1
|
Mahmoud AH, Alhamidi RS, Ilce BY, Hamad AM, Ali N, Mahasneh A, Talaat IM, Tlili A, Hamoudi R. Identification of Genes Associated with Familial Focal Segmental Glomerulosclerosis Through Transcriptomics and In Silico Analysis, Including RPL27, TUBB6, and PFDN5. Int J Mol Sci 2024; 25:11659. [PMID: 39519211 PMCID: PMC11546068 DOI: 10.3390/ijms252111659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a major cause of nephrotic syndrome and often leads to progressive kidney failure. Its varying clinical presentation suggests potential genetic diversity, requiring further molecular investigation. This study aims to elucidate some of the genetic and molecular mechanisms underlying FSGS. The study focuses on the use of bioinformatic analysis of gene expression data to identify genes associated with familial FSGS. A comprehensive in silico analysis was performed using the GSE99340 data set from Gene Expression Omnibus (GEO) comparing gene expression in glomerular and tubulointerstitial tissues from FSGS patients (n = 10) and Minimal Change Disease (MCD) patients (n = 8). These findings were validated using transcriptomics data obtained using RNA sequencing from FSGS (n = 3) and control samples (n = 3) from the UAE. Further validation was conducted using qRT-PCR on an independent FFPE cohort (FSGS, n = 6; MCD, n = 7) and saliva samples (FSGS, n = 3; Control, n = 7) from the UAE. Three genes (TUBB6, RPL27, and PFDN5) showed significant differential expression (p < 0.01) when comparing FSGS and MCD with healthy controls. These genes are associated with cell junction organization and synaptic pathways of the neuron, supporting the link between FSGS and the neural system. These genes can potentially be useful as diagnostic biomarkers for FSGS and to develop new treatment options.
Collapse
Affiliation(s)
- Anfal Hussain Mahmoud
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.H.M.); (R.S.A.); (B.Y.I.); (A.M.H.); (N.A.); or (R.H.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Reem Sami Alhamidi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.H.M.); (R.S.A.); (B.Y.I.); (A.M.H.); (N.A.); or (R.H.)
| | - Burcu Yener Ilce
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.H.M.); (R.S.A.); (B.Y.I.); (A.M.H.); (N.A.); or (R.H.)
| | - Alaa Mohamed Hamad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.H.M.); (R.S.A.); (B.Y.I.); (A.M.H.); (N.A.); or (R.H.)
| | - Nival Ali
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.H.M.); (R.S.A.); (B.Y.I.); (A.M.H.); (N.A.); or (R.H.)
| | - Amjad Mahasneh
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Iman M. Talaat
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.H.M.); (R.S.A.); (B.Y.I.); (A.M.H.); (N.A.); or (R.H.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.H.M.); (R.S.A.); (B.Y.I.); (A.M.H.); (N.A.); or (R.H.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Center of Excellence for Precision Medicine, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- BIMAI-Lab, Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London NW3 2QG, UK
| |
Collapse
|
2
|
Chu S, Xie X, Payan C, Stochaj U. Valosin containing protein (VCP): initiator, modifier, and potential drug target for neurodegenerative diseases. Mol Neurodegener 2023; 18:52. [PMID: 37545006 PMCID: PMC10405438 DOI: 10.1186/s13024-023-00639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
The AAA+ ATPase valosin containing protein (VCP) is essential for cell and organ homeostasis, especially in cells of the nervous system. As part of a large network, VCP collaborates with many cofactors to ensure proteostasis under normal, stress, and disease conditions. A large number of mutations have revealed the importance of VCP for human health. In particular, VCP facilitates the dismantling of protein aggregates and the removal of dysfunctional organelles. These are critical events to prevent malfunction of the brain and other parts of the nervous system. In line with this idea, VCP mutants are linked to the onset and progression of neurodegeneration and other diseases. The intricate molecular mechanisms that connect VCP mutations to distinct brain pathologies continue to be uncovered. Emerging evidence supports the model that VCP controls cellular functions on multiple levels and in a cell type specific fashion. Accordingly, VCP mutants derail cellular homeostasis through several mechanisms that can instigate disease. Our review focuses on the association between VCP malfunction and neurodegeneration. We discuss the latest insights in the field, emphasize open questions, and speculate on the potential of VCP as a drug target for some of the most devastating forms of neurodegeneration.
Collapse
Affiliation(s)
- Siwei Chu
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Xinyi Xie
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Carla Payan
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada.
- Quantitative Life Sciences Program, McGill University, Montreal, Canada.
| |
Collapse
|
3
|
Tang X, Wei W, Snowball JM, Nakayasu ES, Bell SM, Ansong C, Lin X, Whitsett JA. EMC3 regulates mesenchymal cell survival via control of the mitotic spindle assembly. iScience 2022; 26:105667. [PMID: 36624844 PMCID: PMC9823123 DOI: 10.1016/j.isci.2022.105667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 08/15/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Eukaryotic cells transit through the cell cycle to produce two daughter cells. Dysregulation of the cell cycle leads to cell death or tumorigenesis. Herein, we found a subunit of the ER membrane complex, EMC3, as a key regulator of cell cycle. Conditional deletion of Emc3 in mouse embryonic mesoderm led to reduced size and patterning defects of multiple organs. Emc3 deficiency impaired cell proliferation, causing spindle assembly defects, chromosome mis-segregation, cell cycle arrest at G2/M, and apoptosis. Upon entry into mitosis, mesenchymal cells upregulate EMC3 protein levels and localize EMC3 to the mitotic centrosomes. Further analysis indicated that EMC3 works together with VCP to tightly regulate the levels and activity of Aurora A, an essential factor for centrosome function and mitotic spindle assembly: while overexpression of EMC3 or VCP degraded Aurora A, their loss led to increased Aurora A stability but reduced Aurora A phosphorylation in mitosis.
Collapse
Affiliation(s)
- Xiaofang Tang
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH 45229, USA,Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, 2nd Nanjiang Rd, Nansha District, Guangzhou 511458, China
| | - Wei Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, No. 2005 Songhu Rd, Shanghai 200438, China
| | - John M. Snowball
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH 45229, USA
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Sheila M. Bell
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH 45229, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Xinhua Lin
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, 2nd Nanjiang Rd, Nansha District, Guangzhou 511458, China,State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, No. 2005 Songhu Rd, Shanghai 200438, China,Corresponding author
| | - Jeffrey A. Whitsett
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH 45229, USA,Corresponding author
| |
Collapse
|
4
|
Zhu K, Cai Y, Si X, Ye Z, Gao Y, Liu C, Wang R, Ma Z, Zhu H, Zhang L, Li S, Zhang H, Yue J. The phosphorylation and dephosphorylation switch of VCP/p97 regulates the architecture of centrosome and spindle. Cell Death Differ 2022; 29:2070-2088. [PMID: 35430615 PMCID: PMC9525716 DOI: 10.1038/s41418-022-01000-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/30/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
The proper orientation of centrosome and spindle is essential for genome stability; however, the mechanism that governs these processes remains elusive. Here, we demonstrated that polo-like kinase 1 (Plk1), a key mitotic kinase, phosphorylates residue Thr76 in VCP/p97 (an AAA-ATPase), at the centrosome from prophase to anaphase. This phosphorylation process recruits VCP to the centrosome and in this way, it regulates centrosome orientation. VCP exhibits strong co-localization with Eg5 (a mitotic kinesin motor), at the mitotic spindle, and the dephosphorylation of Thr76 in VCP is required for the enrichment of both VCP and Eg5 at the spindle, thus ensuring proper spindle architecture and chromosome segregation. We also showed that the phosphatase, PTEN, is responsible for the dephosphorylation of Thr76 in VCP; when PTEN was knocked down, the normal spread of VCP from the centrosome to the spindle was abolished. Cryo-EM structures of VCPT76A and VCPT76E, which represent dephosphorylated and phosphorylated states of VCP, respectively, revealed that the Thr76 phosphorylation modulates VCP by altering the inter-domain and inter-subunit interactions, and ultimately the nucleotide-binding pocket conformation. Interestingly, the tumor growth in nude mice implanted with VCPT76A-reconstituted cancer cells was significantly slower when compared with those implanted with VCPWT-reconstituted cancer cells. Collectively, our findings demonstrate that the phosphorylation and dephosphorylation switch of VCP regulates the architecture of centrosome and spindle for faithful chromosome segregation.
Collapse
Affiliation(s)
- Kaiyuan Zhu
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yang Cai
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaotong Si
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zuodong Ye
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yuanzhu Gao
- Department of Biology, SUSTech Cryo-EM Centre, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chuang Liu
- Department of Biology, SUSTech Cryo-EM Centre, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rui Wang
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zhibin Ma
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Huazhang Zhu
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Liang Zhang
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Shengjin Li
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Hongmin Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Jianbo Yue
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Targeted substrate loop insertion by VCP/p97 during PP1 complex disassembly. Nat Struct Mol Biol 2021; 28:964-971. [PMID: 34824462 DOI: 10.1038/s41594-021-00684-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/07/2021] [Indexed: 12/30/2022]
Abstract
The AAA-ATPase VCP/p97/Cdc48 unfolds proteins by threading them through its central pore, but how substrates are recognized and inserted into the pore in diverse pathways has remained controversial. Here, we show that p97, with its adapter p37, binds an internal recognition site (IRS) within inhibitor-3 (I3) and then threads a peptide loop into its channel to strip I3 off protein phosphatase-1 (PP1). Of note, the IRS is adjacent to the prime interaction site of I3 to PP1, and IRS mutations block I3 processing both in vitro and in cells. In contrast, amino- and carboxy-terminal regions of I3 are not required, and even circularization of I3 does not prevent I3 processing. This was confirmed by an in vitro Förster resonance energy transfer assay that allowed kinetic analysis of the reaction. Thus, our data uncover how PP1 is released from its inhibitory partner for activation and demonstrate a remarkable plasticity in substrate threading by p97.
Collapse
|
6
|
Prosée RF, Wenda JM, Özdemir I, Gabus C, Delaney K, Schwager F, Gotta M, Steiner FA. Transgenerational inheritance of centromere identity requires the CENP-A N-terminal tail in the C. elegans maternal germ line. PLoS Biol 2021; 19:e3000968. [PMID: 34228701 PMCID: PMC8259991 DOI: 10.1371/journal.pbio.3000968] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Centromere protein A (CENP-A) is a histone H3 variant that defines centromeric chromatin and is essential for centromere function. In most eukaryotes, CENP-A-containing chromatin is epigenetically maintained, and centromere identity is inherited from one cell cycle to the next. In the germ line of the holocentric nematode Caenorhabditis elegans, this inheritance cycle is disrupted. CENP-A is removed at the mitosis-to-meiosis transition and is reestablished on chromatin during diplotene of meiosis I. Here, we show that the N-terminal tail of CENP-A is required for the de novo establishment of centromeres, but then its presence becomes dispensable for centromere maintenance during development. Worms homozygous for a CENP-A tail deletion maintain functional centromeres during development but give rise to inviable offspring because they fail to reestablish centromeres in the maternal germ line. We identify the N-terminal tail of CENP-A as a critical domain for the interaction with the conserved kinetochore protein KNL-2 and argue that this interaction plays an important role in setting centromere identity in the germ line. We conclude that centromere establishment and maintenance are functionally distinct in C. elegans.
Collapse
Affiliation(s)
- Reinier F. Prosée
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva, Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Joanna M. Wenda
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva, Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Isa Özdemir
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva, Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Caroline Gabus
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva, Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Kamila Delaney
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva, Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Francoise Schwager
- Department of Cell Physiology and Metabolism and Institute of Genetics and Genomics in Geneva, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Monica Gotta
- Department of Cell Physiology and Metabolism and Institute of Genetics and Genomics in Geneva, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Florian A. Steiner
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva, Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
7
|
Hoffmann I. Centrosomes in mitotic spindle assembly and orientation. Curr Opin Struct Biol 2020; 66:193-198. [PMID: 33296732 DOI: 10.1016/j.sbi.2020.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
The centrosome is present in most animal cells and functions as the major microtubule-organizing center to ensure faithful chromosome segregation during cell division. As cells transition from interphase to mitosis, the duplicated centrosomes separate and move to opposite sides of the cell where the spindle assembles. Centrosomes not only nucleate but also organize microtubules of the mitotic spindle. The mitotic spindle is anchored to the cell cortex by the astral microtubules emanating from the centrosomes. Proper orientation of the mitotic spindle is essential for correct cell division. Centrosome-localized polo-like kinase Plk1 has been linked to regulation of proper spindle orientation. A number of proteins including MISP and NuMA have been implicated in the Plk1-mediated spindle orientation pathway.
Collapse
Affiliation(s)
- Ingrid Hoffmann
- Cell Cycle Control and Carcinogenesis, German Cancer Research Center, F045, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
| |
Collapse
|
8
|
Kracht M, van den Boom J, Seiler J, Kröning A, Kaschani F, Kaiser M, Meyer H. Protein Phosphatase-1 Complex Disassembly by p97 is Initiated through Multivalent Recognition of Catalytic and Regulatory Subunits by the p97 SEP-domain Adapters. J Mol Biol 2020; 432:6061-6074. [PMID: 33058883 DOI: 10.1016/j.jmb.2020.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Abstract
The AAA-ATPase VCP/p97 cooperates with the SEP-domain adapters p37, UBXN2A and p47 in stripping inhibitor-3 (I3) from protein phosphatase-1 (PP1) for activation. In contrast to p97-mediated degradative processes, PP1 complex disassembly is ubiquitin-independent. It is therefore unclear how selective targeting is achieved. Using biochemical reconstitution and crosslink mass spectrometry, we show here that SEP-domain adapters use a multivalent substrate recognition strategy. An N-terminal sequence element predicted to form a helix, together with the SEP-domain, binds and engages the direct target I3 in the central pore of p97 for unfolding, while its partner PP1 is held by a linker between SHP box and UBX domain locked onto the peripheral N-domain of p97. Although the I3-binding element is functional in p47, p47 in vitro requires a transplant of the PP1-binding linker from p37 for activity stressing that both sites are essential to control specificity. Of note, unfolding is then governed by an inhibitory segment in the N-terminal region of p47, suggesting a regulatory function. Together, this study reveals how p97 adapters engage a protein complex for ubiquitin-independent disassembly while ensuring selectivity for one subunit.
Collapse
Affiliation(s)
- Matthias Kracht
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Johannes van den Boom
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Jonas Seiler
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Alexander Kröning
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Farnusch Kaschani
- Chemical Biology and Analytics Core Facility, Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Markus Kaiser
- Chemical Biology and Analytics Core Facility, Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Hemmo Meyer
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany.
| |
Collapse
|
9
|
Li GS, Liu WW, Zhang F, Zhu F, Yang FX, Hao JP, Hou ZC. Genome-wide association study of bone quality and feed efficiency-related traits in Pekin ducks. Genomics 2020; 112:5021-5028. [PMID: 32927007 DOI: 10.1016/j.ygeno.2020.09.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/26/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
Feeding and bone traits are vital for breeding and reproduction in the commercial duck industry. In this study, we performed a genome-wide association study for feeding and bone traits in a population of 540 lean-type Pekin ducks, followed by genotyping-by-sequencing procedures. The genetic parameters of feeding and bone traits were also estimated using genomic information. In total, seventy-eight significant SNPs were determined, and eleven of them reached the genome-wide significant level for 7 traits except for body weight at 42-day old. A peak of genome-wide significant SNPs was detected on chromosome 2 for feed conversion ratio (P-value = 7.46E-11), and the top SNP (P-value = 2.23E-08) for bone-breaking strength was also obtained in the upstream of gene RAPGEF5. This study provided a list of novel markers and candidate genes associated with feeding and bone traits in Pekin ducks, which could contribute to the genetic selection in duck breeding.
Collapse
Affiliation(s)
- Guang-Sheng Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei-Wei Liu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Fan Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Feng Zhu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | | | | | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Kapoor S, Kotak S. Centrosome Aurora A gradient ensures single polarity axis in C. elegans embryos. Biochem Soc Trans 2020; 48:1243-1253. [PMID: 32597472 PMCID: PMC7616972 DOI: 10.1042/bst20200298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 01/31/2023]
Abstract
Cellular asymmetries are vital for generating cell fate diversity during development and in stem cells. In the newly fertilized Caenorhabditis elegans embryo, centrosomes are responsible for polarity establishment, i.e. anterior-posterior body axis formation. The signal for polarity originates from the centrosomes and is transmitted to the cell cortex, where it disassembles the actomyosin network. This event leads to symmetry breaking and the establishment of distinct domains of evolutionarily conserved PAR proteins. However, the identity of an essential component that localizes to the centrosomes and promotes symmetry breaking was unknown. Recent work has uncovered that the loss of Aurora A kinase (AIR-1 in C. elegans and hereafter referred to as Aurora A) in the one-cell embryo disrupts stereotypical actomyosin-based cortical flows that occur at the time of polarity establishment. This misregulation of actomyosin flow dynamics results in the occurrence of two polarity axes. Notably, the role of Aurora A in ensuring a single polarity axis is independent of its well-established function in centrosome maturation. The mechanism by which Aurora A directs symmetry breaking is likely through direct regulation of Rho-dependent contractility. In this mini-review, we will discuss the unconventional role of Aurora A kinase in polarity establishment in C. elegans embryos and propose a refined model of centrosome-dependent symmetry breaking.
Collapse
Affiliation(s)
- Sukriti Kapoor
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), 560012 Bangalore, India
| | - Sachin Kotak
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), 560012 Bangalore, India
| |
Collapse
|
11
|
Figuerola-Conchas A, Saarbach J, Daguer JP, Cieren A, Barluenga S, Winssinger N, Gotta M. Small-Molecule Modulators of the ATPase VCP/p97 Affect Specific p97 Cellular Functions. ACS Chem Biol 2020; 15:243-253. [PMID: 31790201 DOI: 10.1021/acschembio.9b00832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
VCP/p97 belongs to the AAA+ ATPase family and has an essential role in several cellular processes ranging from cell division to protein homeostasis. Compounds targeting p97 inhibit the main ATPase domain and cause cell death. Here, using PNA-encoded chemical libraries, we have identified two small molecules that target the regulatory domain of p97, comprising the N-terminal and the D1 ATPase domains, and do not cause cell death. One molecule, NW1028, inhibits the degradation of a p97-dependent reporter, whereas the other, NW1030, increases it. ATPase assays show that NW1028 and NW1030 do not affect the main catalytic domain of p97. Mapping of the binding site using a photoaffinity conjugate points to a cleft at the interface of the N-terminal and the D1 ATPase domains. We have therefore discovered two new compounds that bind to the regulatory domain of p97 and modulate specific p97 cellular functions. Using these compounds, we have revealed a role for p97 in the regulation of mitotic spindle orientation in HeLa cells.
Collapse
Affiliation(s)
- Ainoa Figuerola-Conchas
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva 4, Switzerland
- National Centre of Competence in Research (NCCR) in Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Jacques Saarbach
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva 4, Switzerland
- National Centre of Competence in Research (NCCR) in Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Jean-Pierre Daguer
- National Centre of Competence in Research (NCCR) in Chemical Biology, University of Geneva, Geneva, Switzerland
- Department of Organic Chemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - Adeline Cieren
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva 4, Switzerland
- National Centre of Competence in Research (NCCR) in Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Sofia Barluenga
- National Centre of Competence in Research (NCCR) in Chemical Biology, University of Geneva, Geneva, Switzerland
- Department of Organic Chemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - Nicolas Winssinger
- National Centre of Competence in Research (NCCR) in Chemical Biology, University of Geneva, Geneva, Switzerland
- Department of Organic Chemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - Monica Gotta
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva 4, Switzerland
- National Centre of Competence in Research (NCCR) in Chemical Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Kapoor S, Kotak S. Centrosome Aurora A regulates RhoGEF ECT-2 localisation and ensures a single PAR-2 polarity axis in C. elegans embryos. Development 2019; 146:dev174565. [PMID: 31636075 PMCID: PMC7115938 DOI: 10.1242/dev.174565] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 10/14/2019] [Indexed: 12/25/2022]
Abstract
Proper establishment of cell polarity is essential for development. In the one-cell C. elegans embryo, a centrosome-localised signal provides spatial information for polarity establishment. It is hypothesised that this signal causes local inhibition of the cortical actomyosin network, and breaks symmetry to direct partitioning of the PAR proteins. However, the molecular nature of the centrosomal signal that triggers cortical anisotropy in the actomyosin network to promote polarity establishment remains elusive. Here, we discover that depletion of Aurora A kinase (AIR-1 in C. elegans) causes pronounced cortical contractions on the embryo surface, and this creates more than one PAR-2 polarity axis. This function of AIR-1 appears to be independent of its role in microtubule nucleation. Importantly, upon AIR-1 depletion, centrosome positioning becomes dispensable in dictating the PAR-2 axis. Moreover, we uncovered that a Rho GEF, ECT-2, acts downstream of AIR-1 in regulating contractility and PAR-2 localisation, and, notably, AIR-1 depletion influences ECT-2 cortical localisation. Overall, this study provides a novel insight into how an evolutionarily conserved centrosome Aurora A kinase inhibits promiscuous PAR-2 domain formation to ensure singularity in the polarity establishment axis.
Collapse
Affiliation(s)
- Sukriti Kapoor
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science, Bangalore 560012, India
| | - Sachin Kotak
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
13
|
Zhao P, Teng X, Tantirimudalige SN, Nishikawa M, Wohland T, Toyama Y, Motegi F. Aurora-A Breaks Symmetry in Contractile Actomyosin Networks Independently of Its Role in Centrosome Maturation. Dev Cell 2019; 48:631-645.e6. [DOI: 10.1016/j.devcel.2019.02.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 12/21/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022]
|
14
|
Klinkert K, Levernier N, Gross P, Gentili C, von Tobel L, Pierron M, Busso C, Herrman S, Grill SW, Kruse K, Gönczy P. Aurora A depletion reveals centrosome-independent polarization mechanism in Caenorhabditis elegans. eLife 2019; 8:e44552. [PMID: 30801250 PMCID: PMC6417861 DOI: 10.7554/elife.44552] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/24/2019] [Indexed: 12/14/2022] Open
Abstract
How living systems break symmetry in an organized manner is a fundamental question in biology. In wild-type Caenorhabditis elegans zygotes, symmetry breaking during anterior-posterior axis specification is guided by centrosomes, resulting in anterior-directed cortical flows and a single posterior PAR-2 domain. We uncover that C. elegans zygotes depleted of the Aurora A kinase AIR-1 or lacking centrosomes entirely usually establish two posterior PAR-2 domains, one at each pole. We demonstrate that AIR-1 prevents symmetry breaking early in the cell cycle, whereas centrosomal AIR-1 instructs polarity initiation thereafter. Using triangular microfabricated chambers, we establish that bipolarity of air-1(RNAi) embryos occurs effectively in a cell-shape and curvature-dependent manner. Furthermore, we develop an integrated physical description of symmetry breaking, wherein local PAR-2-dependent weakening of the actin cortex, together with mutual inhibition of anterior and posterior PAR proteins, provides a mechanism for spontaneous symmetry breaking without centrosomes.
Collapse
Affiliation(s)
- Kerstin Klinkert
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| | - Nicolas Levernier
- Department of BiochemistryUniversity of GenevaGenevaSwitzerland
- Department of Theoretical PhysicsUniversity of GenevaGenevaSwitzerland
| | | | - Christian Gentili
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| | - Lukas von Tobel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| | - Marie Pierron
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| | - Coralie Busso
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| | - Sarah Herrman
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| | - Stephan W Grill
- BIOTECTU DresdenDresdenGermany
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Cluster of Excellence Physics of LifeTU DresdenDresdenGermany
| | - Karsten Kruse
- Department of BiochemistryUniversity of GenevaGenevaSwitzerland
- Department of Theoretical PhysicsUniversity of GenevaGenevaSwitzerland
- National Center of Competence in Research Chemical Biology, University of GenevaGenevaSwitzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
15
|
Kotak S. Mechanisms of Spindle Positioning: Lessons from Worms and Mammalian Cells. Biomolecules 2019; 9:E80. [PMID: 30823600 PMCID: PMC6406873 DOI: 10.3390/biom9020080] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 02/06/2023] Open
Abstract
Proper positioning of the mitotic spindle is fundamental for specifying the site for cleavage furrow, and thus regulates the appropriate sizes and accurate distribution of the cell fate determinants in the resulting daughter cells during development and in the stem cells. The past couple of years have witnessed tremendous work accomplished in the area of spindle positioning, and this has led to the emergence of a working model unravelling in-depth mechanistic insight of the underlying process orchestrating spindle positioning. It is evident now that the correct positioning of the mitotic spindle is not only guided by the chemical cues (protein⁻protein interactions) but also influenced by the physical nature of the cellular environment. In metazoans, the key players that regulate proper spindle positioning are the actin-rich cell cortex and associated proteins, the ternary complex (Gα/GPR-1/2/LIN-5 in Caenorhabditis elegans, Gαi/Pins/Mud in Drosophila and Gαi1-3/LGN/NuMA in humans), minus-end-directed motor protein dynein and the cortical machinery containing myosin. In this review, I will mainly discuss how the abovementioned components precisely and spatiotemporally regulate spindle positioning by sensing the physicochemical environment for execution of flawless mitosis.
Collapse
Affiliation(s)
- Sachin Kotak
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore 560012, India.
| |
Collapse
|
16
|
Ubiquitin-Independent Disassembly by a p97 AAA-ATPase Complex Drives PP1 Holoenzyme Formation. Mol Cell 2018; 72:766-777.e6. [PMID: 30344098 DOI: 10.1016/j.molcel.2018.09.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/15/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022]
Abstract
The functional diversity of protein phosphatase-1 (PP1), with its countless substrates, relies on the ordered assembly of alternative PP1 holoenzymes. Here, we show that newly synthesized PP1 is first held by its partners SDS22 and inhibitor-3 (I3) in an inactive complex, which needs to be disassembled by the p97 AAA-ATPase to promote exchange to substrate specifiers. Unlike p97-mediated degradative processes that require the Ufd1-Npl4 ubiquitin adapters, p97 is targeted to PP1 by p37 and related adapter proteins. Reconstitution with purified components revealed direct interaction of the p37 SEP domain with I3 without the need for ubiquitination, and ATP-driven pulling of I3 into the central channel of the p97 hexamer, which triggers dissociation of I3 and SDS22. Thus, we establish regulatory ubiquitin-independent protein complex disassembly as part of the functional arsenal of p97 and define an unanticipated essential step in PP1 biogenesis that illustrates the molecular challenges of ordered subunit exchange.
Collapse
|
17
|
Hülsmann J, Kravic B, Weith M, Gstaiger M, Aebersold R, Collins BC, Meyer H. AP-SWATH Reveals Direct Involvement of VCP/p97 in Integrated Stress Response Signaling Through Facilitating CReP/PPP1R15B Degradation. Mol Cell Proteomics 2018; 17:1295-1307. [PMID: 29599191 DOI: 10.1074/mcp.ra117.000471] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/07/2018] [Indexed: 12/27/2022] Open
Abstract
The ubiquitin-directed AAA-ATPase VCP/p97 facilitates degradation of damaged or misfolded proteins in diverse cellular stress response pathways. Resolving the complexity of its interactions with partner and substrate proteins and understanding its links to stress signaling is therefore a major challenge. Here, we used affinity-purification SWATH mass spectrometry (AP-SWATH) to identify proteins that specifically interact with the substrate-trapping mutant, p97-E578Q. AP-SWATH identified differential interactions over a large detection range from abundant p97 cofactors to pathway-specific partners and individual ligases such as RNF185 and MUL1 that were trapped in p97-E578Q complexes. In addition, we identified various substrate proteins and candidates including the PP1 regulator CReP/PPP1R15B that dephosphorylates eIF2α and thus counteracts attenuation of translation by stress-kinases. We provide evidence that p97 with its Ufd1-Npl4 adapter ensures rapid constitutive turnover and balanced levels of CReP in unperturbed cells. Moreover, we show that p97-mediated degradation, together with a reduction in CReP synthesis, is essential for timely stress-induced reduction of CReP levels and, consequently, for robust eIF2α phosphorylation to enforce the stress response. Thus, our results demonstrate that p97 not only facilitates bulk degradation of misfolded proteins upon stress, but also directly modulates the integrated stress response at the level of signaling.
Collapse
Affiliation(s)
- Julia Hülsmann
- From the ‡Molecular Biology I, Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Bojana Kravic
- From the ‡Molecular Biology I, Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Matthias Weith
- From the ‡Molecular Biology I, Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Matthias Gstaiger
- §Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ruedi Aebersold
- §Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland.,¶Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Ben C Collins
- §Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland;
| | - Hemmo Meyer
- From the ‡Molecular Biology I, Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany;
| |
Collapse
|
18
|
Lee BH, Schwager F, Meraldi P, Gotta M. p37/UBXN2B regulates spindle orientation by limiting cortical NuMA recruitment via PP1/Repo-Man. J Cell Biol 2017; 217:483-493. [PMID: 29222185 PMCID: PMC5800812 DOI: 10.1083/jcb.201707050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/27/2017] [Accepted: 11/16/2017] [Indexed: 12/03/2022] Open
Abstract
The p97 adapter p37 was known to regulate spindle orientation in human cells, but the mechanism was unknown. In this study, we show that it limits the cortical recruitment of NuMA in a PP1–Repo-Man–dependent manner. This study identifies a novel pathway controlling cortical NuMA localization. Spindle orientation determines the axis of division and is crucial for cell fate, tissue morphogenesis, and the development of an organism. In animal cells, spindle orientation is regulated by the conserved Gαi–LGN–NuMA complex, which targets the force generator dynein–dynactin to the cortex. In this study, we show that p37/UBXN2B, a cofactor of the p97 AAA ATPase, regulates spindle orientation in mammalian cells by limiting the levels of cortical NuMA. p37 controls cortical NuMA levels via the phosphatase PP1 and its regulatory subunit Repo-Man, but it acts independently of Gαi, the kinase Aurora A, and the phosphatase PP2A. Our data show that in anaphase, when the spindle elongates, PP1/Repo-Man promotes the accumulation of NuMA at the cortex. In metaphase, p37 negatively regulates this function of PP1, resulting in lower cortical NuMA levels and correct spindle orientation.
Collapse
Affiliation(s)
- Byung Ho Lee
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Francoise Schwager
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Swiss National Centre for Competence in Research in Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Monica Gotta
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland .,Swiss National Centre for Competence in Research in Chemical Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
19
|
Cavazza T, Malgaretti P, Vernos I. The sequential activation of the mitotic microtubule assembly pathways favors bipolar spindle formation. Mol Biol Cell 2016; 27:2935-45. [PMID: 27489339 PMCID: PMC5042580 DOI: 10.1091/mbc.e16-05-0322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/27/2016] [Indexed: 01/22/2023] Open
Abstract
A combination of experimental data obtained in somatic cells and Xenopus egg extracts and modeling suggests a novel function for centrosome maturation that balances the activity of the mitotic microtubule assembly pathways favoring bipolar spindle formation. Centrosome maturation is the process by which the duplicated centrosomes recruit pericentriolar components and increase their microtubule nucleation activity before mitosis. The role of this process in cells entering mitosis has been mostly related to the separation of the duplicated centrosomes and thereby to the assembly of a bipolar spindle. However, spindles can form without centrosomes. In fact, all cells, whether they have centrosomes or not, rely on chromatin-driven microtubule assembly to form a spindle. To test whether the sequential activation of these microtubule assembly pathways, defined by centrosome maturation and nuclear envelope breakdown, plays any role in spindle assembly, we combined experiments in tissue culture cells and Xenopus laevis egg extracts with a mathematical model. We found that interfering with the sequential activation of the microtubule assembly pathways compromises bipolar spindle assembly in tissue culture cells but not in X. laevis egg extracts. Our data suggest a novel function for centrosome maturation that determines the contribution of the chromosomal microtubule assembly pathway and favors bipolar spindle formation in most animal cells in which tubulin is in limiting amounts.
Collapse
Affiliation(s)
- Tommaso Cavazza
- Cell and Developmental Biology Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Paolo Malgaretti
- Departament de Fisica Fonamental, Universitat de Barcelona, 08028 Barcelona, Spain Max-Planck-Institut für Intelligente Systeme and IV. Institut für Theoretische Physik, Universität Stuttgart, D-70569 Stuttgart, Germany
| | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain Institució Catalana de Recerca I Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
20
|
Franz A, Pirson PA, Pilger D, Halder S, Achuthankutty D, Kashkar H, Ramadan K, Hoppe T. Chromatin-associated degradation is defined by UBXN-3/FAF1 to safeguard DNA replication fork progression. Nat Commun 2016; 7:10612. [PMID: 26842564 PMCID: PMC4743000 DOI: 10.1038/ncomms10612] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/05/2016] [Indexed: 01/10/2023] Open
Abstract
The coordinated activity of DNA replication factors is a highly dynamic process that involves ubiquitin-dependent regulation. In this context, the ubiquitin-directed ATPase CDC-48/p97 recently emerged as a key regulator of chromatin-associated degradation in several of the DNA metabolic pathways that assure genome integrity. However, the spatiotemporal control of distinct CDC-48/p97 substrates in the chromatin environment remained unclear. Here, we report that progression of the DNA replication fork is coordinated by UBXN-3/FAF1. UBXN-3/FAF1 binds to the licensing factor CDT-1 and additional ubiquitylated proteins, thus promoting CDC-48/p97-dependent turnover and disassembly of DNA replication factor complexes. Consequently, inactivation of UBXN-3/FAF1 stabilizes CDT-1 and CDC-45/GINS on chromatin, causing severe defects in replication fork dynamics accompanied by pronounced replication stress and eventually resulting in genome instability. Our work identifies a critical substrate selection module of CDC-48/p97 required for chromatin-associated protein degradation in both Caenorhabditis elegans and humans, which is relevant to oncogenesis and aging. Cdc48/p97 is a key component of the ubiquitin-proteasome system, acting as a ubiquitin-directed segregase to regulate multiple cellular functions. Here the authors identify UBXN-3/FAF1 as a crucial regulator of chromatin-associated protein degradation that recruits Cdc48/p97 to DNA replication forks.
Collapse
Affiliation(s)
- André Franz
- Institute for Genetics and CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Paul A Pirson
- Institute for Genetics and CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Domenic Pilger
- Institute for Genetics and CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany.,Department of Oncology, University of Oxford, Cancer Research UK/Medical Research Council Oxford, Institute for Radiation Oncology, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Swagata Halder
- Department of Oncology, University of Oxford, Cancer Research UK/Medical Research Council Oxford, Institute for Radiation Oncology, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Divya Achuthankutty
- Department of Oncology, University of Oxford, Cancer Research UK/Medical Research Council Oxford, Institute for Radiation Oncology, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Hamid Kashkar
- Centre for Molecular Medicine Cologne and Institute for Medical Microbiology, Immunology and Hygiene at CECAD Research Center, University Hospital of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Kristijan Ramadan
- Department of Oncology, University of Oxford, Cancer Research UK/Medical Research Council Oxford, Institute for Radiation Oncology, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Thorsten Hoppe
- Institute for Genetics and CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| |
Collapse
|
21
|
Arquint C, Gabryjonczyk AM, Nigg EA. Centrosomes as signalling centres. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0464. [PMID: 25047618 DOI: 10.1098/rstb.2013.0464] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Centrosomes-as well as the related spindle pole bodies (SPBs) of yeast-have been extensively studied from the perspective of their microtubule-organizing roles. Moreover, the biogenesis and duplication of these organelles have been the subject of much attention, and the importance of centrosomes and the centriole-ciliary apparatus for human disease is well recognized. Much less developed is our understanding of another facet of centrosomes and SPBs, namely their possible role as signalling centres. Yet, many signalling components, including kinases and phosphatases, have been associated with centrosomes and spindle poles, giving rise to the hypothesis that these organelles might serve as hubs for the integration and coordination of signalling pathways. In this review, we discuss a number of selected studies that bear on this notion. We cover different processes (cell cycle control, development, DNA damage response) and organisms (yeast, invertebrates and vertebrates), but have made no attempt to be comprehensive. This field is still young and although the concept of centrosomes and SPBs as signalling centres is attractive, it remains primarily a concept-in need of further scrutiny. We hope that this review will stimulate thought and experimentation.
Collapse
Affiliation(s)
- Christian Arquint
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | | | - Erich A Nigg
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
22
|
Meyer H, Weihl CC. The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis. J Cell Sci 2014; 127:3877-83. [PMID: 25146396 DOI: 10.1242/jcs.093831] [Citation(s) in RCA: 301] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ATPase valosin-containing protein (VCP)/p97 has emerged as a central and important element of the ubiquitin system. Together with a network of cofactors, it regulates an ever-expanding range of processes that stretch into almost every aspect of cellular physiology. Its main role in proteostasis and key functions in signaling pathways are of relevance to degenerative diseases and genomic stability. In this Cell Science at a Glance and the accompanying poster, we give a brief overview of this complex system. In addition, we discuss the pathogenic basis for VCP/p97-associated diseases and then highlight in more detail new exciting links to the translational stress response and RNA biology that further underscore the significance of the VCP/p97 system.
Collapse
Affiliation(s)
- Hemmo Meyer
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Conrad C Weihl
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
23
|
Kress E, Gotta M. When the Swiss clock goes wrong: regulation of Aurora A by UBXN-2/CDC-48. Cell Cycle 2013; 12:2921-2. [PMID: 23974093 PMCID: PMC3875660 DOI: 10.4161/cc.26177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Elsa Kress
- Centre de Génétique et Physiologie Moléculaire et Cellulaire; Université Lyon 1; Lyon, France
| | | |
Collapse
|