitotic spindle, essential for accurate sister chromatid segregation, relies on critical centromere components including cohesin, the centromere-specific H3 variant CENP-A, and centromeric DNA. Centromeric DNA is highly variable between chromosomes yet must accomplish a similar function. Moreover, how the 50 nm cohesin ring, proposed to encircle sister chromatids, accommodates inter-sister centromeric distances of hundreds of nanometers on the metaphase spindle is a conundrum. Insight into the 3D organization of centromere components would help resolve how centromeres function on the mitotic spindle. We used ChIP-seq and super-resolution microscopy to examine the geometry of essential centromeric components on human chromosomes. ChIP-seq demonstrates that cohesin subunits are depleted in α-satellite arrays where CENP-A nucleosomes and kinetochores assemble. Cohesin is instead enriched at pericentromeric DNA. Structured illumination microscopy of sister centromeres is consistent, revealing a non-overlapping pattern of CENP-A and cohesin. We used single particle averaging of hundreds of mitotic sister chromatids to develop an average centromere model. CENP-A clusters on sister chromatids, connected by α-satellite, are separated by ~562 nm with a perpendicular intervening ~190 nM wide axis of cohesin. Two differently sized α-satellite arrays on chromosome 7 display similar inter-sister CENP-A cluster distance, demonstrating different sized arrays can achieve a common spacing. Our data suggest a working model for a common core configuration of essential centromeric components that includes CENP-A nucleosomes at the outer edge of extensible α-satellite DNA and pericentromeric cohesion. This configuration helps reconcile how centromeres function and serves as a foundation for future studies of additional components required for centromere function.
Collapse
Affiliation(s)
| | - Chris Seidel
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sarah Smith
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jay Unruh
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA
- University of Kansas Department of Biochemistry and Molecular Biology, Kansas City, KS, USA
| |
Collapse
|
14
|
Chiu K, Berrada Y, Eskndir N, Song D, Fong C, Naughton S, Chen T, Moy S, Gyurmey S, James L, Ezeiruaku C, Capistran C, Lowey D, Diwanji V, Peterson S, Parakh H, Burgess AR, Probert C, Zhu A, Anderson B, Levi N, Gerlitz G, Packard MC, Dorfman KA, Bahiru MS, Stephens AD. CTCF is essential for proper mitotic spindle structure and anaphase segregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523293. [PMID: 36712070 PMCID: PMC9881978 DOI: 10.1101/2023.01.09.523293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mitosis is an essential process in which the duplicated genome is segregated equally into two daughter cells. CTCF has been reported to be present in mitosis but its importance for mitotic fidelity remains to be determined. To evaluate the importance of CTCF in mitosis, we tracked mitotic behaviors in wild type and two different CTCF CRISPR-based genetic knockdowns. We find that knockdown of CTCF results in prolonged mitoses and failed anaphase segregation via time lapse imaging of SiR-DNA. CTCF knockdown did not alter cell cycling or the mitotic checkpoint, which was activated upon nocodazole treatment. Immunofluorescence imaging of the mitotic spindle in CTCF knockdowns revealed disorganization via tri/tetrapolar spindles and chromosomes behind the spindle pole. Imaging of interphase nuclei showed that nuclear size increased drastically, consistent with failure to divide the duplicated genome in anaphase. Population measurements of nuclear shape in CTCF knockdowns do not display decreased circularity or increased nuclear blebbing relative to wild type. However, failed mitoses do display abnormal nuclear morphologies relative to successful mitoses, suggesting population images do not capture individual behaviors. Thus, CTCF is important for both proper metaphase organization and anaphase segregation which impacts the size and shape of the interphase nucleus.
Collapse
Affiliation(s)
- Katherine Chiu
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Yasmin Berrada
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Nebiyat Eskndir
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Dasol Song
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Claire Fong
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sarah Naughton
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Tina Chen
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Savanna Moy
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sarah Gyurmey
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Liam James
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Chimere Ezeiruaku
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Caroline Capistran
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Daniel Lowey
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Vedang Diwanji
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Samantha Peterson
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Harshini Parakh
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ayanna R. Burgess
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Cassandra Probert
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Annie Zhu
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Bryn Anderson
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Nehora Levi
- Biology Department of Molecular Biology, Faculty of Life Sciences, Ariel University, Ariel 40700, Israel
| | - Gabi Gerlitz
- Biology Department of Molecular Biology, Faculty of Life Sciences, Ariel University, Ariel 40700, Israel
| | - Mary C. Packard
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | | | - Andrew D. Stephens
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
15
|
Lee C, Leem J, Oh JS. Selective utilization of non-homologous end-joining and homologous recombination for DNA repair during meiotic maturation in mouse oocytes. Cell Prolif 2022; 56:e13384. [PMID: 36564861 PMCID: PMC10068936 DOI: 10.1111/cpr.13384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022] Open
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions that can cause genomic instability and can be repaired by non-homologous end-joining (NHEJ) and homologous recombination (HR) pathways. Despite extensive studies about DSB repair pathways, the roles of each pathway during meiotic maturation in oocytes are not well understood. Here we show that oocytes selectively utilize NHEJ and HR to repair DSBs during meiotic maturation. Inhibition of NHEJ impaired the meiotic maturation of oocytes with DNA damage by activating the spindle assembly checkpoint (SAC) with a concomitant increase in metaphase I (MI) arrest and DNA damage levels. In contrast, oocytes with DNA damage bypassed SAC-mediated MI arrest despite the presence of fragmented DNA when HR was inhibited. Notably, this bypass of SAC arrest by HR inhibition was associated with a loss of centromere integrity and subsequent impairment of chromosome architecture. Our results demonstrate that, while NHEJ is critical for the meiotic maturation of oocytes with DNA damage, HR is essential to maintain centromere integrity against DNA damage during meiotic maturation, revealing distinct roles of NHEJ and HR during meiotic maturation in mouse oocytes.
Collapse
Affiliation(s)
- Crystal Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Jiyeon Leem
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Jeong Su Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
16
|
Abstract
The centromere serves as the binding site for the kinetochore and is essential for the faithful segregation of chromosomes throughout cell division. The point centromere in yeast is encoded by a ∼115 bp specific DNA sequence, whereas regional centromeres range from 6-10 kbp in fission yeast to 5-10 Mbp in humans. Understanding the physical structure of centromere chromatin (pericentromere in yeast), defined as the chromatin between sister kinetochores, will provide fundamental insights into how centromere DNA is woven into a stiff spring that is able to resist microtubule pulling forces during mitosis. One hallmark of the pericentromere is the enrichment of the structural maintenance of chromosome (SMC) proteins cohesin and condensin. Based on studies from population approaches (ChIP-seq and Hi-C) and experimentally obtained images of fluorescent probes of pericentromeric structure, as well as quantitative comparisons between simulations and experimental results, we suggest a mechanism for building tension between sister kinetochores. We propose that the centromere is a chromatin bottlebrush that is organized by the loop-extruding proteins condensin and cohesin. The bottlebrush arrangement provides a biophysical means to transform pericentromeric chromatin into a spring due to the steric repulsion between radial loops. We argue that the bottlebrush is an organizing principle for chromosome organization that has emerged from multiple approaches in the field.
Collapse
|
17
|
Yueh WT, Singh VP, Gerton JL. Maternal Smc3 protects the integrity of the zygotic genome through DNA replication and mitosis. Development 2021; 148:dev199800. [PMID: 34935904 PMCID: PMC8722392 DOI: 10.1242/dev.199800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/22/2021] [Indexed: 01/10/2023]
Abstract
Aneuploidy is frequently observed in oocytes and early embryos, begging the question of how genome integrity is monitored and preserved during this crucial period. SMC3 is a subunit of the cohesin complex that supports genome integrity, but its role in maintaining the genome during this window of mammalian development is unknown. We discovered that, although depletion of Smc3 following meiotic S phase in mouse oocytes allowed accurate meiotic chromosome segregation, adult females were infertile. We provide evidence that DNA lesions accumulated following S phase in SMC3-deficient zygotes, followed by mitosis with lagging chromosomes, elongated spindles, micronuclei, and arrest at the two-cell stage. Remarkably, although centromeric cohesion was defective, the dosage of SMC3 was sufficient to enable embryogenesis in juvenile mutant females. Our findings suggest that, despite previous reports of aneuploidy in early embryos, chromosome missegregation in zygotes halts embryogenesis at the two-cell stage. Smc3 is a maternal gene with essential functions in the repair of spontaneous damage associated with DNA replication and subsequent chromosome segregation in zygotes, making cohesin a key protector of the zygotic genome.
Collapse
Affiliation(s)
- Wei-Ting Yueh
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
18
|
Sane A, Sridhar S, Sanyal K, Ghosh SK. Shugoshin ensures maintenance of the spindle assembly checkpoint response and efficient spindle disassembly. Mol Microbiol 2021; 116:1079-1098. [PMID: 34407255 DOI: 10.1111/mmi.14796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/07/2021] [Accepted: 08/15/2021] [Indexed: 11/27/2022]
Abstract
Shugoshin proteins are evolutionarily conserved across eukaryotes, with some species-specific cellular functions, ensuring the fidelity of chromosome segregation. They act as adaptors at various subcellular locales to mediate several protein-protein interactions in a spatio-temporal manner. Here, we characterize shugoshin (Sgo1) in the human fungal pathogen Candida albicans. We observe that Sgo1 retains its centromeric localization and performs its conserved functions of regulating the sister chromatid biorientation, centromeric condensin localization, and maintenance of chromosomal passenger complex (CPC). We identify novel roles of Sgo1 as a spindle assembly checkpoint (SAC) component with functions in maintaining a prolonged SAC response by retaining Mad2 and Bub1 at the kinetochores in response to improper kinetochore-microtubule attachments. Strikingly, we discover the in vivo localization of Sgo1 along the length of the mitotic spindle. Our results indicate that Sgo1 performs a hitherto unknown function of facilitating timely disassembly of the mitotic spindle in C. albicans. To summarize, this study unravels a unique functional adaptation of shugoshin in maintaining genomic stability.
Collapse
Affiliation(s)
- Aakanksha Sane
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, India
| | - Shreyas Sridhar
- Molecular Biology & Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Kaustuv Sanyal
- Molecular Biology & Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Santanu K Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, India
| |
Collapse
|
19
|
Aurora B Tension Sensing Mechanisms in the Kinetochore Ensure Accurate Chromosome Segregation. Int J Mol Sci 2021; 22:ijms22168818. [PMID: 34445523 PMCID: PMC8396173 DOI: 10.3390/ijms22168818] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022] Open
Abstract
The accurate segregation of chromosomes is essential for the survival of organisms and cells. Mistakes can lead to aneuploidy, tumorigenesis and congenital birth defects. The spindle assembly checkpoint ensures that chromosomes properly align on the spindle, with sister chromatids attached to microtubules from opposite poles. Here, we review how tension is used to identify and selectively destabilize incorrect attachments, and thus serves as a trigger of the spindle assembly checkpoint to ensure fidelity in chromosome segregation. Tension is generated on properly attached chromosomes as sister chromatids are pulled in opposing directions but resisted by centromeric cohesin. We discuss the role of the Aurora B kinase in tension-sensing and explore the current models for translating mechanical force into Aurora B-mediated biochemical signals that regulate correction of chromosome attachments to the spindle.
Collapse
|
20
|
The selfish yeast plasmid utilizes the condensin complex and condensed chromatin for faithful partitioning. PLoS Genet 2021; 17:e1009660. [PMID: 34270553 PMCID: PMC8318298 DOI: 10.1371/journal.pgen.1009660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 07/28/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022] Open
Abstract
Equipartitioning by chromosome association and copy number correction by DNA amplification are at the heart of the evolutionary success of the selfish yeast 2-micron plasmid. The present analysis reveals frequent plasmid presence near telomeres (TELs) and centromeres (CENs) in mitotic cells, with a preference towards the former. Inactivation of Cdc14 causes plasmid missegregation, which is correlated to the non-disjunction of TELs (and of rDNA) under this condition. Induced missegregation of chromosome XII, one of the largest yeast chromosomes which harbors the rDNA array and is highly dependent on the condensin complex for proper disjunction, increases 2-micron plasmid missegregation. This is not the case when chromosome III, one of the smallest chromosomes, is forced to missegregate. Plasmid stability decreases when the condensin subunit Brn1 is inactivated. Brn1 is recruited to the plasmid partitioning locus (STB) with the assistance of the plasmid-coded partitioning proteins Rep1 and Rep2. Furthermore, in a dihybrid assay, Brn1 interacts with Rep1-Rep2. Taken together, these findings support a role for condensin and/or condensed chromatin in 2-micron plasmid propagation. They suggest that condensed chromosome loci are among favored sites utilized by the plasmid for its chromosome-associated segregation. By homing to condensed/quiescent chromosome locales, and not over-perturbing genome homeostasis, the plasmid may minimize fitness conflicts with its host. Analogous persistence strategies may be utilized by other extrachromosomal selfish genomes, for example, episomes of mammalian viruses that hitchhike on host chromosomes for their stable maintenance.
Collapse
|
21
|
Strom AR, Biggs RJ, Banigan EJ, Wang X, Chiu K, Herman C, Collado J, Yue F, Ritland Politz JC, Tait LJ, Scalzo D, Telling A, Groudine M, Brangwynne CP, Marko JF, Stephens AD. HP1α is a chromatin crosslinker that controls nuclear and mitotic chromosome mechanics. eLife 2021; 10:e63972. [PMID: 34106828 PMCID: PMC8233041 DOI: 10.7554/elife.63972] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Chromatin, which consists of DNA and associated proteins, contains genetic information and is a mechanical component of the nucleus. Heterochromatic histone methylation controls nucleus and chromosome stiffness, but the contribution of heterochromatin protein HP1α (CBX5) is unknown. We used a novel HP1α auxin-inducible degron human cell line to rapidly degrade HP1α. Degradation did not alter transcription, local chromatin compaction, or histone methylation, but did decrease chromatin stiffness. Single-nucleus micromanipulation reveals that HP1α is essential to chromatin-based mechanics and maintains nuclear morphology, separate from histone methylation. Further experiments with dimerization-deficient HP1αI165E indicate that chromatin crosslinking via HP1α dimerization is critical, while polymer simulations demonstrate the importance of chromatin-chromatin crosslinkers in mechanics. In mitotic chromosomes, HP1α similarly bolsters stiffness while aiding in mitotic alignment and faithful segregation. HP1α is therefore a critical chromatin-crosslinking protein that provides mechanical strength to chromosomes and the nucleus throughout the cell cycle and supports cellular functions.
Collapse
Affiliation(s)
- Amy R Strom
- Howard Hughes Medical Institute, Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - Ronald J Biggs
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Edward J Banigan
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Xiaotao Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Katherine Chiu
- Biology Department, University of Massachusetts AmherstAmherstUnited States
| | - Cameron Herman
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Jimena Collado
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | | | - Leah J Tait
- The Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - David Scalzo
- The Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Agnes Telling
- The Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Mark Groudine
- The Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Clifford P Brangwynne
- Howard Hughes Medical Institute, Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - John F Marko
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- Department of Physics and Astronomy, Northwestern UniversityEvanstonUnited States
| | - Andrew D Stephens
- Biology Department, University of Massachusetts AmherstAmherstUnited States
| |
Collapse
|
22
|
Rakshit T, Melters DP, Dimitriadis EK, Dalal Y. Mechanical properties of nucleoprotein complexes determined by nanoindentation spectroscopy. Nucleus 2021; 11:264-282. [PMID: 32954931 PMCID: PMC7529419 DOI: 10.1080/19491034.2020.1816053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The interplay between transcription factors, chromatin remodelers, 3-D organization, and mechanical properties of the chromatin fiber controls genome function in eukaryotes. Besides the canonical histones which fold the bulk of the chromatin into nucleosomes, histone variants create distinctive chromatin domains that are thought to regulate transcription, replication, DNA damage repair, and faithful chromosome segregation. Whether histone variants translate distinctive biochemical or biophysical properties to their associated chromatin structures, and whether these properties impact chromatin dynamics as the genome undergoes a multitude of transactions, is an important question in biology. Here, we describe single-molecule nanoindentation tools that we developed specifically to determine the mechanical properties of histone variant nucleosomes and their complexes. These methods join an array of cutting-edge new methods that further our quantitative understanding of the response of chromatin to intrinsic and extrinsic forces which act upon it during biological transactions in the nucleus.
Collapse
Affiliation(s)
- Tatini Rakshit
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH , Bethesda, MD, USA.,Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences , Salt Lake, India
| | - Daniël P Melters
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH , Bethesda, MD, USA
| | - Emilios K Dimitriadis
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Cancer Institute, NIH , Bethesda, MD, USA
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH , Bethesda, MD, USA
| |
Collapse
|
23
|
Nagpal H, Fierz B. The Elusive Structure of Centro-Chromatin: Molecular Order or Dynamic Heterogenetity? J Mol Biol 2021; 433:166676. [PMID: 33065112 DOI: 10.1016/j.jmb.2020.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 01/09/2023]
Abstract
The centromere is an essential chromatin domain required for kinetochore recruitment and chromosome segregation in eukaryotes. To perform this role, centro-chromatin adopts a unique structure that provides access to kinetochore proteins and maintains stability under tension during mitosis. This is achieved by the presence of nucleosomes containing the H3 variant CENP-A, which also acts as the epigenetic mark defining the centromere. In this review, we discuss the role of CENP-A on the structure and dynamics of centromeric chromatin. We further discuss the impact of the CENP-A binding proteins CENP-C, CENP-N, and CENP-B on modulating centro-chromatin structure. Based on these findings we provide an overview of the higher order structure of the centromere.
Collapse
Affiliation(s)
- Harsh Nagpal
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
24
|
Jeusset LM, Guppy BJ, Lichtensztejn Z, McDonald D, McManus KJ. Reduced USP22 Expression Impairs Mitotic Removal of H2B Monoubiquitination, Alters Chromatin Compaction and Induces Chromosome Instability That May Promote Oncogenesis. Cancers (Basel) 2021; 13:cancers13051043. [PMID: 33801331 PMCID: PMC7958346 DOI: 10.3390/cancers13051043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Chromosome instability (CIN) is an enabling feature of oncogenesis associated with poor patient outcomes, whose genetic determinants remain largely unknown. As mitotic chromatin compaction defects can compromise the accuracy of chromosome segregation into daughter cells and drive CIN, characterizing the molecular mechanisms ensuring accurate chromatin compaction may identify novel CIN genes. In vitro, histone H2B monoubiquitination at lysine 120 (H2Bub1) impairs chromatin compaction, while in vivo H2Bub1 is rapidly depleted from chromatin upon entry into mitosis, suggesting that H2Bub1 removal may be a pre-requisite for mitotic fidelity. The deubiquitinating enzyme USP22 catalyzes H2Bub1 removal in interphase and may also be required for H2Bub1 removal in early mitosis to maintain chromosome stability. In this study, we demonstrate that siRNA-mediated USP22 depletion increases H2Bub1 levels in early mitosis and induces CIN phenotypes associated with mitotic chromatin compaction defects revealed by super-resolution microscopy. Moreover, USP22-knockout models exhibit continuously changing chromosome complements over time. These data identify mitotic removal of H2Bub1 as a critical determinant of chromatin compaction and faithful chromosome segregation. We further demonstrate that USP22 is a CIN gene, indicating that USP22 deletions, which are frequent in many tumor types, may drive genetic heterogeneity and contribute to cancer pathogenesis.
Collapse
Affiliation(s)
- Lucile M. Jeusset
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E0V9, Canada; (L.M.J.); (B.J.G.); (Z.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E0J9, Canada
| | - Brent J. Guppy
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E0V9, Canada; (L.M.J.); (B.J.G.); (Z.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E0J9, Canada
| | - Zelda Lichtensztejn
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E0V9, Canada; (L.M.J.); (B.J.G.); (Z.L.)
| | - Darin McDonald
- Department of Oncology, University of Alberta, Edmonton, AB T6G2H7, Canada;
| | - Kirk J. McManus
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E0V9, Canada; (L.M.J.); (B.J.G.); (Z.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E0J9, Canada
- Correspondence: ; Tel.: +1-(204)-787-2833
| |
Collapse
|
25
|
Cheblal A, Challa K, Seeber A, Shimada K, Yoshida H, Ferreira HC, Amitai A, Gasser SM. DNA Damage-Induced Nucleosome Depletion Enhances Homology Search Independently of Local Break Movement. Mol Cell 2020; 80:311-326.e4. [PMID: 32970994 DOI: 10.1016/j.molcel.2020.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 01/02/2023]
Abstract
To determine whether double-strand break (DSB) mobility enhances the physical search for an ectopic template during homology-directed repair (HDR), we tested the effects of factors that control chromatin dynamics, including cohesin loading and kinetochore anchoring. The former but not the latter is altered in response to DSBs. Loss of the nonhistone high-mobility group protein Nhp6 reduces histone occupancy and increases chromatin movement, decompaction, and ectopic HDR. The loss of nucleosome remodeler INO80-C did the opposite. To see whether enhanced HDR depends on DSB mobility or the global chromatin response, we tested the ubiquitin ligase mutant uls1Δ, which selectively impairs local but not global movement in response to a DSB. Strand invasion occurs in uls1Δ cells with wild-type kinetics, arguing that global histone depletion rather than DSB movement is rate limiting for HDR. Impaired break movement in uls1Δ correlates with elevated MRX and cohesin loading, despite normal resection and checkpoint activation.
Collapse
Affiliation(s)
- Anaïs Cheblal
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, 4056 Basel, Switzerland
| | - Kiran Challa
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Present address: Center for Advanced Imaging, Northwest Building, 52 Oxford St, Suite 147, Harvard University, Cambridge, MA 02138, USA
| | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Haruka Yoshida
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Helder C Ferreira
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Assaf Amitai
- Department of Chemical Engineering, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, 4056 Basel, Switzerland.
| |
Collapse
|
26
|
Trivedi P, Stukenberg PT. A Condensed View of the Chromosome Passenger Complex. Trends Cell Biol 2020; 30:676-687. [PMID: 32684321 PMCID: PMC10714244 DOI: 10.1016/j.tcb.2020.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 02/02/2023]
Abstract
The inner centromere is a region on the mitotic chromosome that serves as a platform for mitotic signaling and possesses unique biophysical properties that enable it to withstand relatively large pulling forces that are generated by kinetochores (KTs) during chromosome segregation. The chromosomal passenger complex (CPC) localizes to and is the key regulator of inner centromere organization and function during mitosis. Recently, we demonstrated that in addition to its kinase and histone code-reading activities, the CPC also can undergo liquid-liquid phase separation (LLPS) and proposed that the inner centromere is a membraneless organelle scaffolded by the CPC. In this perspective, we explore mechanisms that can allow the formation and dissolution of this membraneless body. The cell-cycle-regulated spatially defined assembly and disassembly of the CPC condensate at the inner centromere can reveal general principles about how histone modifications control chromatin-bound membraneless organelles. We further explore how the ability of the CPC to undergo LLPS may contribute to the organization and function of the inner centromere during mitosis.
Collapse
Affiliation(s)
- Prasad Trivedi
- Department of Cell Biology, University of Virginia, School of Medicine, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - P Todd Stukenberg
- Department of Cell Biology, University of Virginia, School of Medicine, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
27
|
Yahya G, Wu Y, Peplowska K, Röhrl J, Soh YM, Bürmann F, Gruber S, Storchova Z. Phospho-regulation of the Shugoshin - Condensin interaction at the centromere in budding yeast. PLoS Genet 2020; 16:e1008569. [PMID: 32810145 PMCID: PMC7454948 DOI: 10.1371/journal.pgen.1008569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 08/28/2020] [Accepted: 05/22/2020] [Indexed: 01/07/2023] Open
Abstract
Correct bioriented attachment of sister chromatids to the mitotic spindle is essential for chromosome segregation. In budding yeast, the conserved protein shugoshin (Sgo1) contributes to biorientation by recruiting the protein phosphatase PP2A-Rts1 and the condensin complex to centromeres. Using peptide prints, we identified a Serine-Rich Motif (SRM) of Sgo1 that mediates the interaction with condensin and is essential for centromeric condensin recruitment and the establishment of biorientation. We show that the interaction is regulated via phosphorylation within the SRM and we determined the phospho-sites using mass spectrometry. Analysis of the phosphomimic and phosphoresistant mutants revealed that SRM phosphorylation disrupts the shugoshin–condensin interaction. We present evidence that Mps1, a central kinase in the spindle assembly checkpoint, directly phosphorylates Sgo1 within the SRM to regulate the interaction with condensin and thereby condensin localization to centromeres. Our findings identify novel mechanisms that control shugoshin activity at the centromere in budding yeast. Proper chromosome segregation in eukaryotes is ensured through correct attachment of the spindle microtubules to the centromeric chromosomal regions. The attachment is mediated via the multimolecular proteinaceous complex called the kinetochore. This enables the establishment of bioirentation, when each sister chromatid is attached to microtubules emanating from opposite spindle poles. Shugoshin (Sgo1) is a conserved centromeric protein that facilitates biorientation through its interactions with the protein phosphatase PP2A-Rts1, chromosome passenger complex and centromeric condensin. Here, we identified a serine-rich motif that is required for the interaction of shugoshin with the condensin complex. We show that loss of this region impairs condensin enrichment at the centromere, chromosome biorientation, segregation as well as the function of the chromosome passenger complex in the error correction. Moreover, the interaction is phosphoregulated, as phosphorylation of the serine-rich motif on Sgo1 disrupts its interaction with condensin. Finally, we show that the conserved spindle assembly checkpoint kinase Mps1 is responsible for this phosphorylation. Our findings uncover novel regulatory mechanisms that facilitate proper chromosome segregation.
Collapse
Affiliation(s)
- Galal Yahya
- Department of Microbiology and Immunology, School of Pharmacy, Zagazig University, Egypt
- Department of Molecular Genetics, TU Kaiserlautern, Kaiserslautern, Germany
| | - Yehui Wu
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Karolina Peplowska
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Genomics and Bioinformatics Shared Resource, University of Hawaii Cancer Center, Honolulu, United States of America
| | - Jennifer Röhrl
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Young-Min Soh
- Department of Fundamental Microbiology, UNIL-Sorge District, Lausanne, Switzerland
| | - Frank Bürmann
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Stephan Gruber
- Department of Fundamental Microbiology, UNIL-Sorge District, Lausanne, Switzerland
| | - Zuzana Storchova
- Department of Molecular Genetics, TU Kaiserlautern, Kaiserslautern, Germany
- * E-mail:
| |
Collapse
|
28
|
Lawrimore CJ, Lawrimore J, He Y, Chavez S, Bloom K. Polymer perspective of genome mobilization. Mutat Res 2020; 821:111706. [PMID: 32516654 DOI: 10.1016/j.mrfmmm.2020.111706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
Chromosome motion is an intrinsic feature of all DNA-based metabolic processes and is a particularly well-documented response to both DNA damage and repair. By using both biological and polymer physics approaches, many of the contributing factors of chromatin motility have been elucidated. These include the intrinsic properties of chromatin, such as stiffness, as well as the loop modulators condensin and cohesin. Various biological factors such as external tethering to nuclear domains, ATP-dependent processes, and nucleofilaments further impact chromatin motion. DNA damaging agents that induce double-stranded breaks also cause increased chromatin motion that is modulated by recruitment of repair and checkpoint proteins. Approaches that integrate biological experimentation in conjunction with models from polymer physics provide mechanistic insights into the role of chromatin dynamics in biological function. In this review we discuss the polymer models and the effects of both DNA damage and repair on chromatin motion as well as mechanisms that may underlie these effects.
Collapse
Affiliation(s)
- Colleen J Lawrimore
- Department of Biology, 623 Fordham Hall CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, United States
| | - Josh Lawrimore
- Department of Biology, 623 Fordham Hall CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, United States
| | - Yunyan He
- Department of Biology, 623 Fordham Hall CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, United States
| | - Sergio Chavez
- Department of Biology, 623 Fordham Hall CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, United States
| | - Kerry Bloom
- Department of Biology, 623 Fordham Hall CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, United States.
| |
Collapse
|
29
|
Lawrimore CJ, Bloom K. Common Features of the Pericentromere and Nucleolus. Genes (Basel) 2019; 10:E1029. [PMID: 31835574 PMCID: PMC6947172 DOI: 10.3390/genes10121029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 12/20/2022] Open
Abstract
Both the pericentromere and the nucleolus have unique characteristics that distinguish them amongst the rest of genome. Looping of pericentromeric DNA, due to structural maintenance of chromosome (SMC) proteins condensin and cohesin, drives its ability to maintain tension during metaphase. Similar loops are formed via condensin and cohesin in nucleolar ribosomal DNA (rDNA). Condensin and cohesin are also concentrated in transfer RNA (tRNA) genes, genes which may be located within the pericentromere as well as tethered to the nucleolus. Replication fork stalling, as well as downstream consequences such as genomic recombination, are characteristic of both the pericentromere and rDNA. Furthermore, emerging evidence suggests that the pericentromere may function as a liquid-liquid phase separated domain, similar to the nucleolus. We therefore propose that the pericentromere and nucleolus, in part due to their enrichment of SMC proteins and others, contain similar domains that drive important cellular activities such as segregation, stability, and repair.
Collapse
Affiliation(s)
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA;
| |
Collapse
|
30
|
Julius J, Peng J, McCulley A, Caridi C, Arnak R, See C, Nugent CI, Feng W, Bachant J. Inhibition of spindle extension through the yeast S phase checkpoint is coupled to replication fork stability and the integrity of centromeric DNA. Mol Biol Cell 2019; 30:2771-2789. [PMID: 31509480 PMCID: PMC6789157 DOI: 10.1091/mbc.e19-03-0156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Budding yeast treated with hydroxyurea (HU) activate the S phase checkpoint kinase Rad53, which prevents DNA replication forks from undergoing aberrant structural transitions and nuclease processing. Rad53 is also required to prevent premature extension of the mitotic spindle that assembles during a HU-extended S phase. Here we present evidence that checkpoint restraint of spindle extension is directly coupled to Rad53 control of replication fork stability. In budding yeast, centromeres are flanked by replication origins that fire in early S phase. Mutations affecting the Zn2+-finger of Dbf4, an origin activator, preferentially reduce centromere-proximal origin firing in HU, corresponding with suppression of rad53 spindle extension. Inactivating Exo1 nuclease or displacing centromeres from origins provides a similar suppression. Conversely, short-circuiting Rad53 targeting of Dbf4, Sld3, and Dun1, substrates contributing to fork stability, induces spindle extension. These results reveal spindle extension in HU-treated rad53 mutants is a consequence of replication fork catastrophes at centromeres. When such catastrophes occur, centromeres become susceptible to nucleases, disrupting kinetochore function and spindle force balancing mechanisms. At the same time, our data indicate centromere duplication is not required to stabilize S phase spindle structure, leading us to propose a model for how monopolar kinetochore-spindle attachments may contribute to spindle force balance in HU.
Collapse
Affiliation(s)
- Jeff Julius
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Jie Peng
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Andrew McCulley
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Chris Caridi
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Remigiusz Arnak
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Colby See
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Constance I Nugent
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Jeff Bachant
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| |
Collapse
|
31
|
Lawrimore J, Bloom K. The regulation of chromosome segregation via centromere loops. Crit Rev Biochem Mol Biol 2019; 54:352-370. [PMID: 31573359 PMCID: PMC6856439 DOI: 10.1080/10409238.2019.1670130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/02/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Abstract
Biophysical studies of the yeast centromere have shown that the organization of the centromeric chromatin plays a crucial role in maintaining proper tension between sister kinetochores during mitosis. While centromeric chromatin has traditionally been considered a simple spring, recent work reveals the centromere as a multifaceted, tunable shock absorber. Centromeres can differ from other regions of the genome in their heterochromatin state, supercoiling state, and enrichment of structural maintenance of chromosomes (SMC) protein complexes. Each of these differences can be utilized to alter the effective stiffness of centromeric chromatin. In budding yeast, the SMC protein complexes condensin and cohesin stiffen chromatin by forming and cross-linking chromatin loops, respectively, into a fibrous structure resembling a bottlebrush. The high density of the loops compacts chromatin while spatially isolating the tension from spindle pulling forces to a subset of the chromatin. Paradoxically, the molecular crowding of chromatin via cohesin and condensin also causes an outward/poleward force. The structure allows the centromere to act as a shock absorber that buffers the variable forces generated by dynamic spindle microtubules. Based on the distribution of SMCs from bacteria to human and the conserved distance between sister kinetochores in a wide variety of organisms (0.4 to 1 micron), we propose that the bottlebrush mechanism is the foundational principle for centromere function in eukaryotes.
Collapse
Affiliation(s)
- Josh Lawrimore
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
32
|
Diminished Condensin Gene Expression Drives Chromosome Instability That May Contribute to Colorectal Cancer Pathogenesis. Cancers (Basel) 2019; 11:cancers11081066. [PMID: 31357676 PMCID: PMC6721357 DOI: 10.3390/cancers11081066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 12/28/2022] Open
Abstract
Chromosome instability (CIN), or constantly evolving chromosome complements, is a form of genome instability implicated in the development and progression of many cancer types, however, the molecular determinants of CIN remain poorly understood. Condensin is a protein complex involved in chromosome compaction, and recent studies in model organisms show that aberrant compaction adversely impacts mitotic fidelity. To systematically assess the clinical and fundamental impacts that reduced condensin gene expression have in cancer, we first assessed gene copy number alterations of all eight condensin genes. Using patient derived datasets, we show that shallow/deep deletions occur frequently in 12 common cancer types. Furthermore, we show that reduced expression of each gene is associated with worse overall survival in colorectal cancer patients. To determine the overall impact that reduced condensin gene expression has on CIN, a comprehensive siRNA-based screen was performed in two karyotypically stable cell lines. Following gene silencing, quantitative imaging microscopy identified increases in CIN-associated phenotypes, including changes in nuclear areas, micronucleus formation, and chromosome numbers. Although silencing corresponded with increases in CIN phenotypes, the most pronounced phenotypes were observed following SMC2 and SMC4 silencing. Collectively, our clinical and fundamental findings suggest reduced condensin expression and function may be a significant, yet, underappreciated driver of colorectal cancer.
Collapse
|
33
|
Marko JF, De Los Rios P, Barducci A, Gruber S. DNA-segment-capture model for loop extrusion by structural maintenance of chromosome (SMC) protein complexes. Nucleic Acids Res 2019; 47:6956-6972. [PMID: 31175837 PMCID: PMC6649773 DOI: 10.1093/nar/gkz497] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 05/20/2019] [Accepted: 06/06/2019] [Indexed: 01/08/2023] Open
Abstract
Cells possess remarkable control of the folding and entanglement topology of long and flexible chromosomal DNA molecules. It is thought that structural maintenance of chromosome (SMC) protein complexes play a crucial role in this, by organizing long DNAs into series of loops. Experimental data suggest that SMC complexes are able to translocate on DNA, as well as pull out lengths of DNA via a 'loop extrusion' process. We describe a Brownian loop-capture-ratchet model for translocation and loop extrusion based on known structural, catalytic, and DNA-binding properties of the Bacillus subtilis SMC complex. Our model provides an example of a new class of molecular motor where large conformational fluctuations of the motor 'track'-in this case DNA-are involved in the basic translocation process. Quantitative analysis of our model leads to a series of predictions for the motor properties of SMC complexes, most strikingly a strong dependence of SMC translocation velocity and step size on tension in the DNA track that it is moving along, with 'stalling' occuring at subpiconewton tensions. We discuss how the same mechanism might be used by structurally related SMC complexes (Escherichia coli MukBEF and eukaryote condensin, cohesin and SMC5/6) to organize genomic DNA.
Collapse
Affiliation(s)
- John F Marko
- Department of Molecular Biosciences and Department of Physics & Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Paolo De Los Rios
- Laboratory of Statistical Biophysics, Institute of Physics, School of Basic Sciences and Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne - EPFL, 1015 Lausanne, Switzerland
| | - Alessandro Barducci
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Stephan Gruber
- Départment de Microbiologie Fondamentale, Université de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
34
|
Estrem C, Moore JK. Astral microtubule forces alter nuclear organization and inhibit DNA repair in budding yeast. Mol Biol Cell 2019; 30:2000-2013. [PMID: 31067146 PMCID: PMC6727761 DOI: 10.1091/mbc.e18-12-0808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Dividing cells must balance the maintenance of genome integrity with the generation of cytoskeletal forces that control chromosome position. In this study, we investigate how forces on astral microtubules impact the genome during cell division by using live-cell imaging of the cytoskeleton, chromatin, and DNA damage repair in budding yeast. Our results demonstrate that dynein-dependent forces on astral microtubules are propagated through the spindle during nuclear migration and when in excess can increase the frequency of double-stranded breaks (DSBs). Under these conditions, we find that homology-directed repair of DSBs is delayed, indicating antagonism between nuclear migration and the mechanism of homology-directed repair. These effects are partially rescued by mutants that weaken pericentric cohesion or mutants that decrease constriction on the nucleus as it moves through the bud neck. We propose that minimizing nuclear movement aids in finding a donor strand for homologous recombination.
Collapse
Affiliation(s)
- Cassi Estrem
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
35
|
Centromere mechanical maturation during mammalian cell mitosis. Nat Commun 2019; 10:1761. [PMID: 30988289 PMCID: PMC6465287 DOI: 10.1038/s41467-019-09578-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 03/13/2019] [Indexed: 12/30/2022] Open
Abstract
During mitosis, tension develops across the centromere as a result of spindle-based forces. Metaphase tension may be critical in preventing mitotic chromosome segregation errors, however, the nature of force transmission at the centromere and the role of centromere mechanics in controlling metaphase tension remains unknown. We combined quantitative, biophysical microscopy with computational analysis to elucidate the mechanics of the centromere in unperturbed, mitotic human cells. We discovered that the mechanical stiffness of the human centromere matures during mitotic progression, which leads to amplified centromere tension specifically at metaphase. Centromere mechanical maturation is disrupted across multiple aneuploid cell lines, leading to a weak metaphase tension signal. Further, increasing deficiencies in centromere mechanical maturation are correlated with rising frequencies of lagging, merotelic chromosomes in anaphase, leading to segregation defects at telophase. Thus, we reveal a centromere maturation process that may be critical to the fidelity of chromosome segregation during mitosis. During mitosis, tension at the centromere occurs from the spindle but the role of centromere mechanics in controlling metaphase tension is poorly understood. Here, the authors report that mechanical stiffnness of the centromere matures during mitotic progression and is amplified specifically at metaphase.
Collapse
|
36
|
Biggs R, Liu PZ, Stephens AD, Marko JF. Effects of altering histone posttranslational modifications on mitotic chromosome structure and mechanics. Mol Biol Cell 2019; 30:820-827. [PMID: 30625026 PMCID: PMC6589789 DOI: 10.1091/mbc.e18-09-0592] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
During cell division, chromatin is compacted into mitotic chromosomes to aid faithful segregation of the genome between two daughter cells. Posttranslational modifications (PTMs) of histones alter compaction of interphase chromatin, but it remains poorly understood how these modifications affect mitotic chromosome stiffness and structure. Using micropipette-based force measurements and epigenetic drugs, we probed the influence of canonical histone PTMs that dictate interphase euchromatin (acetylation) and heterochromatin (methylation) on mitotic chromosome stiffness. By measuring chromosome doubling force (the force required to double chromosome length), we find that histone methylation, but not acetylation, contributes to mitotic structure and stiffness. We discuss our findings in the context of chromatin gel modeling of the large-scale organization of mitotic chromosomes.
Collapse
Affiliation(s)
- Ronald Biggs
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Patrick Z Liu
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Andrew D Stephens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208.,Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
| |
Collapse
|
37
|
Cook DM, Bennett M, Friedman B, Lawrimore J, Yeh E, Bloom K. Fork pausing allows centromere DNA loop formation and kinetochore assembly. Proc Natl Acad Sci U S A 2018; 115:11784-11789. [PMID: 30373818 PMCID: PMC6243264 DOI: 10.1073/pnas.1806791115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
De novo kinetochore assembly, but not template-directed assembly, is dependent on COMA, the kinetochore complex engaged in cohesin recruitment. The slowing of replication fork progression by treatment with phleomycin (PHL), hydroxyurea, or deletion of the replication fork protection protein Csm3 can activate de novo kinetochore assembly in COMA mutants. Centromere DNA looping at the site of de novo kinetochore assembly can be detected shortly after exposure to PHL. Using simulations to explore the thermodynamics of DNA loops, we propose that loop formation is disfavored during bidirectional replication fork migration. One function of replication fork stalling upon encounters with DNA damage or other blockades may be to allow time for thermal fluctuations of the DNA chain to explore numerous configurations. Biasing thermodynamics provides a mechanism to facilitate macromolecular assembly, DNA repair, and other nucleic acid transactions at the replication fork. These loop configurations are essential for sister centromere separation and kinetochore assembly in the absence of the COMA complex.
Collapse
Affiliation(s)
- Diana M Cook
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Maggie Bennett
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Brandon Friedman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Josh Lawrimore
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Elaine Yeh
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
38
|
Lawrimore J, Doshi A, Friedman B, Yeh E, Bloom K. Geometric partitioning of cohesin and condensin is a consequence of chromatin loops. Mol Biol Cell 2018; 29:2737-2750. [PMID: 30207827 PMCID: PMC6249845 DOI: 10.1091/mbc.e18-02-0131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/13/2018] [Accepted: 09/04/2018] [Indexed: 12/29/2022] Open
Abstract
SMC (structural maintenance of chromosomes) complexes condensin and cohesin are crucial for proper chromosome organization. Condensin has been reported to be a mechanochemical motor capable of forming chromatin loops, while cohesin passively diffuses along chromatin to tether sister chromatids. In budding yeast, the pericentric region is enriched in both condensin and cohesin. As in higher-eukaryotic chromosomes, condensin is localized to the axial chromatin of the pericentric region, while cohesin is enriched in the radial chromatin. Thus, the pericentric region serves as an ideal model for deducing the role of SMC complexes in chromosome organization. We find condensin-mediated chromatin loops establish a robust chromatin organization, while cohesin limits the area that chromatin loops can explore. Upon biorientation, extensional force from the mitotic spindle aggregates condensin-bound chromatin from its equilibrium position to the axial core of pericentric chromatin, resulting in amplified axial tension. The axial localization of condensin depends on condensin's ability to bind to chromatin to form loops, while the radial localization of cohesin depends on cohesin's ability to diffuse along chromatin. The different chromatin-tethering modalities of condensin and cohesin result in their geometric partitioning in the presence of an extensional force on chromatin.
Collapse
Affiliation(s)
- Josh Lawrimore
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ayush Doshi
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Brandon Friedman
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Elaine Yeh
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kerry Bloom
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
39
|
Kruitwagen T, Chymkowitch P, Denoth-Lippuner A, Enserink J, Barral Y. Centromeres License the Mitotic Condensation of Yeast Chromosome Arms. Cell 2018; 175:780-795.e15. [PMID: 30318142 PMCID: PMC6197839 DOI: 10.1016/j.cell.2018.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 06/14/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022]
Abstract
During mitosis, chromatin condensation shapes chromosomes as separate, rigid, and compact sister chromatids to facilitate their segregation. Here, we show that, unlike wild-type yeast chromosomes, non-chromosomal DNA circles and chromosomes lacking a centromere fail to condense during mitosis. The centromere promotes chromosome condensation strictly in cis through recruiting the kinases Aurora B and Bub1, which trigger the autonomous condensation of the entire chromosome. Shugoshin and the deacetylase Hst2 facilitated spreading the condensation signal to the chromosome arms. Targeting Aurora B to DNA circles or centromere-ablated chromosomes or releasing Shugoshin from PP2A-dependent inhibition bypassed the centromere requirement for condensation and enhanced the mitotic stability of DNA circles. Our data indicate that yeast cells license the chromosome-autonomous condensation of their chromatin in a centromere-dependent manner, excluding from this process non-centromeric DNA and thereby inhibiting their propagation.
Collapse
Affiliation(s)
- Tom Kruitwagen
- Institute of Biochemistry, Biology Department, ETH Zurich, 8093 Zurich, Switzerland
| | - Pierre Chymkowitch
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | | | - Jorrit Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway; Faculty of Medicine, Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Faculty of Mathematics and Natural Sciences, Department of Biosciences, University of Oslo, Norway
| | - Yves Barral
- Institute of Biochemistry, Biology Department, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
40
|
Tripartite Chromatin Localization of Budding Yeast Shugoshin Involves Higher-Ordered Architecture of Mitotic Chromosomes. G3-GENES GENOMES GENETICS 2018; 8:2901-2911. [PMID: 30002083 PMCID: PMC6118306 DOI: 10.1534/g3.118.200522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The spindle assembly checkpoint (SAC) is key to faithful segregation of chromosomes. One requirement that satisfies SAC is appropriate tension between sister chromatids at the metaphase-anaphase juncture. Proper tension generated by poleward pulling of mitotic spindles signals biorientation of the underlying chromosome. In the budding yeast, the tension status is monitored by the conserved Shugoshin protein, Sgo1p, and the tension sensing motif (TSM) of histone H3. ChIP-seq reveals a unique TSM-dependent, tripartite domain of Sgo1p in each mitotic chromosome. This domain consists of one centromeric and two flanking peaks 3 - 4 kb away, present exclusively in mitosis. Strikingly, this trident motif coincides with cohesin localization, but only at the centromere and the two immediate adjacent loci, despite that cohesin is enriched at numerous regions throughout mitotic chromosomes. Chromosome conformation capture assays reveal apparent looping at the centromeric and pericentric regions. The TSM-Sgo1p-cohesin triad is therefore at the center stage of higher-ordered chromatin architecture for error-free segregation.
Collapse
|
41
|
Carvalhal S, Tavares A, Santos MB, Mirkovic M, Oliveira RA. A quantitative analysis of cohesin decay in mitotic fidelity. J Cell Biol 2018; 217:3343-3353. [PMID: 30002073 PMCID: PMC6168270 DOI: 10.1083/jcb.201801111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/05/2018] [Accepted: 06/28/2018] [Indexed: 12/29/2022] Open
Abstract
Sister chromatid cohesion mediated by cohesin is essential for mitotic fidelity. It counteracts spindle forces to prevent premature chromatid individualization and random genome segregation. However, it is unclear what effects a partial decline of cohesin may have on chromosome organization. In this study, we provide a quantitative analysis of cohesin decay by inducing acute removal of defined amounts of cohesin from metaphase-arrested chromosomes. We demonstrate that sister chromatid cohesion is very resistant to cohesin loss as chromatid disjunction is only observed when chromosomes lose >80% of bound cohesin. Removal close to this threshold leads to chromosomes that are still cohered but display compromised chromosome alignment and unstable spindle attachments. Partial cohesin decay leads to increased duration of mitosis and susceptibility to errors in chromosome segregation. We propose that high cohesin density ensures centromeric chromatin rigidity necessary to maintain a force balance with the mitotic spindle. Partial cohesin loss may lead to chromosome segregation errors even when sister chromatid cohesion is fulfilled.
Collapse
|
42
|
Lianga N, Doré C, Kennedy EK, Yeh E, Williams EC, Fortinez CM, Wang A, Bloom KS, Rudner AD. Cdk1 phosphorylation of Esp1/Separase functions with PP2A and Slk19 to regulate pericentric Cohesin and anaphase onset. PLoS Genet 2018; 14:e1007029. [PMID: 29561844 PMCID: PMC5880407 DOI: 10.1371/journal.pgen.1007029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 04/02/2018] [Accepted: 09/17/2017] [Indexed: 12/27/2022] Open
Abstract
Anaphase onset is an irreversible cell cycle transition that is triggered by the activation of the protease Separase. Separase cleaves the Mcd1 (also known as Scc1) subunit of Cohesin, a complex of proteins that physically links sister chromatids, triggering sister chromatid separation. Separase is regulated by the degradation of the anaphase inhibitor Securin which liberates Separase from inhibitory Securin/Separase complexes. In many organisms, Securin is not essential suggesting that Separase is regulated by additional mechanisms. In this work, we show that in budding yeast Cdk1 activates Separase (Esp1 in yeast) through phosphorylation to trigger anaphase onset. Esp1 activation is opposed by protein phosphatase 2A associated with its regulatory subunit Cdc55 (PP2ACdc55) and the spindle protein Slk19. Premature anaphase spindle elongation occurs when Securin (Pds1 in yeast) is inducibly degraded in cells that also contain phospho-mimetic mutations in ESP1, or deletion of CDC55 or SLK19. This striking phenotype is accompanied by advanced degradation of Mcd1, disruption of pericentric Cohesin organization and chromosome mis-segregation. Our findings suggest that PP2ACdc55 and Slk19 function redundantly with Pds1 to inhibit Esp1 within pericentric chromatin, and both Pds1 degradation and Cdk1-dependent phosphorylation of Esp1 act together to trigger anaphase onset.
Collapse
Affiliation(s)
- Noel Lianga
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Carole Doré
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Erin K. Kennedy
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Elaine Yeh
- University of North Carolina, Chapel Hill, Department of Biology, Chapel Hill, NC, United States of America
| | - Elizabeth C. Williams
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Camille Marie Fortinez
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Alick Wang
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Kerry S. Bloom
- University of North Carolina, Chapel Hill, Department of Biology, Chapel Hill, NC, United States of America
| | - Adam D. Rudner
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
43
|
Abstract
Structural maintenance of chromosome (SMC) protein complexes, including cohesin and condensin, are increasingly being recognized for their important role in cancer and development, making it critical that we understand how these evolutionarily conserved multi-subunit protein complexes associate with and organize the genome. We review adaptor proteins for SMC complexes and how these adaptors may capture SMC complexes following loop extrusion to provide a framework for chromosome organization.
Collapse
Affiliation(s)
- Kobe C. Yuen
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, California, United States of America
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
- University of Kansas Cancer Center, Kansas City, Kansas, United States of America
| |
Collapse
|
44
|
Lawrimore J, Friedman B, Doshi A, Bloom K. RotoStep: A Chromosome Dynamics Simulator Reveals Mechanisms of Loop Extrusion. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:101-109. [PMID: 29167283 DOI: 10.1101/sqb.2017.82.033696] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ChromoShake is a three-dimensional simulator designed to explore the range of configurational states a chromosome can adopt based on thermodynamic fluctuations of the polymer chain. Here, we refine ChromoShake to generate dynamic simulations of a DNA-based motor protein such as condensin walking along the chromatin substrate. We model walking as a rotation of DNA-binding heat-repeat proteins around one another. The simulation is applied to several configurations of DNA to reveal the consequences of mechanical stepping on taut chromatin under tension versus loop extrusion on single-tethered, floppy chromatin substrates. These simulations provide testable hypotheses for condensin and other DNA-based motors functioning along interphase chromosomes. Our model reveals a novel mechanism for condensin enrichment in the pericentromeric region of mitotic chromosomes. Increased condensin dwell time at centromeres results in a high density of pericentric loops that in turn provide substrate for additional condensin.
Collapse
Affiliation(s)
- Josh Lawrimore
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599-3280
| | - Brandon Friedman
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599-3280
| | - Ayush Doshi
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599-3280
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599-3280
| |
Collapse
|
45
|
Increased LOH due to Defective Sister Chromatid Cohesion Is due Primarily to Chromosomal Aneuploidy and not Recombination. G3-GENES GENOMES GENETICS 2017; 7:3305-3315. [PMID: 28983067 PMCID: PMC5633381 DOI: 10.1534/g3.117.300091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Loss of heterozygosity (LOH) is an important factor in cancer, pathogenic fungi, and adaptation to changing environments. The sister chromatid cohesion process (SCC) suppresses aneuploidy and therefore whole chromosome LOH. SCC is also important to channel recombinational repair to sister chromatids, thereby preventing LOH mediated by allelic recombination. There is, however, insufficient information about the relative roles that the SCC pathway plays in the different modes of LOH. Here, we found that the cohesin mutation mcd1-1, and other mutations in SCC, differentially affect the various types of LOH. The greatest effect, by three orders of magnitude, was on whole chromosome loss (CL). In contrast, there was little increase in recombination-mediated LOH, even for telomeric markers. Some of the LOH events that were increased by SCC mutations were complex, i.e., they were the result of several chromosome transactions. Although these events were independent of POL32, the most parsimonious way to explain the formation of at least some of them was break-induced replication through the centromere. Interestingly, the mcd1-1 pol32Δ double mutant showed a significant reduction in the rate of CL in comparison with the mcd1-1 single mutant. Our results show that defects in SCC allow the formation of complex LOH events that, in turn, can promote drug or pesticide resistance in diploid microbes that are pathogenic to humans or plants.
Collapse
|
46
|
Lazar-Stefanita L, Scolari VF, Mercy G, Muller H, Guérin TM, Thierry A, Mozziconacci J, Koszul R. Cohesins and condensins orchestrate the 4D dynamics of yeast chromosomes during the cell cycle. EMBO J 2017; 36:2684-2697. [PMID: 28729434 PMCID: PMC5599795 DOI: 10.15252/embj.201797342] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 06/29/2017] [Accepted: 07/04/2017] [Indexed: 11/09/2022] Open
Abstract
Duplication and segregation of chromosomes involves dynamic reorganization of their internal structure by conserved architectural proteins, including the structural maintenance of chromosomes (SMC) complexes cohesin and condensin. Despite active investigation of the roles of these factors, a genome-wide view of dynamic chromosome architecture at both small and large scale during cell division is still missing. Here, we report the first comprehensive 4D analysis of the higher-order organization of the Saccharomyces cerevisiae genome throughout the cell cycle and investigate the roles of SMC complexes in controlling structural transitions. During replication, cohesion establishment promotes numerous long-range intra-chromosomal contacts and correlates with the individualization of chromosomes, which culminates at metaphase. In anaphase, mitotic chromosomes are abruptly reorganized depending on mechanical forces exerted by the mitotic spindle. Formation of a condensin-dependent loop bridging the centromere cluster with the rDNA loci suggests that condensin-mediated forces may also directly facilitate segregation. This work therefore comprehensively recapitulates cell cycle-dependent chromosome dynamics in a unicellular eukaryote, but also unveils new features of chromosome structural reorganization during highly conserved stages of cell division.
Collapse
Affiliation(s)
- Luciana Lazar-Stefanita
- Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, Paris, France
- CNRS, UMR 3525, Paris, France
- Institut Pasteur, CNRS Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), USR 3756, Paris, France
- Sorbonne Universités, UPMC Université Paris 6, Complexité du Vivant, Paris, France
| | - Vittore F Scolari
- Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, Paris, France
- CNRS, UMR 3525, Paris, France
- Institut Pasteur, CNRS Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), USR 3756, Paris, France
| | - Guillaume Mercy
- Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, Paris, France
- CNRS, UMR 3525, Paris, France
- Institut Pasteur, CNRS Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), USR 3756, Paris, France
- Sorbonne Universités, UPMC Université Paris 6, Complexité du Vivant, Paris, France
| | - Héloise Muller
- Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, Paris, France
- CNRS, UMR 3525, Paris, France
- Institut Pasteur, CNRS Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), USR 3756, Paris, France
| | - Thomas M Guérin
- Laboratoire Télomères et Réparation du Chromosome, CEA, INSERM, UMR 967, IRCM, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Agnès Thierry
- Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, Paris, France
- CNRS, UMR 3525, Paris, France
- Institut Pasteur, CNRS Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), USR 3756, Paris, France
| | - Julien Mozziconacci
- Sorbonne Universités, Theoretical Physics for Condensed Matter Lab, UPMC Université Paris 06, Paris, France
- CNRS, UMR 7600, Paris, France
| | - Romain Koszul
- Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, Paris, France
- CNRS, UMR 3525, Paris, France
- Institut Pasteur, CNRS Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), USR 3756, Paris, France
| |
Collapse
|
47
|
Schalbetter SA, Goloborodko A, Fudenberg G, Belton JM, Miles C, Yu M, Dekker J, Mirny L, Baxter J. SMC complexes differentially compact mitotic chromosomes according to genomic context. Nat Cell Biol 2017; 19:1071-1080. [PMID: 28825700 PMCID: PMC5640152 DOI: 10.1038/ncb3594] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/19/2017] [Indexed: 12/26/2022]
Abstract
Structural maintenance of chromosomes (SMC) protein complexes are key determinants of chromosome conformation. Using Hi-C and polymer modelling, we study how cohesin and condensin, two deeply conserved SMC complexes, organize chromosomes in the budding yeast Saccharomyces cerevisiae. The canonical role of cohesin is to co-align sister chromatids, while condensin generally compacts mitotic chromosomes. We find strikingly different roles for the two complexes in budding yeast mitosis. First, cohesin is responsible for compacting mitotic chromosome arms, independently of sister chromatid cohesion. Polymer simulations demonstrate that this role can be fully accounted for through cis-looping of chromatin. Second, condensin is generally dispensable for compaction along chromosome arms. Instead, it plays a targeted role compacting the rDNA proximal regions and promoting resolution of peri-centromeric regions. Our results argue that the conserved mechanism of SMC complexes is to form chromatin loops and that distinct SMC-dependent looping activities are selectively deployed to appropriately compact chromosomes.
Collapse
MESH Headings
- Adenosine Triphosphatases/genetics
- Adenosine Triphosphatases/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Chromatin/chemistry
- Chromatin/genetics
- Chromatin/metabolism
- Chromatin Assembly and Disassembly
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosome Structures
- Chromosomes, Fungal/chemistry
- Chromosomes, Fungal/genetics
- Chromosomes, Fungal/metabolism
- Computer Simulation
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Mitosis
- Models, Genetic
- Models, Molecular
- Multiprotein Complexes/genetics
- Multiprotein Complexes/metabolism
- Nucleic Acid Conformation
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/growth & development
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Structure-Activity Relationship
- Cohesins
Collapse
Affiliation(s)
| | - Anton Goloborodko
- Institute for Medical Engineering and Sciences, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Geoffrey Fudenberg
- Institute for Medical Engineering and Sciences, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jon-Matthew Belton
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Catrina Miles
- Genome Damage and Stability Centre, Science Park Road, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Miao Yu
- Genome Damage and Stability Centre, Science Park Road, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Job Dekker
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Leonid Mirny
- Institute for Medical Engineering and Sciences, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jonathan Baxter
- Genome Damage and Stability Centre, Science Park Road, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| |
Collapse
|
48
|
Schalch T, Steiner FA. Structure of centromere chromatin: from nucleosome to chromosomal architecture. Chromosoma 2017; 126:443-455. [PMID: 27858158 PMCID: PMC5509776 DOI: 10.1007/s00412-016-0620-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022]
Abstract
The centromere is essential for the segregation of chromosomes, as it serves as attachment site for microtubules to mediate chromosome segregation during mitosis and meiosis. In most organisms, the centromere is restricted to one chromosomal region that appears as primary constriction on the condensed chromosome and is partitioned into two chromatin domains: The centromere core is characterized by the centromere-specific histone H3 variant CENP-A (also called cenH3) and is required for specifying the centromere and for building the kinetochore complex during mitosis. This core region is generally flanked by pericentric heterochromatin, characterized by nucleosomes containing H3 methylated on lysine 9 (H3K9me) that are bound by heterochromatin proteins. During mitosis, these two domains together form a three-dimensional structure that exposes CENP-A-containing chromatin to the surface for interaction with the kinetochore and microtubules. At the same time, this structure supports the tension generated during the segregation of sister chromatids to opposite poles. In this review, we discuss recent insight into the characteristics of the centromere, from the specialized chromatin structures at the centromere core and the pericentromere to the three-dimensional organization of these regions that make up the functional centromere.
Collapse
Affiliation(s)
- Thomas Schalch
- Department of Molecular Biology, Sciences III, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| | - Florian A Steiner
- Department of Molecular Biology, Sciences III, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| |
Collapse
|
49
|
Abstract
At metaphase in mitotic cells, pulling forces at the kinetochore-microtubule interface create tension by stretching the centromeric chromatin between oppositely oriented sister kinetochores. This tension is important for stabilizing the end-on kinetochore microtubule attachment required for proper bi-orientation of sister chromosomes as well as for satisfaction of the Spindle Assembly Checkpoint and entry into anaphase. How force is coupled by proteins to kinetochore microtubules and resisted by centromere stretch is becoming better understood as many of the proteins involved have been identified. Recent application of genetically encoded fluorescent tension sensors within the mechanical linkage between the centromere and kinetochore microtubules are beginning to reveal - from live cell assays - protein specific contributions that are functionally important.
Collapse
Affiliation(s)
- Edward D Salmon
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kerry Bloom
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
50
|
Lawrimore J, Barry TM, Barry RM, York AC, Friedman B, Cook DM, Akialis K, Tyler J, Vasquez P, Yeh E, Bloom K. Microtubule dynamics drive enhanced chromatin motion and mobilize telomeres in response to DNA damage. Mol Biol Cell 2017; 28:1701-1711. [PMID: 28450453 PMCID: PMC5469612 DOI: 10.1091/mbc.e16-12-0846] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/28/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022] Open
Abstract
Mechanisms that drive DNA damage-induced chromosome mobility include relaxation of external tethers to the nuclear envelope and internal chromatin–chromatin tethers. Together with microtubule dynamics, these can mobilize the genome in response to DNA damage. Chromatin exhibits increased mobility on DNA damage, but the biophysical basis for this behavior remains unknown. To explore the mechanisms that drive DNA damage–induced chromosome mobility, we use single-particle tracking of tagged chromosomal loci during interphase in live yeast cells together with polymer models of chromatin chains. Telomeres become mobilized from sites on the nuclear envelope and the pericentromere expands after exposure to DNA-damaging agents. The magnitude of chromatin mobility induced by a single double-strand break requires active microtubule function. These findings reveal how relaxation of external tethers to the nuclear envelope and internal chromatin–chromatin tethers, together with microtubule dynamics, can mobilize the genome in response to DNA damage.
Collapse
Affiliation(s)
- Josh Lawrimore
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Timothy M Barry
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Raymond M Barry
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Alyssa C York
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Brandon Friedman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Diana M Cook
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kristen Akialis
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jolien Tyler
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Paula Vasquez
- Department of Mathematics, University of South Carolina, Columbia, SC 29208
| | - Elaine Yeh
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|