1
|
Badrhan S, Karanwal S, Pal A, Chera JS, Chauhan V, Patel A, Bhakat M, Datta TK, Kumar R. Differential protein repertoires related to sperm function identified in extracellular vesicles (EVs) in seminal plasma of distinct fertility buffalo ( Bubalus bubalis) bulls. Front Cell Dev Biol 2024; 12:1400323. [PMID: 39135778 PMCID: PMC11318068 DOI: 10.3389/fcell.2024.1400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024] Open
Abstract
Buffalo bulls are backbone of Indian dairy industry, and the quality of semen donating bulls determine the overall production efficiency of dairy farms. Seminal plasma harbor millions of lipid bilayer nanovesicles known as extracellular vesicles (EVs). These EVs carry a heterogenous cargo of essential biomolecules including fertility-associated proteins which contribute to fertilizing potential of spermatozoa. In this study, we explored size, concentration, and complete proteome profiles of SP EVs from two distinct fertility groups to uncover proteins influencing bull fertility. Through Dynamic Light Scattering (DLS) it was found that purified EVs were present in 7-14 size exclusion chromatographic (SEC) fractions with sizes ranging from 146.5 to 258.7 nm in high fertile (HF) and low fertile (LF) bulls. Nanoparticle Tracking Analysis (NTA) confirmed the size of seminal EVs up to 200 nm, and concentrations varying from 2.84 to 6.82 × 1011 and 3.57 to 7.74 × 1011 particles per ml in HF and LF bulls, respectively. No significant difference was observed in size and concentration of seminal EVs between two groups. We identified a total of 1,862 and 1,807 proteins in seminal EVs of HF and LF bulls, respectively using high throughput LC-MS/MS approach. Out of these total proteins, 1,754 proteins were common in both groups and about 87 proteins were highly abundant in HF group while 1,292 were less abundant as compared to LF bulls. Gene ontology (GO) analysis, revealed that highly abundant proteins in HF group were mainly part of the nucleus and involved in nucleosome assembly along with DNA binding. Additionally, highly abundant proteins in EVs of HF group were found to be involved in spermatogenesis, motility, acrosome reaction, capacitation, gamete fusion, and cryotolerance. Two highly abundant proteins, protein disulfide-isomerase A4 and gelsolin, are associated with sperm-oocyte fusion and acrosome reaction, respectively, and their immunolocalization on spermatozoa may indicate that these proteins are transferred through EVs. Our evidences support that proteins in EVs and subsequently their presence on sperm, are strongly associated with sperm functions. Altogether, our investigation indicates that SPEVs possess crucial protein repertoires that are essential for enhancing sperm fertilizing capacity.
Collapse
Affiliation(s)
- Shiva Badrhan
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Seema Karanwal
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Ankit Pal
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Jatinder Singh Chera
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Vitika Chauhan
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Aditya Patel
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Mukesh Bhakat
- ICAR- Central Institute of Research on Goat, Mathura, Uttar Pradesh, India
| | - Tirtha K. Datta
- Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Rakesh Kumar
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| |
Collapse
|
2
|
Miya V, Kumar C, Breed AA, Idicula-Thomas S, Pathak BR. Mammalian cysteine-rich secretory proteins interact with plasma membrane Ca 2+ exporter PMCA4b. Andrology 2024; 12:1096-1110. [PMID: 37882330 DOI: 10.1111/andr.13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Mammalian cysteine-rich secretory proteins (CRISPs) are predominantly expressed in the male reproductive tract. Knockout mice lacking two or more CRISPs show defects in sperm transport, sperm-egg interaction and Ca2+ homeostasis. CRISPs play redundant and specific roles via their binding partners. To understand this, a comprehensive analysis of CRISP interactome needs to be undertaken. OBJECTIVES This study aimed to analyse CRISP4 binding partners on the plasma membrane of rat caudal spermatozoa. MATERIALS AND METHODS Total proteins from rat caudal spermatozoa were subjected to immunoprecipitation using anti-CRISP4 antibody followed by liquid chromatography-mass spectrophotometry analysis. Plasma membrane localised proteins were shortlisted, and a key target was validated by co-immunoprecipitation and co-localisation. Co-transfection followed by co-immunoprecipitation was carried out for studying the interaction of full-length as well as deletion mutants of CRISPs with human plasma membrane calcium ATPase, isoform b (hPMCA4b). Calcium assays were performed using Fura-2-AM. The cholesterol binding ability of different CRISPs was evaluated in silico. RESULTS The membrane-specific interactome of rat CRISP4 (rCRISP4) from caudal spermatozoa revealed PMCA4b as a novel binding partner, and their interaction was validated in rat spermatozoa. Human CRISP1 (hCRISP1) and hCRISP3 also interacted with PMCA4b via the N-terminal domain. Interestingly, hCRISP1 and rCRISP4 delayed PMCA4b-mediated calcium extrusion but hCRISP3 did not. In silico analysis demonstrated that hCRISP1 and rCRISP4 have higher binding affinity towards cholesterol than hCRISP3. The secretion profile of different CRISPs also showed that the ratio of secreted to cell-associated proteins was highest for hCRISP3. CONCLUSION Our study identifies PMCA4b as a target of multiple mammalian CRISPs and unravels a new role of CRISPs in regulating calcium homeostasis. Differences in the interaction of different CRISPs with cholesterol may regulate their enrichment in the lipid rafts and redistribution in the membrane post-capacitation, thereby affecting their interaction with PMCA4b.
Collapse
Affiliation(s)
- Vaidehi Miya
- Division of Cellular and Structural Biology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| | - Chandan Kumar
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| | - Ananya A Breed
- Division of Cellular and Structural Biology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| | - Susan Idicula-Thomas
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| | - Bhakti R Pathak
- Division of Cellular and Structural Biology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| |
Collapse
|
3
|
Batra V, Dagar K, Diwakar MP, Kumaresan A, Kumar R, Datta TK. The proteomic landscape of sperm surface deciphers its maturational and functional aspects in buffalo. Front Physiol 2024; 15:1413817. [PMID: 39005499 PMCID: PMC11239549 DOI: 10.3389/fphys.2024.1413817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024] Open
Abstract
Buffalo is a dominant dairy animal in many agriculture-based economies. However, the poor reproductive efficiency (low conception rate) of the buffalo bulls constrains the realization of its full production potential. This in turn leads to economic and welfare issues, especially for the marginal farmers in such economies. The mammalian sperm surface proteins have been implicated in the regulation of survival and function of the spermatozoa in the female reproductive tract (FRT). Nonetheless, the lack of specific studies on buffalo sperm surface makes it difficult for researchers to explore and investigate the role of these proteins in the regulation of mechanisms associated with sperm protection, survival, and function. This study aimed to generate a buffalo sperm surface-specific proteomic fingerprint (LC-MS/MS) and to predict the functional roles of the identified proteins. The three treatments used to remove sperm surface protein viz. Elevated salt, phosphoinositide phospholipase C (PI-PLC) and in vitro capacitation led to the identification of N = 1,695 proteins (≥1 high-quality peptide-spectrum matches (PSMs), p < 0.05, and FDR<0.01). Almost half of these proteins (N = 873) were found to be involved in crucial processes relevant in the context of male fertility, e.g., spermatogenesis, sperm maturation and protection in the FRT, and gamete interaction or fertilization, amongst others. The extensive sperm-surface proteomic repertoire discovered in this study is unparalleled vis-à-vis the depth of identification of reproduction-specific cell-surface proteins and can provide a potential framework for further studies on the functional aspects of buffalo spermatozoa.
Collapse
Affiliation(s)
- Vipul Batra
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Animal Genomics Lab, ICAR-National Dairy Research Institute, Karnal, India
| | - Komal Dagar
- Animal Genomics Lab, ICAR-National Dairy Research Institute, Karnal, India
| | - Maharana Pratap Diwakar
- Cell Science and Molecular Biology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Arumugam Kumaresan
- Southern Regional Station of ICAR-National Dairy Research Institute, Karnal, India
| | - Rakesh Kumar
- Animal Genomics Lab, ICAR-National Dairy Research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Genomics Lab, ICAR-National Dairy Research Institute, Karnal, India
- ICAR-Central Institute for Research on Buffaloes, Hisar, India
| |
Collapse
|
4
|
Li T, Guo H. Overexpression of PD-L1 causes germ cell failure and infertility via CRISP1/PD-L1 interaction in mouse epididymis. ZYGOTE 2024; 32:224-229. [PMID: 38828560 DOI: 10.1017/s0967199424000157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Spermatogenesis is a highly complex process through which mature sperms are produced, and it requires three important stages; mitosis, meiosis and sperm formation. The expression of genes regulated by transcription factors at specific stages exerts important regulatory effects on the development process of germ cells. Male mice with overexpressed programmed death ligand 1 (PD-L1) (B7 homolog1) in the testis have infertility and abnormal sperm development, thereby exhibiting severe malformation and sloughing throughout spermatid maturation and collapsed and disorganized seminiferous epithelium structure. Furthermore, PD-L1 overexpression causes overexpression of cysteine-rich secretory protein 1 (CRISP1) in the epididymis and adversely affects or precludes sperm energization, sperm-pellucida binding and sperm-oocyte fusion. These findings suggest that CRISP1 and PD-L1 can interact with each other to induce male infertility and germ-cell dissociation.
Collapse
Affiliation(s)
- Ting Li
- School of Food and Bioengineering, Wuhu Institute of Technology, Wuhu, China
| | - Hongmin Guo
- Department of Reproductive Medicine, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
5
|
Balestrini PA, Sulzyk V, Jabloñski M, Schiavi-Ehrenhaus LJ, González SN, Ferreira JJ, Gómez-Elías MD, Pomata P, Luque GM, Krapf D, Cuasnicu PS, Santi CM, Buffone MG. Membrane potential hyperpolarization: a critical factor in acrosomal exocytosis and fertilization in sperm within the female reproductive tract. Front Cell Dev Biol 2024; 12:1386980. [PMID: 38803392 PMCID: PMC11128623 DOI: 10.3389/fcell.2024.1386980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Hyperpolarization of the membrane potential (Em), a phenomenon regulated by SLO3 channels, stands as a central feature in sperm capacitation-a crucial process conferring upon sperm the ability to fertilize the oocyte. In vitro studies demonstrated that Em hyperpolarization plays a pivotal role in facilitating the mechanisms necessary for the development of hyperactivated motility (HA) and acrosomal exocytosis (AE) occurrence. Nevertheless, the physiological significance of sperm Em within the female reproductive tract remains unexplored. As an approach to this question, we studied sperm migration and AE incidence within the oviduct in the absence of Em hyperpolarization using a novel mouse model established by crossbreeding of SLO3 knock-out (KO) mice with EGFP/DsRed2 mice. Sperm from this model displays impaired HA and AE in vitro. Interestingly, examination of the female reproductive tract shows that SLO3 KO sperm can reach the ampulla, mirroring the quantity of sperm observed in wild-type (WT) counterparts, supporting that the HA needed to reach the fertilization site is not affected. However, a noteworthy distinction emerges-unlike WT sperm, the majority of SLO3 KO sperm arrive at the ampulla with their acrosomes still intact. Of the few SLO3 KO sperm that do manage to reach the oocytes within this location, fertilization does not occur, as indicated by the absence of sperm pronuclei in the MII-oocytes recovered post-mating. In vitro, SLO3 KO sperm fail to penetrate the ZP and fuse with the oocytes. Collectively, these results underscore the vital role of Em hyperpolarization in AE and fertilization within their physiological context, while also revealing that Em is not a prerequisite for the development of the HA motility, essential for sperm migration through the female tract to the ampulla.
Collapse
Affiliation(s)
- Paula A. Balestrini
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Valeria Sulzyk
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Martina Jabloñski
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Liza J. Schiavi-Ehrenhaus
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Soledad N. González
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Juan J. Ferreira
- Department of OB/GYN, Washington University School of Medicine, Saint Louis, MO, United States
| | - Matías D. Gómez-Elías
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Pablo Pomata
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Guillermina M. Luque
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Patricia S. Cuasnicu
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Celia M. Santi
- Department of OB/GYN, Washington University School of Medicine, Saint Louis, MO, United States
| | - Mariano G. Buffone
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| |
Collapse
|
6
|
Zhang X, Liang M, Song D, Huang R, Chen C, Liu X, Chen H, Wang Q, Sun X, Song J, Zhang J, Kang H, Zeng X. Both protein and non-protein components in extracellular vesicles of human seminal plasma improve human sperm function via CatSper-mediated calcium signaling. Hum Reprod 2024; 39:658-673. [PMID: 38335261 DOI: 10.1093/humrep/deae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/10/2024] [Indexed: 02/12/2024] Open
Abstract
STUDY QUESTION What is the significance and mechanism of human seminal plasma extracellular vesicles (EVs) in regulating human sperm functions? SUMMARY ANSWER EV increases the intracellular Ca2+ concentrations [Ca2+]i via extracellular Ca2+ influx by activating CatSper channels, and subsequently modulate human sperm motility, especially hyperactivated motility, which is attributed to both protein and non-protein components in EV. WHAT IS KNOWN ALREADY EVs are functional regulators of human sperm function, and EV cargoes from normal and asthenozoospermic seminal plasma are different. Pre-fusion of EV with sperm in the acidic and non-physiological sucrose buffer solution could elevate [Ca2+]i in human sperm. CatSper, a principle Ca2+ channel in human sperm, is responsible for the [Ca2+]i regulation when sperm respond to diverse extracellular stimuli. However, the role of CatSper in EV-evoked calcium signaling and its potential physiological significance remain unclear. STUDY DESIGN, SIZE, DURATION EV isolated from the seminal plasma of normal and asthenozoospermic semen were utilized to investigate the mechanism by which EV regulates calcium signal in human sperm, including the involvement of CatSper and the responsible cargoes in EV. In addition, the clinical application potential of EV and EV protein-derived peptides were also evaluated. This is a laboratory study that went on for more than 5 years and involved more than 200 separate experiments. PARTICIPANTS/MATERIALS, SETTING, METHODS Semen donors were recruited in accordance with the Institutional Ethics Committee on human subjects of the Affiliated Hospital of Nantong University and Jiangxi Maternal and Child Health Hospital. The Flow NanoAnalyzer, western blotting, and transmission electron microscope were used to systematically characterize seminal plasma EV. Sperm [Ca2+]i responses were examined by fluorimetric measurement. The whole-cell patch-clamp technique was performed to record CatSper currents. Sperm motility parameters were assessed by computer-assisted sperm analysis. Sperm hyperactivation was also evaluated by examining their penetration ability in viscous methylcellulose media. Protein and non-protein components in EV were analyzed by liquid chromatography-mass spectrum. The levels of prostaglandins, reactive oxygen species, malonaldehyde, and DNA integrity were detected by commercial kits. MAIN RESULTS AND THE ROLE OF CHANCE EV increased [Ca2+]i via an extracellular Ca2+ influx, which could be suppressed by a CatSper inhibitor. Also, EV potentiated CatSper currents in human sperm. Furthermore, the EV-in [Ca2+]i increase and CatSper currents were absent in a CatSper-deficient sperm, confirming the crucial role of CatSper in EV induced Ca2+ signaling in human sperm. Both proteins and non-protein components of EV contributed to the increase of [Ca2+]i, which were important for the effects of EV on human sperm. Consequently, EV and its cargos promoted sperm hyperactivated motility. In addition, seminal plasma EV protein-derived peptides, such as NAT1-derived peptide (N-P) and THBS-1-derived peptide (T-P), could activate the sperm calcium signal and enhance sperm function. Interestingly, EV derived from asthenozoospermic semen caused a lower increase of [Ca2+]i than that isolated from normal seminal plasma (N-EV), and N-EV significantly improved sperm motility and function in both asthenozoospermic samples and frozen-thawed sperm. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This was an in vitro study and caution must be taken when extrapolating the physiological relevance to in vivo regulation of sperm. WIDER IMPLICATIONS OF THE FINDINGS Our findings demonstrate that the CatSper-mediated-Ca2+ signaling is involved in EV-modulated sperm function under near physiological conditions, and EV and their derivates are a novel CatSper and sperm function regulators with potential for clinical application. They may be developed to improve sperm motility resulting from low [Ca2+]i response and/or freezing and thawing. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by the National Natural Science Foundation of China (32271167), the Social Development Project of Jiangsu Province (BE2022765), the Nantong Social and People's Livelihood Science and Technology Plan (MS22022087), the Basic Science Research Program of Nantong (JC22022086), and the Jiangsu Innovation and Entrepreneurship Talent Plan (JSSCRC2021543). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Min Liang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Dandan Song
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Rongzu Huang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Chen Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xiaojun Liu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Houyang Chen
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Qingxin Wang
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoli Sun
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jian Song
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiali Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Hang Kang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| |
Collapse
|
7
|
Liu MM, Fan CQ, Zhang GL. A Single-Cell Landscape of Spermioteleosis in Mice and Pigs. Cells 2024; 13:563. [PMID: 38607002 PMCID: PMC11011153 DOI: 10.3390/cells13070563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
(1) Background: Spermatozoa acquired motility and matured in epididymis after production in the testis. However, there is still limited understanding of the specific characteristics of sperm development across different species. In this study, we employed a comprehensive approach to analyze cell compositions in both testicular and epididymal tissues, providing valuable insights into the changes occurring during meiosis and spermiogenesis in mouse and pig models. Additionally, we identified distinct gene expression signatures associated with various spermatogenic cell types. (2) Methods: To investigate the differences in spermatogenesis between mice and pigs, we constructed a single-cell RNA dataset. (3) Results: Our findings revealed notable differences in testicular cell clusters between these two species. Furthermore, distinct gene expression patterns were observed among epithelial cells from different regions of the epididymis. Interestingly, regional gene expression patterns were also identified within principal cell clusters of the mouse epididymis. Moreover, through analysing differentially expressed genes related to the epididymis in both mouse and pig models, we successfully identified potential marker genes associated with sperm development and maturation for each species studied. (4) Conclusions: This research presented a comprehensive single-cell landscape analysis of both testicular and epididymal tissues, shedding light on the intricate processes involved in spermatogenesis and sperm maturation, specifically within mouse and pig models.
Collapse
Affiliation(s)
| | | | - Guo-Liang Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (M.-M.L.); (C.-Q.F.)
| |
Collapse
|
8
|
Bu Y, Wang P, Li S, Li L, Zhang S, Wei H. Semen Protein CRISP3 Promotes Reproductive Performance of Boars through Immunomodulation. Int J Mol Sci 2024; 25:2264. [PMID: 38396941 PMCID: PMC10889302 DOI: 10.3390/ijms25042264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Semen proteins play an important role in male reproductive performance and sperm fertilization ability and can be used as potential biomarkers to evaluate male fertility. The role of cysteine-rich secretory protein 3 (CRISP3) in male reproduction remains unknown. This study aimed to investigate the role of CRISP3 in the reproductive performance of boars. Our results showed that the CRISP3 protein content was significantly and positively correlated with boar fertility, sow delivery rate, and litter size. CRISP3 is highly expressed in the bulbourethral gland of adult boars and is enriched in the seminal plasma. It is localized in the post-acrosomal region of the sperm head and migrates to the anterior end of the tail after capacitation. The CRISP3 recombinant protein did not affect sperm motility and cleavage rate, but it significantly downregulated the mRNA expression of inflammatory factors IL-α, IL-1β, and IL-6 and the protein expression of IL-α and IL-6 in lipopolysaccharide (LPS)-induced RAW264.7 cells, indicating that CRISP3 has an immunomodulatory function. In conclusion, our study suggests that semen CRISP3 protein levels positively correlate with reproductive performance, which may be achieved by regulating immune responses in the female reproductive tract.
Collapse
Affiliation(s)
| | | | | | | | - Shouquan Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangdong 510642, China; (Y.B.)
| | - Hengxi Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangdong 510642, China; (Y.B.)
| |
Collapse
|
9
|
Shkrigunov T, Zgoda V, Klimenko P, Kozlova A, Klimenko M, Lisitsa A, Kurtser M, Petushkova N. The Application of Ejaculate-Based Shotgun Proteomics for Male Infertility Screening. Biomedicines 2023; 12:49. [PMID: 38255156 PMCID: PMC10813512 DOI: 10.3390/biomedicines12010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/24/2024] Open
Abstract
Problems with the male reproductive system are of both medical and social significance. As a rule, spermatozoa and seminal plasma proteomes are investigated separately to assess sperm quality. The current study aimed to compare ejaculate proteomes with spermatozoa and seminal plasma protein profiles regarding the identification of proteins related to fertility scores. A total of 1779, 715, and 2163 proteins were identified in the ejaculate, seminal plasma, and spermatozoa, respectively. Among these datasets, 472 proteins were shared. GO enrichment analysis of the common proteins enabled us to distinguish biological processes such as single fertilization (GO:0007338), spermatid development (GO:0007286), and cell motility (GO:0048870). Among the abundant terms for GO cellular components, zona pellucida receptor complex, sperm fibrous sheath, and outer dense fiber were revealed. Overall, we identified 139 testis-specific proteins. For these proteins, PPI networks that are common in ejaculate, spermatozoa, and seminal plasma were related to the following GO biological processes: cilium movement (GO:0003341), microtubule-based movement (GO:0007018), and sperm motility (GO:0097722). For ejaculate and spermatozoa, they shared 15 common testis-specific proteins with spermatogenesis (GO:0007283) and male gamete generation (GO:0048232). Therefore, we speculated that ejaculate-based proteomics could yield new insights into the peculiar reproductive physiology and spermatozoa function of men and potentially serve as an explanation for male infertility screening.
Collapse
Affiliation(s)
- Timur Shkrigunov
- Laboratory of Protein Biochemistry and Pathology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.L.); (N.P.)
| | - Victor Zgoda
- Laboratory of Systems Biology, Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| | - Peter Klimenko
- Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (P.K.); (M.K.)
| | - Anna Kozlova
- Center of Scientific and Practical Education, Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| | - Maria Klimenko
- Center for Family Planning and Reproduction, Moscow Department of Health, 117209 Moscow, Russia;
| | - Andrey Lisitsa
- Laboratory of Protein Biochemistry and Pathology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.L.); (N.P.)
- Center of Scientific and Practical Education, Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| | - Mark Kurtser
- Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (P.K.); (M.K.)
| | - Natalia Petushkova
- Laboratory of Protein Biochemistry and Pathology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.L.); (N.P.)
| |
Collapse
|
10
|
Baharun A, Rahmi A, Kardaya D, Said S, Fahrudin M, Arifiantini RI, Karja NWK. Profiling of seminal plasma proteins to identify the fertility of Simmental bull with low semen quality. J Adv Vet Anim Res 2023; 10:370-377. [PMID: 37969811 PMCID: PMC10636078 DOI: 10.5455/javar.2023.j689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 11/17/2023] Open
Abstract
Objective The present study analyzed the seminal plasma proteome and possible relationships between proteins and semen quality in azoospermic and normal Simmental bulls. Materials and Methods Fresh semen plasma samples from the Lembang Artificial Insemination Center were used for this study, including one bull (76´ ejaculate) with very poor semen quality/azoospermia (poor fresh semen/infertile; PFS) and three bulls with normal semen quality (normal fresh semen; NFS) for proteomic analysis using a pooled system (NFS-Stud) (60´ ejaculate). The only males obtained with very low quality or azoospermia (PFS) had sperm motility of <10% (one head). Bulls with azoospermic conditions produce fresh semen without sperm or with very little sperm concentration. A total of 109 proteins were identified in the seminal plasma of Simmental bulls analyzed using liquid chromatography-mass spectrometry. Bioinformatics analysis was used to explore total protein, expression, function, and protein mechanism in the seminal plasma of Simmental bulls. Results The results showed that the seminal plasma proteins expressed in NFS bulls include ELSPBP1, SIL1, HSPA13, angiotensin-1 covering enzyme, and CRISP1. On the other hand, B2M, C3, CFB, venin-2, and cathepsin S contribute significantly to PFS. The NFS bull proteins play important roles in sperm capacitation, protein transport, sperm motility, spermatogenesis, immune tolerance, and fertilization, while the PFS proteins perform apoptotic and antigen pathway functions. Conclusion There is an interaction between proteins in the seminal plasma of males with poor semen quality (PFS) and cases of infertility (azoospermia) that cause a decrease in sperm quality in PFS bulls.
Collapse
Affiliation(s)
- Abdullah Baharun
- Department of Animals Science, Faculty of Agriculture, Djuanda University, Bogor, Indonesia
| | - Annisa Rahmi
- Department of Animals Science, Faculty of Agriculture, Djuanda University, Bogor, Indonesia
| | - Dede Kardaya
- Department of Animals Science, Faculty of Agriculture, Djuanda University, Bogor, Indonesia
| | - Syahruddin Said
- Research Center for Applied Zoology, National Research and Innovation Agency, Bogor, Indonesia
| | - Mokhamad Fahrudin
- Division of Anatomy, Histology and Embryology, School of Veterinary Medicine and BiomedicalSciences, IPB University, Bogor, Indonesia
| | - Raden Iis Arifiantini
- Division of Veterinary Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Ni Wayan Kurniani Karja
- Division of Veterinary Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| |
Collapse
|
11
|
Goss DM, Vasilescu SA, Sacks G, Gardner DK, Warkiani ME. Microfluidics facilitating the use of small extracellular vesicles in innovative approaches to male infertility. Nat Rev Urol 2023; 20:66-95. [PMID: 36348030 DOI: 10.1038/s41585-022-00660-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/09/2022]
Abstract
Sperm are transcriptionally and translationally quiescent and, therefore, rely on the seminal plasma microenvironment for function, survival and fertilization of the oocyte in the oviduct. The male reproductive system influences sperm function via the binding and fusion of secreted epididymal (epididymosomes) and prostatic (prostasomes) small extracellular vesicles (S-EVs) that facilitate the transfer of proteins, lipids and nucleic acids to sperm. Seminal plasma S-EVs have important roles in sperm maturation, immune and oxidative stress protection, capacitation, fertilization and endometrial implantation and receptivity. Supplementing asthenozoospermic samples with normospermic-derived S-EVs can improve sperm motility and S-EV microRNAs can be used to predict non-obstructive azoospermia. Thus, S-EV influence on sperm physiology might have both therapeutic and diagnostic potential; however, the isolation of pure populations of S-EVs from bodily fluids with current conventional methods presents a substantial hurdle. Many conventional techniques lack accuracy, effectiveness, and practicality; yet microfluidic technology has the potential to simplify and improve S-EV isolation and detection.
Collapse
Affiliation(s)
- Dale M Goss
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
- IVF Australia, Sydney, NSW, Australia
| | - Steven A Vasilescu
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
- NeoGenix Biosciences pty ltd, Sydney, NSW, Australia
| | - Gavin Sacks
- IVF Australia, Sydney, NSW, Australia
- University of New South Wales, Sydney, NSW, Australia
| | - David K Gardner
- Melbourne IVF, East Melbourne, VIC, Australia.
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Majid E Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
12
|
Luque GM, Schiavi-Ehrenhaus LJ, Jabloñski M, Balestrini PA, Novero AG, Torres NI, Osycka-Salut CE, Darszon A, Krapf D, Buffone MG. High-throughput screening method for discovering CatSper inhibitors using membrane depolarization caused by external calcium chelation and fluorescent cell barcoding. Front Cell Dev Biol 2023; 11:1010306. [PMID: 36743410 PMCID: PMC9892719 DOI: 10.3389/fcell.2023.1010306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
The exclusive expression of CatSper in sperm and its critical role in sperm function makes this channel an attractive target for contraception. The strategy of blocking CatSper as a male, non-hormonal contraceptive has not been fully explored due to the lack of robust screening methods to discover novel and specific inhibitors. The reason for this lack of appropriate methodology is the structural and functional complexity of this channel. We have developed a high-throughput method to screen drugs with the capacity to block CatSper in mammalian sperm. The assay is based on removing external free divalent cations by chelation, inducing CatSper to efficiently conduct monovalent cations. Since Na+ is highly concentrated in the extracellular milieu, a sudden influx depolarizes the cell. Using CatSper1 KO sperm we demonstrated that this depolarization depends on CatSper function. A membrane potential (Em) assay was combined with fluorescent cell barcoding (FCB), enabling higher throughput flow cytometry based on unique fluorescent signatures of different sperm samples. These differentially labeled samples incubated in distinct experimental conditions can be combined into one tube for simultaneous acquisition. In this way, acquisition times are highly reduced, which is essential to perform larger screening experiments for drug discovery using live cells. Altogether, a simple strategy for assessing CatSper was validated, and this assay was used to develop a high-throughput drug screening for new CatSper blockers.
Collapse
Affiliation(s)
- Guillermina M. Luque
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina,*Correspondence: Guillermina M. Luque, ; Mariano G. Buffone,
| | | | - Martina Jabloñski
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Paula A. Balestrini
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Analia G. Novero
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), Rosario, Santa Fe, Argentina
| | - Nicolás I. Torres
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Claudia E. Osycka-Salut
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM-CONICET), Buenos Aires, Argentina
| | | | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), Rosario, Santa Fe, Argentina
| | - Mariano G. Buffone
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina,*Correspondence: Guillermina M. Luque, ; Mariano G. Buffone,
| |
Collapse
|
13
|
Li D, Sun W, Jiang X, Yu Z, Xia Y, Cheng S, Mao L, Luo S, Tang S, Xu S, Zou Z, Chen C, Qiu J, Zhou L. Polystyrene nanoparticles enhance the adverse effects of di-(2-ethylhexyl) phthalate on male reproductive system in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114104. [PMID: 36174316 DOI: 10.1016/j.ecoenv.2022.114104] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Coexposure of nanoplastics (NPs) with other pollutants adsorbed from the surroundings has received extensive attention. Currently, the combined effects of NPs and plasticizers remain unclear. Di-(2-ethylhexyl) phthalate (DEHP) is a commonly used plasticizer that has raised much concern owing to its ubiquitous pollution and endocrine-disrupting potential. This study aimed to investigate the toxic effects on the male reproductive system upon coexposure to NPs and DEHP. The C57BL/6J mice were orally administrated with polystyrene nanoparticles (PSNPs), DEHP or both for 35 days to evaluate their effects on sperm quality, histology of testes and epididymides, testicular transcriptomic characteristics as well as expression of some important genes in the epididymides. The low-dose PSNPs used here did not induce significant changes in sperm quality, while DEHP alone or cotreatment with DEHP and PSNPs caused notable impairment, mainly manifesting as decreased sperm quality and aberrant structure of the testis and epididymis. Moreover, enhanced toxic effects were found in the cotreatment group when compared with the individual DEHP treatment group, as manifested by more obvious alterations in the sperm parameters as well as histological changes in the testis and epididymis. Testicular transcriptomic analysis revealed differential regulation of genes involved in immune response, cytoplasmic pattern recognition receptor signaling pathways, protein ubiquitination, oxidative stress, necrotic cell death, ATP synthesis and the cellular respiratory chain. RT-qPCR verified that the expression patterns of Cenpb, Crisp1 and Mars were changed in testes, and genes relevant to epididymal function including Aqp9 and Octn2 were downregulated in epididymides, particularly in the cotreatment group. Collectively, our results emphasize that DEHP at an environmentally relevant dose can induce male reproductive toxicity, and PSNPs may aggravate the toxic effects.
Collapse
Affiliation(s)
- Danyang Li
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Wei Sun
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuejun Jiang
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Ziying Yu
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Shiyue Luo
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Shixin Tang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Shangcheng Xu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, People's Republic of China; Chongqing Key lab of Prevention and Treatment for Occupational Diseases and Poisoning, People's Republic of China
| | - Zhen Zou
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Jingfu Qiu
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Lixiao Zhou
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
14
|
Fernández‐Alegre E, Lacalle E, Soriano‐Úbeda C, Carlos Domínguez J, Casao A, Martínez‐Pastor F. Melatonin affects red deer spermatozoa motility and physiology in capacitating and non-capacitating conditions. Reprod Domest Anim 2022; 57 Suppl 5:82-85. [PMID: 35488500 PMCID: PMC9790586 DOI: 10.1111/rda.14137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 12/30/2022]
Abstract
Melatonin affects sperm physiology, possibly through membrane receptors. Effects were tested at low concentrations (1 pM, 100 pM, 10 nM and 1 µM) in red deer epididymal spermatozoa as a model for high-seasonality species. Samples were incubated with melatonin as uncapacitated or capacitating conditions (heparin) and evaluated for motility and physiology (flow cytometry). Most effects occurred at low concentrations (nM-pM), mainly protecting from apoptosis and maintaining acrosomal integrity, suggesting a role for membrane receptors rather than a direct antioxidant effect. Intracellular calcium was not affected, differing from other studies and perhaps because of the epididymal origin. This study supports the relevance of melatonin on sperm physiology and could contribute to the application of reproductive technologies in wild ruminants.
Collapse
Affiliation(s)
| | | | - Cristina Soriano‐Úbeda
- Institute for Animal Health and Cattle Development (INDEGSAL) and IMAPOR Research GroupUniversidad de LeónLeónSpain,Department of Molecular Biology (Cell Biology)Universidad de LeónLeónSpain
| | - Juan Carlos Domínguez
- Institute for Animal Health and Cattle Development (INDEGSAL) and IMAPOR Research GroupUniversidad de LeónLeónSpain,Department of Animal Medicine, Surgery and Anatomy (Animal Medicine and Surgery)University of LeónLeónSpain
| | - Adriana Casao
- Department of Biochemistry and Molecular and Cell BiologyInstitute of Environmental Sciences of AragónSchool of Veterinary MedicineUniversity of ZaragozaZaragozaSpain
| | - Felipe Martínez‐Pastor
- Institute for Animal Health and Cattle Development (INDEGSAL) and IMAPOR Research GroupUniversidad de LeónLeónSpain,Department of Molecular Biology (Cell Biology)Universidad de LeónLeónSpain
| |
Collapse
|
15
|
Liu H, Yu J, Li M, Kang S, Zhao X, Yin G, Liu B, Ji C, Wang Y, Gao W, Chang Z, Zhao F. Proteomic analysis of donkey sperm reveals changes in acrosome enzymes and redox regulation during cryopreservation. J Proteomics 2022; 267:104698. [PMID: 35998806 DOI: 10.1016/j.jprot.2022.104698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
Sperm cryoinjuries caused by cryopreservation restrict the application of donkey frozen semen in artificial insemination (AI). Identification of differentially represented proteins in fresh and frozen-thawed spermatozoa is of great significance to optimize the cryopreservation process and modify the component of cryopreservation extender. In this study, protein samples prepared from fresh (F) and frozen-thawed (FT) donkey spermatozoa were compared. 2682 proteins were quantitatively identified by tandem mass spectrometry (TMT) polypeptide labeling technique and LC-MS/MS method, of which 28 were more abundant in thawed samples and 147 in fresh spermatozoa. The differential abundant proteins (DAPs) were analyzed by bioinformatics. Most of the DAPs in intensive bioinformatic analysis were involved in the process of regulation of biological process and metabolism. Functional protein analysis showed that DAPs process mainly protein hydrolase activity and oxidoreductase activity. Cellular Component analysis showed that DAPs were related to vesicle transport and membrane system. This is the first analysis and study on differential proteomics of donkey sperm proteins before and after cryopreservation, which has a certain guiding significance for studying the mechanism of sperm damage caused by cryopreservation and improving the freezing and thawing procedure. SIGNIFICANCE: In recent years, the commercial value of donkey products has been discovered. Improving the breeding efficiency of donkeys can save the stock of donkeys which is decreasing rapidly, and allow people to continuously benefit from the nutritional value brought by donkey milk. Sperm cryopreservation technology has laid the foundation for encouraging the spread of artificial insemination in donkey reproduction, but the freezing and thawing process causes damage to sperm, which dramatically reducing the viability of frozen sperm and leading to low fertility. At present, the mechanism of damage to donkey sperm caused by cryopreservation is still unclear, and studying this mechanism can provide a direction for improving the quality of frozen semen. Protein is a potential key factor affecting sperm cryopreservation activity. Studying changes in the sperm proteome during cryopreservation can provide promising evidence for revealing sperm cryopreservation damage, which is of great significance for optimizing the cryopreservation process, improving the composition of cryopreservation extender, and seeking directions for improving the quality of frozen semen.
Collapse
Affiliation(s)
- Haibing Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No.78, E-jiao Street, Done-E Country, Shandong Province 252201, China
| | - Jie Yu
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No.78, E-jiao Street, Done-E Country, Shandong Province 252201, China
| | - Min Li
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No.78, E-jiao Street, Done-E Country, Shandong Province 252201, China
| | - Shouting Kang
- College of Pharmacy, Heze University, 2269 Daxue Road, Heze 274015, China
| | - Xianlin Zhao
- College of Pharmacy, Heze University, 2269 Daxue Road, Heze 274015, China
| | - Guijun Yin
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No.78, E-jiao Street, Done-E Country, Shandong Province 252201, China
| | - Bing Liu
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No.78, E-jiao Street, Done-E Country, Shandong Province 252201, China
| | - Chuanliang Ji
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No.78, E-jiao Street, Done-E Country, Shandong Province 252201, China
| | - Yantao Wang
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No.78, E-jiao Street, Done-E Country, Shandong Province 252201, China
| | - Weiping Gao
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No.78, E-jiao Street, Done-E Country, Shandong Province 252201, China
| | - Zhongle Chang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China
| | - Fuwei Zhao
- College of Pharmacy, Heze University, 2269 Daxue Road, Heze 274015, China.
| |
Collapse
|
16
|
Blackburn H, Torres L, Liu Y, Tiersch TR. The Need for a Framework Addressing the Temporal Aspects of Fish Sperm Motility Leading to Community-Level Standardization. Zebrafish 2022; 19:119-130. [PMID: 35969383 PMCID: PMC9419943 DOI: 10.1089/zeb.2022.0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Motility is a widely available parameter that can be used to assess sperm quality of aquatic species. Sperm from fishes with external fertilization usually undergo a dynamic and short-lived period of motility after activation. The common practice of assigning a single value at an arbitrary peak of motility presents challenges for reproducibility, community-level standardization, and comparisons across studies. This study aimed to explore statistical approaches to standardize motility reporting, and to develop an initial framework for community-level standards. Sperm samples from 14 zebrafish (Danio rerio) with a total of 21,705 cells were analyzed by use of computer-assisted sperm analysis with data collection starting at 10 s after activation at 5-s intervals for 50 s. Four common motility variables were selected for analyses: curvilinear velocity, straight-line velocity, beat cross frequency, and amplitude of lateral head displacement. Cluster analysis was used to evaluate sperm subpopulations within and among males over time, least-square means was used to explore temporal aspects, and the first derivative of the regression equations was used to calculate the rate of change for the motility parameters. Cluster analysis proved informative, but overlapping ephemeral clusters were not valuable for providing standardization options. Analysis of temporal aspects and rate of change indicated opportunities for standardization by reporting the overall motility-time functions or reporting during stable time windows instead of peak motility or at random times. These approaches could minimize the inconsistencies caused by male-to-male variation and dynamic changes of subpopulations while providing comparable information. An overall temporal framework was identified for motility reporting along the collection-processing-cryopreservation-thawing sequence to provide a basis to support efforts of community-level standardization.
Collapse
Affiliation(s)
- Harvey Blackburn
- National Animal Germplasm Program, Agricultural Research Service, United States Department of Agriculture, Fort Collins, Colorado, USA
| | - Leticia Torres
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - Yue Liu
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
- Department of Biological and Agricultural Engineering, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - Terrence R Tiersch
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
17
|
Mumtaz N, Akhtar MF, Saleem A, Riaz A. Harmful Consequences of Proton Pump Inhibitors on Male Fertility: An Evidence from Subchronic Toxicity Study of Esomeprazole and Lansoprazole in Wistar Rats. Int J Endocrinol 2022; 2022:4479261. [PMID: 35529080 PMCID: PMC9072022 DOI: 10.1155/2022/4479261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/26/2022] [Accepted: 04/12/2022] [Indexed: 02/08/2023] Open
Abstract
Proton pump inhibitors (PPIs) are frequently prescribed as gastric acid-suppressing agents. Nevertheless, there is limited evidence supporting the risk of detrimental effects of PPIs on male fertility. The purpose of the current study was to evaluate the effect of subchronic use of proton pump inhibitors on male fertility. Seventy adult male Wistar rats were assigned into seven groups. The normal control group orally received solvent only. Groups 2, 3, and 4 were orally given esomeprazole while groups 5, 6, and 7 received lansoprazole at 2.5, 5, and 10 mg/kg/day, respectively. After 45 days of treatment, blood samples, epididymis, and testis were collected. Sperm count, motility, and morphology were determined. The level of hormones such as testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) and oxidative status of testis tissue, such as superoxide dismutase, catalase, reduced glutathione, malondialdehyde (MDA), and nitric oxide (NO) were estimated. Results demonstrated a significant decline in sperm count, motility, morphology, testosterone, and catalase at 10 mg/kg/day and GSH at 2.5 mg/kg/day. A significant increase in FSH, LH, and MDA at 10 mg/kg/day and NO at 2.5 mg/kg/day was found as compared to the control group. The pathological alterations specifically dilation of Leydig cells, vacuolization, and degeneration of the seminiferous tubules were also evident. It is concluded that PPIs had caused male reproductive toxicity in Wistar rats due to altered levels of hormones such as testosterone, FSH, and LH, elevated levels of NO, and oxidative stress.
Collapse
Affiliation(s)
- Namra Mumtaz
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Amjad Riaz
- Department of Thriogenology, University of Veterinary and Animal Science, Lahore, Pakistan
| |
Collapse
|
18
|
Gonzalez SN, Sulzyk V, Weigel Muñoz M, Cuasnicu PS. Cysteine-Rich Secretory Proteins (CRISP) are Key Players in Mammalian Fertilization and Fertility. Front Cell Dev Biol 2021; 9:800351. [PMID: 34970552 PMCID: PMC8712725 DOI: 10.3389/fcell.2021.800351] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Mammalian fertilization is a complex process involving a series of successive sperm-egg interaction steps mediated by different molecules and mechanisms. Studies carried out during the past 30 years, using a group of proteins named CRISP (Cysteine-RIch Secretory Proteins), have significantly contributed to elucidating the molecular mechanisms underlying mammalian gamete interaction. The CRISP family is composed of four members (i.e., CRISP1-4) in mammals, mainly expressed in the male tract, present in spermatozoa and exhibiting Ca2+ channel regulatory abilities. Biochemical, molecular and genetic approaches show that each CRISP protein participates in more than one stage of gamete interaction (i.e., cumulus penetration, sperm-ZP binding, ZP penetration, gamete fusion) by either ligand-receptor interactions or the regulation of several capacitation-associated events (i.e., protein tyrosine phosphorylation, acrosome reaction, hyperactivation, etc.) likely through their ability to regulate different sperm ion channels. Moreover, deletion of different numbers and combination of Crisp genes leading to the generation of single, double, triple and quadruple knockout mice showed that CRISP proteins are essential for male fertility and are involved not only in gamete interaction but also in previous and subsequent steps such as sperm transport within the female tract and early embryo development. Collectively, these observations reveal that CRISP have evolved to perform redundant as well as specialized functions and are organized in functional modules within the family that work through independent pathways and contribute distinctly to fertility success. Redundancy and compensation mechanisms within protein families are particularly important for spermatozoa which are transcriptionally and translationally inactive cells carrying numerous protein families, emphasizing the importance of generating multiple knockout models to unmask the true functional relevance of family proteins. Considering the high sequence and functional homology between rodent and human CRISP proteins, these observations will contribute to a better understanding and diagnosis of human infertility as well as the development of new contraceptive options.
Collapse
Affiliation(s)
| | | | | | - Patricia S. Cuasnicu
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
19
|
Tiwary E, Hu M, Prasain JK. Sperm-Guiding Unconventional Prostaglandins in C. elegans: Synthesis and Signaling. Metabolites 2021; 11:metabo11120853. [PMID: 34940611 PMCID: PMC8705762 DOI: 10.3390/metabo11120853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 02/02/2023] Open
Abstract
Prostaglandins comprise a family of lipid signaling molecules derived from polyunsaturated fatty acids and are involved in a wide array of biological processes, including fertilization. Prostaglandin-endoperoxide synthase (a.k.a. cyclooxygenase or Cox) initiates prostaglandin synthesis from 20-carbon polyunsaturated fatty acids, such as arachidonic acid. Oocytes of Caenorhabditis elegans (C. elegans) have been shown to secrete sperm-guidance cues prostaglandins, independent of Cox enzymes. Both prostaglandin synthesis and signal transduction in C. elegans are environmentally modulated pathways that regulate sperm guidance to the fertilization site. Environmental factors such as food triggers insulin and TGF-β secretion and their levels regulate tissue-specific prostaglandin synthesis in C. elegans. This novel PG pathway is abundant in mouse and human ovarian follicular fluid, where their functions, mechanism of synthesis and pathways remain to be established. Given the importance of prostaglandins in reproductive processes, a better understanding of how diets and other environmental factors influence their synthesis and function may lead to new strategies towards improving fertility in mammals.
Collapse
Affiliation(s)
- Ekta Tiwary
- Department of Medicines, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| | - Muhan Hu
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| | - Jeevan K. Prasain
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-(205)-996-2612
| |
Collapse
|
20
|
Silva AAS, Raimundo TRF, Mariani NAP, Kushima H, Avellar MCW, Buffone MG, Paula-Lopes FF, Moura MT, Silva EJR. Dissecting EPPIN protease inhibitor domains in sperm motility and fertilizing ability: repercussions for male contraceptive development. Mol Hum Reprod 2021; 27:gaab066. [PMID: 34792600 DOI: 10.1093/molehr/gaab066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/28/2021] [Indexed: 11/14/2022] Open
Abstract
EPPIN (epididymal protease inhibitor) is a mammalian conserved sperm-binding protein displaying an N-terminal WFDC (whey-acidic protein four-disulfide core) and a C-terminal Kunitz protease inhibitor domains. EPPIN plays a key role in regulating sperm motility after ejaculation via interaction with the seminal plasma protein SEMG1 (semenogelin-1). EPPIN ligands targeting the SEMG1 binding site in the Kunitz domain are under development as male contraceptive drugs. Nevertheless, the relative contributions of EPPIN WFDC and Kunitz domains to sperm function remain obscure. Here, we evaluated the effects of antibodies targeting specific epitopes in EPPIN's WFDC (Q20E antibody, Gln20-Glu39 epitope) and Kunitz (S21C and F21C antibodies, Ser103-Cys123 and Phe90-C110 epitopes, respectively) domains on mouse sperm motility and fertilizing ability. Computer-assisted sperm analysis showed that sperm co-incubation with S21C antibody (but not F21C antibody) lowered progressive and hyperactivated motilities and impaired kinematic parameters describing progressive (straight-line velocity; VSL, average path velocity; VAP and straightness; STR) and vigorous sperm movements (curvilinear velocity; VCL, amplitude of lateral head movement; ALH, and linearity; LIN) compared with control. Conversely, Q20E antibody-induced milder inhibition of progressive motility and kinematic parameters (VAP, VCL and ALH). Sperm co-incubation with S21C or Q20E antibodies affected in vitro fertilization as revealed by reduced cleavage rates, albeit without changes in capacitation-induced tyrosine phosphorylation. In conclusion, we show that targeting specific epitopes in EPPIN Kunitz and WFDC domains inhibits sperm motility and capacitation-associated events, which decrease their fertilizing ability; nevertheless, similar observations in vivo remain to be demonstrated. Simultaneously targeting residues in S21C and Q20E epitopes is a promising approach for the rational design of EPPIN-based ligands with spermostatic activity.
Collapse
Affiliation(s)
- Alan A S Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu-SP, Brazil
| | - Tamiris R F Raimundo
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu-SP, Brazil
| | - Noemia A P Mariani
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu-SP, Brazil
| | - Hélio Kushima
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu-SP, Brazil
| | - Maria Christina W Avellar
- Department of Pharmacology, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo-SP, Brazil
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Fabíola F Paula-Lopes
- Department of Biological Sciences, Universidade Federal de São Paulo-Campus Diadema, Diadema-SP, Brazil
| | - Marcelo T Moura
- Department of Biological Sciences, Universidade Federal de São Paulo-Campus Diadema, Diadema-SP, Brazil
| | - Erick J R Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu-SP, Brazil
| |
Collapse
|
21
|
Kekäläinen J. Genetic incompatibility of the reproductive partners: an evolutionary perspective on infertility. Hum Reprod 2021; 36:3028-3035. [PMID: 34580729 PMCID: PMC8600657 DOI: 10.1093/humrep/deab221] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/22/2021] [Indexed: 12/18/2022] Open
Abstract
In natural fertilisation, the female reproductive tract allows only a strictly selected sperm subpopulation to proceed in the vicinity of an unfertilised oocyte. Female-mediated sperm selection (also known as cryptic female choice (CFC)) is far from a random process, which frequently biases paternity towards particular males over others. Earlier studies have shown that CFC is a ubiquitous phenomenon in the animal kingdom and often promotes assortative fertilisation between genetically compatible mates. Here, I demonstrate that CFC for genetic compatibility likely also occurs in humans and is mediated by a complex network of interacting male and female genes. I also show that the relative contribution of genetic compatibility (i.e. the male-female interaction effect) to reproductive success is generally high and frequently outweighs the effects of individual males and females. Together, these facts indicate that, along with male- and female-dependent pathological factors, reproductive failure can also result from gamete-level incompatibility of the reproductive partners. Therefore, I argue that a deeper understanding of these evolutionary mechanisms of sperm selection can pave the way towards a more inclusive view of infertility and open novel possibilities for the development of more personalised infertility diagnostics and treatments.
Collapse
Affiliation(s)
- Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
22
|
Giaccagli MM, Gómez-Elías MD, Herzfeld JD, Marín-Briggiler CI, Cuasnicú PS, Cohen DJ, Da Ros VG. Capacitation-Induced Mitochondrial Activity Is Required for Sperm Fertilizing Ability in Mice by Modulating Hyperactivation. Front Cell Dev Biol 2021; 9:767161. [PMID: 34765607 PMCID: PMC8576324 DOI: 10.3389/fcell.2021.767161] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/08/2021] [Indexed: 01/22/2023] Open
Abstract
To become fully competent to fertilize an egg, mammalian sperm undergo a series of functional changes within the female tract, known as capacitation, that require an adequate supply and management of energy. However, the contribution of each ATP generating pathway to sustain the capacitation-associated changes remains unclear. Based on this, we investigated the role of mitochondrial activity in the acquisition of sperm fertilizing ability during capacitation in mice. For this purpose, the dynamics of the mitochondrial membrane potential (MMP) was studied by flow cytometry with the probe tetramethylrhodamine ethyl ester (TMRE). We observed a time-dependent increase in MMP only in capacitated sperm as well as a specific staining with the probe in the flagellar region where mitochondria are confined. The MMP rise was prevented when sperm were exposed to the mitochondrial uncoupler carbonyl cyanide m-chlorophenyl hydrazine (CCCP) or the protein kinase A (PKA) inhibitor H89 during capacitation, indicating that MMP increase is dependent on capacitation and H89-sensitive events. Results showed that whereas nearly all motile sperm were TMRE positive, immotile cells were mostly TMRE negative, supporting an association between high MMP and sperm motility. Furthermore, CCCP treatment during capacitation did not affect PKA substrate and tyrosine phosphorylations but produced a decrease in hyperactivation measured by computer assisted sperm analysis (CASA), similar to that observed after H89 exposure. In addition, CCCP inhibited the in vitro sperm fertilizing ability without affecting cumulus penetration and gamete fusion, indicating that the hyperactivation supported by mitochondrial function is needed mainly for zona pellucida penetration. Finally, complementary in vivo fertilization experiments further demonstrated the fundamental role of mitochondrial activity for sperm function. Altogether, our results show the physiological relevance of mitochondrial functionality for sperm fertilization competence.
Collapse
Affiliation(s)
- María Milagros Giaccagli
- Laboratorio de Mecanismos Moleculares de la Fertilización, Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Matías Daniel Gómez-Elías
- Laboratorio de Mecanismos Moleculares de la Fertilización, Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Jael Dafne Herzfeld
- Laboratorio de Mecanismos Moleculares de la Fertilización, Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Clara Isabel Marín-Briggiler
- Laboratorio de Biología Celular y Molecular de la Reproducción, Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Patricia Sara Cuasnicú
- Laboratorio de Mecanismos Moleculares de la Fertilización, Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Débora Juana Cohen
- Laboratorio de Mecanismos Moleculares de la Fertilización, Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Vanina Gabriela Da Ros
- Laboratorio de Mecanismos Moleculares de la Fertilización, Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
23
|
Jorasia K, Paul RK, Rathore NS, Lal P, Singh R, Sareen M. Production of bioactive recombinant ovine cysteine-rich secretory protein 1 in Escherichia coli. Syst Biol Reprod Med 2021; 67:471-481. [PMID: 34459353 DOI: 10.1080/19396368.2021.1963012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Ovine cysteine-rich secretory protein 1 (CRISP-1) is an acidic glycoprotein of epididymal origin under CRISP, antigen 5, pathogenesis-related protein 1 (CAP) super-family. The aim of the present study was the optimization of bacterial production and partial characterization of putative mature ovine CRISP-1 protein. The cDNA corresponding to T23 - C242 peptide fragment of ovine CRISP-1 protein was cloned into THE pET32b(+) expression vector using E. coli DH5α. Protein expression was carried out in E. coli BL21(DE3) by inducition with 1 mM IPTG at 37°C for 4 h. The recombinant protein was expressed as inclusion bodies and purified by Ni-NTA affinity chromatography using a pH gradient. Further purification of the protein was carried out by gel extraction following zinc sulfate negative staining. SDS-PAGE analysis of the purified recombinant CRISP-1 protein revealed a 43.8 kDa band. Bioactivity of the purified CRISP-1 protein was examined on sperm motility and capacitation. The recombinant ovine CRISP-1 protein at 5 µg/ml caused significant inhibition of sperm motility, and the activity was lost following heating the protein at 100°C for 5 min. The protein also demonstrated decapacitation activity, and at a concentration of 2 µg/ml, it caused a significant (P < 0.05) reduction in sperm capacitation. In conclusion, the thioredoxin-tagged ovine CRISP-1 protein was successfully produced in E. coli and purified in the soluble form by a combination of Ni-NTA affinity chromatography, gel purification, and dialysis. The recombinant protein exhibited both motility-inhibiting and decapacitating activities. Further study is needed to elucidate the mechanism of action and evaluate it's possible use in semen preservation.Abbreviations: CRISP-1: Cysteine-rich secretory protein-1; PCR: polymerase chain reaction; IPTG: isopropyl-β-D-thiogalactopyranoside; LB: Luria Bertani; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; EDTA: ethylene diamine tetraacetic acid; Ni-NTA: Nickel nitrilotriacetic acid.
Collapse
Affiliation(s)
- Kalpana Jorasia
- Department of Veterinary Biochemistry, Rajasthan University of Animal and Veterinary Sciences, Bikaner, India
| | - Rajani Kr Paul
- Division of Animal Physiology & Biochemistry, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Jaipur, India
| | - N S Rathore
- Department of Veterinary Biochemistry, Rajasthan University of Animal and Veterinary Sciences, Bikaner, India
| | - Pyare Lal
- Department of Veterinary Biochemistry, Rajasthan University of Animal and Veterinary Sciences, Bikaner, India
| | - R Singh
- Division of Animal Physiology & Biochemistry, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Jaipur, India
| | - Meenaxi Sareen
- Department of Veterinary Biochemistry, Rajasthan University of Animal and Veterinary Sciences, Bikaner, India
| |
Collapse
|
24
|
In Silico Reconstruction of Sperm Chemotaxis. Int J Mol Sci 2021; 22:ijms22179104. [PMID: 34502014 PMCID: PMC8431315 DOI: 10.3390/ijms22179104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
In echinoderms, sperm swims in random circles and turns in response to a chemoattractant. The chemoattractant evokes transient Ca2+ influx in the sperm flagellum and induces turning behavior. Recently, the molecular mechanisms and biophysical properties of this sperm response have been clarified. Based on these experimental findings, in this study, we reconstructed a sperm model in silico to demonstrate an algorithm for sperm chemotaxis. We also focused on the importance of desensitizing the chemoattractant receptor in long-range chemotaxis because sperm approach distantly located eggs, and they must sense the chemoattractant concentration over a broad range. Using parameters of the sea urchin, simulations showed that a number of sperm could reach the egg from millimeter-order distances with desensitization, indicating that we could organize a functional sperm model, and that desensitization of the receptor is essential for sperm chemotaxis. Then, we compared the model with starfish sperm, which has a different desensitization scheme and analyzed the properties of the model against various disturbances. Our approach can be applied as a novel tool in chemotaxis research.
Collapse
|
25
|
Gaikwad AS, Nandagiri A, Potter DL, Nosrati R, O'Connor AE, Jadhav S, Soria J, Prabhakar R, O'Bryan MK. CRISPs Function to Boost Sperm Power Output and Motility. Front Cell Dev Biol 2021; 9:693258. [PMID: 34422816 PMCID: PMC8374954 DOI: 10.3389/fcell.2021.693258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Fertilization requires sperm to travel long distances through the complex environment of the female reproductive tract. Despite the strong association between poor motility and infertility, the kinetics of sperm tail movement and the role individual proteins play in this process is poorly understood. Here, we use a high spatiotemporal sperm imaging system and an analysis protocol to define the role of CRISPs in the mechanobiology of sperm function. Each of CRISP1, CRISP2, and CRISP4 is required to optimize sperm flagellum waveform. Each plays an autonomous role in defining beat frequency, flexibility, and power dissipation. We thus posit that the expansion of the CRISP family from one member in basal vertebrates, to three in most mammals, and four in numerous rodents, represents an example of neofunctionalization wherein proteins with a common core function, boosting power output, have evolved to optimize different aspects of sperm tail performance.
Collapse
Affiliation(s)
- Avinash S Gaikwad
- School of Biological Sciences, Monash University, Clayton, VIC, Australia.,School of BioSciences and Bio21 Institute, The Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Ashwin Nandagiri
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India.,Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia
| | - David L Potter
- Monash Micro Imaging - Advanced Optical Microscopy, Monash University, Clayton, VIC, Australia
| | - Reza Nosrati
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia
| | - Anne E O'Connor
- School of Biological Sciences, Monash University, Clayton, VIC, Australia.,School of BioSciences and Bio21 Institute, The Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Sameer Jadhav
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Julio Soria
- Laboratory for Turbulence Research in Aerospace & Combustion (LTRAC), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia
| | - Ranganathan Prabhakar
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia
| | - Moira K O'Bryan
- School of BioSciences and Bio21 Institute, The Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
26
|
Luque GM, Xu X, Romarowski A, Gervasi MG, Orta G, De la Vega-Beltrán JL, Stival C, Gilio N, Dalotto-Moreno T, Krapf D, Visconti PE, Krapf D, Darszon A, Buffone MG. Cdc42 localized in the CatSper signaling complex regulates cAMP-dependent pathways in mouse sperm. FASEB J 2021; 35:e21723. [PMID: 34224609 DOI: 10.1096/fj.202002773rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 11/11/2022]
Abstract
Sperm acquire the ability to fertilize in a process called capacitation and undergo hyperactivation, a change in the motility pattern, which depends on Ca2+ transport by CatSper channels. CatSper is essential for fertilization and it is subjected to a complex regulation that is not fully understood. Here, we report that similar to CatSper, Cdc42 distribution in the principal piece is confined to four linear domains and this localization is disrupted in CatSper1-null sperm. Cdc42 inhibition impaired CatSper activity and other Ca2+ -dependent downstream events resulting in a severe compromise of the sperm fertilizing potential. We also demonstrate that Cdc42 is essential for CatSper function by modulating cAMP production by soluble adenylate cyclase (sAC), providing a new regulatory mechanism for the stimulation of CatSper by the cAMP-dependent pathway. These results reveal a broad mechanistic insight into the regulation of Ca2+ in mammalian sperm, a matter of critical importance in male infertility as well as in contraception.
Collapse
Affiliation(s)
- Guillermina M Luque
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Xinran Xu
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA
| | - Ana Romarowski
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina.,Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - María G Gervasi
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Gerardo Orta
- Instituto de Biotecnología, UNAM, Cuernavaca, México
| | | | - Cintia Stival
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), Rosario, Santa Fe, Argentina
| | - Nicolás Gilio
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Tomás Dalotto-Moreno
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), Rosario, Santa Fe, Argentina
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA
| | | | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
27
|
Curci L, Carvajal G, Sulzyk V, Gonzalez SN, Cuasnicú PS. Pharmacological Inactivation of CatSper Blocks Sperm Fertilizing Ability Independently of the Capacitation Status of the Cells: Implications for Non-hormonal Contraception. Front Cell Dev Biol 2021; 9:686461. [PMID: 34295893 PMCID: PMC8290173 DOI: 10.3389/fcell.2021.686461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/26/2021] [Indexed: 12/28/2022] Open
Abstract
Cation channel of sperm (CatSper), the main sperm-specific Ca2+ channel, plays a key role in mammalian fertilization, and it is essential for male fertility, becoming an attractive target for contraception. Based on this, in the present work, we investigated the effects of CatSper inactivation on in vitro and in vivo sperm fertilizing ability and the mechanisms underlying such effects. Exposure of cauda epididymal mouse sperm to different concentrations (1-20 μM) of the potent CatSper inhibitor HC-056456 (HC) during in vitro capacitation showed no effects on sperm viability but significantly affected Ca2+ entry into the cells, progressive motility, protein tyrosine phosphorylation, induced acrosome reaction, and hyperactivation, as well as the sperm's ability to in vitro fertilize cumulus oocyte complexes and zona-free eggs. Whereas the presence of HC during gamete coincubation did not affect in vitro fertilization, exposure of either non-capacitating or already capacitated sperm to HC prior to gamete coincubation severely reduced fertilization, indicating that sperm function is affected by HC when the cells are incubated with the drug before sperm-egg interaction. Of note, insemination of HC-treated sperm into the uterus significantly or completely reduced the percentage of oviductal fertilized eggs showing, for the first time, the effects of a CatSper inhibitor on in vivo fertilization. These observations, together with the finding that HC affects sperm fertilizing ability independently of the sperm capacitation status, provide further insights on how CatSper regulates sperm function and represent a solid proof of concept for developing a male/female non-hormonal contraceptive based on the pharmacological blockage of CatSper activity.
Collapse
Affiliation(s)
- Ludmila Curci
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo Carvajal
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Valeria Sulzyk
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Soledad Natalia Gonzalez
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Patricia S Cuasnicú
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
28
|
Niimura Y, Tsunoda M, Kato S, Murata K, Yanagawa T, Suzuki S, Touhara K. Origin and Evolution of the Gene Family of Proteinaceous Pheromones, the Exocrine Gland-Secreting Peptides, in Rodents. Mol Biol Evol 2021; 38:634-649. [PMID: 32961551 PMCID: PMC7826187 DOI: 10.1093/molbev/msaa220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The exocrine-gland secreting peptide (ESP)gene family encodes proteinaceous pheromones that are recognized by the vomeronasal organ in mice. For example, ESP1 is a male pheromone secreted in tear fluid that regulates socio-sexual behavior, and ESP22 is a juvenile pheromone that suppresses adult sexual behavior. The family consists of multiple genes and has been identified only in mouse and rat genomes. The coding region of a mouse ESP gene is separated into two exons, each encoding signal and mature sequences. Here, we report the origin and evolution of the ESP gene family. ESP genes were found only in the Muridea and Cricetidae families of rodents, suggesting a recent origin of ESP genes in the common ancestor of murids and cricetids. ESP genes show a great diversity in number, length, and sequence among different species as well as mouse strains. Some ESPs in rats and golden hamsters are expressed in the lacrimal gland and the salivary gland. We also found that a mature sequence of an ESP gene showed overall sequence similarity to the α-globin gene. The ancestral ESP gene seems to be generated by recombination of a retrotransposed α-globin gene with the signal-encoding exon of the CRISP2 gene located adjacent to the ESP gene cluster. This study provides an intriguing example of molecular tinkering in rapidly evolving species-specific proteinaceous pheromone genes.
Collapse
Affiliation(s)
- Yoshihito Niimura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, Japan
| | - Mai Tsunoda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, Japan
| | - Sari Kato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ken Murata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, Japan
| | - Taichi Yanagawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shunta Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, Japan.,Institutes for Advanced Study, International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
The less conserved metal-binding site in human CRISP1 remains sensitive to zinc ions to permit protein oligomerization. Sci Rep 2021; 11:5498. [PMID: 33750840 PMCID: PMC7943821 DOI: 10.1038/s41598-021-84926-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/18/2021] [Indexed: 12/30/2022] Open
Abstract
Cysteine-rich secretory proteins (CRISPs) are a subgroup of the CRISP, antigen 5 and PR-1 (CAP) superfamily that is characterized by the presence of a conserved CAP domain. Two conserved histidines in the CAP domain are proposed to function as a Zn2+-binding site with unknown function. Human CRISP1 is, however, one of the few family members that lack one of these characteristic histidine residues. The Zn2+-dependent oligomerization properties of human CRISP1 were investigated using a maltose-binding protein (MBP)-tagging approach in combination with low expression levels in XL-1 Blue bacteria. Moderate yields of soluble recombinant MBP-tagged human CRISP1 (MBP-CRISP1) and the MBP-tagged CAP domain of CRISP1 (MBP-CRISP1ΔC) were obtained. Zn2+ specifically induced oligomerization of both MBP-CRISP1 and MBP-CRISP1ΔC in vitro. The conserved His142 in the CAP domain was essential for this Zn2+ dependent oligomerization process, confirming a role of the CAP metal-binding site in the interaction with Zn2+. Furthermore, MBP-CRISP1 and MBP-CRISP1ΔC oligomers dissociated into monomers upon Zn2+ removal by EDTA. Condensation of proteins is characteristic for maturing sperm in the epididymis and this process was previously found to be Zn2+-dependent. The Zn2+-induced oligomerization of human recombinant CRISP1 may shed novel insights into the formation of functional protein complexes involved in mammalian fertilization.
Collapse
|
30
|
Słowińska M, Pardyak L, Liszewska E, Judycka S, Bukowska J, Dietrich MA, Paukszto Ł, Jastrzębski J, Kozłowski K, Kowalczyk A, Jankowski J, Bilińska B, Ciereszko A. Characterization and biological role of cysteine-rich venom protein belonging to CRISPs from turkey seminal plasma†. Biol Reprod 2021; 104:1302-1321. [PMID: 33675663 DOI: 10.1093/biolre/ioab032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/26/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Turkey semen contains cysteine-rich secretory proteins (CRISPs) that belong to the dominant seminal plasma proteins. We aimed to isolate and characterize CRISP from turkey seminal plasma and evaluate its possible involvement in yellow semen syndrome (YSS). YSS, which is well characterized, causes reduced fertility and hatchability. The protein was purified using hydrophobic interaction, gel filtration, and reverse phase chromatography. It then was subjected to identification by mass spectrometry, analysis of physicochemical properties, and specific antibody production. The biological function of the isolated protein was tested and included its effects on sperm motility and migration and sperm-egg interactions. Sperm motility was measured with the CASA system using Hobson Sperm Tracker. The reproductive tract of turkey toms was analyzed for gene expression; immunohistochemistry was used for protein localization in the male reproductive tract, spermatozoa, and inner perivitelline layer. The isolated protein was identified as cysteine-rich venom protein-like isoform X2 (CRVP X2; XP_010706464.1) and contained feature motifs of CRISP family proteins. Turkey CRVP X2 was present in both spermatozoa and seminal plasma. The extensive secretion of CRVP X2 by the epithelial cells of the epididymis and ductus deferens suggests its involvement in post-testicular sperm maturation. The internally localized CRVP X2 in the proximal part of the sperm tail might be responsible for stimulation of sperm motility. CRVP X2 on the sperm head might be involved in several events prior to fusion and may also participate in gamete fusion itself. Although the mechanisms by which CRVP X2 mediates fertilization are still unknown, the involvement of complementary sites cannot be excluded. The disturbance of CRVP X2 expression can serve as an etiologic factor of YSS in the turkey. This study expands the understanding of the detailed mechanism of fertilization in birds by clarifying the specific role of CRVP X2.
Collapse
Affiliation(s)
- Mariola Słowińska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - Laura Pardyak
- Center of Experimental and Innovative Medicine, University of Agriculture in Kraków, Kraków, Poland
| | - Ewa Liszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - Sylwia Judycka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - Joanna Bukowska
- Department of Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - Mariola Aleksandra Dietrich
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics, and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jan Jastrzębski
- Department of Plant Physiology, Genetics, and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Krzysztof Kozłowski
- Department of Poultry Science and Apiculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Artur Kowalczyk
- Division of Poultry Breeding, Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jan Jankowski
- Department of Poultry Science and Apiculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Barbara Bilińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| |
Collapse
|
31
|
Gaikwad AS, Hu J, Chapple DG, O'Bryan MK. The functions of CAP superfamily proteins in mammalian fertility and disease. Hum Reprod Update 2020; 26:689-723. [PMID: 32378701 DOI: 10.1093/humupd/dmaa016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Members of the cysteine-rich secretory proteins (CRISPS), antigen 5 (Ag5) and pathogenesis-related 1 (Pr-1) (CAP) superfamily of proteins are found across the bacterial, fungal, plant and animal kingdoms. Although many CAP superfamily proteins remain poorly characterized, over the past decade evidence has accumulated, which provides insights into the functional roles of these proteins in various processes, including fertilization, immune defence and subversion, pathogen virulence, venom toxicology and cancer biology. OBJECTIVE AND RATIONALE The aim of this article is to summarize the current state of knowledge on CAP superfamily proteins in mammalian fertility, organismal homeostasis and disease pathogenesis. SEARCH METHODS The scientific literature search was undertaken via PubMed database on all articles published prior to November 2019. Search terms were based on following keywords: 'CAP superfamily', 'CRISP', 'Cysteine-rich secretory proteins', 'Antigen 5', 'Pathogenesis-related 1', 'male fertility', 'CAP and CTL domain containing', 'CRISPLD1', 'CRISPLD2', 'bacterial SCP', 'ion channel regulator', 'CatSper', 'PI15', 'PI16', 'CLEC', 'PRY proteins', 'ASP proteins', 'spermatogenesis', 'epididymal maturation', 'capacitation' and 'snake CRISP'. In addition to that, reference lists of primary and review article were reviewed for additional relevant publications. OUTCOMES In this review, we discuss the breadth of knowledge on CAP superfamily proteins with regards to their protein structure, biological functions and emerging significance in reproduction, health and disease. We discuss the evolution of CAP superfamily proteins from their otherwise unembellished prokaryotic predecessors into the multi-domain and neofunctionalized members found in eukaryotic organisms today. At least in part because of the rapid evolution of these proteins, many inconsistencies in nomenclature exist within the literature. As such, and in part through the use of a maximum likelihood phylogenetic analysis of the vertebrate CRISP subfamily, we have attempted to clarify this confusion, thus allowing for a comparison of orthologous protein function between species. This framework also allows the prediction of functional relevance between species based on sequence and structural conservation. WIDER IMPLICATIONS This review generates a picture of critical roles for CAP proteins in ion channel regulation, sterol and lipid binding and protease inhibition, and as ligands involved in the induction of multiple cellular processes.
Collapse
Affiliation(s)
- Avinash S Gaikwad
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Jinghua Hu
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
32
|
Giojalas LC, Guidobaldi HA. Getting to and away from the egg, an interplay between several sperm transport mechanisms and a complex oviduct physiology. Mol Cell Endocrinol 2020; 518:110954. [PMID: 32738445 DOI: 10.1016/j.mce.2020.110954] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/03/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
In mammals, the architecture and physiology of the oviduct are very complex, and one long-lasting intriguing question is how spermatozoa are transported from the sperm reservoir in the isthmus to the oocyte surface. In recent decades, several studies have improved knowledge of the factors affecting oviduct fluid movement and sperm transport. They report sperm-guiding mechanisms that move the spermatozoa towards (rheotaxis, thermotaxis, and chemotaxis) or away from the egg surface (chemorepulsion), but only a few provide evidence of their occurrence in vivo. This gives rise to several questions: how and when do the sperm transport mechanisms operate inside such an active oviduct? why are there so many sperm guidance processes? is one dominant over the others, or do they cooperate to optimise the success of fertilisation? Assuming that sperm guidance evolved alongside oviduct physiology, in this review we propose a theoretical model that integrates oviduct complexity in space and time with the sperm-orienting mechanisms. In addition, since all of the sperm-guidance processes recruit spermatozoa in a better physiological condition than those not selected, they could potentially be incorporated into assisted reproductive technology (ART) to improve fertility treatment and/or to develop innovative contraceptive methods. All these issues are discussed in this review.
Collapse
Affiliation(s)
- Laura Cecilia Giojalas
- Centro de Biología Celular y Molecular (FCEFyN- UNC), and Instituto de Investigaciones Biológicas y Tecnológicas (CONICET - UNC), Córdoba, Argentina.
| | - Héctor Alejandro Guidobaldi
- Centro de Biología Celular y Molecular (FCEFyN- UNC), and Instituto de Investigaciones Biológicas y Tecnológicas (CONICET - UNC), Córdoba, Argentina
| |
Collapse
|
33
|
Leir SH, Yin S, Kerschner JL, Cosme W, Harris A. An atlas of human proximal epididymis reveals cell-specific functions and distinct roles for CFTR. Life Sci Alliance 2020; 3:e202000744. [PMID: 32855272 PMCID: PMC7471510 DOI: 10.26508/lsa.202000744] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Spermatozoa released from the testis are unable to fertilize an egg without a coordinated process of maturation in the lumen of the epididymis. Relatively little is known about the molecular events that integrate this critical progression along the male genital ducts in man. Here, we use single cell RNA-sequencing to construct an atlas of the human proximal epididymis. We find that the CFTR, which is pivotal in normal epididymis fluid transport, is most abundant in surface epithelial cells in the efferent ducts and in rare clear cells in the caput epididymis, suggesting region-specific functional properties. We reveal transcriptional signatures for multiple cell clusters, which identify the individual roles of principal, apical, narrow, basal, clear, halo, and stromal cells in the epididymis. A marked cell type-specific distribution of function is seen along the duct with local specialization of individual cell types integrating processes of sperm maturation.
Collapse
Affiliation(s)
- Shih-Hsing Leir
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, and Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Shiyi Yin
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, and Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Jenny L Kerschner
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, and Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Wilmel Cosme
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, and Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, and Case Comprehensive Cancer Center, Cleveland, OH, USA
| |
Collapse
|
34
|
Curci L, Brukman NG, Weigel Muñoz M, Rojo D, Carvajal G, Sulzyk V, Gonzalez SN, Rubinstein M, Da Ros VG, Cuasnicú PS. Functional redundancy and compensation: Deletion of multiple murine Crisp genes reveals their essential role for male fertility. FASEB J 2020; 34:15718-15733. [PMID: 33037689 DOI: 10.1096/fj.202001406r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022]
Abstract
Mammalian Cysteine-RIch Secretory Protein (CRISP) family includes four members present in sperm and reported to regulate Ca2+ channels and fertilization. Based on our previous observations using single knockouts models and suggesting the existence of functional compensation among CRISP proteins, we investigated their relevance for male fertility by generating multiple Crisp gene mutants by CRISPR/Cas9 technology. Whereas targeting of Crisp1 and Crisp3 yielded subfertile males with early embryo developmental defects, the same deletion in zygotes from fertile Crisp2-/- .Crisp4-/- mice led to the generation of both triple and quadruple knockout mice exhibiting a complete or severe disruption of male fertility due to a combination of sperm transport, fertilization, and embryo developmental defects linked to intracellular Ca2+ dysregulation. These observations reveal that CRISP proteins are essential for male fertility and organize in functional modules that contribute distinctly to fertility success, bringing insights into the mechanisms underlying functional redundancy/compensation in protein families and emphasizing the importance of generating multiple and not just single knockout which might be masking the true functional relevance of family genes.
Collapse
Affiliation(s)
- L Curci
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - N G Brukman
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - M Weigel Muñoz
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - D Rojo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - G Carvajal
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - V Sulzyk
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - S N Gonzalez
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - M Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Ciudad Autónoma de Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - V G Da Ros
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - P S Cuasnicú
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
35
|
Sheng J, Olrichs NK, Gadella BM, Kaloyanova DV, Helms JB. Regulation of Functional Protein Aggregation by Multiple Factors: Implications for the Amyloidogenic Behavior of the CAP Superfamily Proteins. Int J Mol Sci 2020; 21:E6530. [PMID: 32906672 PMCID: PMC7554809 DOI: 10.3390/ijms21186530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
The idea that amyloid fibrils and other types of protein aggregates are toxic for cells has been challenged by the discovery of a variety of functional aggregates. However, an identification of crucial differences between pathological and functional aggregation remains to be explored. Functional protein aggregation is often reversible by nature in order to respond properly to changing physiological conditions of the cell. In addition, increasing evidence indicates that fast fibril growth is a feature of functional amyloids, providing protection against the long-term existence of potentially toxic oligomeric intermediates. It is becoming clear that functional protein aggregation is a complexly organized process that can be mediated by a multitude of biomolecular factors. In this overview, we discuss the roles of diverse biomolecules, such as lipids/membranes, glycosaminoglycans, nucleic acids and metal ions, in regulating functional protein aggregation. Our studies on the protein GAPR-1 revealed that several of these factors influence the amyloidogenic properties of this protein. These observations suggest that GAPR-1, as well as the cysteine-rich secretory proteins, antigen 5 and pathogenesis-related proteins group 1 (CAP) superfamily of proteins that it belongs to, require the assembly into an amyloid state to exert several of their functions. A better understanding of functional aggregate formation may also help in the prevention and treatment of amyloid-related diseases.
Collapse
Affiliation(s)
| | | | | | | | - J. Bernd Helms
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (J.S.); (N.K.O.); (B.M.G.); (D.V.K.)
| |
Collapse
|
36
|
Cottier S, Darwiche R, Meyenhofer F, Debelyy MO, Schneiter R. The yeast cell wall protein Pry3 inhibits mating through highly conserved residues within the CAP domain. Biol Open 2020; 9:bio053470. [PMID: 32554483 PMCID: PMC7340583 DOI: 10.1242/bio.053470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/23/2020] [Indexed: 11/20/2022] Open
Abstract
Members of the CAP/SCP/TAPS superfamily have been implicated in many different physiological processes, including pathogen defense, sperm maturation and fertilization. The mode of action of this class of proteins, however, remains poorly understood. The genome of Saccharomyces cerevisiae encodes three CAP superfamily members, Pry1-3. We have previously shown that Pry1 function is required for the secretion of sterols and fatty acids. Here, we analyze the function of Pry3, a GPI-anchored cell wall protein. Overexpression of Pry3 results in strong reduction of mating efficiency, providing for a cell-based readout for CAP protein function. Mating inhibition is a conserved function of the CAP domain and depends on highly conserved surface exposed residues that form part of a putative catalytic metal-ion binding site. Pry3 displays polarized cell surface localization adjacent to bud scars, but is absent from mating projections. When overexpressed, however, the protein leaks onto mating projections, suggesting that mating inhibition is due to mislocalization of the protein. Trapping of the CAP domain within the cell wall through a GPI-anchored nanobody results in a dose-dependent inhibition of mating, suggesting that a membrane proximal CAP domain inhibits a key step in the mating reaction, which is possibly related to the function of CAP domain proteins in mammalian fertilization.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Stéphanie Cottier
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Rabih Darwiche
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Felix Meyenhofer
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Mykhaylo O Debelyy
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| |
Collapse
|
37
|
Arévalo L, Brukman NG, Cuasnicú PS, Roldan ERS. Evolutionary analysis of genes coding for Cysteine-RIch Secretory Proteins (CRISPs) in mammals. BMC Evol Biol 2020; 20:67. [PMID: 32513118 PMCID: PMC7278046 DOI: 10.1186/s12862-020-01632-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 05/25/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Cysteine-RIch Secretory Proteins (CRISP) are expressed in the reproductive tract of mammalian males and are involved in fertilization and related processes. Due to their important role in sperm performance and sperm-egg interaction, these genes are likely to be exposed to strong selective pressures, including postcopulatory sexual selection and/or male-female coevolution. We here perform a comparative evolutionary analysis of Crisp genes in mammals. Currently, the nomenclature of CRISP genes is confusing, as a consequence of discrepancies between assignments of orthologs, particularly due to numbering of CRISP genes. This may generate problems when performing comparative evolutionary analyses of mammalian clades and species. To avoid such problems, we first carried out a study of possible orthologous relationships and putative origins of the known CRISP gene sequences. Furthermore, and with the aim to facilitate analyses, we here propose a different nomenclature for CRISP genes (EVAC1-4, "EVolutionarily-analyzed CRISP") to be used in an evolutionary context. RESULTS We found differing selective pressures among Crisp genes. CRISP1/4 (EVAC1) and CRISP2 (EVAC2) orthologs are found across eutherian mammals and seem to be conserved in general, but show signs of positive selection in primate CRISP1/4 (EVAC1). Rodent Crisp1 (Evac3a) seems to evolve under a comparatively more relaxed constraint with positive selection on codon sites. Finally, murine Crisp3 (Evac4), which appears to be specific to the genus Mus, shows signs of possible positive selection. We further provide evidence for sexual selection on the sequence of one of these genes (Crisp1/4) that, unlike others, is thought to be exclusively expressed in male reproductive tissues. CONCLUSIONS We found differing selective pressures among CRISP genes and sexual selection as a contributing factor in CRISP1/4 gene sequence evolution. Our evolutionary analysis of this unique set of genes contributes to a better understanding of Crisp function in particular and the influence of sexual selection on reproductive mechanisms in general.
Collapse
Affiliation(s)
- Lena Arévalo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), c/José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Institute of Pathology, Department of Developmental Pathology, University Hospital Bonn, Bonn, 53127 Germany
| | - Nicolás G. Brukman
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), C1428ADN Buenos Aires, Argentina
| | - Patricia S. Cuasnicú
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), C1428ADN Buenos Aires, Argentina
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), c/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
38
|
Martinez CA, Alvarez-Rodriguez M, Wright D, Rodriguez-Martinez H. Does the Pre-Ovulatory Pig Oviduct Rule Sperm Capacitation In Vivo Mediating Transcriptomics of Catsper Channels? Int J Mol Sci 2020; 21:ijms21051840. [PMID: 32155986 PMCID: PMC7084628 DOI: 10.3390/ijms21051840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022] Open
Abstract
Spermatozoa need to conduct a series of biochemical changes termed capacitation in order to fertilize. In vivo, capacitation is sequentially achieved during sperm transport and interaction with the female genital tract, by mechanisms yet undisclosed in detail. However, when boar spermatozoa are stored in the tubal reservoir pre-ovulation, most appear to be in a non-capacitated state. This study aimed at deciphering the transcriptomics of capacitation-related genes in the pig pre-ovulatory oviduct, following the entry of semen or of sperm-free seminal plasma (SP). Ex-vivo samples of the utero-tubal junction (UTJ) and isthmus were examined with a microarray chip (GeneChip® Porcine Gene 1.0 ST Array, Thermo Fisher Scientific) followed by bioinformatics for enriched analysis of functional categories (GO terms) and restrictive statistics. The results confirmed that entry of semen or of relative amounts of sperm-free SP modifies gene expression of these segments, pre-ovulation. It further shows that enriched genes are differentially associated with pathways relating to sperm motility, acrosome reaction, single fertilization, and the regulation of signal transduction GO terms. In particular, the pre-ovulation oviduct stimulates the Catsper channels for sperm Ca2+ influx, with AKAPs, CATSPERs, and CABYR genes being positive regulators while PKIs and CRISP1 genes appear to be inhibitors of the process. We postulate that the stimulation of PKIs and CRISP1 genes in the pre-ovulation sperm reservoir/adjacent isthmus, mediated by SP, act to prevent premature massive capacitation prior to ovulation.
Collapse
Affiliation(s)
- Cristina A. Martinez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; (M.A.-R.); (H.R.-M.)
- Correspondence: ; Tel.: +34-678077708
| | - Manuel Alvarez-Rodriguez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; (M.A.-R.); (H.R.-M.)
| | - Dominic Wright
- Department of Physics, Chemistry and Biology, Faculty of Science and Engineering; Linköping University, SE-58183 Linköping, Sweden;
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; (M.A.-R.); (H.R.-M.)
| |
Collapse
|
39
|
Expression and purification of recombinant mouse CRISP4 using a baculovirus system. Protein Expr Purif 2020; 167:105543. [DOI: 10.1016/j.pep.2019.105543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022]
|
40
|
Gholami D, Salman Yazdi R, Jami MS, Ghasemi S, Sadighi Gilani MA, Sadeghinia S, Teimori H. The expression of Cysteine-Rich Secretory Protein 2 (CRISP2) and miR-582-5p in seminal plasma fluid and spermatozoa of infertile men. Gene 2019; 730:144261. [PMID: 31778754 DOI: 10.1016/j.gene.2019.144261] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/19/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022]
Abstract
Cysteine-Rich Secretory Protein 2 (CRISP2) plays an important role in the morphology and motion of male ejaculated spermatozoa. The association of its expression with some miRNAs is also well known. The aim of this study was to determine the expression of CRISP2 and mir-582 in the seminal plasma fluid and spermatozoa of three groups of infertile men and the possible association of their expressions. In this experimental study, the expression of CRISP2 in seminal plasma fluid and spermatozoa of 17 men with asthenozoospermia, 15 men with teratozoospermia, 17 men with teratoasthenozoospermia, and 18 infertile individuals with normozoospermia were measured using western blotting. Then by using bioinformatics studies, miR-582-5p was nominated as a CRISP2-associated miRNA, and its expression was evaluated by means of Real-Time PCR. Comparison of expression of CRISP2 and miRNA-582 in the studied groups was analyzed by t-test and Mann-Whitney U test. The expression of CRISP2 showed a significant reduction in the spermatozoa and seminal plasma fluid of all three groups, (p < 0.05). MiR-582-5p expression significantly increased in teratozoospermia patients (<0.05), and significantly decreased in teratoasthenozoospermia patients (p < 0.05). Meanwhile, changes in the expression of miR-582-5p in teratoasthenozoospermia individuals was associated with a decrease in the expression of CRISP2, which could represent the potential role of miR-582-5p in regulation of CRISP2 expression in teratoasthenozoospermia individuals.
Collapse
Affiliation(s)
- Delnya Gholami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Reza Salman Yazdi
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad-Saeid Jami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Neurology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Ali Sadighi Gilani
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Shaghayegh Sadeghinia
- College of Medical Veterinary and Life Sciences School of Molecular Cell and Systems Biology, University of Glasgow, Scotland
| | - Hossien Teimori
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
41
|
Brown SG, Publicover SJ, Barratt CLR, Martins da Silva SJ. Human sperm ion channel (dys)function: implications for fertilization. Hum Reprod Update 2019; 25:758-776. [PMID: 31665287 PMCID: PMC6847974 DOI: 10.1093/humupd/dmz032] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/14/2019] [Accepted: 08/13/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Intensive research on sperm ion channels has identified members of several ion channel families in both mouse and human sperm. Gene knock-out studies have unequivocally demonstrated the importance of the calcium and potassium conductances in sperm for fertility. In both species, the calcium current is carried by the highly complex cation channel of sperm (CatSper). In mouse sperm, the potassium current has been conclusively shown to be carried by a channel consisting of the pore forming subunit SLO3 and auxiliary subunit leucine-rich repeat-containing 52 (LRRC52). However, in human sperm it is controversial whether the pore forming subunit of the channel is composed of SLO3 and/or SLO1. Deciphering the role of the proton-specific Hv1 channel is more challenging as it is only expressed in human sperm. However, definitive evidence for a role in, and importance for, human fertility can only be determined through studies using clinical samples. OBJECTIVE AND RATIONALE This review aims to provide insight into the role of sperm ion channels in human fertilization as evidenced from recent studies of sperm from infertile men. We also summarize the key discoveries from mouse ion channel knock-out models and contrast the properties of mouse and human CatSper and potassium currents. We detail the evidence for, and consequences of, defective ion channels in human sperm and discuss hypotheses to explain how defects arise and why affected sperm have impaired fertilization potential. SEARCH METHODS Relevant studies were identified using PubMed and were limited to ion channels that have been characterized in mouse and human sperm. Additional notable examples from other species are included as appropriate. OUTCOMES There are now well-documented fundamental differences between the properties of CatSper and potassium channel currents in mouse and human sperm. However, in both species, sperm lacking either channel cannot fertilize in vivo and CatSper-null sperm also fail to fertilize at IVF. Sperm-lacking potassium currents are capable of fertilizing at IVF, albeit at a much lower rate. However, additional complex and heterogeneous ion channel dysfunction has been reported in sperm from infertile men, the causes of which are unknown. Similarly, the nature of the functional impairment of affected patient sperm remains elusive. There are no reports of studies of Hv1 in human sperm from infertile men. WIDER IMPLICATIONS Recent studies using sperm from infertile men have given new insight and critical evidence supporting the supposition that calcium and potassium conductances are essential for human fertility. However, it should be highlighted that many fundamental questions remain regarding the nature of molecular and functional defects in sperm with dysfunctional ion channels. The development and application of advanced technologies remains a necessity to progress basic and clinical research in this area, with the aim of providing effective screening methodologies to identify and develop treatments for affected men in order to help prevent failed ART cycles. Conversely, development of drugs that block calcium and/or potassium conductances in sperm is a plausible strategy for producing sperm-specific contraceptives.
Collapse
Affiliation(s)
- Sean G Brown
- School of Applied Sciences, Abertay University, Dundee DD11HG, UK
| | | | - Christopher L R Barratt
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Sarah J Martins da Silva
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| |
Collapse
|
42
|
Weigel Muñoz M, Battistone MA, Carvajal G, Maldera JA, Curci L, Torres P, Lombardo D, Pignataro OP, Da Ros VG, Cuasnicú PS. Influence of the genetic background on the reproductive phenotype of mice lacking Cysteine-Rich Secretory Protein 1 (CRISP1). Biol Reprod 2019; 99:373-383. [PMID: 29481619 DOI: 10.1093/biolre/ioy048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/21/2018] [Indexed: 01/14/2023] Open
Abstract
Epididymal sperm protein CRISP1 has the ability to both regulate murine CatSper, a key sperm calcium channel, and interact with egg-binding sites during fertilization. In spite of its relevance for sperm function, Crisp1-/-mice are fertile. Considering that phenotypes can be influenced by the genetic background, in the present work mice from the original mixed Crisp1-/- colony (129/SvEv*C57BL/6) were backcrossed onto the C57BL/6 strain for subsequent analysis of their reproductive phenotype. Whereas fertility and fertilization rates of C57BL/6 Crisp1-/- males did not differ from those reported for mice from the mixed background, several sperm functional parameters were clearly affected by the genetic background. Crisp1-/- sperm from the homogeneous background exhibited defects in both the progesterone-induced acrosome reaction and motility not observed in the mixed background, and normal rather than reduced protein tyrosine phosphorylation. Additional studies revealed a significant decrease in sperm hyperactivation as well as in cAMP and protein kinase A (PKA) substrate phosphorylation levels in sperm from both colonies. The finding that exposure of mutant sperm to a cAMP analog and phosphodiesterase inhibitor overcame the sperm functional defects observed in each colony indicated that a common cAMP-PKA signaling defect led to different phenotypes depending on the genetic background. Altogether, our observations indicate that the phenotype of CRISP1 null males is modulated by the genetic context and reveal new roles for the protein in both the functional events and signaling pathways associated to capacitation.
Collapse
Affiliation(s)
- Mariana Weigel Muñoz
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - María A Battistone
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Guillermo Carvajal
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Julieta A Maldera
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Ludmila Curci
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Pablo Torres
- Instituto de Investigación y Tecnología en Reproducción Animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Lombardo
- Instituto de Investigación y Tecnología en Reproducción Animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Omar P Pignataro
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Vanina G Da Ros
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Patricia S Cuasnicú
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
43
|
Murdica V, Cermisoni GC, Zarovni N, Salonia A, Viganò P, Vago R. Proteomic analysis reveals the negative modulator of sperm function glycodelin as over-represented in semen exosomes isolated from asthenozoospermic patients. Hum Reprod 2019; 34:1416-1427. [DOI: 10.1093/humrep/dez114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/27/2019] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT
STUDY QUESTION
Are there differences in the proteomic profile of exosomes isolated from seminal plasma of normozoospermic (NSP) and severe asthenozoospermic (SA) men, potentially contributing to sperm features?
SUMMARY ANSWER
A relevant group of proteins known to positively regulate sperm functions were over-represented in seminal exosomes of NSP men, i.e. cysteine-rich secretory protein-1 (CRISP1), while the inhibitory protein glycodelin was enriched in exosomes of SA subjects.
WHAT IS KNOWN ALREADY
Exosomes are secreted along the male reproductive tract and are thought to be involved in spermatozoa maturation and function. Ejaculated spermatozoa are still able to capture exosomes; exosomes of NSP individuals improve sperm motility and prompt capacitation, while exosomes of SA men fail to exert similar features.
STUDY DESIGN, SIZE, DURATION
Semen samples from NSP and SA men, aged 18 to 55 and registered at a single IVF center, were considered for this study project. Subjects were subdivided into three groups: a discovery cohort (five NSP men and six SA patients), a validation cohort (seven NSP and seven SA men) and the ‘glycodelin analysis’ cohort (20 NSP and 37 SA men). Exosomes were purified from semen of every participant.
PARTICIPANTS/MATERIALS, SETTING, METHODS
Exosomes were characterized by nanoparticle tracking analysis, transmission electron microscopy and western blot. Comprehensive proteomics analysis of the exosomal proteome was performed by nanoscale liquid chromatographic tandem mass spectrometry analysis. Funrich software was used to determine statistical enrichment of pathways, networks and Gene Ontology terms of the identified proteins. Validation of differentially expressed proteins was performed through ELISA and western blot analysis.
MAIN RESULTS AND THE ROLE OF CHANCE
The comprehensive proteomic analysis identified a total of 2138 proteins for both groups. There were 89 proteins found to be differentially expressed in exosomes of NSP versus SA subjects, of which 37 were increased in the NSP group and 52 were increased in the SA group. One-third of the exosomes-associated proteins highly expressed in NSP samples were involved in the reproductive process; conversely, the over-expressed proteins in exosomes of SA samples were not functionally specific. Quantitative data were confirmed on seminal exosomes from different cohorts of subjects.
LARGE SCALE DATA
N/A
LIMITATIONS, REASONS FOR CAUTION
Transfer of the proteins from exosomes to spermatozoa has been only partially demonstrated and up-take mechanisms are still poorly defined.
WIDER IMPLICATIONS OF THE FINDINGS
Seminal exosomes carry proteins that are potentially able to either favour or inhibit the reproductive process in humans. A better understanding of these phenomena might pave the way for novel intervention measures in terms of male infertility.
STUDY FUNDING/COMPETING INTEREST(S)
This study was funded by the Italian Ministry of Health through an Institution Seed Grant. None of the authors has any competing interests.
Collapse
Affiliation(s)
- Valentina Murdica
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Greta Chiara Cermisoni
- Centro Scienze Natalità, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | | | - Andrea Salonia
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Paola Viganò
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Riccardo Vago
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| |
Collapse
|
44
|
Weigel Muñoz M, Carvajal G, Curci L, Gonzalez SN, Cuasnicu PS. Relevance of CRISP proteins for epididymal physiology, fertilization, and fertility. Andrology 2019; 7:610-617. [DOI: 10.1111/andr.12638] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/15/2019] [Accepted: 03/30/2019] [Indexed: 12/18/2022]
Affiliation(s)
- M. Weigel Muñoz
- Instituto de Biología y Medicina Experimental (IByME-CONICET); Buenos Aires Argentina
| | - G. Carvajal
- Instituto de Biología y Medicina Experimental (IByME-CONICET); Buenos Aires Argentina
| | - L. Curci
- Instituto de Biología y Medicina Experimental (IByME-CONICET); Buenos Aires Argentina
| | - S. N. Gonzalez
- Instituto de Biología y Medicina Experimental (IByME-CONICET); Buenos Aires Argentina
| | - P. S. Cuasnicu
- Instituto de Biología y Medicina Experimental (IByME-CONICET); Buenos Aires Argentina
| |
Collapse
|
45
|
Lim S, Kierzek M, O'Connor AE, Brenker C, Merriner DJ, Okuda H, Volpert M, Gaikwad A, Bianco D, Potter D, Prabhakar R, Strünker T, O'Bryan MK. CRISP2 Is a Regulator of Multiple Aspects of Sperm Function and Male Fertility. Endocrinology 2019; 160:915-924. [PMID: 30759213 DOI: 10.1210/en.2018-01076] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/08/2019] [Indexed: 11/19/2022]
Abstract
The cysteine-rich secretory proteins (CRISPs) are a group of proteins that show a pronounced expression biased to the male reproductive tract. Although sperm encounter CRISPs at virtually all phases of sperm development and maturation, CRISP2 is the sole CRISP produced during spermatogenesis, wherein it is incorporated into the developing sperm head and tail. In this study we tested the necessity for CRISP2 in male fertility using Crisp2 loss-of-function mouse models. In doing so, we revealed a role for CRISP2 in establishing the ability of sperm to undergo the acrosome reaction and in establishing a normal flagellum waveform. Crisp2-deficient sperm possess a stiff midpiece and are thus unable to manifest the rapid form of progressive motility seen in wild type sperm. As a consequence, Crisp2-deficient males are subfertile. Furthermore, a yeast two-hybrid screen and immunoprecipitation studies reveal that CRISP2 can bind to the CATSPER1 subunit of the Catsper ion channel, which is necessary for normal sperm motility. Collectively, these data define CRISP2 as a determinant of male fertility and explain previous clinical associations between human CRISP2 expression and fertility.
Collapse
Affiliation(s)
- Shuly Lim
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Michelina Kierzek
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Anne E O'Connor
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- The School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Christoph Brenker
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - D Jo Merriner
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- The School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Hidenobu Okuda
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- The School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Marianna Volpert
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Avinash Gaikwad
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- The School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Deborah Bianco
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - David Potter
- Monash Micro Imaging, Monash University, Clayton, Victoria, Australia
| | - Ranganathan Prabhakar
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia
| | - Timo Strünker
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Moira K O'Bryan
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- The School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
46
|
Hu J, Merriner DJ, O'Connor AE, Houston BJ, Furic L, Hedger MP, O'Bryan MK. Epididymal cysteine-rich secretory proteins are required for epididymal sperm maturation and optimal sperm function. Mol Hum Reprod 2019; 24:111-122. [PMID: 29361143 DOI: 10.1093/molehr/gay001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022] Open
Abstract
STUDY QUESTION What is the role of epididymal cysteine-rich secretory proteins (CRISPs) in male fertility? SUMMARY ANSWER While epididymal CRISPs are not absolutely required for male fertility, they are required for optimal sperm function. WHAT IS KNOWN ALREADY CRISPs are members of the CRISP, Antigen 5 and Pathogenesis related protein 1 (CAP) superfamily and are characterized by the presence of an N-terminal CAP domain and a C-terminal CRISP domain. CRISPs are highly enriched in the male reproductive tract of mammals, including in the epididymis. Within humans there is one epididymal CRISP, CRISP1, whereas in mice there are two, CRISP1 and CRISP4. STUDY DESIGN, SIZE, DURATION In order to define the role of CRISPs within the epididymis, Crisp1 and Crisp4 knockout mouse lines were produced then interbred to produce Crisp1 and 4 double knockout (DKO) mice, wherein the expression of all epididymal CRISPs was ablated. Individual and DKO models were then assessed, relative to their own strain-specific wild type littermates for fertility, and sperm output and functional competence at young (10-12 weeks of age) and older ages (22-24 weeks). Crisp1 and 4 DKO and control mice were also compared for their ability to bind to the zona pellucida and achieve fertilization. PARTICIPANTS/MATERIALS, SETTING, METHODS Knockout mouse production was achieved using modified embryonic stem cells and standard methods. The knockout of individual genes was confirmed at a mRNA (quantitative PCR) and protein (immunochemistry) level. Fertility was assessed using breeding experiments and a histological assessment of testes and epididymal tissue. Sperm functional competence was assessed using a computer assisted sperm analyser, induction of the acrosome reaction using progesterone followed by staining for acrosome contents, using immunochemical and western blotting to assess the ability of sperm to manifest tyrosine phosphorylation under capacitating conditions and using sperm-zona pellucida binding assays and IVF methods. A minimum of three biological replicates were used per assay and per genotype. MAIN RESULTS AND THE ROLE OF CHANCE While epididymal CRISPs are not absolutely required for male fertility, their production results in enhanced sperm function and, depending on context, CRISP1 and CRISP4 act redundantly or autonomously. Specifically, CRISP1 is the most important CRISP in the establishment of normally motile sperm, whereas CRISP4 acts to enhance capacitation-associated tyrosine phosphorylation, and CRISP1 and CRISP4 act together to establish normal acrosome function. Both are required to achieve optimal sperm-egg interaction. The presence of immune infiltrates into the epididymis of older, but not younger, DKO animals also suggests epididymal CRISPs function to produce an immune privileged environment for maturing sperm within the epididymis. LIMITATIONS REASONS FOR CAUTION Caution should be displayed in the translation of mouse-derived data into the human wherein the histology of the epididymis is someone what different. The mice used in the study were housed in a specific pathogen-free environment and were thus not exposed to the full range of environmental challenges experienced by wild mice or humans. As such, the role of CRISPs in the maintenance of an immune privileged environment, for example, may be understated. WIDER IMPLICATIONS OF THE FINDINGS The combined deletion of Crisp1 and Crisp4 in mice is equivalent to the removal of all CRISP expression in humans. As such, these data suggest that mammalian CRISPs, including that in humans, function to enhance sperm function and thus male fertility. These data also suggest that in the presence of an environmental challenge, CRISPs help to maintain an immune privileged environment and thus, protect against immune-mediated male infertility. LARGE SCALE DATA Not applicable. STUDY FUNDING AND COMPETING INTEREST(S) This study was funded by the National Health and Medical Research Council, the Victorian Cancer Agency and a scholarship from the Chinese Scholarship Council. The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Jinghua Hu
- The Development and Stem Cells Program of the Biomedicine Discovery Institute, and The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia.,The School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - D Jo Merriner
- The Development and Stem Cells Program of the Biomedicine Discovery Institute, and The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia.,The School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Anne E O'Connor
- The Development and Stem Cells Program of the Biomedicine Discovery Institute, and The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia.,The School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Brendan J Houston
- The School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Luc Furic
- Prostate Cancer Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Cancer Program, Biomedicine Discovery Institute and Department of Anatomy & Developmental Biology, Monash University, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mark P Hedger
- The Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Moira K O'Bryan
- The Development and Stem Cells Program of the Biomedicine Discovery Institute, and The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia.,The School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
47
|
Abstract
SummarySpermatogenesis is a dynamic process that culminates in the production of mature spermatozoa in the seminiferous tubules of sexually mature animals. Although sperm leaving the testis are fully differentiated, they must further undergo two additional maturation steps before acquiring the capability to fertilize the egg. Such processes take place during the epididymal residency and transport in the seminal fluid during ejaculation and, after delivery into the female reproductive tract, during the journey aiming the encountering the egg in the oviduct. Throughout this trip, spermatozoa are exposed to different reproductive fluids whose molecular compositions regulate the progress towards obtaining a fertilized competent cell. This review summarizes the evidence obtained so far supporting the participation of male and female reproductive tract-derived proteins in the modulation of sperm fertilizing ability and discusses the mechanisms by which such regulation may be accomplished.
Collapse
|
48
|
Carvajal G, Brukman NG, Weigel Muñoz M, Battistone MA, Guazzone VA, Ikawa M, Haruhiko M, Lustig L, Breton S, Cuasnicu PS. Impaired male fertility and abnormal epididymal epithelium differentiation in mice lacking CRISP1 and CRISP4. Sci Rep 2018; 8:17531. [PMID: 30510210 PMCID: PMC6277452 DOI: 10.1038/s41598-018-35719-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/16/2018] [Indexed: 01/14/2023] Open
Abstract
Epididymal Cysteine Rich Secretory Proteins 1 and 4 (CRISP1 and CRISP4) associate with sperm during maturation and play different roles in fertilization. However, males lacking each of these molecules individually are fertile, suggesting compensatory mechanisms between these homologous proteins. Based on this, in the present work, we generated double CRISP1/CRISP4 knockout (DKO) mice and examined their reproductive phenotype. Our data showed that the simultaneous lack of the two epididymal proteins results in clear fertility defects. Interestingly, whereas most of the animals exhibited specific sperm fertilizing ability defects supportive of the role of CRISP proteins in fertilization, one third of the males showed an unexpected epididymo-orchitis phenotype with altered levels of inflammatory molecules and non-viable sperm in the epididymis. Further analysis showed that DKO mice exhibited an immature epididymal epithelium and abnormal luminal pH, supporting these defects as likely responsible for the different phenotypes observed. These observations reveal that CRISP proteins are relevant for epididymal epithelium differentiation and male fertility, contributing to a better understanding of the fine-tuning mechanisms underlying sperm maturation and immunotolerance in the epididymis with clear implications for human epididymal physiology and pathology.
Collapse
Affiliation(s)
- Guillermo Carvajal
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, C1428ADN, Argentina
| | - Nicolás Gastón Brukman
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, C1428ADN, Argentina
| | - Mariana Weigel Muñoz
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, C1428ADN, Argentina
| | - María A Battistone
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vanesa A Guazzone
- Instituto de Investigaciones Biomédicas (INBIOMED-UBA-CONICET), Buenos Aires, C1121ABG, Argentina
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Miyata Haruhiko
- Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Livia Lustig
- Instituto de Investigaciones Biomédicas (INBIOMED-UBA-CONICET), Buenos Aires, C1121ABG, Argentina
| | - Sylvie Breton
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Patricia S Cuasnicu
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, C1428ADN, Argentina.
| |
Collapse
|
49
|
Positive Selection in the Evolution of Mammalian CRISPs. J Mol Evol 2018; 86:635-645. [DOI: 10.1007/s00239-018-9872-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/20/2018] [Indexed: 11/24/2022]
|
50
|
Ran MX, Li Y, Zhang Y, Liang K, Ren YN, Zhang M, Zhou GB, Zhou YM, Wu K, Wang CD, Huang Y, Luo B, Qazi IH, Zhang HM, Zeng CJ. Transcriptome Sequencing Reveals the Differentially Expressed lncRNAs and mRNAs Involved in Cryoinjuries in Frozen-Thawed Giant Panda ( Ailuropoda melanoleuca) Sperm. Int J Mol Sci 2018; 19:ijms19103066. [PMID: 30297640 PMCID: PMC6212861 DOI: 10.3390/ijms19103066] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
Sperm cryopreservation and artificial insemination are important methods for giant panda breeding and preservation of extant genetic diversity. Lower conception rates limit the use of artificial insemination with frozen-thawed giant panda sperm, due to the lack of understanding of the cryodamaging or cryoinjuring mechanisms in cryopreservation. Long non-coding RNAs (lncRNAs) are involved in regulating spermatogenesis. However, their roles during cryopreservation remain largely unexplored. Therefore, this study aimed to identify differentially expressed lncRNAs and mRNAs associated with cryodamage or freeze tolerance in frozen-thawed sperm through high throughput sequencing. A total of 61.05 Gb clean reads and 22,774 lncRNA transcripts were obtained. From the sequencing results, 1477 significantly up-regulated and 1,396 significantly down-regulated lncRNA transcripts from fresh and frozen-thawed sperm of giant panda were identified. GO and KEGG showed that the significantly dysregulated lncRNAs and mRNAs were mainly involved in regulating responses to cold stress and apoptosis, such as the integral component of membrane, calcium transport, and various signaling pathways including PI3K-Akt, p53 and cAMP. Our work is the first systematic profiling of lncRNA and mRNA in fresh and frozen-thawed giant panda sperm, and provides valuableinsights into the potential mechanism of cryodamage in sperm.
Collapse
Affiliation(s)
- Ming-Xia Ran
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yuan Li
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yan Zhang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Kai Liang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ying-Nan Ren
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ming Zhang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Guang-Bin Zhou
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ying-Min Zhou
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Kai Wu
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Cheng-Dong Wang
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Yan Huang
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Bo Luo
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Izhar Hyder Qazi
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Department of Veterinary Anatomy & Histology, Faculty of Bio-Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan.
| | - He-Min Zhang
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Chang-Jun Zeng
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|