1
|
Hwang T, Sitko L, Khoirunnisa R, Navarro-Aguad F, Samuel D, Park H, Cheon B, Mutsnaini L, Lee J, Otlu B, Takeda S, Lee S, Ivanov D, Gartner A. Comprehensive whole-genome sequencing reveals origins of mutational signatures associated with aging, mismatch repair deficiency and temozolomide chemotherapy. Nucleic Acids Res 2025; 53:gkae1122. [PMID: 39656916 PMCID: PMC11724276 DOI: 10.1093/nar/gkae1122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/17/2024] [Accepted: 11/07/2024] [Indexed: 12/17/2024] Open
Abstract
In a comprehensive study to decipher the multi-layered response to the chemotherapeutic agent temozolomide (TMZ), we analyzed 427 genomes and determined mutational patterns in a collection of ∼40 isogenic DNA repair-deficient human TK6 lymphoblast cell lines. We first demonstrate that the spontaneous mutational background is very similar to the aging-associated mutational signature SBS40 and mainly caused by polymerase zeta-mediated translesion synthesis (TLS). MSH2-/- mismatch repair (MMR) knockout in conjunction with additional repair deficiencies uncovers cryptic mutational patterns. We next report how distinct mutational signatures are induced by TMZ upon sequential inactivation of DNA repair pathways, mirroring the acquisition of chemotherapy resistance by glioblastomas. The most toxic adduct induced by TMZ, O6-meG, is directly repaired by the O6-methylguanine-DNA methyltransferase (MGMT). In MGMT-/- cells, MMR leads to cell death and limits mutagenesis. MMR deficiency results in TMZ resistance, allowing the accumulation of ∼105 C > T substitutions corresponding to signature SBS11. Under these conditions, N3-methyladenine (3-meA), processed by base excision repair (BER), limits cell survival. Without BER, 3-meA is read through via error-prone TLS, causing T > A substitutions but not affecting survival. Blocking BER after abasic site formation results in large deletions and TMZ hypersensitization. Our findings reveal potential vulnerabilities of TMZ-resistant tumors.
Collapse
Affiliation(s)
- Taejoo Hwang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Lukasz Karol Sitko
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Ratih Khoirunnisa
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Fernanda Navarro-Aguad
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - David M Samuel
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Hajoong Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Banyoon Cheon
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Luthfiyyah Mutsnaini
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Jaewoong Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Burçak Otlu
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Shunichi Takeda
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University Medical School, 1066 Xueyuan Avenue, Shenzhen, Guangdong 518060, China
| | - Semin Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Dmitri Ivanov
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Anton Gartner
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea
- Graduate School for Health Sciences and Technology, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| |
Collapse
|
2
|
Dreyer J, Ricci G, van den Berg J, Bhardwaj V, Funk J, Armstrong C, van Batenburg V, Sine C, VanInsberghe MA, Tjeerdsma RB, Marsman R, Mandemaker IK, di Sanzo S, Costantini J, Manzo SG, Biran A, Burny C, van Vugt MATM, Völker-Albert M, Groth A, Spencer SL, van Oudenaarden A, Mattiroli F. Acute multi-level response to defective de novo chromatin assembly in S-phase. Mol Cell 2024; 84:4711-4728.e10. [PMID: 39536749 DOI: 10.1016/j.molcel.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Long-term perturbation of de novo chromatin assembly during DNA replication has profound effects on epigenome maintenance and cell fate. The early mechanistic origin of these defects is unknown. Here, we combine acute degradation of chromatin assembly factor 1 (CAF-1), a key player in de novo chromatin assembly, with single-cell genomics, quantitative proteomics, and live microscopy to uncover these initiating mechanisms in human cells. CAF-1 loss immediately slows down DNA replication speed and renders nascent DNA hyper-accessible. A rapid cellular response, distinct from canonical DNA damage signaling, is triggered and lowers histone mRNAs. In turn, histone variants' usage and their modifications are altered, limiting transcriptional fidelity and delaying chromatin maturation within a single S-phase. This multi-level response induces a p53-dependent cell-cycle arrest after mitosis. Our work reveals the immediate consequences of defective de novo chromatin assembly during DNA replication, indicating how at later times the epigenome and cell fate can be altered.
Collapse
Affiliation(s)
- Jan Dreyer
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Giulia Ricci
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Jeroen van den Berg
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Vivek Bhardwaj
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Janina Funk
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Claire Armstrong
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Vincent van Batenburg
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Chance Sine
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Michael A VanInsberghe
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Rinskje B Tjeerdsma
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Richard Marsman
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Imke K Mandemaker
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Simone di Sanzo
- MOLEQLAR Analytics GmbH, Rosenheimer Street 141 h, 81671 Munich, Germany
| | - Juliette Costantini
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Stefano G Manzo
- Oncode Institute, Utrecht, the Netherlands; Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Alva Biran
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Claire Burny
- MOLEQLAR Analytics GmbH, Rosenheimer Street 141 h, 81671 Munich, Germany
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark; Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen 2200, Denmark; Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sabrina L Spencer
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Alexander van Oudenaarden
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Francesca Mattiroli
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
3
|
Kim Y, Ha NY, Kang MS, Ryu E, Yi G, Yoo J, Kang N, Kim BG, Myung K, Kang S. ATAD5-BAZ1B interaction modulates PCNA ubiquitination during DNA repair. Nat Commun 2024; 15:10496. [PMID: 39627214 PMCID: PMC11615311 DOI: 10.1038/s41467-024-55005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Mono-ubiquitinated PCNA (mono-Ub-PCNA) is generated when replication forks encounter obstacles, enabling the bypass of DNA lesions. After resolving stalled forks, Ub-PCNA must be de-ubiquitinated to resume high-fidelity DNA synthesis. ATAD5, in cooperation with the UAF1-USP1 complex, is responsible for this de-ubiquitination. However, the precise regulation of timely Ub-PCNA de-ubiquitination remains unclear. Our research reveals that BAZ1B, a regulatory subunit of the BAZ1B-SMARCA5 chromatin-remodeling complex (also known as the WICH complex), plays a crucial role in fine-tuning the de-ubiquitination process of Ub-PCNA. The BAZ1B binding region of ATAD5 encompasses the UAF1-binding domain of ATAD5. Disruption of the ATAD5-BAZ1B interaction results in premature de-ubiquitination of Ub-PCNA following treatment with hydrogen peroxide. Cells with impaired BAZ1B binding to ATAD5 display increased sensitivity to oxidative stress compared to wild-type cells. These findings suggest that BAZ1B prevents premature Ub-PCNA de-ubiquitination, thereby safeguarding genome integrity.
Collapse
Affiliation(s)
- Yeongjae Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Na Young Ha
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
| | - Mi-Sun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
| | - Eunjin Ryu
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Geunil Yi
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Juyeong Yoo
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Nalae Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
4
|
Wang F, He Q, Yao NY, O'Donnell ME, Li H. The human ATAD5 has evolved unique structural elements to function exclusively as a PCNA unloader. Nat Struct Mol Biol 2024; 31:1680-1691. [PMID: 38871854 PMCID: PMC11563871 DOI: 10.1038/s41594-024-01332-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
Humans have three different proliferating cell nuclear antigen (PCNA) clamp-loading complexes: RFC and CTF18-RFC load PCNA onto DNA, but ATAD5-RFC can only unload PCNA from DNA. The underlying structural basis of ATAD5-RFC unloading is unknown. We show here that ATAD5 has two unique locking loops that appear to tie the complex into a rigid structure, and together with a domain that plugs the DNA-binding chamber, prevent conformation changes required for DNA binding, likely explaining why ATAD5-RFC is exclusively a PCNA unloader. These features are conserved in the yeast PCNA unloader Elg1-RFC. We observe intermediates in which PCNA bound to ATAD5-RFC exists as a closed planar ring, a cracked spiral or a gapped spiral. Surprisingly, ATAD5-RFC can open a PCNA gap between PCNA protomers 2 and 3, different from the PCNA protomers 1 and 3 gap observed in all previously characterized clamp loaders.
Collapse
Affiliation(s)
- Feng Wang
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Qing He
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Nina Y Yao
- DNA Replication Laboratory and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Michael E O'Donnell
- DNA Replication Laboratory and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
5
|
Kim S, Park S, Kang N, Ra J, Myung K, Lee KY. Polyubiquitinated PCNA triggers SLX4-mediated break-induced replication in alternative lengthening of telomeres (ALT) cancer cells. Nucleic Acids Res 2024; 52:11785-11805. [PMID: 39291733 PMCID: PMC11514459 DOI: 10.1093/nar/gkae785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Replication stresses are the major source of break-induced replication (BIR). Here, we show that in alternative lengthening of telomeres (ALT) cells, replication stress-induced polyubiquitinated proliferating cell nuclear antigen (PCNA) (polyUb-PCNA) triggers BIR at telomeres and the common fragile site (CFS). Consistently, depleting RAD18, a PCNA ubiquitinating enzyme, reduces the occurrence of ALT-associated promyelocytic leukemia (PML) bodies (APBs) and mitotic DNA synthesis at telomeres and CFS, both of which are mediated by BIR. In contrast, inhibiting ubiquitin-specific protease 1 (USP1), an Ub-PCNA deubiquitinating enzyme, results in an increase in the above phenotypes in a RAD18- and UBE2N (the PCNA polyubiquitinating enzyme)-dependent manner. Furthermore, deficiency of ATAD5, which facilitates USP1 activity and unloads PCNAs, augments recombination-associated phenotypes. Mechanistically, telomeric polyUb-PCNA accumulates SLX4, a nuclease scaffold, at telomeres through its ubiquitin-binding domain and increases telomere damage. Consistently, APB increase induced by Ub-PCNA depends on SLX4 and structure-specific endonucleases. Taken together, our results identified the polyUb-PCNA-SLX4 axis as a trigger for directing BIR.
Collapse
Affiliation(s)
- Sangin Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Su Hyung Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Nalae Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Kyoo-young Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon 24252, Gangwon-do, Republic of Korea
| |
Collapse
|
6
|
Zamarreño J, Muñoz S, Alonso-Rodríguez E, Alcalá M, Rodríguez S, Bermejo R, Sacristán MP, Bueno A. Timely lagging strand maturation relies on Ubp10 deubiquitylase-mediated PCNA dissociation from replicating chromatin. Nat Commun 2024; 15:8183. [PMID: 39294185 PMCID: PMC11411133 DOI: 10.1038/s41467-024-52542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
Synthesis and maturation of Okazaki Fragments is an incessant and highly efficient metabolic process completing the synthesis of the lagging strands at replication forks during S phase. Accurate Okazaki fragment maturation (OFM) is crucial to maintain genome integrity and, therefore, cell survival in all living organisms. In eukaryotes, OFM involves the consecutive action of DNA polymerase Pol ∂, 5' Flap endonuclease Fen1 and DNA ligase I, and constitutes the best example of a sequential process coordinated by the sliding clamp PCNA. For OFM to occur efficiently, cooperation of these enzymes with PCNA must be highly regulated. Here, we present evidence of a role for the K164-PCNA-deubiquitylase Ubp10 in the maturation of Okazaki fragments in the budding yeast Saccharomyces cerevisiae. We show that Ubp10 associates with lagging-strand DNA synthesis machineries on replicating chromatin to ensure timely ligation of Okazaki fragments by promoting PCNA dissociation from chromatin requiring lysine 164 deubiquitylation.
Collapse
Affiliation(s)
- Javier Zamarreño
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Sofía Muñoz
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Esmeralda Alonso-Rodríguez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Macarena Alcalá
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Sergio Rodríguez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Rodrigo Bermejo
- Centro de Investigaciones Biológicas "Margarita Salas", CSIC, Madrid, Spain
| | - María P Sacristán
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain.
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.
| | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain.
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.
| |
Collapse
|
7
|
Morimoto M, Ryu E, Steger BJ, Dixit A, Saito Y, Yoo J, van der Ven AT, Hauser N, Steinbach PJ, Oura K, Huang AY, Kortüm F, Ninomiya S, Rosenthal EA, Robinson HK, Guegan K, Denecke J, Subramony SH, Diamonstein CJ, Ping J, Fenner M, Balton EV, Strohbehn S, Allworth A, Bamshad MJ, Gandhi M, Dipple KM, Blue EE, Jarvik GP, Lau CC, Holm IA, Weisz-Hubshman M, Solomon BD, Nelson SF, Nishino I, Adams DR, Kang S, Gahl WA, Toro C, Myung K, Malicdan MCV. Expanding the genetic and phenotypic landscape of replication factor C complex-related disorders: RFC4 deficiency is linked to a multisystemic disorder. Am J Hum Genet 2024; 111:1970-1993. [PMID: 39106866 PMCID: PMC11393705 DOI: 10.1016/j.ajhg.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/09/2024] Open
Abstract
The precise regulation of DNA replication is vital for cellular division and genomic integrity. Central to this process is the replication factor C (RFC) complex, encompassing five subunits, which loads proliferating cell nuclear antigen onto DNA to facilitate the recruitment of replication and repair proteins and enhance DNA polymerase processivity. While RFC1's role in cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) is known, the contributions of RFC2-5 subunits on human Mendelian disorders is largely unexplored. Our research links bi-allelic variants in RFC4, encoding a core RFC complex subunit, to an undiagnosed disorder characterized by incoordination and muscle weakness, hearing impairment, and decreased body weight. We discovered across nine affected individuals rare, conserved, predicted pathogenic variants in RFC4, all likely to disrupt the C-terminal domain indispensable for RFC complex formation. Analysis of a previously determined cryo-EM structure of RFC bound to proliferating cell nuclear antigen suggested that the variants disrupt interactions within RFC4 and/or destabilize the RFC complex. Cellular studies using RFC4-deficient HeLa cells and primary fibroblasts demonstrated decreased RFC4 protein, compromised stability of the other RFC complex subunits, and perturbed RFC complex formation. Additionally, functional studies of the RFC4 variants affirmed diminished RFC complex formation, and cell cycle studies suggested perturbation of DNA replication and cell cycle progression. Our integrated approach of combining in silico, structural, cellular, and functional analyses establishes compelling evidence that bi-allelic loss-of-function RFC4 variants contribute to the pathogenesis of this multisystemic disorder. These insights broaden our understanding of the RFC complex and its role in human health and disease.
Collapse
Affiliation(s)
- Marie Morimoto
- National Institutes of Health Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eunjin Ryu
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Benjamin J Steger
- National Institutes of Health Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Yoshihiko Saito
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Juyeong Yoo
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Amelie T van der Ven
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalie Hauser
- Inova Translational Medicine Institute, Inova Health System, Falls Church, VA, USA
| | - Peter J Steinbach
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kazumasa Oura
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine Iwate Medical University, Morioka, Japan
| | - Alden Y Huang
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shinsuke Ninomiya
- Department of Clinical Genetics, Kurashiki Central Hospital, Okayama, Japan
| | - Elisabeth A Rosenthal
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Hannah K Robinson
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Katie Guegan
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Callie J Diamonstein
- Inova Translational Medicine Institute, Inova Health System, Falls Church, VA, USA
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mark Fenner
- Nottingham University Hospital, Nottingham, UK
| | - Elsa V Balton
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Sam Strohbehn
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Aimee Allworth
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Michael J Bamshad
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Mahi Gandhi
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Katrina M Dipple
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Elizabeth E Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA; University of Washington School of Public Health, Institute for Public Health Genetics, Seattle, WA, USA
| | - Gail P Jarvik
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA; Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - C Christopher Lau
- National Institutes of Health Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ingrid A Holm
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Monika Weisz-Hubshman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin D Solomon
- Inova Translational Medicine Institute, Inova Health System, Falls Church, VA, USA
| | - Stanley F Nelson
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - David R Adams
- National Institutes of Health Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - William A Gahl
- National Institutes of Health Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Camilo Toro
- National Institutes of Health Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - May Christine V Malicdan
- National Institutes of Health Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Ryu E, Yoo J, Kang MS, Ha NY, Jang Y, Kim J, Kim Y, Kim BG, Kim S, Myung K, Kang S. ATAD5 functions as a regulatory platform for Ub-PCNA deubiquitination. Proc Natl Acad Sci U S A 2024; 121:e2315759121. [PMID: 39145935 PMCID: PMC11348035 DOI: 10.1073/pnas.2315759121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 07/11/2024] [Indexed: 08/16/2024] Open
Abstract
Ubiquitination status of proliferating cell nuclear antigen (PCNA) is crucial for regulating DNA lesion bypass. After the resolution of fork stalling, PCNA is subsequently deubiquitinated, but the underlying mechanism remains undefined. We found that the N-terminal domain of ATAD5 (ATAD5-N), the largest subunit of the PCNA-unloading complex, functions as a scaffold for Ub-PCNA deubiquitination. ATAD5 recognizes DNA-loaded Ub-PCNA through distinct DNA-binding and PCNA-binding motifs. Furthermore, ATAD5 forms a heterotrimeric complex with UAF1-USP1 deubiquitinase, facilitating the deubiquitination of DNA-loaded Ub-PCNA. ATAD5 also enhances the Ub-PCNA deubiquitination by USP7 and USP11 through specific interactions. ATAD5 promotes the distinct deubiquitination process of UAF1-USP1, USP7, and USP11 for poly-Ub-PCNA. Additionally, ATAD5 mutants deficient in UAF1-binding had increased sensitivity to DNA-damaging agents. Our results ultimately reveal that ATAD5 and USPs cooperate to efficiently deubiquitinate Ub-PCNA prior to its release from the DNA in order to safely deactivate the DNA repair process.
Collapse
Affiliation(s)
- Eunjin Ryu
- Center for Genomic Integrity, Institute for Basic Science, Ulsan44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Juyeong Yoo
- Center for Genomic Integrity, Institute for Basic Science, Ulsan44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Mi-Sun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan44919, Republic of Korea
| | - Na Young Ha
- Center for Genomic Integrity, Institute for Basic Science, Ulsan44919, Republic of Korea
| | - Yewon Jang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Jinwoo Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan44919, Republic of Korea
| | - Yeongjae Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan44919, Republic of Korea
| | - Shinseog Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan44919, Republic of Korea
| |
Collapse
|
9
|
Rajan RK, Engels M, Ramanathan M. Predicting phase-I metabolism of piceatannol: an in silico study. In Silico Pharmacol 2024; 12:52. [PMID: 38854674 PMCID: PMC11153392 DOI: 10.1007/s40203-024-00228-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/28/2024] [Indexed: 06/11/2024] Open
Abstract
Piceatannol is a natural compound found in plants and can be derived from resveratrol. While resveratrol has been extensively researched for its effects and how the body processes it, there are concerns about its use. These concerns include its limited absorption in the body, the need for specific dosages, potential interactions with other drugs, lack of standardization, and limited clinical evidence to support its benefits. Interestingly, Piceatannol, another compound derived from resveratrol, has received less attention from researchers but appears to offer advantages. It has better bioavailability and seems to have a more favorable therapeutic profile compared to resveratrol. Surprisingly, no previous attempts have been made to explore or predict the metabolites of piceatannol when it interacts with the enzyme cytochrome P450. This study aims to fill that gap by predicting how piceatannol is metabolized by cytochrome P450 and assessing any potential toxicity associated with its metabolites. This research is interesting because it's the first of its kind to investigate the metabolic fate of piceatannol, especially in the context of cytochrome P450. The findings have the potential to significantly contribute to the field of piceatannol research, particularly in the food industry where this compound has applications and implications. Graphical abstract
Collapse
Affiliation(s)
- Ravi Kumar Rajan
- Department of Pharmacology, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Tezpur Campus, Tezpur, Assam India
- Present Address: Department of Pharmacology, Himalayan Pharmacy Institute, Majitar, East Sikkim 737136 India
| | - Maida Engels
- Department of Pharmaceutical Chemistry, PSG College of Pharmacy, Coimbatore, Tamil Nadu India
| | - Muthiah Ramanathan
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, Tamil Nadu India
| |
Collapse
|
10
|
Kang S, Yoo J, Myung K. PCNA cycling dynamics during DNA replication and repair in mammals. Trends Genet 2024; 40:526-539. [PMID: 38485608 DOI: 10.1016/j.tig.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 06/06/2024]
Abstract
Proliferating cell nuclear antigen (PCNA) is a eukaryotic replicative DNA clamp. Furthermore, DNA-loaded PCNA functions as a molecular hub during DNA replication and repair. PCNA forms a closed homotrimeric ring that encircles the DNA, and association and dissociation of PCNA from DNA are mediated by clamp-loader complexes. PCNA must be actively released from DNA after completion of its function. If it is not released, abnormal accumulation of PCNA on chromatin will interfere with DNA metabolism. ATAD5 containing replication factor C-like complex (RLC) is a PCNA-unloading clamp-loader complex. ATAD5 deficiency causes various DNA replication and repair problems, leading to genome instability. Here, we review recent progress regarding the understanding of the action mechanisms of PCNA unloading complex in DNA replication/repair pathways.
Collapse
Affiliation(s)
- Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Juyeong Yoo
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
11
|
Dreyer J, Ricci G, van den Berg J, Bhardwaj V, Funk J, Armstrong C, van Batenburg V, Sine C, VanInsberghe MA, Marsman R, Mandemaker IK, di Sanzo S, Costantini J, Manzo SG, Biran A, Burny C, Völker-Albert M, Groth A, Spencer SL, van Oudenaarden A, Mattiroli F. Acute multi-level response to defective de novo chromatin assembly in S-phase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586291. [PMID: 38585916 PMCID: PMC10996472 DOI: 10.1101/2024.03.22.586291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Long-term perturbation of de novo chromatin assembly during DNA replication has profound effects on epigenome maintenance and cell fate. The early mechanistic origin of these defects is unknown. Here, we combine acute degradation of Chromatin Assembly Factor 1 (CAF-1), a key player in de novo chromatin assembly, with single-cell genomics, quantitative proteomics, and live-microscopy to uncover these initiating mechanisms in human cells. CAF-1 loss immediately slows down DNA replication speed and renders nascent DNA hyperaccessible. A rapid cellular response, distinct from canonical DNA damage signaling, is triggered and lowers histone mRNAs. As a result, histone variants usage and their modifications are altered, limiting transcriptional fidelity and delaying chromatin maturation within a single S-phase. This multi-level response induces a cell-cycle arrest after mitosis. Our work reveals the immediate consequences of defective de novo chromatin assembly during DNA replication, explaining how at later times the epigenome and cell fate can be altered.
Collapse
Affiliation(s)
- Jan Dreyer
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Giulia Ricci
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Jeroen van den Berg
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Oncode Institute, The Netherlands
| | - Vivek Bhardwaj
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Oncode Institute, The Netherlands
| | - Janina Funk
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Claire Armstrong
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Vincent van Batenburg
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Oncode Institute, The Netherlands
| | - Chance Sine
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Michael A. VanInsberghe
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Oncode Institute, The Netherlands
| | - Richard Marsman
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Imke K. Mandemaker
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Simone di Sanzo
- MOLEQLAR Analytics GmbH, Rosenheimer Street 141 h, 81671 Munich, Germany
| | - Juliette Costantini
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Stefano G. Manzo
- Oncode Institute, The Netherlands
- Division of Gene Regulation, Netherlands Cancer Institute, The Netherlands
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Alva Biran
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
- Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen 2200, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Claire Burny
- MOLEQLAR Analytics GmbH, Rosenheimer Street 141 h, 81671 Munich, Germany
| | | | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
- Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen 2200, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sabrina L. Spencer
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Alexander van Oudenaarden
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Oncode Institute, The Netherlands
| | - Francesca Mattiroli
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
12
|
Pacot L, Girish M, Knight S, Spurlock G, Varghese V, Ye M, Thomas N, Pasmant E, Upadhyaya M. Correlation between large rearrangements and patient phenotypes in NF1 deletion syndrome: an update and review. BMC Med Genomics 2024; 17:73. [PMID: 38448973 PMCID: PMC10919053 DOI: 10.1186/s12920-024-01843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
About 5-10% of neurofibromatosis type 1 (NF1) patients exhibit large genomic germline deletions that remove the NF1 gene and its flanking regions. The most frequent NF1 large deletion is 1.4 Mb, resulting from homologous recombination between two low copy repeats. This "type-1" deletion is associated with a severe clinical phenotype in NF1 patients, with several phenotypic manifestations including learning disability, a much earlier development of cutaneous neurofibromas, an increased tumour risk, and cardiovascular malformations. NF1 adjacent co-deleted genes could act as modifier loci for the specific clinical manifestations observed in deleted NF1 patients. Furthermore, other genetic modifiers (such as CNVs) not located at the NF1 locus could also modulate the phenotype observed in patients with large deletions. In this study, we analysed 22 NF1 deletion patients by genome-wide array-CGH with the aim (1) to correlate deletion length to observed phenotypic features and their severity in NF1 deletion syndrome, and (2) to identify whether the deletion phenotype could also be modulated by copy number variations elsewhere in the genome. We then review the role of co-deleted genes in the 1.4 Mb interval of type-1 deletions, and their possible implication in the main clinical features observed in this high-risk group of NF1 patients.
Collapse
Affiliation(s)
- Laurence Pacot
- Fédération de Génétique et Médecine Génomique, Hôpital Cochin, DMU BioPhyGen, AP-HP, Centre-Université Paris Cité, Paris, France
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Milind Girish
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Samantha Knight
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Vinod Varghese
- All Wales Medical Genomics Service, Cardiff, Great Britain
| | - Manuela Ye
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Nick Thomas
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Eric Pasmant
- Fédération de Génétique et Médecine Génomique, Hôpital Cochin, DMU BioPhyGen, AP-HP, Centre-Université Paris Cité, Paris, France.
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France.
| | - Meena Upadhyaya
- Division of Cancer and Genetics, Institute of Medical Genetics, Cardiff University, Heath Park, CF14 4XN, Cardiff, UK
| |
Collapse
|
13
|
Zheng F, Yao NY, Georgescu RE, Li H, O’Donnell ME. Structure of the PCNA unloader Elg1-RFC. SCIENCE ADVANCES 2024; 10:eadl1739. [PMID: 38427736 PMCID: PMC10906927 DOI: 10.1126/sciadv.adl1739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/26/2024] [Indexed: 03/03/2024]
Abstract
During DNA replication, the proliferating cell nuclear antigen (PCNA) clamps are loaded onto primed sites for each Okazaki fragment synthesis by the AAA+ heteropentamer replication factor C (RFC). PCNA encircling duplex DNA is quite stable and is removed from DNA by the dedicated clamp unloader Elg1-RFC. Here, we show the cryo-EM structure of Elg1-RFC in various states with PCNA. The structures reveal essential features of Elg1-RFC that explain how it is dedicated to PCNA unloading. Specifically, Elg1 contains two external loops that block opening of the Elg1-RFC complex for DNA binding, and an "Elg1 plug" domain that fills the central DNA binding chamber, thereby reinforcing the exclusive PCNA unloading activity of Elg1-RFC. Elg1-RFC was capable of unloading PCNA using non-hydrolyzable AMP-PNP. Both RFC and Elg1-RFC could remove PCNA from covalently closed circular DNA, indicating that PCNA unloading occurs by a mechanism that is distinct from PCNA loading. Implications for the PCNA unloading mechanism are discussed.
Collapse
Affiliation(s)
- Fengwei Zheng
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Nina Y. Yao
- DNA Replication Laboratory and Howard Hughes Medical Institute, The Rockefeller University, NY, New York, USA
| | - Roxana E. Georgescu
- DNA Replication Laboratory and Howard Hughes Medical Institute, The Rockefeller University, NY, New York, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Michael E. O’Donnell
- DNA Replication Laboratory and Howard Hughes Medical Institute, The Rockefeller University, NY, New York, USA
| |
Collapse
|
14
|
Kawasoe Y, Shimokawa S, Gillespie PJ, Blow JJ, Tsurimoto T, Takahashi TS. The Atad5 RFC-like complex is the major unloader of proliferating cell nuclear antigen in Xenopus egg extracts. J Biol Chem 2024; 300:105588. [PMID: 38141767 PMCID: PMC10827553 DOI: 10.1016/j.jbc.2023.105588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a homo-trimeric clamp complex that serves as the molecular hub for various DNA transactions, including DNA synthesis and post-replicative mismatch repair. Its timely loading and unloading are critical for genome stability. PCNA loading is catalyzed by Replication factor C (RFC) and the Ctf18 RFC-like complex (Ctf18-RLC), and its unloading is catalyzed by Atad5/Elg1-RLC. However, RFC, Ctf18-RLC, and even some subcomplexes of their shared subunits are capable of unloading PCNA in vitro, leaving an ambiguity in the division of labor in eukaryotic clamp dynamics. By using a system that specifically detects PCNA unloading, we show here that Atad5-RLC, which accounts for only approximately 3% of RFC/RLCs, nevertheless provides the major PCNA unloading activity in Xenopus egg extracts. RFC and Ctf18-RLC each account for approximately 40% of RFC/RLCs, while immunodepletion of neither Rfc1 nor Ctf18 detectably affects the rate of PCNA unloading in our system. PCNA unloading is dependent on the ATP-binding motif of Atad5, independent of nicks on DNA and chromatin assembly, and inhibited effectively by PCNA-interacting peptides. These results support a model in which Atad5-RLC preferentially unloads DNA-bound PCNA molecules that are free from their interactors.
Collapse
Affiliation(s)
| | - Sakiko Shimokawa
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Peter J Gillespie
- Division of Molecular, Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - J Julian Blow
- Division of Molecular, Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | | | | |
Collapse
|
15
|
Sallmyr A, Bhandari SK, Naila T, Tomkinson AE. Mammalian DNA ligases; roles in maintaining genome integrity. J Mol Biol 2024; 436:168276. [PMID: 37714297 PMCID: PMC10843057 DOI: 10.1016/j.jmb.2023.168276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
The joining of breaks in the DNA phosphodiester backbone is essential for genome integrity. Breaks are generated during normal processes such as DNA replication, cytosine demethylation during differentiation, gene rearrangement in the immune system and germ cell development. In addition, they are generated either directly by a DNA damaging agent or indirectly due to damage excision during repair. Breaks are joined by a DNA ligase that catalyzes phosphodiester bond formation at DNA nicks with 3' hydroxyl and 5' phosphate termini. Three human genes encode ATP-dependent DNA ligases. These enzymes have a conserved catalytic core consisting of three subdomains that encircle nicked duplex DNA during ligation. The DNA ligases are targeted to different nuclear DNA transactions by specific protein-protein interactions. Both DNA ligase IIIα and DNA ligase IV form stable complexes with DNA repair proteins, XRCC1 and XRCC4, respectively. There is functional redundancy between DNA ligase I and DNA ligase IIIα in DNA replication, excision repair and single-strand break repair. Although DNA ligase IV is a core component of the major double-strand break repair pathway, non-homologous end joining, the other enzymes participate in minor, alternative double-strand break repair pathways. In contrast to the nucleus, only DNA ligase IIIα is present in mitochondria and is essential for maintaining the mitochondrial genome. Human immunodeficiency syndromes caused by mutations in either LIG1 or LIG4 have been described. Preclinical studies with DNA ligase inhibitors have identified potentially targetable abnormalities in cancer cells and evidence that DNA ligases are potential targets for cancer therapy.
Collapse
Affiliation(s)
- Annahita Sallmyr
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Seema Khattri Bhandari
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Tasmin Naila
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Alan E Tomkinson
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States.
| |
Collapse
|
16
|
Abstract
Transcription and replication both require large macromolecular complexes to act on a DNA template, yet these machineries cannot simultaneously act on the same DNA sequence. Conflicts between the replication and transcription machineries (transcription-replication conflicts, or TRCs) are widespread in both prokaryotes and eukaryotes and have the capacity to both cause DNA damage and compromise complete, faithful replication of the genome. This review will highlight recent studies investigating the genomic locations of TRCs and the mechanisms by which they may be prevented, mitigated, or resolved. We address work from both model organisms and mammalian systems but predominantly focus on multicellular eukaryotes owing to the additional complexities inherent in the coordination of replication and transcription in the context of cell type-specific gene expression and higher-order chromatin organization.
Collapse
Affiliation(s)
- Liana Goehring
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA;
| | - Tony T Huang
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA;
| | - Duncan J Smith
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA;
| |
Collapse
|
17
|
Park SH, Kim N, Kang N, Ryu E, Lee EA, Ra JS, Gartner A, Kang S, Myung K, Lee KY. Short-range end resection requires ATAD5-mediated PCNA unloading for faithful homologous recombination. Nucleic Acids Res 2023; 51:10519-10535. [PMID: 37739427 PMCID: PMC10602867 DOI: 10.1093/nar/gkad776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
Homologous recombination (HR) requires bidirectional end resection initiated by a nick formed close to a DNA double-strand break (DSB), dysregulation favoring error-prone DNA end-joining pathways. Here we investigate the role of the ATAD5, a PCNA unloading protein, in short-range end resection, long-range resection not being affected by ATAD5 deficiency. Rapid PCNA loading onto DNA at DSB sites depends on the RFC PCNA loader complex and MRE11-RAD50-NBS1 nuclease complexes bound to CtIP. Based on our cytological analyses and on an in vitro system for short-range end resection, we propose that PCNA unloading by ATAD5 is required for the completion of short-range resection. Hampering PCNA unloading also leads to failure to remove the KU70/80 complex from the termini of DSBs hindering DNA repair synthesis and the completion of HR. In line with this model, ATAD5-depleted cells are defective for HR, show increased sensitivity to camptothecin, a drug forming protein-DNA adducts, and an augmented dependency on end-joining pathways. Our study highlights the importance of PCNA regulation at DSB for proper end resection and HR.
Collapse
Affiliation(s)
- Su Hyung Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Namwoo Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Nalae Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
| | - Eunjin Ryu
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Eun A Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
| | - Anton Gartner
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Kyoo-young Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
18
|
Riesco MF, Valcarce DG, Sellés-Egea A, Esteve-Codina A, Herráez MP, Robles V. miR-29a Is Downregulated in Progenies Derived from Chronically Stressed Males. Int J Mol Sci 2023; 24:14107. [PMID: 37762407 PMCID: PMC10531283 DOI: 10.3390/ijms241814107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Recent research has provided compelling evidence demonstrating that paternal exposure to different stressors can influence their offspring's phenotypes. We hypothesized that paternal stress can negatively impact the progeny, altering different miRs and triggering different physiological alterations that could compromise offspring development. To investigate this, we exposed zebrafish male siblings to a chronic stress protocol for 21 days. We performed RNA-sequencing (RNA-seq) analyses to identify differentially expressed small noncoding RNAs in 7-day postfertilization (dpf) larvae derived from paternally stressed males crossed with control females compared with the control progeny. We found a single miRNA differentially expressed-miR-29a-which was validated in larva and was also tested in the sperm, testicles, and brain of the stressed progenitors. We observed a vertical transmission of chronic stress to the unexposed larvae, reporting novel consequences of paternally inherited chronic stress at a molecular level. The deregulation of mi-R29a in those larvae could affect relevant biological processes affecting development, morphogenesis, or neurogenesis, among others. Additionally, these disruptions were associated with reduced rates of survival and hatching in the affected offspring.
Collapse
Affiliation(s)
- Marta F. Riesco
- INDEGSAL, Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - David G. Valcarce
- INDEGSAL, Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Alba Sellés-Egea
- INDEGSAL, Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Department of Medicine and Health Sciences, Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - María Paz Herráez
- INDEGSAL, Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Vanesa Robles
- INDEGSAL, Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
19
|
Wie M, Khim K, Groehler IV A, Heo S, Woo J, Son K, Lee E, Ra J, Hong S, Schärer O, Choi J, Myung K. Alkylation of nucleobases by 2-chloro- N,N-diethylethanamine hydrochloride (CDEAH) sensitizes PARP1-deficient tumors. NAR Cancer 2023; 5:zcad042. [PMID: 37554969 PMCID: PMC10405566 DOI: 10.1093/narcan/zcad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/16/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
Targeting BRCA1- and BRCA2-deficient tumors through synthetic lethality using poly(ADP-ribose) polymerase inhibitors (PARPi) has emerged as a successful strategy for cancer therapy. PARPi monotherapy has shown excellent efficacy and safety profiles in clinical practice but is limited by the need for tumor genome mutations in BRCA or other homologous recombination genes as well as the rapid emergence of resistance. In this study, we identified 2-chloro-N,N-diethylethanamine hydrochloride (CDEAH) as a small molecule that selectively kills PARP1- and xeroderma pigmentosum A-deficient cells. CDEAH is a monofunctional alkylating agent that preferentially alkylates guanine nucleobases, forming DNA adducts that can be removed from DNA by either a PARP1-dependent base excision repair or nucleotide excision repair. Treatment of PARP1-deficient cells leads to the formation of strand breaks, an accumulation of cells in S phase and activation of the DNA damage response. Furthermore, CDEAH selectively inhibits PARP1-deficient xenograft tumor growth compared to isogenic PARP1-proficient tumors. Collectively, we report the discovery of an alkylating agent inducing DNA damage that requires PARP1 activity for repair and acts synergistically with PARPi.
Collapse
Affiliation(s)
- Minwoo Wie
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Keon Woo Khim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Arnold S Groehler IV
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Soomin Heo
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Junhyeok Woo
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Kook Son
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Eun A Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Sung You Hong
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jang Hyun Choi
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
20
|
Jiang F, Hedaya OM, Khor E, Wu J, Auguste M, Yao P. RNA binding protein PRRC2B mediates translation of specific mRNAs and regulates cell cycle progression. Nucleic Acids Res 2023; 51:5831-5846. [PMID: 37125639 PMCID: PMC10287950 DOI: 10.1093/nar/gkad322] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/28/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023] Open
Abstract
Accumulating evidence suggests that posttranscriptional control of gene expression, including RNA splicing, transport, modification, translation and degradation, primarily relies on RNA binding proteins (RBPs). However, the functions of many RBPs remain understudied. Here, we characterized the function of a novel RBP, Proline-Rich Coiled-coil 2B (PRRC2B). Through photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation and sequencing (PAR-CLIP-seq), we identified transcriptome-wide CU- or GA-rich PRRC2B binding sites near the translation initiation codon on a specific cohort of mRNAs in HEK293T cells. These mRNAs, including oncogenes and cell cycle regulators such as CCND2 (cyclin D2), exhibited decreased translation upon PRRC2B knockdown as revealed by polysome-associated RNA-seq, resulting in reduced G1/S phase transition and cell proliferation. Antisense oligonucleotides blocking PRRC2B interactions with CCND2 mRNA decreased its translation, thus inhibiting G1/S transition and cell proliferation. Mechanistically, PRRC2B interactome analysis revealed RNA-independent interactions with eukaryotic translation initiation factors 3 (eIF3) and 4G2 (eIF4G2). The interaction with translation initiation factors is essential for PRRC2B function since the eIF3/eIF4G2-interacting defective mutant, unlike wild-type PRRC2B, failed to rescue the translation deficiency or cell proliferation inhibition caused by PRRC2B knockdown. Altogether, our findings reveal that PRRC2B is essential for efficiently translating specific proteins required for cell cycle progression and cell proliferation.
Collapse
Affiliation(s)
- Feng Jiang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Omar M Hedaya
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - EngSoon Khor
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Jiangbin Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Matthew Auguste
- Undergraduate Program in Biology and Medicine, Department of Biological Sciences: Molecular Genetics, University of Rochester, Rochester, NY 14642, USA
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
21
|
Magrino J, Munford V, Martins DJ, Homma TK, Page B, Gaubitz C, Freire BL, Lerario AM, Vilar JB, Amorin A, Leão EKE, Kok F, Menck CF, Jorge AA, Kelch BA. A thermosensitive PCNA allele underlies an ataxia-telangiectasia-like disorder. J Biol Chem 2023; 299:104656. [PMID: 36990216 PMCID: PMC10165274 DOI: 10.1016/j.jbc.2023.104656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/25/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a sliding clamp protein that coordinates DNA replication with various DNA maintenance events that are critical for human health. Recently, a hypomorphic homozygous serine to isoleucine (S228I) substitution in PCNA was described to underlie a rare DNA repair disorder known as PCNA-associated DNA repair disorder (PARD). PARD symptoms range from UV sensitivity, neurodegeneration, telangiectasia, and premature aging. We, and others, previously showed that the S228I variant changes the protein-binding pocket of PCNA to a conformation that impairs interactions with specific partners. Here, we report a second PCNA substitution (C148S) that also causes PARD. Unlike PCNA-S228I, PCNA-C148S has WT-like structure and affinity toward partners. In contrast, both disease-associated variants possess a thermostability defect. Furthermore, patient-derived cells homozygous for the C148S allele exhibit low levels of chromatin-bound PCNA and display temperature-dependent phenotypes. The stability defect of both PARD variants indicates that PCNA levels are likely an important driver of PARD disease. These results significantly advance our understanding of PARD and will likely stimulate additional work focused on clinical, diagnostic, and therapeutic aspects of this severe disease.
Collapse
Affiliation(s)
- Joseph Magrino
- Department of Biochemistry and Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Veridiana Munford
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Davi Jardim Martins
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thais K Homma
- Genetic Endocrinology Unit, Cellular and Molecular Endocrinology Laboratory LIM25, Endocrinology Discipline of the Faculty of Medicine of the University of São Paulo, São Paulo, Brazil; Developmental Endocrinology Unit, Laboratory of Hormones and Molecular Genetics LIM42, Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
| | - Brendan Page
- Department of Biochemistry and Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Christl Gaubitz
- Department of Biochemistry and Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Bruna L Freire
- Genetic Endocrinology Unit, Cellular and Molecular Endocrinology Laboratory LIM25, Endocrinology Discipline of the Faculty of Medicine of the University of São Paulo, São Paulo, Brazil; Developmental Endocrinology Unit, Laboratory of Hormones and Molecular Genetics LIM42, Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
| | - Antonio M Lerario
- Developmental Endocrinology Unit, Laboratory of Hormones and Molecular Genetics LIM42, Faculty of Medicine of the University of São Paulo, São Paulo, Brazil; Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Juliana Brandstetter Vilar
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Antonio Amorin
- Neurogenetics, Neurology Department, Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
| | - Emília K E Leão
- Medical Genetics Service of the Professor Edgard Santos University Hospital - Federal University of Bahia, Salvador, Brazil
| | - Fernando Kok
- Neurogenetics, Neurology Department, Faculty of Medicine of the University of São Paulo, São Paulo, Brazil; Mendelics Genomic Analysis, São Paulo, São Paulo, Brazil
| | - Carlos Fm Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexander Al Jorge
- Genetic Endocrinology Unit, Cellular and Molecular Endocrinology Laboratory LIM25, Endocrinology Discipline of the Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
| | - Brian A Kelch
- Department of Biochemistry and Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
22
|
Wang C, Chan DW, Hendrickson EA. Kinome-wide screening uncovers a role for Bromodomain Protein 3 in DNA double-stranded break repair. DNA Repair (Amst) 2023; 122:103445. [PMID: 36608404 PMCID: PMC10353298 DOI: 10.1016/j.dnarep.2022.103445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Double-stranded breaks (DSBs) are toxic DNA damage and a serious threat to genomic integrity. Thus, all living organisms have evolved multiple mechanisms of DNA DSB repair, the two principal ones being classical-non homologous end joining (C-NHEJ), and homology dependent recombination (HDR). In mammals, C-NHEJ is the predominate DSB repair pathway, but how a cell chooses to repair a particular DSB by a certain pathway is still not mechanistically clear. To uncover novel regulators of DSB repair pathway choice, we performed a kinome-wide screen in a human cell line engineered to express a dominant-negative C-NHEJ factor. The intellectual basis for such a screen was our hypothesis that a C-NHEJ-crippled cell line might need to upregulate other DSB repair pathways, including HDR, in order to survive. This screen identified Bromodomain-containing Protein 3 (BRD3) as a protein whose expression was almost completely ablated specifically in a C-NHEJ-defective cell line. Subsequent experimentation demonstrated that BRD3 is a negative regulator of HDR as BRD3-null cell lines proved to be hyper-recombinogenic for gene conversion, sister chromatid exchanges and gene targeting. Mechanistically, BRD3 appears to be working at the level of Radiation Sensitive 51 (RAD51) recruitment. Overall, our results demonstrate that BRD3 is a novel regulator of human DSB repair pathway choice.
Collapse
Affiliation(s)
- Chen Wang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Doug W Chan
- Department of Systems Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, 77030
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
23
|
Ratnayeke N, Baris Y, Chung M, Yeeles JTP, Meyer T. CDT1 inhibits CMG helicase in early S phase to separate origin licensing from DNA synthesis. Mol Cell 2023; 83:26-42.e13. [PMID: 36608667 DOI: 10.1016/j.molcel.2022.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/16/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023]
Abstract
Human cells license tens of thousands of origins of replication in G1 and then must stop all licensing before DNA synthesis in S phase to prevent re-replication and genome instability that ensue when an origin is licensed on replicated DNA. However, the E3 ubiquitin ligase CRL4Cdt2 only starts to degrade the licensing factor CDT1 after origin firing, raising the question of how cells prevent re-replication before CDT1 is fully degraded. Here, using quantitative microscopy and in-vitro-reconstituted human DNA replication, we show that CDT1 inhibits DNA synthesis during an overlap period when CDT1 is still present after origin firing. CDT1 inhibits DNA synthesis by suppressing CMG helicase at replication forks, and DNA synthesis commences once CDT1 is degraded. Thus, in contrast to the prevailing model that human cells prevent re-replication by strictly separating licensing from firing, licensing and firing overlap, and cells instead separate licensing from DNA synthesis.
Collapse
Affiliation(s)
- Nalin Ratnayeke
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Yasemin Baris
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, UK
| | - Mingyu Chung
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph T P Yeeles
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, UK
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
24
|
Miyashita R, Nishiyama A, Qin W, Chiba Y, Kori S, Kato N, Konishi C, Kumamoto S, Kozuka-Hata H, Oyama M, Kawasoe Y, Tsurimoto T, Takahashi TS, Leonhardt H, Arita K, Nakanishi M. The termination of UHRF1-dependent PAF15 ubiquitin signaling is regulated by USP7 and ATAD5. eLife 2023; 12:79013. [PMID: 36734974 PMCID: PMC9943068 DOI: 10.7554/elife.79013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 02/02/2023] [Indexed: 02/04/2023] Open
Abstract
UHRF1-dependent ubiquitin signaling plays an integral role in the regulation of maintenance DNA methylation. UHRF1 catalyzes transient dual mono-ubiquitylation of PAF15 (PAF15Ub2), which regulates the localization and activation of DNMT1 at DNA methylation sites during DNA replication. Although the initiation of UHRF1-mediated PAF15 ubiquitin signaling has been relatively well characterized, the mechanisms underlying its termination and how they are coordinated with the completion of maintenance DNA methylation have not yet been clarified. This study shows that deubiquitylation by USP7 and unloading by ATAD5 (ELG1 in yeast) are pivotal processes for the removal of PAF15 from chromatin. On replicating chromatin, USP7 specifically interacts with PAF15Ub2 in a complex with DNMT1. USP7 depletion or inhibition of the interaction between USP7 and PAF15 results in abnormal accumulation of PAF15Ub2 on chromatin. Furthermore, we also find that the non-ubiquitylated form of PAF15 (PAF15Ub0) is removed from chromatin in an ATAD5-dependent manner. PAF15Ub2 was retained at high levels on chromatin when the catalytic activity of DNMT1 was inhibited, suggesting that the completion of maintenance DNA methylation is essential for the termination of UHRF1-mediated ubiquitin signaling. This finding provides a molecular understanding of how the maintenance DNA methylation machinery is disassembled at the end of the S phase.
Collapse
Affiliation(s)
- Ryota Miyashita
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of TokyoTokyoJapan
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of TokyoTokyoJapan
| | - Weihua Qin
- Faculty of Biology, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Yoshie Chiba
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of TokyoTokyoJapan
| | - Satomi Kori
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City UniversityYokohamaJapan
| | - Norie Kato
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City UniversityYokohamaJapan
| | - Chieko Konishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of TokyoTokyoJapan
| | - Soichiro Kumamoto
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of TokyoTokyoJapan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of TokyoTokyoJapan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of TokyoTokyoJapan
| | - Yoshitaka Kawasoe
- Laboratory of Chromosome Biology, Department of Biology, Faculty of Science, Kyushu UniversityFukuokaJapan
| | - Toshiki Tsurimoto
- Laboratory of Chromosome Biology, Department of Biology, Faculty of Science, Kyushu UniversityFukuokaJapan
| | - Tatsuro S Takahashi
- Laboratory of Chromosome Biology, Department of Biology, Faculty of Science, Kyushu UniversityFukuokaJapan
| | | | - Kyohei Arita
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City UniversityYokohamaJapan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of TokyoTokyoJapan
| |
Collapse
|
25
|
Kim S, Kim Y, Kim Y, Yoon S, Lee KY, Lee Y, Kang S, Myung K, Oh CK. PCNA Ser46-Leu47 residues are crucial in preserving genomic integrity. PLoS One 2023; 18:e0285337. [PMID: 37205694 DOI: 10.1371/journal.pone.0285337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a maestro of DNA replication. PCNA forms a homotrimer and interacts with various proteins, such as DNA polymerases, DNA ligase I (LIG1), and flap endonuclease 1 (FEN1) for faithful DNA replication. Here, we identify the crucial role of Ser46-Leu47 residues of PCNA in maintaining genomic integrity using in vitro, and cell-based assays and structural prediction. The predicted PCNAΔSL47 structure shows the potential distortion of the central loop and reduced hydrophobicity. PCNAΔSL47 shows a defective interaction with PCNAWT leading to defects in homo-trimerization in vitro. PCNAΔSL47 is defective in the FEN1 and LIG1 interaction. PCNA ubiquitination and DNA-RNA hybrid processing are defective in PCNAΔSL47-expressing cells. Accordingly, PCNAΔSL47-expressing cells exhibit an increased number of single-stranded DNA gaps and higher levels of γH2AX, and sensitivity to DNA-damaging agents, highlighting the importance of PCNA Ser46-Leu47 residues in maintaining genomic integrity.
Collapse
Affiliation(s)
- Sangin Kim
- Institute for Basic Science, Center for Genomic Integrity, Ulsan, Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, College of Information-Bio Convergence Engineering, Ulsan, Korea
| | - Yeongjae Kim
- Institute for Basic Science, Center for Genomic Integrity, Ulsan, Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, College of Information-Bio Convergence Engineering, Ulsan, Korea
| | - Youyoung Kim
- Institute for Basic Science, Center for Genomic Integrity, Ulsan, Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, College of Information-Bio Convergence Engineering, Ulsan, Korea
| | - Suhyeon Yoon
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Integrated Data Sciences Section, Research Technologies Branch, Bethesda, MD, United States of America
| | - Kyoo-Young Lee
- Institute for Basic Science, Center for Genomic Integrity, Ulsan, Korea
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Korea
| | - Yoonsung Lee
- Clinical Research Institute, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sukhyun Kang
- Institute for Basic Science, Center for Genomic Integrity, Ulsan, Korea
| | - Kyungjae Myung
- Institute for Basic Science, Center for Genomic Integrity, Ulsan, Korea
- Ulsan National Institute of Science and Technology, Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan, Korea
| | - Chang-Kyu Oh
- Department of Biochemistry, Pusan National University, School of Medicine, Yangsan, Korea
| |
Collapse
|
26
|
Thakar T, Dhoonmoon A, Straka J, Schleicher EM, Nicolae CM, Moldovan GL. Lagging strand gap suppression connects BRCA-mediated fork protection to nucleosome assembly through PCNA-dependent CAF-1 recycling. Nat Commun 2022; 13:5323. [PMID: 36085347 PMCID: PMC9463168 DOI: 10.1038/s41467-022-33028-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
The inability to protect stalled replication forks from nucleolytic degradation drives genome instability and underlies chemosensitivity in BRCA-deficient tumors. An emerging hallmark of BRCA-deficiency is the inability to suppress replication-associated single-stranded DNA (ssDNA) gaps. Here, we report that lagging strand ssDNA gaps interfere with the ASF1-CAF-1 nucleosome assembly pathway, and drive fork degradation in BRCA-deficient cells. We show that CAF-1 function at replication forks is lost in BRCA-deficient cells, due to defects in its recycling during replication stress. This CAF-1 recycling defect is caused by lagging strand gaps which preclude PCNA unloading, causing sequestration of PCNA-CAF-1 complexes on chromatin. Importantly, correcting PCNA unloading defects in BRCA-deficient cells restores CAF-1-dependent fork stability. We further show that the activation of a HIRA-dependent compensatory histone deposition pathway restores fork stability to BRCA-deficient cells. We thus define lagging strand gap suppression and nucleosome assembly as critical enablers of BRCA-mediated fork stability. Efficient DNA replication is crucial for genome stability. Here, Thakar et al. report that accumulation of lagging strand ssDNA gaps during replication interferes with nucleosome assembly and drives replication fork degradation in BRCA-deficient cells.
Collapse
Affiliation(s)
- Tanay Thakar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Ashna Dhoonmoon
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Joshua Straka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Emily M Schleicher
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
27
|
He R, Zhang Z. Rad53 arrests leading and lagging strand DNA synthesis via distinct mechanisms in response to DNA replication stress. Bioessays 2022; 44:e2200061. [PMID: 35778827 DOI: 10.1002/bies.202200061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 12/18/2022]
Abstract
DNA replication stress threatens ordinary DNA synthesis. The evolutionarily conserved DNA replication stress response pathway involves sensor kinase Mec1/ATR, adaptor protein Mrc1/Claspin, and effector kinase Rad53/Chk1, which spurs a host of changes to stabilize replication forks and maintain genome integrity. DNA replication forks consist of largely distinct sets of proteins at leading and lagging strands that function autonomously in DNA synthesis in vitro. In this article, we discuss eSPAN and BrdU-IP-ssSeq, strand-specific sequencing technologies that permit analysis of protein localization and DNA synthesis at individual strands in budding yeast. Using these approaches, we show that under replication stress Rad53 stalls DNA synthesis on both leading and lagging strands. On lagging strands, it stimulates PCNA unloading, and on leading strands, it attenuates the replication function of Mrc1-Tof1. We propose that in doing so, Rad53 couples leading and lagging strand DNA synthesis during replication stress, thereby preventing the emergence of harmful ssDNA.
Collapse
Affiliation(s)
- Richard He
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, USA.,Department of Pediatrics, Columbia University Medical Center, New York, New York, USA.,Department of Genetics and Development, Columbia University Medical Center, New York, New York, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, USA.,Department of Pediatrics, Columbia University Medical Center, New York, New York, USA.,Department of Genetics and Development, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
28
|
Ticli G, Cazzalini O, Stivala LA, Prosperi E. Revisiting the Function of p21CDKN1A in DNA Repair: The Influence of Protein Interactions and Stability. Int J Mol Sci 2022; 23:ijms23137058. [PMID: 35806061 PMCID: PMC9267019 DOI: 10.3390/ijms23137058] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
The p21CDKN1A protein is an important player in the maintenance of genome stability through its function as a cyclin-dependent kinase inhibitor, leading to cell-cycle arrest after genotoxic damage. In the DNA damage response, p21 interacts with specific proteins to integrate cell-cycle arrest with processes such as transcription, apoptosis, DNA repair, and cell motility. By associating with Proliferating Cell Nuclear Antigen (PCNA), the master of DNA replication, p21 is able to inhibit DNA synthesis. However, to avoid conflicts with this process, p21 protein levels are finely regulated by pathways of proteasomal degradation during the S phase, and in all the phases of the cell cycle, after DNA damage. Several lines of evidence have indicated that p21 is required for the efficient repair of different types of genotoxic lesions and, more recently, that p21 regulates DNA replication fork speed. Therefore, whether p21 is an inhibitor, or rather a regulator, of DNA replication and repair needs to be re-evaluated in light of these findings. In this review, we will discuss the lines of evidence describing how p21 is involved in DNA repair and will focus on the influence of protein interactions and p21 stability on the efficiency of DNA repair mechanisms.
Collapse
Affiliation(s)
- Giulio Ticli
- Istituto di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy;
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Ornella Cazzalini
- Dipartimento di Medicina Molecolare, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy; (O.C.); (L.A.S.)
| | - Lucia A. Stivala
- Dipartimento di Medicina Molecolare, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy; (O.C.); (L.A.S.)
| | - Ennio Prosperi
- Istituto di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy;
- Correspondence: ; Tel.: +39-0382-986267
| |
Collapse
|
29
|
Post-Translational Modifications of PCNA: Guiding for the Best DNA Damage Tolerance Choice. J Fungi (Basel) 2022; 8:jof8060621. [PMID: 35736104 PMCID: PMC9225081 DOI: 10.3390/jof8060621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
The sliding clamp PCNA is a multifunctional homotrimer mainly linked to DNA replication. During this process, cells must ensure an accurate and complete genome replication when constantly challenged by the presence of DNA lesions. Post-translational modifications of PCNA play a crucial role in channeling DNA damage tolerance (DDT) and repair mechanisms to bypass unrepaired lesions and promote optimal fork replication restart. PCNA ubiquitination processes trigger the following two main DDT sub-pathways: Rad6/Rad18-dependent PCNA monoubiquitination and Ubc13-Mms2/Rad5-mediated PCNA polyubiquitination, promoting error-prone translation synthesis (TLS) or error-free template switch (TS) pathways, respectively. However, the fork protection mechanism leading to TS during fork reversal is still poorly understood. In contrast, PCNA sumoylation impedes the homologous recombination (HR)-mediated salvage recombination (SR) repair pathway. Focusing on Saccharomyces cerevisiae budding yeast, we summarized PCNA related-DDT and repair mechanisms that coordinately sustain genome stability and cell survival. In addition, we compared PCNA sequences from various fungal pathogens, considering recent advances in structural features. Importantly, the identification of PCNA epitopes may lead to potential fungal targets for antifungal drug development.
Collapse
|
30
|
Ryu E, Ha NY, Jung W, Yoo J, Myung K, Kang S. Distinct Motifs in ATAD5 C-Terminal Domain Modulate PCNA Unloading Process. Cells 2022; 11:cells11111832. [PMID: 35681528 PMCID: PMC9180478 DOI: 10.3390/cells11111832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/10/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a DNA clamp that functions in key roles for DNA replication and repair. After the completion of DNA synthesis, PCNA should be unloaded from DNA in a timely way. The ATAD5-RFC-Like Complex (ATAD5-RLC) unloads PCNA from DNA. However, the mechanism of the PCNA-unloading process remains unclear. In this study, we determined the minimal PCNA-unloading domain (ULD) of ATAD5. We identified several motifs in the ATAD5 ULD that are essential in the PCNA-unloading process. The C-terminus of ULD is required for the stable association of RFC2-5 for active RLC formation. The N-terminus of ULD participates in the opening of the PCNA ring. ATAD5-RLC was more robustly bound to open-liable PCNA compared to the wild type. These results suggest that distinct motifs of the ATAD5 ULD participate in each step of the PCNA-unloading process.
Collapse
Affiliation(s)
- Eunjin Ryu
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea; (E.R.); (N.Y.H.); (W.J.); (J.Y.); (K.M.)
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Na Young Ha
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea; (E.R.); (N.Y.H.); (W.J.); (J.Y.); (K.M.)
| | - Woojae Jung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea; (E.R.); (N.Y.H.); (W.J.); (J.Y.); (K.M.)
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Juyeong Yoo
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea; (E.R.); (N.Y.H.); (W.J.); (J.Y.); (K.M.)
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea; (E.R.); (N.Y.H.); (W.J.); (J.Y.); (K.M.)
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea; (E.R.); (N.Y.H.); (W.J.); (J.Y.); (K.M.)
- Correspondence:
| |
Collapse
|
31
|
Lee SG, Kim N, Park IB, Park JH, Myung K. Tissue-specific DNA damage response in Mouse Whole-body irradiation. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00195-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
Background
Genomic instability is a hallmark of various cancers, and DNA repair is an essential process for maintaining genomic integrity. Mammalian cells have developed various DNA repair mechanisms in response to DNA damage. Compared to the cellular response to DNA damage, the in vivo DNA damage response (DDR) of specific tissues has not been studied extensively.
Objective
In this study, mice were exposed to whole-body gamma (γ)-irradiation to evaluate the specific DDR of various tissues. We treated male C57BL6/J mice with γ-irradiation at different doses, and the DDR protein levels in different tissues were analyzed.
Results
The level of gamma-H2A histone family member X (γH2AX) increased in most organs after exposure to γ-irradiation. In particular, the liver, lung, and kidney tissues showed higher γH2AX induction upon DNA damage, compared to that in the brain, muscle, and testis tissues. RAD51 was highly expressed in the testis, irrespective of irradiation. The levels of proliferating cell nuclear antigen (PCNA) and ubiquitinated PCNA increased in lung tissues upon irradiation, suggesting that the post-replication repair may mainly operate in the lungs in response to γ-irradiation.
Conclusion
These results suggest that each tissue has a preferable repair mechanism in response to γ-irradiation. Therefore, the understanding and application of tissue-specific DNA damage responses could improve the clinical approach of radiotherapy for treating specific cancers.
Collapse
|
32
|
Park SH, Kim Y, Ra JS, Wie MW, Kang MS, Kang S, Myung K, Lee KY. Timely termination of repair DNA synthesis by ATAD5 is important in oxidative DNA damage-induced single-strand break repair. Nucleic Acids Res 2021; 49:11746-11764. [PMID: 34718749 PMCID: PMC8599757 DOI: 10.1093/nar/gkab999] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) generate oxidized bases and single-strand breaks (SSBs), which are fixed by base excision repair (BER) and SSB repair (SSBR), respectively. Although excision and repair of damaged bases have been extensively studied, the function of the sliding clamp, proliferating cell nuclear antigen (PCNA), including loading/unloading, remains unclear. We report that, in addition to PCNA loading by replication factor complex C (RFC), timely PCNA unloading by the ATPase family AAA domain-containing protein 5 (ATAD5)-RFC-like complex is important for the repair of ROS-induced SSBs. We found that PCNA was loaded at hydrogen peroxide (H2O2)-generated direct SSBs after the 3'-terminus was converted to the hydroxyl moiety by end-processing enzymes. However, PCNA loading rarely occurred during BER of oxidized or alkylated bases. ATAD5-depleted cells were sensitive to acute H2O2 treatment but not methyl methanesulfonate treatment. Unexpectedly, when PCNA remained on DNA as a result of ATAD5 depletion, H2O2-induced repair DNA synthesis increased in cancerous and normal cells. Based on higher H2O2-induced DNA breakage and SSBR protein enrichment by ATAD5 depletion, we propose that extended repair DNA synthesis increases the likelihood of DNA polymerase stalling, shown by increased PCNA monoubiquitination, and consequently, harmful nick structures are more frequent.
Collapse
Affiliation(s)
- Su Hyung Park
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Youyoung Kim
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea.,Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Min Woo Wie
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea.,Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Mi-Sun Kang
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea.,Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyoo-Young Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| |
Collapse
|
33
|
Park SH, Kim SJ, Myung K, Lee KY. Characterization of subcellular localization of eukaryotic clamp loader/unloader and its regulatory mechanism. Sci Rep 2021; 11:21817. [PMID: 34751190 PMCID: PMC8575788 DOI: 10.1038/s41598-021-01336-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) plays a critical role as a processivity clamp for eukaryotic DNA polymerases and a binding platform for many DNA replication and repair proteins. The enzymatic activities of PCNA loading and unloading have been studied extensively in vitro. However, the subcellular locations of PCNA loaders, replication complex C (RFC) and CTF18-RFC-like-complex (RLC), and PCNA unloader ATAD5-RLC remain elusive, and the role of their subunits RFC2-5 is unknown. Here we used protein fractionation to determine the subcellular localization of RFC and RLCs and affinity purification to find molecular requirements for the newly defined location. All RFC/RLC proteins were detected in the nuclease-resistant pellet fraction. RFC1 and ATAD5 were not detected in the non-ionic detergent-soluble and nuclease-susceptible chromatin fractions, independent of cell cycle or exogenous DNA damage. We found that small RFC proteins contribute to maintaining protein levels of the RFC/RLCs. RFC1, ATAD5, and RFC4 co-immunoprecipitated with lamina-associated polypeptide 2 (LAP2) α which regulates intranuclear lamin A/C. LAP2α knockout consistently reduced detection of RFC/RLCs in the pellet fraction, while marginally affecting total protein levels. Our findings strongly suggest that PCNA-mediated DNA transaction occurs through regulatory machinery associated with nuclear structures, such as the nuclear matrix.
Collapse
Affiliation(s)
- Su Hyung Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Korea
| | - Seong-Jung Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Korea.,Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Korea.,Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Kyoo-Young Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Korea.
| |
Collapse
|
34
|
Lee SY, Kim JJ, Miller KM. Bromodomain proteins: protectors against endogenous DNA damage and facilitators of genome integrity. Exp Mol Med 2021; 53:1268-1277. [PMID: 34548613 PMCID: PMC8492697 DOI: 10.1038/s12276-021-00673-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022] Open
Abstract
Endogenous DNA damage is a major contributor to mutations, which are drivers of cancer development. Bromodomain (BRD) proteins are well-established participants in chromatin-based DNA damage response (DDR) pathways, which maintain genome integrity from cell-intrinsic and extrinsic DNA-damaging sources. BRD proteins are most well-studied as regulators of transcription, but emerging evidence has revealed their importance in other DNA-templated processes, including DNA repair and replication. How BRD proteins mechanistically protect cells from endogenous DNA damage through their participation in these pathways remains an active area of investigation. Here, we review several recent studies establishing BRD proteins as key influencers of endogenous DNA damage, including DNA–RNA hybrid (R-loops) formation during transcription and participation in replication stress responses. As endogenous DNA damage is known to contribute to several human diseases, including neurodegeneration, immunodeficiencies, cancer, and aging, the ability of BRD proteins to suppress DNA damage and mutations is likely to provide new insights into the involvement of BRD proteins in these diseases. Although many studies have focused on BRD proteins in transcription, evidence indicates that BRD proteins have emergent functions in DNA repair and genome stability and are participants in the etiology and treatment of diseases involving endogenous DNA damage. Bromodomain (BRD) proteins, known to regulate gene expression, switching particular genes on and off, also play key roles in repairing DNA damage, and studying them may help identify treatments for various diseases, including cancer. DNA damage can occur during normal cellular metabolism, for example, during copying DNA and gene expression. DNA damage is implicated in tumor formation as well as in neurodegeneration, immunodeficiency, and aging. Seo Yun Lee and colleagues at The University of Texas at Austin, USA, have reviewed new results showing how BRD proteins function in repairing DNA damage. They report that when DNA is damaged during copying in BRD-deficient cells, tumors can result. They also report that defects in BRD proteins are often present in cancers. Studying how BRD proteins function in both healthy and diseased cells could help to identify new therapies.
Collapse
Affiliation(s)
- Seo Yun Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jae Jin Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA. .,Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, Korea.
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA. .,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
35
|
Stromberg BR, Singh M, Torres AE, Burrows AC, Pal D, Insinna C, Rhee Y, Dickson AS, Westlake CJ, Summers MK. The deubiquitinating enzyme USP37 enhances CHK1 activity to promote the cellular response to replication stress. J Biol Chem 2021; 297:101184. [PMID: 34509474 PMCID: PMC8487067 DOI: 10.1016/j.jbc.2021.101184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/29/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
The deubiquitinating enzyme USP37 is known to contribute to timely onset of S phase and progression of mitosis. However, it is not clear if USP37 is required beyond S-phase entry despite expression and activity of USP37 peaking within S phase. We have utilized flow cytometry and microscopy to analyze populations of replicating cells labeled with thymidine analogs and monitored mitotic entry in synchronized cells to determine that USP37-depleted cells exhibited altered S-phase kinetics. Further analysis revealed that cells depleted of USP37 harbored increased levels of the replication stress and DNA damage markers γH2AX and 53BP1 in response to perturbed replication. Depletion of USP37 also reduced cellular proliferation and led to increased sensitivity to agents that induce replication stress. Underlying the increased sensitivity, we found that the checkpoint kinase 1 is destabilized in the absence of USP37, attenuating its function. We further demonstrated that USP37 deubiquitinates checkpoint kinase 1, promoting its stability. Together, our results establish that USP37 is required beyond S-phase entry to promote the efficiency and fidelity of replication. These data further define the role of USP37 in the regulation of cell proliferation and contribute to an evolving understanding of USP37 as a multifaceted regulator of genome stability.
Collapse
Affiliation(s)
- Benjamin R Stromberg
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Mayank Singh
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Adrian E Torres
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Amy C Burrows
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Debjani Pal
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Christine Insinna
- NCI-Frederick National Laboratory, Laboratory of Cellular and Developmental Signaling, Frederick, Maryland, USA
| | - Yosup Rhee
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Andrew S Dickson
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christopher J Westlake
- NCI-Frederick National Laboratory, Laboratory of Cellular and Developmental Signaling, Frederick, Maryland, USA
| | - Matthew K Summers
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
36
|
Huang JH, Liao YR, Lin TC, Tsai CH, Lai WY, Chou YK, Leu JY, Tsai HK, Kao CF. iTARGEX analysis of yeast deletome reveals novel regulators of transcriptional buffering in S phase and protein turnover. Nucleic Acids Res 2021; 49:7318-7329. [PMID: 34197604 PMCID: PMC8287957 DOI: 10.1093/nar/gkab555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/12/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Integrating omics data with quantification of biological traits provides unparalleled opportunities for discovery of genetic regulators by in silico inference. However, current approaches to analyze genetic-perturbation screens are limited by their reliance on annotation libraries for prioritization of hits and subsequent targeted experimentation. Here, we present iTARGEX (identification of Trait-Associated Regulatory Genes via mixture regression using EXpectation maximization), an association framework with no requirement of a priori knowledge of gene function. After creating this tool, we used it to test associations between gene expression profiles and two biological traits in single-gene deletion budding yeast mutants, including transcription homeostasis during S phase and global protein turnover. For each trait, we discovered novel regulators without prior functional annotations. The functional effects of the novel candidates were then validated experimentally, providing solid evidence for their roles in the respective traits. Hence, we conclude that iTARGEX can reliably identify novel factors involved in given biological traits. As such, it is capable of converting genome-wide observations into causal gene function predictions. Further application of iTARGEX in other contexts is expected to facilitate the discovery of new regulators and provide observations for novel mechanistic hypotheses regarding different biological traits and phenotypes.
Collapse
Affiliation(s)
- Jia-Hsin Huang
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - You-Rou Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Tzu-Chieh Lin
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Cheng-Hung Tsai
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Wei-Yun Lai
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Yang-Kai Chou
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Huai-Kuang Tsai
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
37
|
Lalonde M, Trauner M, Werner M, Hamperl S. Consequences and Resolution of Transcription-Replication Conflicts. Life (Basel) 2021; 11:life11070637. [PMID: 34209204 PMCID: PMC8303131 DOI: 10.3390/life11070637] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022] Open
Abstract
Transcription–replication conflicts occur when the two critical cellular machineries responsible for gene expression and genome duplication collide with each other on the same genomic location. Although both prokaryotic and eukaryotic cells have evolved multiple mechanisms to coordinate these processes on individual chromosomes, it is now clear that conflicts can arise due to aberrant transcription regulation and premature proliferation, leading to DNA replication stress and genomic instability. As both are considered hallmarks of aging and human diseases such as cancer, understanding the cellular consequences of conflicts is of paramount importance. In this article, we summarize our current knowledge on where and when collisions occur and how these encounters affect the genome and chromatin landscape of cells. Finally, we conclude with the different cellular pathways and multiple mechanisms that cells have put in place at conflict sites to ensure the resolution of conflicts and accurate genome duplication.
Collapse
|
38
|
Lo CSY, van Toorn M, Gaggioli V, Paes Dias M, Zhu Y, Manolika EM, Zhao W, van der Does M, Mukherjee C, G S C Souto Gonçalves J, van Royen ME, French PJ, Demmers J, Smal I, Lans H, Wheeler D, Jonkers J, Chaudhuri AR, Marteijn JA, Taneja N. SMARCAD1-mediated active replication fork stability maintains genome integrity. SCIENCE ADVANCES 2021; 7:7/19/eabe7804. [PMID: 33952518 PMCID: PMC8099181 DOI: 10.1126/sciadv.abe7804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/16/2021] [Indexed: 05/17/2023]
Abstract
The stalled fork protection pathway mediated by breast cancer 1/2 (BRCA1/2) proteins is critical for replication fork stability. However, it is unclear whether additional mechanisms are required to maintain replication fork stability. We describe a hitherto unknown mechanism, by which the SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily-A containing DEAD/H box-1 (SMARCAD1) stabilizes active replication forks, that is essential to maintaining resistance towards replication poisons. We find that SMARCAD1 prevents accumulation of 53BP1-associated nucleosomes to preclude toxic enrichment of 53BP1 at the forks. In the absence of SMARCAD1, 53BP1 mediates untimely dissociation of PCNA via the PCNA-unloader ATAD5, causing frequent fork stalling, inefficient fork restart, and accumulation of single-stranded DNA. Although loss of 53BP1 in SMARCAD1 mutants rescues these defects and restores genome stability, this rescued stabilization also requires BRCA1-mediated fork protection. Notably, fork protection-challenged BRCA1-deficient naïve- or chemoresistant tumors require SMARCAD1-mediated active fork stabilization to maintain unperturbed fork progression and cellular proliferation.
Collapse
Affiliation(s)
- Calvin Shun Yu Lo
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Marvin van Toorn
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
- Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Vincent Gaggioli
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Mariana Paes Dias
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands
| | - Yifan Zhu
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Eleni Maria Manolika
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Wei Zhao
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Marit van der Does
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Chirantani Mukherjee
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - João G S C Souto Gonçalves
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Martin E van Royen
- Department of Pathology, Cancer Treatment Screening Facility (CTSF), Erasmus Optical Imaging Centre (OIC), Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, Netherlands
| | - Pim J French
- Department of Neurology and Cancer Treatment Screening Facility (CTSF), Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Jeroen Demmers
- Proteomics Center and Department of Biochemistry, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, Netherlands
| | - Ihor Smal
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands
| | - Arnab Ray Chaudhuri
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
- Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Nitika Taneja
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands.
| |
Collapse
|
39
|
Liu G, Kang X, Guo P, Shang Y, Du R, Wang X, Chen L, Yue R, Kong F. miR-25-3p promotes proliferation and inhibits autophagy of renal cells in polycystic kidney mice by regulating ATG14-Beclin 1. Ren Fail 2021; 42:333-342. [PMID: 32340512 PMCID: PMC7241494 DOI: 10.1080/0886022x.2020.1745236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are involved in the regulation of the autophagy and proliferation in several diseases. This study aims to verify the role of miR-25-3p in the proliferation and autophagy of renal cells in polycystic kidney disease (PKD). We found that kidney to body weight and blood urea content were increased in PKD mice. Cystic dilations were increased in kidney tissue from PKD mice, and autophagy-related protein ULK1 and the ratio of LC3-II/LC3-I were decreased, indicating autophagy was inhibited in PKD mice. In addition, miR-25-3p was upregulated in PKD mice, and inhibition of miR-25-3p decreased cystic dilations in kidney tissues, increased ULK1 expression and the ratio of LC3-II/LC3-I, indicating inhibition of miR-25-3p enhanced the autophagy in PKD. Besides, inhibition of miR-25-3p suppressed the proliferation of renal cells and downregulated E2F-1 and PCNA expressions. Importantly, miR-25-3p targetedly suppressed ATG14 expression in PKD cells. Finally, silencing ATG14 abolished the inhibition effect of miR-25-3p inhibitor on renal cell proliferation, and reversed the inhibition effect of miR-25-3p inhibitor on E2F-1 and PCNA expressions in in vitro and in vivo experiments, which suggested that ATG14 was involved in the regulation of miR-25-3p-mediated kidney cell proliferation. Therefore, inhibition of miR-25-3p promoted cell autophagy and suppressed cell proliferation in PKD mice through regulating ATG14.
Collapse
Affiliation(s)
- Guojian Liu
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Xiaowen Kang
- Department of Respiration, The Second Affiliated Hospital of Harbin Medical, University, Harbin, Heilongjiang, People's Republic of China
| | - Ping Guo
- Laboratory Department, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang, People's Republic of China
| | - Yu Shang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Ruomei Du
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Xiyue Wang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Liting Chen
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Rui Yue
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Fanwu Kong
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
40
|
Lee KY, Park SH. Eukaryotic clamp loaders and unloaders in the maintenance of genome stability. Exp Mol Med 2020; 52:1948-1958. [PMID: 33339954 PMCID: PMC8080817 DOI: 10.1038/s12276-020-00533-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic sliding clamp proliferating cell nuclear antigen (PCNA) plays a critical role as a processivity factor for DNA polymerases and as a binding and acting platform for many proteins. The ring-shaped PCNA homotrimer and the DNA damage checkpoint clamp 9-1-1 are loaded onto DNA by clamp loaders. PCNA can be loaded by the pentameric replication factor C (RFC) complex and the CTF18-RFC-like complex (RLC) in vitro. In cells, each complex loads PCNA for different purposes; RFC-loaded PCNA is essential for DNA replication, while CTF18-RLC-loaded PCNA participates in cohesion establishment and checkpoint activation. After completing its tasks, PCNA is unloaded by ATAD5 (Elg1 in yeast)-RLC. The 9-1-1 clamp is loaded at DNA damage sites by RAD17 (Rad24 in yeast)-RLC. All five RFC complex components, but none of the three large subunits of RLC, CTF18, ATAD5, or RAD17, are essential for cell survival; however, deficiency of the three RLC proteins leads to genomic instability. In this review, we describe recent findings that contribute to the understanding of the basic roles of the RFC complex and RLCs and how genomic instability due to deficiency of the three RLCs is linked to the molecular and cellular activity of RLC, particularly focusing on ATAD5 (Elg1). The attachment and removal of clamp proteins that encircle DNA as it is copied and assist its replication and maintenance is mediated by DNA clamp loader and unloader proteins; defects in loading and unloading can increase the rate of damaging mutations. Kyoo-young Lee and Su Hyung Park at the Institute for Basic Science in Ulsan, South Korea, review current understanding of the activity of clamp loading and unloading proteins. They examine research on the proteins in eukaryotic cells, those containing a cell nucleus, making their discussion relevant to understanding the stability of the human genome. They focus particular attention on a protein called ATAD5, which is involved in unloading the clamp proteins. Deficiencies in ATAD5 function have been implicated in genetic instability that might lead to several different types of cancer.
Collapse
Affiliation(s)
- Kyoo-Young Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.
| | - Su Hyung Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| |
Collapse
|
41
|
Cardano M, Tribioli C, Prosperi E. Targeting Proliferating Cell Nuclear Antigen (PCNA) as an Effective Strategy to Inhibit Tumor Cell Proliferation. Curr Cancer Drug Targets 2020; 20:240-252. [PMID: 31951183 DOI: 10.2174/1568009620666200115162814] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022]
Abstract
Targeting highly proliferating cells is an important issue for many types of aggressive tumors. Proliferating Cell Nuclear Antigen (PCNA) is an essential protein that participates in a variety of processes of DNA metabolism, including DNA replication and repair, chromatin organization and transcription and sister chromatid cohesion. In addition, PCNA is involved in cell survival, and possibly in pathways of energy metabolism, such as glycolysis. Thus, the possibility of targeting this protein for chemotherapy against highly proliferating malignancies is under active investigation. Currently, approaches to treat cells with agents targeting PCNA rely on the use of small molecules or on peptides that either bind to PCNA, or act as a competitor of interacting partners. Here, we describe the status of the art in the development of agents targeting PCNA and discuss their application in different types of tumor cell lines and in animal model systems.
Collapse
Affiliation(s)
- Miriana Cardano
- Istituto di Genetica Molecolare del C.N.R. "Luca Cavalli-Sforza", Pavia- 27100, Italy
| | - Carla Tribioli
- Istituto di Genetica Molecolare del C.N.R. "Luca Cavalli-Sforza", Pavia- 27100, Italy
| | - Ennio Prosperi
- Istituto di Genetica Molecolare del C.N.R. "Luca Cavalli-Sforza", Pavia- 27100, Italy
| |
Collapse
|
42
|
Wessel SR, Mohni KN, Luzwick JW, Dungrawala H, Cortez D. Functional Analysis of the Replication Fork Proteome Identifies BET Proteins as PCNA Regulators. Cell Rep 2020; 28:3497-3509.e4. [PMID: 31553917 PMCID: PMC6878991 DOI: 10.1016/j.celrep.2019.08.051] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/25/2019] [Accepted: 08/15/2019] [Indexed: 01/15/2023] Open
Abstract
Identifying proteins that function at replication forks is essential to understanding DNA replication, chromatin assembly, and replication-coupled DNA repair mechanisms. Combining quantitative mass spectrometry in multiple cell types with stringent statistical cutoffs, we generated a high-confidence catalog of 593 proteins that are enriched at replication forks and nascent chromatin. Loss-of-function genetic analyses indicate that 85% yield phenotypes that are consistent with activities in DNA and chromatin replication or already have described functions in these processes. We illustrate the value of this resource by identifying activities of the BET family proteins BRD2, BRD3, and BRD4 in controlling DNA replication. These proteins use their extra-terminal domains to bind and inhibit the ATAD5 complex and thereby control the amount of PCNA on chromatin.
Collapse
Affiliation(s)
- Sarah R Wessel
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Kareem N Mohni
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Jessica W Luzwick
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Huzefa Dungrawala
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
43
|
Lee SG, Kim N, Kim SM, Park IB, Kim H, Kim S, Kim BG, Hwang JM, Baek IJ, Gartner A, Park JH, Myung K. Ewing sarcoma protein promotes dissociation of poly(ADP-ribose) polymerase 1 from chromatin. EMBO Rep 2020; 21:e48676. [PMID: 33006225 DOI: 10.15252/embr.201948676] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/30/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) facilitates DNA damage response (DDR). While the Ewing's sarcoma breakpoint region 1 (EWS) protein fused to FLI1 triggers sarcoma formation, the physiological function of EWS is largely unknown. Here, we investigate the physiological role of EWS in regulating PARP1. We show that EWS is required for PARP1 dissociation from damaged DNA. Abnormal PARP1 accumulation caused by EWS inactivation leads to excessive Poly(ADP-Ribosy)lation (PARylation) and triggers cell death in both in vitro and in vivo models. Consistent with previous work, the arginine-glycine-glycine (RGG) domain of EWS is essential for PAR chain interaction and PARP1 dissociation from damaged DNA. Ews and Parp1 double mutant mice do not show improved survival, but supplementation with nicotinamide mononucleotides extends Ews-mutant pups' survival, which might be due to compensatory activation of other PARP proteins. Consistently, PARP1 accumulates on chromatin in Ewing's sarcoma cells expressing an EWS fusion protein that cannot interact with PARP1, and tissues derived from Ewing's sarcoma patients show increased PARylation. Taken together, our data reveal that EWS is important for removing PARP1 from damaged chromatin.
Collapse
Affiliation(s)
- Seon-Gyeong Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Namwoo Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Su-Min Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - In Bae Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Hyejin Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Shinseog Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Jung Me Hwang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - In-Joon Baek
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Anton Gartner
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Jun Hong Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| |
Collapse
|
44
|
Kim S, Kang N, Park SH, Wells J, Hwang T, Ryu E, Kim BG, Hwang S, Kim SJ, Kang S, Lee S, Stirling P, Myung K, Lee KY. ATAD5 restricts R-loop formation through PCNA unloading and RNA helicase maintenance at the replication fork. Nucleic Acids Res 2020; 48:7218-7238. [PMID: 32542338 PMCID: PMC7367208 DOI: 10.1093/nar/gkaa501] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 12/27/2022] Open
Abstract
R-loops are formed when replicative forks collide with the transcriptional machinery and can cause genomic instability. However, it is unclear how R-loops are regulated at transcription-replication conflict (TRC) sites and how replisome proteins are regulated to prevent R-loop formation or mediate R-loop tolerance. Here, we report that ATAD5, a PCNA unloader, plays dual functions to reduce R-loops both under normal and replication stress conditions. ATAD5 interacts with RNA helicases such as DDX1, DDX5, DDX21 and DHX9 and increases the abundance of these helicases at replication forks to facilitate R-loop resolution. Depletion of ATAD5 or ATAD5-interacting RNA helicases consistently increases R-loops during the S phase and reduces the replication rate, both of which are enhanced by replication stress. In addition to R-loop resolution, ATAD5 prevents the generation of new R-loops behind the replication forks by unloading PCNA which, otherwise, accumulates and persists on DNA, causing a collision with the transcription machinery. Depletion of ATAD5 reduces transcription rates due to PCNA accumulation. Consistent with the role of ATAD5 and RNA helicases in maintaining genomic integrity by regulating R-loops, the corresponding genes were mutated or downregulated in several human tumors.
Collapse
Affiliation(s)
- Sangin Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Nalae Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Su Hyung Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - James Wells
- Terry Fox laboratory, BC Cancer Agency, Vancouver, Canada
| | - Taejoo Hwang
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Eunjin Ryu
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Sunyoung Hwang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Seong-Jung Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Semin Lee
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Peter Stirling
- Terry Fox laboratory, BC Cancer Agency, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Kyoo-Young Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| |
Collapse
|
45
|
Kim SJ, Wie M, Park SH, Kim TM, Park JH, Kim S, Myung K, Lee KY. ATAD5 suppresses centrosome over-duplication by regulating UAF1 and ID1. Cell Cycle 2020; 19:1952-1968. [PMID: 32594826 PMCID: PMC7469630 DOI: 10.1080/15384101.2020.1785724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Centrosomes are the primary microtubule-organizing centers that are important for mitotic spindle assembly. Centrosome amplification is commonly observed in human cancer cells and contributes to genomic instability. However, it is not clear how centrosome duplication is dysregulated in cancer cells. Here, we report that ATAD5, a replisome protein that unloads PCNA from chromatin as a replication factor C-like complex (RLC), plays an important role in regulating centrosome duplication. ATAD5 is present at the centrosome, specifically at the base of the mother and daughter centrioles that undergo duplication. UAF1, which interacts with ATAD5 and regulates PCNA deubiquitination as a complex with ubiquitin-specific protease 1, is also localized at the centrosome. Depletion of ATAD5 or UAF1 increases cells with over-duplicated centrosome whereas ATAD5 overexpression reduces such cells. Consistently, the proportion of cells showing the multipolar mode of chromosome segregation is increased among ATAD5-depleted cells. The localization and function of ATAD5 at the centrosomes do not require other RLC subunits. UAF1 interacts and co-localizes with ID1, a protein that increases centrosome amplification upon overexpression. ATAD5 depletion reduces interactions between UAF1 and ID1 and increases ID1 signal at the centrosome, providing a mechanistic framework for understanding the role of ATAD5 in centrosome duplication.
Collapse
Affiliation(s)
- Seong-Jung Kim
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology , Ulsan, Korea
| | - Minwoo Wie
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology , Ulsan, Korea
| | - Su Hyung Park
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea
| | - Tae Moon Kim
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea
| | - Jun Hong Park
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea.,Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine , Naju-si, Republic of Korea
| | - Shinseog Kim
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology , Ulsan, Korea
| | - Kyoo-Young Lee
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea
| |
Collapse
|
46
|
Giovannini S, Weller MC, Hanzlíková H, Shiota T, Takeda S, Jiricny J. ATAD5 deficiency alters DNA damage metabolism and sensitizes cells to PARP inhibition. Nucleic Acids Res 2020; 48:4928-4939. [PMID: 32297953 PMCID: PMC7229844 DOI: 10.1093/nar/gkaa255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 01/05/2023] Open
Abstract
Replication factor C (RFC), a heteropentamer of RFC1-5, loads PCNA onto DNA during replication and repair. Once DNA synthesis has ceased, PCNA must be unloaded. Recent findings assign the uloader role primarily to an RFC-like (RLC) complex, in which the largest RFC subunit, RFC1, has been replaced with ATAD5 (ELG1 in Saccharomyces cerevisiae). ATAD5-RLC appears to be indispensable, given that Atad5 knock-out leads to embryonic lethality. In order to learn how the retention of PCNA on DNA might interfere with normal DNA metabolism, we studied the response of ATAD5-depleted cells to several genotoxic agents. We show that ATAD5 deficiency leads to hypersensitivity to methyl methanesulphonate (MMS), camptothecin (CPT) and mitomycin C (MMC), agents that hinder the progression of replication forks. We further show that ATAD5-depleted cells are sensitive to poly(ADP)ribose polymerase (PARP) inhibitors and that the processing of spontaneous oxidative DNA damage contributes towards this sensitivity. We posit that PCNA molecules trapped on DNA interfere with the correct metabolism of arrested replication forks, phenotype reminiscent of defective homologous recombination (HR). As Atad5 heterozygous mice are cancer-prone and as ATAD5 mutations have been identified in breast and endometrial cancers, our finding may open a path towards the therapy of these tumours.
Collapse
Affiliation(s)
- Sara Giovannini
- Institute of Molecular Life Sciences of the University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Institute of Molecular Cancer Research of the University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Institute of Biochemistry of the Swiss Federal Institute of Technology, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Marie-Christine Weller
- Institute of Molecular Cancer Research of the University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Hana Hanzlíková
- Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142-20 Prague 4, Czech Republic
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Tetsuya Shiota
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, 606-8501 Kyoto, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, 606-8501 Kyoto, Japan
| | - Josef Jiricny
- Institute of Molecular Life Sciences of the University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Institute of Molecular Cancer Research of the University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Institute of Biochemistry of the Swiss Federal Institute of Technology, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
- To whom correspondence should be addressed. Tel: +41 44 633 6260;
| |
Collapse
|
47
|
Thakar T, Leung W, Nicolae CM, Clements KE, Shen B, Bielinsky AK, Moldovan GL. Ubiquitinated-PCNA protects replication forks from DNA2-mediated degradation by regulating Okazaki fragment maturation and chromatin assembly. Nat Commun 2020; 11:2147. [PMID: 32358495 PMCID: PMC7195461 DOI: 10.1038/s41467-020-16096-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Upon genotoxic stress, PCNA ubiquitination allows for replication of damaged DNA by recruiting lesion-bypass DNA polymerases. However, PCNA is also ubiquitinated during normal S-phase progression. By employing 293T and RPE1 cells deficient in PCNA ubiquitination, generated through CRISPR/Cas9 gene editing, here, we show that this modification promotes cellular proliferation and suppression of genomic instability under normal growth conditions. Loss of PCNA-ubiquitination results in DNA2-dependent but MRE11-independent nucleolytic degradation of nascent DNA at stalled replication forks. This degradation is linked to defective gap-filling in the wake of the replication fork and incomplete Okazaki fragment maturation, which interferes with efficient PCNA unloading by ATAD5 and subsequent nucleosome deposition by CAF-1. Moreover, concomitant loss of PCNA-ubiquitination and the BRCA pathway results in increased nascent DNA degradation and PARP inhibitor sensitivity. In conclusion, we show that by ensuring efficient Okazaki fragment maturation, PCNA-ubiquitination protects fork integrity and promotes the resistance of BRCA-deficient cells to PARP-inhibitors.
Collapse
Affiliation(s)
- Tanay Thakar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Wendy Leung
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Kristen E Clements
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
48
|
Paul Solomon Devakumar LJ, Gaubitz C, Lundblad V, Kelch BA, Kubota T. Effective mismatch repair depends on timely control of PCNA retention on DNA by the Elg1 complex. Nucleic Acids Res 2020; 47:6826-6841. [PMID: 31114918 PMCID: PMC6648347 DOI: 10.1093/nar/gkz441] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 11/14/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a sliding clamp that acts as a central co-ordinator for mismatch repair (MMR) as well as DNA replication. Loss of Elg1, the major subunit of the PCNA unloader complex, causes over-accumulation of PCNA on DNA and also increases mutation rate, but it has been unclear if the two effects are linked. Here we show that timely removal of PCNA from DNA by the Elg1 complex is important to prevent mutations. Although premature unloading of PCNA generally increases mutation rate, the mutator phenotype of elg1Δ is attenuated by PCNA mutants PCNA-R14E and PCNA-D150E that spontaneously fall off DNA. In contrast, the elg1Δ mutator phenotype is exacerbated by PCNA mutants that accumulate on DNA due to enhanced electrostatic PCNA–DNA interactions. Epistasis analysis suggests that PCNA over-accumulation on DNA interferes with both MMR and MMR-independent process(es). In elg1Δ, over-retained PCNA hyper-recruits the Msh2–Msh6 mismatch recognition complex through its PCNA-interacting peptide motif, causing accumulation of MMR intermediates. Our results suggest that PCNA retention controlled by the Elg1 complex is critical for efficient MMR: PCNA needs to be on DNA long enough to enable MMR, but if it is retained too long it interferes with downstream repair steps.
Collapse
Affiliation(s)
- Lovely Jael Paul Solomon Devakumar
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Christl Gaubitz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | - Brian A Kelch
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Takashi Kubota
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
49
|
Park SH, Kang N, Song E, Wie M, Lee EA, Hwang S, Lee D, Ra JS, Park IB, Park J, Kang S, Park JH, Hohng S, Lee KY, Myung K. ATAD5 promotes replication restart by regulating RAD51 and PCNA in response to replication stress. Nat Commun 2019; 10:5718. [PMID: 31844045 PMCID: PMC6914801 DOI: 10.1038/s41467-019-13667-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022] Open
Abstract
Maintaining stability of replication forks is important for genomic integrity. However, it is not clear how replisome proteins contribute to fork stability under replication stress. Here, we report that ATAD5, a PCNA unloader, plays multiple functions at stalled forks including promoting its restart. ATAD5 depletion increases genomic instability upon hydroxyurea treatment in cultured cells and mice. ATAD5 recruits RAD51 to stalled forks in an ATR kinase-dependent manner by hydroxyurea-enhanced protein-protein interactions and timely removes PCNA from stalled forks for RAD51 recruitment. Consistent with the role of RAD51 in fork regression, ATAD5 depletion inhibits slowdown of fork progression and native 5-bromo-2'-deoxyuridine signal induced by hydroxyurea. Single-molecule FRET showed that PCNA itself acts as a mechanical barrier to fork regression. Consequently, DNA breaks required for fork restart are reduced by ATAD5 depletion. Collectively, our results suggest an important role of ATAD5 in maintaining genome integrity during replication stress.
Collapse
Affiliation(s)
- Su Hyung Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Nalae Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Eunho Song
- Interdisciplinary Graduate Program in Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Republic of Korea.,Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minwoo Wie
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Eun A Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Sunyoung Hwang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Deokjae Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea.,Medytox Inc. 114, Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - In Bae Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Jieun Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Jun Hong Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Sungchul Hohng
- Interdisciplinary Graduate Program in Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Republic of Korea.,Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea.,Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyoo-Young Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea. .,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea.
| |
Collapse
|
50
|
Pilzecker B, Buoninfante OA, Jacobs H. DNA damage tolerance in stem cells, ageing, mutagenesis, disease and cancer therapy. Nucleic Acids Res 2019; 47:7163-7181. [PMID: 31251805 PMCID: PMC6698745 DOI: 10.1093/nar/gkz531] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/22/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
The DNA damage response network guards the stability of the genome from a plethora of exogenous and endogenous insults. An essential feature of the DNA damage response network is its capacity to tolerate DNA damage and structural impediments during DNA synthesis. This capacity, referred to as DNA damage tolerance (DDT), contributes to replication fork progression and stability in the presence of blocking structures or DNA lesions. Defective DDT can lead to a prolonged fork arrest and eventually cumulate in a fork collapse that involves the formation of DNA double strand breaks. Four principal modes of DDT have been distinguished: translesion synthesis, fork reversal, template switching and repriming. All DDT modes warrant continuation of replication through bypassing the fork stalling impediment or repriming downstream of the impediment in combination with filling of the single-stranded DNA gaps. In this way, DDT prevents secondary DNA damage and critically contributes to genome stability and cellular fitness. DDT plays a key role in mutagenesis, stem cell maintenance, ageing and the prevention of cancer. This review provides an overview of the role of DDT in these aspects.
Collapse
Affiliation(s)
- Bas Pilzecker
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Olimpia Alessandra Buoninfante
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|