1
|
Foltman M, Sanchez-Diaz A. Central Role of the Actomyosin Ring in Coordinating Cytokinesis Steps in Budding Yeast. J Fungi (Basel) 2024; 10:662. [PMID: 39330421 PMCID: PMC11433125 DOI: 10.3390/jof10090662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Eukaryotic cells must accurately transfer their genetic material and cellular components to their daughter cells. Initially, cells duplicate their chromosomes and subsequently segregate them toward the poles. The actomyosin ring, a crucial molecular machinery normally located in the middle of the cells and underneath the plasma membrane, then physically divides the cytoplasm and all components into two daughter cells, each ready to start a new cell cycle. This process, known as cytokinesis, is conserved throughout evolution. Defects in cytokinesis can lead to the generation of genetically unstable tetraploid cells, potentially initiating uncontrolled proliferation and cancer. This review focuses on the molecular mechanisms by which budding yeast cells build the actomyosin ring and the preceding steps involved in forming a scaffolding structure that supports the challenging structural changes throughout cytokinesis. Additionally, we describe how cells coordinate actomyosin ring contraction, plasma membrane ingression, and extracellular matrix deposition to successfully complete cytokinesis. Furthermore, the review discusses the regulatory roles of Cyclin-Dependent Kinase (Cdk1) and the Mitotic Exit Network (MEN) in ensuring the precise timing and execution of cytokinesis. Understanding these processes in yeast provides insights into the fundamental aspects of cell division and its implications for human health.
Collapse
Affiliation(s)
- Magdalena Foltman
- Mechanisms and Regulation of Cell Division Research Unit, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC, 39011 Santander, Spain;
- Molecular Biology Department, Faculty of Medicine, University of Cantabria, 39005 Santander, Spain
| | - Alberto Sanchez-Diaz
- Mechanisms and Regulation of Cell Division Research Unit, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC, 39011 Santander, Spain;
- Molecular Biology Department, Faculty of Medicine, University of Cantabria, 39005 Santander, Spain
| |
Collapse
|
2
|
Wang K, Okada H, Wloka C, Bi E. Unraveling the mechanisms and evolution of a two-domain module in IQGAP proteins for controlling eukaryotic cytokinesis. Cell Rep 2023; 42:113510. [PMID: 38041816 PMCID: PMC10809011 DOI: 10.1016/j.celrep.2023.113510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/17/2023] [Accepted: 11/13/2023] [Indexed: 12/04/2023] Open
Abstract
The IQGAP family of proteins plays a crucial role in cytokinesis across diverse organisms, but the underlying mechanisms are not fully understood. In this study, we demonstrate that IQGAPs in budding yeast, fission yeast, and human cells use a two-domain module to regulate their localization as well as the assembly and disassembly of the actomyosin ring during cytokinesis. Strikingly, the calponin homology domains (CHDs) in these IQGAPs bind to distinct cellular F-actin structures with varying specificity, whereas the non-conserved domains immediately downstream of the CHDs in these IQGAPs all target the division site, but differ in timing, localization strength, and binding partners. We also demonstrate that human IQGAP3 acts in parallel to septins and myosin-IIs to mediate the role of anillin in cytokinesis. Collectively, our findings highlight the two-domain mechanism by which IQGAPs regulate cytokinesis in distantly related organisms as well as their evolutionary conservation and divergence.
Collapse
Affiliation(s)
- Kangji Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Carsten Wloka
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, A Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
3
|
Okada H, Chen X, Wang K, Marquardt J, Bi E. Bni5 tethers myosin-II to septins to enhance retrograde actin flow and the robustness of cytokinesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566094. [PMID: 37986946 PMCID: PMC10659389 DOI: 10.1101/2023.11.07.566094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The collaboration between septins and myosin-II in driving processes outside of cytokinesis remains largely uncharted. Here, we demonstrate that Bni5 in the budding yeast S. cerevisiae interacts with myosin-II, septin filaments, and the septin-associated kinase Elm1 via distinct domains at its N- and C-termini, thereby tethering the mobile myosin-II to the stable septin hourglass at the division site from bud emergence to the onset of cytokinesis. The septin and Elm1-binding domains, together with a central disordered region, of Bni5 control timely remodeling of the septin hourglass into a double ring, enabling the actomyosin ring constriction. The Bni5-tethered myosin-II enhances retrograde actin cable flow, which contributes to the asymmetric inheritance of mitochondria-associated protein aggregates during cell division, and also strengthens cytokinesis against various perturbations. Thus, we have established a biochemical pathway involving septin-Bni5-myosin-II interactions at the division site, which can inform mechanistic understanding of the role of myosin-II in other retrograde flow systems.
Collapse
Affiliation(s)
- Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Xi Chen
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kangji Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Joseph Marquardt
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Current affiliation: Department of Biology, Western Kentucky University, Bowling Green, KY
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
4
|
Chen S, Markovich T, MacKintosh FC. Motor-free contractility of active biopolymer networks. Phys Rev E 2023; 108:044405. [PMID: 37978629 DOI: 10.1103/physreve.108.044405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/19/2023] [Indexed: 11/19/2023]
Abstract
Contractility in animal cells is often generated by molecular motors such as myosin, which require polar substrates for their function. Motivated by recent experimental evidence of motor-independent contractility, we propose a robust motor-free mechanism that can generate contraction in biopolymer networks without the need for substrate polarity. We show that contractility is a natural consequence of active binding-unbinding of crosslinkers that breaks the principle of detailed balance, together with the asymmetric force-extension response of semiflexible biopolymers. We have extended our earlier work to discuss the motor-free contraction of viscoelastic biopolymer networks. We calculate the resulting contractile velocity using a microscopic model and show that it can be reduced to a simple coarse-grained model under certain limits. Our model may provide an explanation of recent reports of motor-independent contractility in cells. Our results also suggest a mechanism for generating contractile forces in synthetic active materials.
Collapse
Affiliation(s)
- Sihan Chen
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Tomer Markovich
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 69978, Israel
| | - Fred C MacKintosh
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
5
|
Angelidakis E, Chen S, Zhang S, Wan Z, Kamm RD, Shelton SE. Impact of Fibrinogen, Fibrin Thrombi, and Thrombin on Cancer Cell Extravasation Using In Vitro Microvascular Networks. Adv Healthc Mater 2023; 12:e2202984. [PMID: 37119127 PMCID: PMC10524192 DOI: 10.1002/adhm.202202984] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/25/2023] [Indexed: 04/30/2023]
Abstract
A bidirectional association exists between metastatic dissemination and the hypercoagulable state associated with many types of cancer. As such, clinical studies have provided evidence that markers associated with elevated levels of coagulation and fibrinolysis correlate with decreased patient survival. However, elucidating the mechanisms underpinning the effects of different components of the coagulation system on metastasis formation is challenging both in animal models and 2D models lacking the complex cellular interactions necessary to model both thrombosis and metastasis. Here, an in vitro, 3D, microvascular model for observing the formation of fibrin thrombi is described, which is in turn used to study how different aspects of the hypercoagulable state associated with cancer affect the endothelium. Using this platform, cancer cells expressing ICAM-1 are shown to form a fibrinogen-dependent bridge and transmigrate through the endothelium more effectively. Cancer cells are also demonstrated to interact with fibrin thrombi, using them to adhere, spread, and enhance their extravasation efficiency. Finally, thrombin is also shown to enhance cancer cell extravasation. This system presents a physiologically relevant model of fibrin clot formation in the human microvasculature, enabling in-depth investigation of the cellular interactions between cancer cells and the coagulation system affecting cancer cell extravasation.
Collapse
Affiliation(s)
- Emmanouil Angelidakis
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sophia Chen
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Shun Zhang
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Zhengpeng Wan
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Roger D. Kamm
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sarah E. Shelton
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Medical OncologyDana Farber Cancer InstituteBostonMA02215USA
| |
Collapse
|
6
|
Hatano T, Lim TC, Billault-Chaumartin I, Dhar A, Gu Y, Massam-Wu T, Scott W, Adishesha S, Chapa-y-Lazo B, Springall L, Sivashanmugam L, Mishima M, Martin SG, Oliferenko S, Palani S, Balasubramanian MK. mNG-tagged fusion proteins and nanobodies to visualize tropomyosins in yeast and mammalian cells. J Cell Sci 2022; 135:jcs260288. [PMID: 36148799 PMCID: PMC9592052 DOI: 10.1242/jcs.260288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Tropomyosins are structurally conserved α-helical coiled-coil proteins that bind along the length of filamentous actin (F-actin) in fungi and animals. Tropomyosins play essential roles in the stability of actin filaments and in regulating myosin II contractility. Despite the crucial role of tropomyosin in actin cytoskeletal regulation, in vivo investigations of tropomyosin are limited, mainly due to the suboptimal live-cell imaging tools currently available. Here, we report on an mNeonGreen (mNG)-tagged tropomyosin, with native promoter and linker length configuration, that clearly reports tropomyosin dynamics in Schizosaccharomyces pombe (Cdc8), Schizosaccharomyces japonicus (Cdc8) and Saccharomyces cerevisiae (Tpm1 and Tpm2). We also describe a fluorescent probe to visualize mammalian tropomyosin (TPM2 isoform). Finally, we generated a camelid nanobody against S. pombe Cdc8, which mimics the localization of mNG-Cdc8 in vivo. Using these tools, we report the presence of tropomyosin in previously unappreciated patch-like structures in fission and budding yeasts, show flow of tropomyosin (F-actin) cables to the cytokinetic actomyosin ring and identify rearrangements of the actin cytoskeleton during mating. These powerful tools and strategies will aid better analyses of tropomyosin and F-actin cables in vivo.
Collapse
Affiliation(s)
- Tomoyuki Hatano
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Tzer Chyn Lim
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Ingrid Billault-Chaumartin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Anubhav Dhar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ying Gu
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, SE1 1UL, UK
| | - Teresa Massam-Wu
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - William Scott
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Sushmitha Adishesha
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Bernardo Chapa-y-Lazo
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Luke Springall
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Lavanya Sivashanmugam
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Masanori Mishima
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Sophie G. Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, SE1 1UL, UK
| | - Saravanan Palani
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mohan K. Balasubramanian
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| |
Collapse
|
7
|
Moyano-Rodríguez Y, Vaquero D, Vilalta-Castany O, Foltman M, Sanchez-Diaz A, Queralt E. PP2A-Cdc55 phosphatase regulates actomyosin ring contraction and septum formation during cytokinesis. Cell Mol Life Sci 2022; 79:165. [PMID: 35230542 PMCID: PMC8888506 DOI: 10.1007/s00018-022-04209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 11/03/2022]
Abstract
Eukaryotic cells divide and separate all their components after chromosome segregation by a process called cytokinesis to complete cell division. Cytokinesis is highly regulated by the recruitment of the components to the division site and through post-translational modifications such as phosphorylations. The budding yeast mitotic kinases Cdc28-Clb2, Cdc5, and Dbf2-Mob1 phosphorylate several cytokinetic proteins contributing to the regulation of cytokinesis. The PP2A-Cdc55 phosphatase regulates mitosis counteracting Cdk1- and Cdc5-dependent phosphorylation. This prompted us to propose that PP2A-Cdc55 could also be counteracting the mitotic kinases during cytokinesis. Here we show that in the absence of Cdc55, AMR contraction and the primary septum formation occur asymmetrically to one side of the bud neck supporting a role for PP2A-Cdc55 in cytokinesis regulation. In addition, by in vivo and in vitro assays, we show that PP2A-Cdc55 dephosphorylates the chitin synthase II (Chs2 in budding yeast) a component of the Ingression Progression Complexes (IPCs) involved in cytokinesis. Interestingly, the non-phosphorylable version of Chs2 rescues the asymmetric AMR contraction and the defective septa formation observed in cdc55∆ mutant cells. Therefore, timely dephosphorylation of the Chs2 by PP2A-Cdc55 is crucial for proper actomyosin ring contraction. These findings reveal a new mechanism of cytokinesis regulation by the PP2A-Cdc55 phosphatase and extend our knowledge of the involvement of multiple phosphatases during cytokinesis.
Collapse
Affiliation(s)
- Yolanda Moyano-Rodríguez
- Cell Cycle Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, L'Hospitalet de Llobregat, Barcelona, Spain
| | - David Vaquero
- Cell Cycle Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, L'Hospitalet de Llobregat, Barcelona, Spain.,Instituto de Biomedicina de Valencia (IBV-CSIC), C/ Jaume Roig 11, Valencia, Spain
| | - Odena Vilalta-Castany
- Cell Cycle Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Magdalena Foltman
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, CSIC, Santander, Spain.,Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Alberto Sanchez-Diaz
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, CSIC, Santander, Spain.,Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Ethel Queralt
- Cell Cycle Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, L'Hospitalet de Llobregat, Barcelona, Spain. .,Instituto de Biomedicina de Valencia (IBV-CSIC), C/ Jaume Roig 11, Valencia, Spain.
| |
Collapse
|
8
|
Melo PN, Souza da Silveira M, Mendes Pinto I, Relvas JB. Morphofunctional programming of microglia requires distinct roles of type II myosins. Glia 2021; 69:2717-2738. [PMID: 34329508 DOI: 10.1002/glia.24067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 11/05/2022]
Abstract
The ramified morphology of microglia and the dynamics of their membrane protrusions are essential for their functions in central nervous system development, homeostasis, and disease. Although their ability to change and control shape critically depends on the actin and actomyosin cytoskeleton, the underlying regulatory mechanisms remain largely unknown. In this study, we systematically analyzed the actomyosin cytoskeleton and regulators downstream of the small GTPase RhoA in the control of microglia shape and function. Our results reveal that (i) Myh9 controls cortical tension levels and affects microglia protrusion formation, (ii) cofilin-mediated maintenance of actin turnover regulates microglia protrusion extension, and (iii) Myh10 influences microglia inflammatory activation. Overall we uncover molecular pathways that regulate microglia morphology and identify type-II myosins as important regulators of microglia biology with differential roles in the control of cell shape (Myh9) and functions (Myh10).
Collapse
Affiliation(s)
- Pedro Neves Melo
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal.,Graduate Programme in Areas of Basic and Applied Biology (GABBA), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Mariana Souza da Silveira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal.,Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Inês Mendes Pinto
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal.,Life Sciences, International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - João Bettencourt Relvas
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Duan X, Chen X, Wang K, Chen L, Glomb O, Johnsson N, Feng L, Zhou XQ, Bi E. Essential role of the endocytic site-associated protein Ecm25 in stress-induced cell elongation. Cell Rep 2021; 35:109122. [PMID: 34010635 PMCID: PMC8202958 DOI: 10.1016/j.celrep.2021.109122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 02/16/2021] [Accepted: 04/22/2021] [Indexed: 11/27/2022] Open
Abstract
How cells adopt a different morphology to cope with stress is not well understood. Here, we show that budding yeast Ecm25 associates with polarized endocytic sites and interacts with the polarity regulator Cdc42 and several late-stage endocytic proteins via distinct regions, including an actin filament-binding motif. Deletion of ECM25 does not affect Cdc42 activity or cause any strong defects in fluid-phase and clathrin-mediated endocytosis but completely abolishes hydroxyurea-induced cell elongation. This phenotype is accompanied by depolarization of the spatiotemporally coupled exo-endocytosis in the bud cortex while maintaining the overall mother-bud polarity. These data suggest that Ecm25 provides an essential link between the polarization signal and the endocytic machinery to enable adaptive morphogenesis under stress conditions. How cells adopt a different morphology to cope with stress is not well understood. Duan et al. report that the budding yeast protein Ecm25 plays an essential role in stress-induced cell elongation by linking the polarity regulator Cdc42 to the late-stage endocytic machinery.
Collapse
Affiliation(s)
- Xudong Duan
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xi Chen
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Kangji Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Li Chen
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Oliver Glomb
- Institut für Molekulare Genetik und Zellbiologie, Universität Ulm, 89081 Ulm, Germany
| | - Nils Johnsson
- Institut für Molekulare Genetik und Zellbiologie, Universität Ulm, 89081 Ulm, Germany
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China.
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
10
|
Okada H, MacTaggart B, Ohya Y, Bi E. The kinetic landscape and interplay of protein networks in cytokinesis. iScience 2021; 24:101917. [PMID: 33392480 PMCID: PMC7773586 DOI: 10.1016/j.isci.2020.101917] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 11/08/2022] Open
Abstract
Cytokinesis is executed by protein networks organized into functional modules. Individual proteins within each module have been characterized to various degrees. However, the collective behavior and interplay of the modules remain poorly understood. In this study, we conducted quantitative time-lapse imaging to analyze the accumulation kinetics of more than 20 proteins from different modules of cytokinesis in budding yeast. This analysis has led to a comprehensive picture of the kinetic landscape of cytokinesis, from actomyosin ring (AMR) assembly to cell separation. It revealed that the AMR undergoes biphasic constriction and that the switch between the constriction phases is likely triggered by AMR maturation and primary septum formation. This analysis also provided further insights into the functions of actin filaments and the transglutaminase-like protein Cyk3 in cytokinesis and, in addition, defined Kre6 as the likely enzyme that catalyzes β-1,6-glucan synthesis to drive cell wall maturation during cell growth and division. Cytokinesis is executed by protein modules each with a unique kinetic signature Actomyosin ring constricts in a biphasic manner that is elaborately regulated The transglutaminase-like domain in Cyk3 plays a dual role in cytokinesis Kre6 catalyzes β-1,6-glucan synthesis at the cell surface during growth and division
Collapse
Affiliation(s)
- Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Brittany MacTaggart
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| |
Collapse
|
11
|
Wang K, Okada H, Bi E. Comparative Analysis of the Roles of Non-muscle Myosin-IIs in Cytokinesis in Budding Yeast, Fission Yeast, and Mammalian Cells. Front Cell Dev Biol 2020; 8:593400. [PMID: 33330476 PMCID: PMC7710916 DOI: 10.3389/fcell.2020.593400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/30/2020] [Indexed: 12/31/2022] Open
Abstract
The contractile ring, which plays critical roles in cytokinesis in fungal and animal cells, has fascinated biologists for decades. However, the basic question of how the non-muscle myosin-II and actin filaments are assembled into a ring structure to drive cytokinesis remains poorly understood. It is even more mysterious why and how the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe, and humans construct the ring structure with one, two, and three myosin-II isoforms, respectively. Here, we provide a comparative analysis of the roles of the non-muscle myosin-IIs in cytokinesis in these three model systems, with the goal of defining the common and unique features and highlighting the major questions regarding this family of proteins.
Collapse
Affiliation(s)
- Kangji Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
12
|
Chen S, Markovich T, MacKintosh FC. Motor-Free Contractility in Active Gels. PHYSICAL REVIEW LETTERS 2020; 125:208101. [PMID: 33258614 DOI: 10.1103/physrevlett.125.208101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
Animal cells form contractile structures to promote various functions, from cell motility to cell division. Force generation in these structures is often due to molecular motors such as myosin that require polar substrates for their function. Here, we propose a motor-free mechanism that can generate contraction in biopolymer networks without the need for polarity. This mechanism is based on active binding and unbinding of cross-linkers that breaks the principle of detailed balance, together with the asymmetric force-extension response of semiflexible biopolymers. We find that these two ingredients can generate steady state contraction via a nonthermal, ratchetlike process. We calculate the resulting force-velocity relation using both coarse-grained and microscopic models.
Collapse
Affiliation(s)
- Sihan Chen
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Tomer Markovich
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Fred C MacKintosh
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
13
|
Chen X, Wang K, Svitkina T, Bi E. Critical Roles of a RhoGEF-Anillin Module in Septin Architectural Remodeling during Cytokinesis. Curr Biol 2020; 30:1477-1490.e3. [PMID: 32197082 DOI: 10.1016/j.cub.2020.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/23/2019] [Accepted: 02/10/2020] [Indexed: 12/24/2022]
Abstract
How septin architecture is remodeled from an hourglass to a double ring during cytokinesis in fungal and animal cells remains unknown. Here, we show that during the hourglass-to-double-ring transition in budding yeast, septins acquire a "zonal architecture" in which paired septin filaments that are organized along the mother-bud axis associate with circumferential single septin filaments, the Rho guanine-nucleotide-exchange factor (RhoGEF) Bud3, and the anillin-like protein Bud4 exclusively at the outer zones and with myosin-II filaments in the middle zone. Deletion of Bud3 or its Bud4-interacting domain, but not its RhoGEF domain, leads to a complete loss of the single filaments, whereas deletion of Bud4 or its Bud3-interacting domain destabilizes the transitional hourglass, especially at the mother side, with partial loss of both filament types. Deletion of Bud3 and Bud4 together further weakens the transitional structure and abolishes the double ring formation while causing no obvious defect in actomyosin ring constriction. This and further analyses suggest that Bud3 stabilizes the single filaments, whereas Bud4 strengthens the interaction between the paired and single filaments at the outer zones of the transitional hourglass, as well as in the double ring. This study reveals a striking zonal architecture for the transitional hourglass that pre-patterns two cytokinetic structures-a septin double ring and an actomyosin ring-and also defines the essential roles of a RhoGEF-anillin module in septin architectural remodeling during cytokinesis at the filament level.
Collapse
Affiliation(s)
- Xi Chen
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Kangji Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Tatyana Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
14
|
Yeast as a Model to Understand Actin-Mediated Cellular Functions in Mammals-Illustrated with Four Actin Cytoskeleton Proteins. Cells 2020; 9:cells9030672. [PMID: 32164332 PMCID: PMC7140605 DOI: 10.3390/cells9030672] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has an actin cytoskeleton that comprises a set of protein components analogous to those found in the actin cytoskeletons of higher eukaryotes. Furthermore, the actin cytoskeletons of S. cerevisiae and of higher eukaryotes have some similar physiological roles. The genetic tractability of budding yeast and the availability of a stable haploid cell type facilitates the application of molecular genetic approaches to assign functions to the various actin cytoskeleton components. This has provided information that is in general complementary to that provided by studies of the equivalent proteins of higher eukaryotes and hence has enabled a more complete view of the role of these proteins. Several human functional homologues of yeast actin effectors are implicated in diseases. A better understanding of the molecular mechanisms underpinning the functions of these proteins is critical to develop improved therapeutic strategies. In this article we chose as examples four evolutionarily conserved proteins that associate with the actin cytoskeleton: (1) yeast Hof1p/mammalian PSTPIP1, (2) yeast Rvs167p/mammalian BIN1, (3) yeast eEF1A/eEF1A1 and eEF1A2 and (4) yeast Yih1p/mammalian IMPACT. We compare the knowledge on the functions of these actin cytoskeleton-associated proteins that has arisen from studies of their homologues in yeast with information that has been obtained from in vivo studies using live animals or in vitro studies using cultured animal cell lines.
Collapse
|
15
|
Pollard TD. Myosins in Cytokinesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:233-244. [DOI: 10.1007/978-3-030-38062-5_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Abstract
Division of amoebas, fungi, and animal cells into two daughter cells at the end of the cell cycle depends on a common set of ancient proteins, principally actin filaments and myosin-II motors. Anillin, formins, IQGAPs, and many other proteins regulate the assembly of the actin filaments into a contractile ring positioned between the daughter nuclei by different mechanisms in fungi and animal cells. Interactions of myosin-II with actin filaments produce force to assemble and then constrict the contractile ring to form a cleavage furrow. Contractile rings disassemble as they constrict. In some cases, knowledge about the numbers of participating proteins and their biochemical mechanisms has made it possible to formulate molecularly explicit mathematical models that reproduce the observed physical events during cytokinesis by computer simulations.
Collapse
Affiliation(s)
- Thomas D Pollard
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA;
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, USA
- Department of Cell Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
17
|
Abstract
Division of amoebas, fungi, and animal cells into two daughter cells at the end of the cell cycle depends on a common set of ancient proteins, principally actin filaments and myosin-II motors. Anillin, formins, IQGAPs, and many other proteins regulate the assembly of the actin filaments into a contractile ring positioned between the daughter nuclei by different mechanisms in fungi and animal cells. Interactions of myosin-II with actin filaments produce force to assemble and then constrict the contractile ring to form a cleavage furrow. Contractile rings disassemble as they constrict. In some cases, knowledge about the numbers of participating proteins and their biochemical mechanisms has made it possible to formulate molecularly explicit mathematical models that reproduce the observed physical events during cytokinesis by computer simulations.
Collapse
Affiliation(s)
- Thomas D Pollard
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA;
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, USA
- Department of Cell Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
18
|
Mangione MC, Gould KL. Molecular form and function of the cytokinetic ring. J Cell Sci 2019; 132:132/12/jcs226928. [PMID: 31209062 DOI: 10.1242/jcs.226928] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Animal cells, amoebas and yeast divide using a force-generating, actin- and myosin-based contractile ring or 'cytokinetic ring' (CR). Despite intensive research, questions remain about the spatial organization of CR components, the mechanism by which the CR generates force, and how other cellular processes are coordinated with the CR for successful membrane ingression and ultimate cell separation. This Review highlights new findings about the spatial relationship of the CR to the plasma membrane and the arrangement of molecules within the CR from studies using advanced microscopy techniques, as well as mechanistic information obtained from in vitro approaches. We also consider advances in understanding coordinated cellular processes that impact the architecture and function of the CR.
Collapse
Affiliation(s)
- MariaSanta C Mangione
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| |
Collapse
|
19
|
Okada H, Wloka C, Wu JQ, Bi E. Distinct Roles of Myosin-II Isoforms in Cytokinesis under Normal and Stressed Conditions. iScience 2019; 14:69-87. [PMID: 30928696 PMCID: PMC6441717 DOI: 10.1016/j.isci.2019.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/30/2019] [Accepted: 03/12/2019] [Indexed: 12/31/2022] Open
Abstract
To address the question of why more than one myosin-II isoform is expressed in a single cell to drive cytokinesis, we analyzed the roles of the myosin-II isoforms, Myo2 and Myp2, of the fission yeast Schizosaccharomyces pombe, in cytokinesis under normal and stressed conditions. We found that Myp2 controls the disassembly, stability, and constriction initiation of the Myo2 ring in response to high-salt stress. A C-terminal coiled-coil domain of Myp2 is required for its immobility and contractility during cytokinesis, and when fused to the tail of the dynamic Myo2, renders the chimera the low-turnover property. We also found, by following distinct processes in real time at the single-cell level, that Myo2 and Myp2 are differentially required but collectively essential for guiding extracellular matrix remodeling during cytokinesis. These results suggest that the dynamic and immobile myosin-II isoforms are evolved to carry out cytokinesis with robustness under different growth conditions. The myosin-II isoforms Myo2 and Myp2 display distinct responses to cellular stress Myp2 controls the constriction initiation of Myo2 during stress response A C-terminal region of Myp2 is required for its immobility during cytokinesis Myo2 and Myp2 are differentially required for guiding ECM remodeling during cytokinesis
Collapse
Affiliation(s)
- Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Carsten Wloka
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AE Groningen, The Netherlands
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
20
|
Wang K, Wloka C, Bi E. Non-muscle Myosin-II Is Required for the Generation of a Constriction Site for Subsequent Abscission. iScience 2019; 13:69-81. [PMID: 30825839 PMCID: PMC6396101 DOI: 10.1016/j.isci.2019.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 01/07/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
It remains unknown when, where, and how the site of abscission is generated during cytokinesis. Here, we show that the sites of constriction, i.e., the sites of future abscission, are initially formed at the ends of the intercellular bridge during early midbody stage, and that these sites are associated with the non-muscle myosin-IIB (not myosin-IIA), actin filaments, and septin 9 until abscission. The ESCRT-III component CHMP4B localizes to the midbody and "spreads" to the site of abscission only during late midbody stage. Strikingly, inhibition of myosin-II motor activity by a low dose of Blebbistatin completely abolishes the formation of the constriction sites, resulting in the localization of all the above-mentioned components to the midbody region. These data strongly suggest that a secondary actomyosin ring provides the primary driving force for the thinning of the intercellular bridge to allow ESCRT-mediated membrane fission.
Collapse
Affiliation(s)
- Kangji Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Carsten Wloka
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AE Groningen, the Netherlands.
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
21
|
Tamborrini D, Juanes MA, Ibanes S, Rancati G, Piatti S. Recruitment of the mitotic exit network to yeast centrosomes couples septin displacement to actomyosin constriction. Nat Commun 2018; 9:4308. [PMID: 30333493 PMCID: PMC6193047 DOI: 10.1038/s41467-018-06767-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/10/2018] [Indexed: 01/11/2023] Open
Abstract
In many eukaryotic organisms cytokinesis is driven by a contractile actomyosin ring (CAR) that guides membrane invagination. What triggers CAR constriction at a precise time of the cell cycle is a fundamental question. In budding yeast CAR is assembled via a septin scaffold at the division site. A Hippo-like kinase cascade, the Mitotic Exit Network (MEN), promotes mitotic exit and cytokinesis, but whether and how these two processes are independently controlled by MEN is poorly understood. Here we show that a critical function of MEN is to promote displacement of the septin ring from the division site, which in turn is essential for CAR constriction. This is independent of MEN control over mitotic exit and involves recruitment of MEN components to the spindle pole body (SPB). Ubiquitination of the SPB scaffold Nud1 inhibits MEN signaling at the end of mitosis and prevents septin ring splitting, thus silencing the cytokinetic machinery. The Mitotic Exit Network (MEN) promotes mitotic exit and cytokinesis but if and how MEN independently controls these two processes is unclear. Here, the authors report that MEN displaces septins from the cell division site to promote actomyosin ring constriction, independently of MEN control of mitotic exit.
Collapse
Affiliation(s)
- Davide Tamborrini
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), 1919 Route de Mende, 34293, Montpellier, France.,Max-Planck-Institute of Molecular Physiology, Otto-Hahn Str. 11, 44227, Dortmund, Germany
| | - Maria Angeles Juanes
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), 1919 Route de Mende, 34293, Montpellier, France.,Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Sandy Ibanes
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), 1919 Route de Mende, 34293, Montpellier, France
| | - Giulia Rancati
- Institute of Medical Biology, 8a Biomedical Grove, Singapore, 138648, Singapore
| | - Simonetta Piatti
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), 1919 Route de Mende, 34293, Montpellier, France.
| |
Collapse
|
22
|
Wang M, Nishihama R, Onishi M, Pringle JR. Role of the Hof1-Cyk3 interaction in cleavage-furrow ingression and primary-septum formation during yeast cytokinesis. Mol Biol Cell 2018; 29:597-609. [PMID: 29321253 PMCID: PMC6004579 DOI: 10.1091/mbc.e17-04-0227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 12/26/2017] [Accepted: 01/03/2018] [Indexed: 11/11/2022] Open
Abstract
In Saccharomyces cerevisiae, it is well established that Hof1, Cyk3, and Inn1 contribute to septum formation and cytokinesis. Because hof1∆ and cyk3∆ single mutants have relatively mild defects but hof1∆ cyk3∆ double mutants are nearly dead, it has been hypothesized that these proteins contribute to parallel pathways. However, there is also evidence that they interact physically. In this study, we examined this interaction and its functional significance in detail. Our data indicate that the interaction 1) is mediated by a direct binding of the Hof1 SH3 domain to a proline-rich motif in Cyk3; 2) occurs specifically at the time of cytokinesis but is independent of the (hyper)phosphorylation of both proteins that occurs at about the same time; 3) is dispensable for the normal localization of both proteins; 4) is essential for normal primary-septum formation and a normal rate of cleavage-furrow ingression; and 5) becomes critical for growth when either Inn1 or the type II myosin Myo1 (a key component of the contractile actomyosin ring) is absent. The similarity in phenotype between cyk3∆ mutants and mutants specifically lacking the Hof1-Cyk3 interaction suggests that the interaction is particularly important for Cyk3 function, but it may be important for Hof1 function as well.
Collapse
Affiliation(s)
- Meng Wang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Ryuichi Nishihama
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Masayuki Onishi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - John R Pringle
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
23
|
Abstract
SUMMARYCell division-cytokinesis-involves large-scale rearrangements of the entire cell. Primarily driven by cytoskeletal proteins, cytokinesis also depends on topological rearrangements of the plasma membrane, which are coordinated with nuclear division in both space and time. Despite the fundamental nature of the process, different types of eukaryotic cells show variations in both the structural mechanisms of cytokinesis and the regulatory controls. In animal cells and fungi, a contractile actomyosin-based structure plays a central, albeit flexible, role. Here, the underlying molecular mechanisms are summarized and integrated and common themes are highlighted.
Collapse
Affiliation(s)
- Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
24
|
Oh Y, Schreiter JH, Okada H, Wloka C, Okada S, Yan D, Duan X, Bi E. Hof1 and Chs4 Interact via F-BAR Domain and Sel1-like Repeats to Control Extracellular Matrix Deposition during Cytokinesis. Curr Biol 2017; 27:2878-2886.e5. [PMID: 28918945 PMCID: PMC5658023 DOI: 10.1016/j.cub.2017.08.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/07/2017] [Accepted: 08/15/2017] [Indexed: 11/24/2022]
Abstract
Localized extracellular matrix (ECM) remodeling is thought to stabilize the cleavage furrow and maintain cell shape during cytokinesis [1-14]. This remodeling is spatiotemporally coordinated with a cytoskeletal structure pertaining to a kingdom of life, for example the FtsZ ring in bacteria [15], the phragmoplast in plants [16], and the actomyosin ring in fungi and animals [17, 18]. Although the cytoskeletal structures have been analyzed extensively, the mechanisms of ECM remodeling remain poorly understood. In the budding yeast Saccharomyces cerevisiae, ECM remodeling refers to sequential formations of the primary and secondary septa that are catalyzed by chitin synthase-II (Chs2) and chitin synthase-III (the catalytic subunit Chs3 and its activator Chs4), respectively [18, 19]. Surprisingly, both Chs2 and Chs3 are delivered to the division site at the onset of cytokinesis [6, 20]. What keeps Chs3 inactive until secondary septum formation remains unknown. Here, we show that Hof1 binds to the Sel1-like repeats (SLRs) of Chs4 via its F-BAR domain and inhibits Chs3-mediated chitin synthesis during cytokinesis. In addition, Hof1 is required for rapid accumulation as well as efficient removal of Chs4 at the division site. This study uncovers a mechanism by which Hof1 controls timely activation of Chs3 during cytokinesis and defines a novel interaction and function for the conserved F-BAR domain and SLR that are otherwise known for their abilities to bind membrane lipids [21, 22] and scaffold protein complex formation [23].
Collapse
Affiliation(s)
- Younghoon Oh
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Jennifer H Schreiter
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Carsten Wloka
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AE Groningen, the Netherlands
| | - Satoshi Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Department of Medical Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Di Yan
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Xudong Duan
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
25
|
Chew TG, Huang J, Palani S, Sommese R, Kamnev A, Hatano T, Gu Y, Oliferenko S, Sivaramakrishnan S, Balasubramanian MK. Actin turnover maintains actin filament homeostasis during cytokinetic ring contraction. J Cell Biol 2017; 216:2657-2667. [PMID: 28655757 PMCID: PMC5584170 DOI: 10.1083/jcb.201701104] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 05/04/2017] [Accepted: 06/01/2017] [Indexed: 11/30/2022] Open
Abstract
Many cytokinetic actomyosin ring components undergo dynamic turnover, but its function is unclear. Chew et al. show that continuous actin polymerization ensures crucial F-actin homeostasis during ring contraction, without which ring proteins organize into noncontractile clusters. Cytokinesis in many eukaryotes involves a tension-generating actomyosin-based contractile ring. Many components of actomyosin rings turn over during contraction, although the significance of this turnover has remained enigmatic. Here, using Schizosaccharomyces japonicus, we investigate the role of turnover of actin and myosin II in its contraction. Actomyosin ring components self-organize into ∼1-µm-spaced clusters instead of undergoing full-ring contraction in the absence of continuous actin polymerization. This effect is reversed when actin filaments are stabilized. We tested the idea that the function of turnover is to ensure actin filament homeostasis in a synthetic system, in which we abolished turnover by fixing rings in cell ghosts with formaldehyde. We found that these rings contracted fully upon exogenous addition of a vertebrate myosin. We conclude that actin turnover is required to maintain actin filament homeostasis during ring contraction and that the requirement for turnover can be bypassed if homeostasis is achieved artificially.
Collapse
Affiliation(s)
- Ting Gang Chew
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Junqi Huang
- Warwick Medical School, University of Warwick, Coventry, UK .,Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | | | - Ruth Sommese
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN
| | - Anton Kamnev
- Warwick Medical School, University of Warwick, Coventry, UK
| | | | - Ying Gu
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Snezhana Oliferenko
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK.,Francis Crick Institute, London, UK
| | | | | |
Collapse
|
26
|
Meitinger F, Pereira G. The septin-associated kinase Gin4 recruits Gps1 to the site of cell division. Mol Biol Cell 2017; 28:883-889. [PMID: 28148650 PMCID: PMC5385937 DOI: 10.1091/mbc.e16-09-0687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/24/2023] Open
Abstract
Gps1 is a regulator of Rho GTPases during cell division. Cell cycle–regulated recruitment of Gps1 to the cell division site is under control of the conserved kinase Gin4 and the bud neck–associated protein Nba1. This biphasic recruitment is required for the spatiotemporal activation of Rho1 and inhibition of Cdc42. Cell cycle–dependent morphogenesis of unicellular organisms depends on the spatiotemporal control of cell polarity. Rho GTPases are the major players that guide cells through structural reorganizations such as cytokinesis (Rho1 dependent) and polarity establishment (Cdc42 dependent). In budding yeast, the protein Gps1 plays a pivotal role in both processes. Gps1 resides at the bud neck to maintain Rho1 localization and restrict Cdc42 activity during cytokinesis. Here we analyze how Gps1 is recruited to the bud neck during the cell cycle. We show that different regions of Gps1 and the septin-associated kinase Gin4 are involved in maintaining Gps1 at the bud neck from late G1 phase until midanaphase. From midanaphase, the targeting function of Gin4 is taken over by the bud neck–associated protein Nba1. Our data show that Gps1 is targeted to the cell division site in a biphasic manner, via Gin4 and Nba1, to control the spatiotemporal activation of Rho1 and inhibition of Cdc42.
Collapse
Affiliation(s)
- Franz Meitinger
- Centre for Organismal Studies and German Cancer Research Center, DKFZ-ZMBH Alliance, and Molecular Biology of Centrosomes and Cilia Unit, University of Heidelberg, 69120 Heidelberg, Germany
| | - Gislene Pereira
- Centre for Organismal Studies and German Cancer Research Center, DKFZ-ZMBH Alliance, and Molecular Biology of Centrosomes and Cilia Unit, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
27
|
Altamirano S, Chandrasekaran S, Kozubowski L. Mechanisms of Cytokinesis in Basidiomycetous Yeasts. FUNGAL BIOL REV 2017; 31:73-87. [PMID: 28943887 DOI: 10.1016/j.fbr.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
While mechanisms of cytokinesis exhibit considerable plasticity, it is difficult to precisely define the level of conservation of this essential part of cell division in fungi, as majority of our knowledge is based on ascomycetous yeasts. However, in the last decade more details have been uncovered regarding cytokinesis in the second largest fungal phylum, basidiomycetes, specifically in two yeasts, Cryptococcus neoformans and Ustilago maydis. Based on these findings, and current sequenced genomes, we summarize cytokinesis in basidiomycetous yeasts, indicating features that may be unique to this phylum, species-specific characteristics, as well as mechanisms that may be common to all eukaryotes.
Collapse
Affiliation(s)
- Sophie Altamirano
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | | | - Lukasz Kozubowski
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
28
|
Abstract
In budding yeast cells, cytokinesis is achieved by the successful division of the cytoplasm into two daughter cells, but the precise mechanisms of cell division and its regulation are still rather poorly understood. The Mitotic Exit Network (MEN) is the signaling cascade that is responsible for the release of Cdc14 phosphatase leading to the inactivation of the kinase activity associated to cyclin-dependent kinases (CDK), which drives exit from mitosis and a rapid and efficient cytokinesis. Mitotic CDK impairs the activation of MEN before anaphase, and activation of MEN in anaphase leads to the inactivation of CDK, which presents a challenge to determine the contribution that each pathway makes to the successful onset of cytokinesis. To determine CDK and MEN contribution to cytokinesis irrespectively of each other, here we present methods to induce cytokinesis after the inactivation of CDK activity in temperature sensitive mutants of the MEN pathway. An array of methods to monitor the cellular events associated with the successful cytokinesis is included.
Collapse
Affiliation(s)
- Magdalena Foltman
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas, Universidad de Cantabria, c/ Albert Einstein 22, Santander, 39011, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Cardenal Herrera Oria s/n, Santander, 39011, Spain
| | - Alberto Sanchez-Diaz
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas, Universidad de Cantabria, c/ Albert Einstein 22, Santander, 39011, Spain.
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Cardenal Herrera Oria s/n, Santander, 39011, Spain.
| |
Collapse
|
29
|
Abstract
Cytokinesis is essential for the survival of all organisms. It requires concerted functions of cell signaling, force production, exocytosis, and extracellular matrix remodeling. Due to the conservation in core components and mechanisms between fungal and animal cells, the budding yeast Saccharomyces cerevisiae has served as an attractive model for studying this fundamental process. In this review, we discuss the mechanics and regulation of distinct events of cytokinesis in budding yeast, including the assembly, constriction, and disassembly of the actomyosin ring, septum formation, abscission, and their spatiotemporal coordination. We also highlight the key concepts and questions that are common to animal and fungal cytokinesis.
Collapse
Affiliation(s)
- Yogini P Bhavsar-Jog
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
30
|
Juanes MA, Piatti S. The final cut: cell polarity meets cytokinesis at the bud neck in S. cerevisiae. Cell Mol Life Sci 2016; 73:3115-36. [PMID: 27085703 PMCID: PMC4951512 DOI: 10.1007/s00018-016-2220-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/22/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
Cell division is a fundamental but complex process that gives rise to two daughter cells. It includes an ordered set of events, altogether called "the cell cycle", that culminate with cytokinesis, the final stage of mitosis leading to the physical separation of the two daughter cells. Symmetric cell division equally partitions cellular components between the two daughter cells, which are therefore identical to one another and often share the same fate. In many cases, however, cell division is asymmetrical and generates two daughter cells that differ in specific protein inheritance, cell size, or developmental potential. The budding yeast Saccharomyces cerevisiae has proven to be an excellent system to investigate the molecular mechanisms governing asymmetric cell division and cytokinesis. Budding yeast is highly polarized during the cell cycle and divides asymmetrically, producing two cells with distinct sizes and fates. Many components of the machinery establishing cell polarization during budding are relocalized to the division site (i.e., the bud neck) for cytokinesis. In this review we recapitulate how budding yeast cells undergo polarized processes at the bud neck for cell division.
Collapse
Affiliation(s)
- Maria Angeles Juanes
- Centre de Recherche en Biologie Cellulaire de Montpellier, 1919 Route de Mende, 34293, Montpellier, France
- Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Simonetta Piatti
- Centre de Recherche en Biologie Cellulaire de Montpellier, 1919 Route de Mende, 34293, Montpellier, France.
| |
Collapse
|
31
|
Abstract
Cytokinesis is essential for development and survival of all organisms by increasing cell number and diversity. It is a highly regulated process that requires spatiotemporal coordination of hundreds of proteins functioning in the assembly, constriction, and disassembly of a contractile actomyosin ring, targeted vesicle fusion, and localized extracellular matrix remodeling. Cytokinesis has been studied in multiple systems with a wide range of technologies to learn the common principles. In this chapter, we describe the analysis of protein dynamics during cytokinesis in the budding yeast Saccharomyces cerevisiae by several live-cell imaging methods. This, in combination with the power of yeast genetics, has yielded novel insights into the mechanism of cytokinesis. Similar approaches are increasingly used to study this fundamental process in more complex systems.
Collapse
Affiliation(s)
- S Okada
- University of Pennsylvania, Philadelphia, PA, United States; Kyushu University, Fukuoka, Japan
| | - C Wloka
- University of Pennsylvania, Philadelphia, PA, United States; University of Groningen, Groningen, The Netherlands
| | - E Bi
- University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
32
|
Foltman M, Molist I, Arcones I, Sacristan C, Filali-Mouncef Y, Roncero C, Sanchez-Diaz A. Ingression Progression Complexes Control Extracellular Matrix Remodelling during Cytokinesis in Budding Yeast. PLoS Genet 2016; 12:e1005864. [PMID: 26891268 PMCID: PMC4758748 DOI: 10.1371/journal.pgen.1005864] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/22/2016] [Indexed: 12/02/2022] Open
Abstract
Eukaryotic cells must coordinate contraction of the actomyosin ring at the division site together with ingression of the plasma membrane and remodelling of the extracellular matrix (ECM) to support cytokinesis, but the underlying mechanisms are still poorly understood. In eukaryotes, glycosyltransferases that synthesise ECM polysaccharides are emerging as key factors during cytokinesis. The budding yeast chitin synthase Chs2 makes the primary septum, a special layer of the ECM, which is an essential process during cell division. Here we isolated a group of actomyosin ring components that form complexes together with Chs2 at the cleavage site at the end of the cell cycle, which we named ‘ingression progression complexes’ (IPCs). In addition to type II myosin, the IQGAP protein Iqg1 and Chs2, IPCs contain the F-BAR protein Hof1, and the cytokinesis regulators Inn1 and Cyk3. We describe the molecular mechanism by which chitin synthase is activated by direct association of the C2 domain of Inn1, and the transglutaminase-like domain of Cyk3, with the catalytic domain of Chs2. We used an experimental system to find a previously unanticipated role for the C-terminus of Inn1 in preventing the untimely activation of Chs2 at the cleavage site until Cyk3 releases the block on Chs2 activity during late mitosis. These findings support a model for the co-ordinated regulation of cell division in budding yeast, in which IPCs play a central role. Cytokinesis is the process by which a cell divides in two and occurs once cells have replicated and segregated their chromosomes. Eukaryotic cells assemble a molecular machine called the actomyosin ring that drives cytokinesis. Contraction of the actomyosin ring is coupled to ingression of the plasma membrane and extracellular matrix remodelling. In eukaryotes, glycosyltransferases that synthesise polysaccharides of the extracellular matrix are emerging as essential factors during cytokinesis. Defects associated with the function of those glycosyltransferases induce the failure of cell division, which promotes the formation of genetically unstable tetraploid cells. Budding yeast cells contain a glycosyltransferase called Chs2 that makes a special layer of extracellular matrix and is essential during cell division. Our findings provide new insights into the molecular mechanism by which the cytokinesis regulators Inn1 and Cyk3 finely regulate the activity of glycosyltransferase Chs2 at the end of mitosis. In addition we isolated a group of actomyosin ring components that form complexes together with Chs2 and Inn1 at the cleavage site, which we have named ‘ingression progression complexes’. These complexes coordinate the contraction of the actomyosin ring, ingression of the plasma membrane and extracellular matrix remodelling in a precise manner. Chs2 is indeed a key factor for coordinating these events. It appears that similar principles could apply to other eukaryotic species, such as fission yeast even if the identity of the relevant glycosyltransferase has changed over the evolution. Taking into account the conservation of the basic cytokinetic mechanisms future studies should try to determine whether a glycosyltransferase similar to Chs2 plays a key role during cytokinesis in human cells.
Collapse
Affiliation(s)
- Magdalena Foltman
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, CSIC, Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Iago Molist
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, CSIC, Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Irene Arcones
- Instituto de Biología Funcional y Genómica, Departamento de Microbiología y Genética, CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Carlos Sacristan
- Instituto de Biología Funcional y Genómica, Departamento de Microbiología y Genética, CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Yasmina Filali-Mouncef
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, CSIC, Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Cesar Roncero
- Instituto de Biología Funcional y Genómica, Departamento de Microbiología y Genética, CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Alberto Sanchez-Diaz
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, CSIC, Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
- * E-mail:
| |
Collapse
|
33
|
Abstract
Cytokinesis is the final process in the cell cycle that physically divides one cell into two. In budding yeast, cytokinesis is driven by a contractile actomyosin ring (AMR) and the simultaneous formation of a primary septum, which serves as template for cell wall deposition. AMR assembly, constriction, primary septum formation and cell wall deposition are successive processes and tightly coupled to cell cycle progression to ensure the correct distribution of genetic material and cell organelles among the two rising cells prior to cell division. The role of the AMR in cytokinesis and the molecular mechanisms that drive AMR constriction and septation are the focus of current research. This review summarizes the recent progresses in our understanding of how budding yeast cells orchestrate the multitude of molecular mechanisms that control AMR driven cytokinesis in a spatio-temporal manner to achieve an error free cell division.
Collapse
|
34
|
Srivastava V, Iglesias PA, Robinson DN. Cytokinesis: Robust cell shape regulation. Semin Cell Dev Biol 2015; 53:39-44. [PMID: 26481973 DOI: 10.1016/j.semcdb.2015.10.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/13/2015] [Indexed: 11/25/2022]
Abstract
Cytokinesis, the final step of cell division, is a great example of robust cell shape regulation. A wide variety of cells ranging from the unicellular Dictyostelium to human cells in tissues proceed through highly similar, stereotypical cell shape changes during cell division. Typically, cells first round up forming a cleavage furrow in the middle, which constricts resulting in the formation of two daughter cells. Tight control of cytokinesis is essential for proper segregation of genetic and cellular materials, and its failure is deleterious to cell viability. Thus, biological systems have developed elaborate mechanisms to ensure high fidelity of cytokinesis, including the existence of multiple biochemical and mechanical pathways regulated through feedback. In this review, we focus on the built-in redundancy of the cytoskeletal machinery that allows cells to divide successfully in a variety of biological and mechanical contexts. Using Dictyostelium cytokinesis as an example, we demonstrate that the crosstalk between biochemical and mechanical signaling through feedback ensures correct assembly and function of the cell division machinery.
Collapse
Affiliation(s)
- Vasudha Srivastava
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Pablo A Iglesias
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, United States.
| |
Collapse
|
35
|
Markus SM, Omer S, Baranowski K, Lee WL. Improved Plasmids for Fluorescent Protein Tagging of Microtubules in Saccharomyces cerevisiae. Traffic 2015; 16:773-786. [PMID: 25711127 PMCID: PMC4795465 DOI: 10.1111/tra.12276] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/23/2015] [Accepted: 02/22/2015] [Indexed: 01/13/2023]
Abstract
The ability to fluorescently label microtubules in live cells has enabled numerous studies of motile and mitotic processes. Such studies are particularly useful in budding yeast owing to the ease with which they can be genetically manipulated and imaged by live cell fluorescence microscopy. Because of problems associated with fusing genes encoding fluorescent proteins (FPs) to the native α-tubulin (TUB1) gene, the FP-Tub1 fusion is generally integrated into the genome such that the endogenous TUB1 locus is left intact. Although such modifications have no apparent consequences on cell viability, it is unknown if these genome-integrated FP-tubulin fusions negatively affect microtubule functions. Thus, a simple, economical and highly sensitive assay of microtubule function is required. Furthermore, the current plasmids available for generation of FP-Tub1 fusions have not kept pace with the development of improved FPs. Here, we have developed a simple and sensitive assay of microtubule function that is sufficient to identify microtubule defects that were not apparent by fluorescence microscopy or cell growth assays. Using results obtained from this assay, we have engineered a new family of 30 FP-Tub1 plasmids that use various improved FPs and numerous selectable markers that upon genome integration have no apparent defect on microtubule function.
Collapse
Affiliation(s)
| | | | - Kaitlyn Baranowski
- Biology Department, University of Massachusetts Amherst, 221 Morrill South, 611 North Pleasant Street, Amherst, MA 01003
| | - Wei-Lih Lee
- Biology Department, University of Massachusetts Amherst, 221 Morrill South, 611 North Pleasant Street, Amherst, MA 01003
| |
Collapse
|
36
|
The Carboxy-Terminal Tails of Septins Cdc11 and Shs1 Recruit Myosin-II Binding Factor Bni5 to the Bud Neck in Saccharomyces cerevisiae. Genetics 2015; 200:843-62. [PMID: 25971666 DOI: 10.1534/genetics.115.176503] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/08/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Septins are a conserved family of GTP-binding proteins that form heterooctameric complexes that assemble into higher-order structures. In yeast, septin superstructure at the bud neck serves as a barrier to separate a daughter cell from its mother and as a scaffold to recruit the proteins that execute cytokinesis. However, how septins recruit specific factors has not been well characterized. In the accompanying article in this issue, (Finnigan et al. 2015), we demonstrated that the C-terminal extensions (CTEs) of the alternative terminal subunits of septin heterooctamers, Cdc11 and Shs1, share a role required for optimal septin function in vivo. Here we describe our use of unbiased genetic approaches (both selection of dosage suppressors and analysis of synthetic interactions) that pinpointed Bni5 as a protein that interacts with the CTEs of Cdc11 and Shs1. Furthermore, we used three independent methods-construction of chimeric proteins, noncovalent tethering mediated by a GFP-targeted nanobody, and imaging by fluorescence microscopy-to confirm that a physiologically important function of the CTEs of Cdc11 and Shs1 is optimizing recruitment of Bni5 and thereby ensuring efficient localization at the bud neck of Myo1, the type II myosin of the actomyosin contractile ring.Related article in GENETICS Finnigan, G. C. et al., 2015 Comprehensive Genetic Analysis of Paralogous Terminal Septin Subunits Shs1 and Cdc11 in Saccharomyces cerevisiae. Genetics 200: 841-861.
Collapse
|
37
|
Feng Z, Okada S, Cai G, Zhou B, Bi E. Myosin‑II heavy chain and formin mediate the targeting of myosin essential light chain to the division site before and during cytokinesis. Mol Biol Cell 2015; 26:1211-24. [PMID: 25631819 PMCID: PMC4454170 DOI: 10.1091/mbc.e14-09-1363] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
MLC1 is a haploinsufficient gene encoding the essential light chain for Myo1, the sole myosin‑II heavy chain in the budding yeast Saccharomyces cerevisiae. Mlc1 defines an essential hub that coordinates actomyosin ring function, membrane trafficking, and septum formation during cytokinesis by binding to IQGAP, myosin‑II, and myosin‑V. However, the mechanism of how Mlc1 is targeted to the division site during the cell cycle remains unsolved. By constructing a GFP‑tagged MLC1 under its own promoter control and using quantitative live‑cell imaging coupled with yeast mutants, we found that septin ring and actin filaments mediate the targeting of Mlc1 to the division site before and during cytokinesis, respectively. Both mechanisms contribute to and are collectively required for the accumulation of Mlc1 at the division site during cytokinesis. We also found that Myo1 plays a major role in the septin‑dependent Mlc1 localization before cytokinesis, whereas the formin Bni1 plays a major role in the actin filament-dependent Mlc1 localization during cytokinesis. Such a two‑tiered mechanism for Mlc1 localization is presumably required for the ordered assembly and robustness of cytokinesis machinery and is likely conserved across species.
Collapse
Affiliation(s)
- Zhonghui Feng
- School of Life Sciences, Tsinghua University, Beijing 100084, China Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Satoshi Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Guoping Cai
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bing Zhou
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
38
|
Ong K, Wloka C, Okada S, Svitkina T, Bi E. Architecture and dynamic remodelling of the septin cytoskeleton during the cell cycle. Nat Commun 2014; 5:5698. [PMID: 25474997 PMCID: PMC4258872 DOI: 10.1038/ncomms6698] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 10/29/2014] [Indexed: 02/04/2023] Open
Abstract
Septins perform diverse functions through the formation of filaments and higher-order structures. However, the exact architecture of septin structures remains unclear. In the budding yeast Saccharomyces cerevisiae, septins form an 'hourglass' at the mother-bud neck before cytokinesis, which is converted into a 'double ring' during cytokinesis. Here, using platinum-replica electron microscopy, we find that the early hourglass consists of septin double filaments oriented along the mother-bud axis. In the late hourglass, these double filaments are connected by periodic circumferential single filaments on the membrane-proximal side and are associated with centrally located, circumferential, myosin-II thick filaments on the membrane-distal side. The double ring consists of exclusively circumferential septin filaments. Live-cell imaging studies indicate that the hourglass-to-double ring transition is accompanied by loss of septin subunits from the hourglass and reorganization of the remaining subunits into the double ring. This work provides an unparalleled view of septin structures within cells and defines their remodelling dynamics during the cell cycle.
Collapse
Affiliation(s)
- Katy Ong
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Carsten Wloka
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institut für Biologie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Satoshi Okada
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Tatyana Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erfei Bi
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
39
|
Stachowiak MR, Laplante C, Chin HF, Guirao B, Karatekin E, Pollard TD, O'Shaughnessy B. Mechanism of cytokinetic contractile ring constriction in fission yeast. Dev Cell 2014; 29:547-561. [PMID: 24914559 DOI: 10.1016/j.devcel.2014.04.021] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/28/2014] [Accepted: 04/16/2014] [Indexed: 11/24/2022]
Abstract
Cytokinesis involves constriction of a contractile actomyosin ring. The mechanisms generating ring tension and setting the constriction rate remain unknown because the organization of the ring is poorly characterized, its tension was rarely measured, and constriction is coupled to other processes. To isolate ring mechanisms, we studied fission yeast protoplasts, in which constriction occurs without the cell wall. Exploiting the absence of cell wall and actin cortex, we measured ring tension and imaged ring organization, which was dynamic and disordered. Computer simulations based on the amounts and biochemical properties of the key proteins showed that they spontaneously self-organize into a tension-generating bundle. Together with rapid component turnover, the self-organization mechanism continuously reassembles and remodels the constricting ring. Ring constriction depended on cell shape, revealing that the ring operates close to conditions of isometric tension. Thus, the fission yeast ring sets its own tension, but other processes set the constriction rate.
Collapse
Affiliation(s)
- Matthew R Stachowiak
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Caroline Laplante
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Harvey F Chin
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Boris Guirao
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT 06520, USA; Nanobiology Institute, Yale University, New Haven, CT 06520, USA
| | - Thomas D Pollard
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Cell Biology, Yale University, New Haven, CT 06520, USA
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
40
|
Tian C, Wu Y, Johnsson N. Stepwise and cooperative assembly of a cytokinetic core complex in Saccharomyces cerevisiae. J Cell Sci 2014; 127:3614-24. [PMID: 24895401 DOI: 10.1242/jcs.153429] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Actomyosin ring (AMR) contraction and the synthesis of an extracellular septum are interdependent pathways that mediate cytokinesis in the yeast Saccharomyces cerevisiae and other eukaryotes. How these interdependent pathways are physically connected is central for understanding cytokinesis. The yeast IQGAP (Iqg1p) belongs to the conserved AMR. The F-BAR-domain-containing protein Hof1p is a member of a complex that stimulates cell wall synthesis. We report here on the stepwise formation of a physical connection between both proteins. The C-terminal IQ-repeats of Iqg1p first bind to the essential myosin light chain before both proteins assemble with Hof1p into the Mlc1p-Iqg1p-Hof1p (MIH) bridge. Mutations in Iqg1p that disrupt the MIH complex alter Hof1p targeting to the AMR and impair AMR contraction. Epistasis analyses of two IQG1 alleles that are incompatible with formation of the MIH complex support the existence and functional significance of a large cytokinetic core complex. We propose that the MIH complex acts as hinge between the AMR and the proteins involved in cell wall synthesis and membrane attachment.
Collapse
Affiliation(s)
- Chen Tian
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, 89081 Ulm, Germany
| | - Yehui Wu
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, 89081 Ulm, Germany
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, 89081 Ulm, Germany
| |
Collapse
|
41
|
Cundell MJ, Price C. The budding yeast amphiphysin complex is required for contractile actin ring (CAR) assembly and post-contraction GEF-independent accumulation of Rho1-GTP. PLoS One 2014; 9:e97663. [PMID: 24874185 PMCID: PMC4038553 DOI: 10.1371/journal.pone.0097663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/22/2014] [Indexed: 12/26/2022] Open
Abstract
The late events of the budding yeast cell division cycle, cytokinesis and cell separation, require the assembly of a contractile actomyosin ring (CAR), primary and secondary septum formation followed by enzymatic degradation of the primary septum. Here we present evidence that demonstrates a role for the budding yeast amphiphysin complex, a heterodimer comprising Rvs167 and Rvs161, in CAR assembly and cell separation. The iqg1-1 allele is synthetically lethal with both rvs167 and rvs161 null mutations. We show that both Iqg1 and the amphiphysin complex are required for CAR assembly in early anaphase but cells are able to complete assembly in late anaphase when these activities are, respectively, either compromised or absent. Amphiphysin dependent CAR assembly is dependent upon the Rvs167 SH3 domain, but this function is insufficient to explain the observed synthetic lethality. Dosage suppression of the iqg1-1 allele demonstrates that endocytosis is required for the default cell separation pathway in the absence of CAR contraction but is unlikely to be required to maintain viability. The amphiphysin complex is required for normal, post-mitotic, localization of Chs3 and the Rho1 GEF, Rom2, which are responsible for secondary septum deposition and the accumulation of GTP bound Rho1 at the bud neck. It is concluded that a failure of polarity establishment in the absence of CAR contraction and amphiphysin function leads to loss of viability as a result of the consequent cell separation defect.
Collapse
Affiliation(s)
- Michael John Cundell
- School of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Clive Price
- School of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Wang N, Lo Presti L, Zhu YH, Kang M, Wu Z, Martin SG, Wu JQ. The novel proteins Rng8 and Rng9 regulate the myosin-V Myo51 during fission yeast cytokinesis. ACTA ACUST UNITED AC 2014; 205:357-75. [PMID: 24798735 PMCID: PMC4018781 DOI: 10.1083/jcb.201308146] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The myosin-V family of molecular motors is known to be under sophisticated regulation, but our knowledge of the roles and regulation of myosin-Vs in cytokinesis is limited. Here, we report that the myosin-V Myo51 affects contractile ring assembly and stability during fission yeast cytokinesis, and is regulated by two novel coiled-coil proteins, Rng8 and Rng9. Both rng8Δ and rng9Δ cells display similar defects as myo51Δ in cytokinesis. Rng8 and Rng9 are required for Myo51's localizations to cytoplasmic puncta, actin cables, and the contractile ring. Myo51 puncta contain multiple Myo51 molecules and walk continuously on actin filaments in rng8(+) cells, whereas Myo51 forms speckles containing only one dimer and does not move efficiently on actin tracks in rng8Δ. Consistently, Myo51 transports artificial cargos efficiently in vivo, and this activity is regulated by Rng8. Purified Rng8 and Rng9 form stable higher-order complexes. Collectively, we propose that Rng8 and Rng9 form oligomers and cluster multiple Myo51 dimers to regulate Myo51 localization and functions.
Collapse
Affiliation(s)
- Ning Wang
- Department of Molecular Genetics, 2 Department of Molecular and Cellular Biochemistry, and 3 Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | | | | | | | | | | | | |
Collapse
|
43
|
Oh Y, Schreiter J, Nishihama R, Wloka C, Bi E. Targeting and functional mechanisms of the cytokinesis-related F-BAR protein Hof1 during the cell cycle. Mol Biol Cell 2013; 24:1305-20. [PMID: 23468521 PMCID: PMC3639043 DOI: 10.1091/mbc.e12-11-0804] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hof1 targets to the division site by interacting with septins and myosin II sequentially during the cell cycle. It plays a role in cytokinesis by coupling actomyosin ring constriction to primary septum formation through interactions with Myo1 and Chs2. F-BAR proteins are membrane‑associated proteins believed to link the plasma membrane to the actin cytoskeleton in cellular processes such as cytokinesis and endocytosis. In the budding yeast Saccharomyces cerevisiae, the F‑BAR protein Hof1 localizes to the division site in a complex pattern during the cell cycle and plays an important role in cytokinesis. However, the mechanisms underlying its localization and function are poorly understood. Here we show that Hof1 contains three distinct targeting domains that contribute to cytokinesis differentially. The N‑terminal half of Hof1 localizes to the bud neck and the sites of polarized growth during the cell cycle. The neck localization is mediated mainly by an interaction between the second coiled‑coil region in the N‑terminus and the septin Cdc10, whereas the localization to the sites of polarized growth is mediated entirely by the F‑BAR domain. In contrast, the C‑terminal half of Hof1 interacts with Myo1, the sole myosin‑II heavy chain in budding yeast, and localizes to the bud neck in a Myo1‑dependent manner from the onset to the completion of cytokinesis. We also show that the SH3 domain in the C‑terminus plays an important role in maintaining the symmetry of Myo1 ring constriction during cytokinesis and that Hof1 interacts with Chs2, a chitin synthase that is required for primary septum formation. Together these data define a mechanism that accounts for the localization of Hof1 during the cell cycle and suggest that Hof1 may function in cytokinesis by coupling actomyosin ring constriction to primary septum formation through interactions with Myo1 and Chs2.
Collapse
Affiliation(s)
- Younghoon Oh
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|