1
|
Ganesan I, Busto JV, Pfanner N, Wiedemann N. Biogenesis of mitochondrial β-barrel membrane proteins. FEBS Open Bio 2024; 14:1595-1609. [PMID: 39343721 PMCID: PMC11452307 DOI: 10.1002/2211-5463.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
β-barrel membrane proteins in the mitochondrial outer membrane are crucial for mediating the metabolite exchange between the cytosol and the mitochondrial intermembrane space. In addition, the β-barrel membrane protein subunit Tom40 of the translocase of the outer membrane (TOM) is essential for the import of the vast majority of mitochondrial proteins encoded in the nucleus. The sorting and assembly machinery (SAM) in the outer membrane is required for the membrane insertion of mitochondrial β-barrel proteins. The core subunit Sam50, which has been conserved from bacteria to humans, is itself a β-barrel protein. The β-strands of β-barrel precursor proteins are assembled at the Sam50 lateral gate forming a Sam50-preprotein hybrid barrel. The assembled precursor β-barrel is finally released into the outer mitochondrial membrane by displacement of the nascent β-barrel, termed the β-barrel switching mechanism. SAM forms supercomplexes with TOM and forms a mitochondrial outer-to-inner membrane contact site with the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. SAM shares subunits with the ER-mitochondria encounter structure (ERMES), which forms a membrane contact site between the mitochondrial outer membrane and the endoplasmic reticulum. Therefore, β-barrel membrane protein biogenesis is closely connected to general mitochondrial protein and lipid biogenesis and plays a central role in mitochondrial maintenance.
Collapse
Affiliation(s)
- Iniyan Ganesan
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of MedicineUniversity of FreiburgGermany
| | - Jon V. Busto
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of MedicineUniversity of FreiburgGermany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of MedicineUniversity of FreiburgGermany
- CIBSS Centre for Integrative Biological Signalling StudiesUniversity of FreiburgGermany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgGermany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of MedicineUniversity of FreiburgGermany
- CIBSS Centre for Integrative Biological Signalling StudiesUniversity of FreiburgGermany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgGermany
| |
Collapse
|
2
|
den Brave F, Schulte U, Fakler B, Pfanner N, Becker T. Mitochondrial complexome and import network. Trends Cell Biol 2024; 34:578-594. [PMID: 37914576 DOI: 10.1016/j.tcb.2023.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023]
Abstract
Mitochondria perform crucial functions in cellular metabolism, protein and lipid biogenesis, quality control, and signaling. The systematic analysis of protein complexes and interaction networks provided exciting insights into the structural and functional organization of mitochondria. Most mitochondrial proteins do not act as independent units, but are interconnected by stable or dynamic protein-protein interactions. Protein translocases are responsible for importing precursor proteins into mitochondria and form central elements of several protein interaction networks. These networks include molecular chaperones and quality control factors, metabolite channels and respiratory chain complexes, and membrane and organellar contact sites. Protein translocases link the distinct networks into an overarching network, the mitochondrial import network (MitimNet), to coordinate biogenesis, membrane organization and function of mitochondria.
Collapse
Affiliation(s)
- Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
3
|
Nussberger S, Ghosh R, Wang S. New insights into the structure and dynamics of the TOM complex in mitochondria. Biochem Soc Trans 2024; 52:911-922. [PMID: 38629718 PMCID: PMC11088910 DOI: 10.1042/bst20231236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
To date, there is no general physical model of the mechanism by which unfolded polypeptide chains with different properties are imported into the mitochondria. At the molecular level, it is still unclear how transit polypeptides approach, are captured by the protein translocation machinery in the outer mitochondrial membrane, and how they subsequently cross the entropic barrier of a protein translocation pore to enter the intermembrane space. This deficiency has been due to the lack of detailed structural and dynamic information about the membrane pores. In this review, we focus on the recently determined sub-nanometer cryo-EM structures and our current knowledge of the dynamics of the mitochondrial two-pore outer membrane protein translocation machinery (TOM core complex), which provide a starting point for addressing the above questions. Of particular interest are recent discoveries showing that the TOM core complex can act as a mechanosensor, where the pores close as a result of interaction with membrane-proximal structures. We highlight unusual and new correlations between the structural elements of the TOM complexes and their dynamic behavior in the membrane environment.
Collapse
Affiliation(s)
- Stephan Nussberger
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Robin Ghosh
- Department of Bioenergetics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Shuo Wang
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
4
|
Busto JV, Ganesan I, Mathar H, Steiert C, Schneider EF, Straub SP, Ellenrieder L, Song J, Stiller SB, Lübbert P, Chatterjee R, Elsaesser J, Melchionda L, Schug C, den Brave F, Schulte U, Klecker T, Kraft C, Fakler B, Becker T, Wiedemann N. Role of the small protein Mco6 in the mitochondrial sorting and assembly machinery. Cell Rep 2024; 43:113805. [PMID: 38377000 DOI: 10.1016/j.celrep.2024.113805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
The majority of mitochondrial precursor proteins are imported through the Tom40 β-barrel channel of the translocase of the outer membrane (TOM). The sorting and assembly machinery (SAM) is essential for β-barrel membrane protein insertion into the outer membrane and thus required for the assembly of the TOM complex. Here, we demonstrate that the α-helical outer membrane protein Mco6 co-assembles with the mitochondrial distribution and morphology protein Mdm10 as part of the SAM machinery. MCO6 and MDM10 display a negative genetic interaction, and a mco6-mdm10 yeast double mutant displays reduced levels of the TOM complex. Cells lacking Mco6 affect the levels of Mdm10 and show assembly defects of the TOM complex. Thus, this work uncovers a role of the SAMMco6 complex for the biogenesis of the mitochondrial outer membrane.
Collapse
Affiliation(s)
- Jon V Busto
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Iniyan Ganesan
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hannah Mathar
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Conny Steiert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eva F Schneider
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian P Straub
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lars Ellenrieder
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Sebastian B Stiller
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Lübbert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ritwika Chatterjee
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Jana Elsaesser
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Laura Melchionda
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christina Schug
- Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany
| | - Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Till Klecker
- Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
den Brave F, Pfanner N, Becker T. Mitochondrial entry gate as regulatory hub. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119529. [PMID: 37951505 DOI: 10.1016/j.bbamcr.2023.119529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 11/14/2023]
Abstract
Mitochondria import 1000-1300 different precursor proteins from the cytosol. The main mitochondrial entry gate is formed by the translocase of the outer membrane (TOM complex). Molecular coupling and modification of TOM subunits control and modulate protein import in response to cellular signaling. The TOM complex functions as regulatory hub to integrate mitochondrial protein biogenesis and quality control into the cellular proteostasis network.
Collapse
Affiliation(s)
- Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
6
|
Marshall AG, Garza-Lopez E, Vue Z, Vang L, Hinton A. Sam50 is Associated with Fragmentation and Alterations in Metabolism in Human and Murine Myotubes. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1189-1191. [PMID: 37613698 DOI: 10.1093/micmic/ozad067.613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Andrea G Marshall
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, TN, USA
| | - Edgar Garza-Lopez
- University of Iowa, Department of Internal Medicine, Iowa City, IA, USA
| | - Zer Vue
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, TN, USA
| | - Larry Vang
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, TN, USA
| | - Antentor Hinton
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, TN, USA
| |
Collapse
|
7
|
Del Vecchio M, Amado L, Cogan AP, Meert E, Rosseels J, Franssens V, Govers SK, Winderickx J, Montoro AG. Multiple tethers of organelle contact sites are involved in α-synuclein toxicity in yeast. Mol Biol Cell 2023; 34:ar84. [PMID: 37074954 PMCID: PMC10398879 DOI: 10.1091/mbc.e23-01-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023] Open
Abstract
The protein α-synuclein (α-syn) is one of the major factors linked to Parkinson's disease, yet how its misfolding and deposition contribute to the pathology remains largely elusive. Recently, contact sites among organelles were implicated in the development of this disease. Here, we used the budding yeast Saccharomyces cerevisiae, in which organelle contact sites have been characterized extensively, as a model to investigate their role in α-syn cytotoxicity. We observed that lack of specific tethers that anchor the endoplasmic reticulum to the plasma membrane resulted in cells with increased resistance to α-syn expression. Additionally, we found that strains lacking two dual-function proteins involved in contact sites, Mdm10 and Vps39, were resistant to the expression of α-syn. In the case of Mdm10, we found that this is related to its function in mitochondrial protein biogenesis and not to its role as a contact site tether. In contrast, both functions of Vps39, in vesicular transport and as a tether of the vacuole-mitochondria contact site, were required to support α-syn toxicity. Overall, our findings support that interorganelle communication through membrane contact sites is highly relevant for α-syn-mediated toxicity.
Collapse
Affiliation(s)
- Mara Del Vecchio
- Department of Biology, Functional Biology Laboratory, KU Leuven, 3001 Heverlee, Belgium
- Department of Biology, Microbial Systems Cell Biology Laboratory, KU Leuven, 3001 Heverlee, Belgium
| | - Lucia Amado
- Department of Biology/Chemistry, Cellular Communication Laboratory, Osnabrück University, 49076 Osnabrück, Germany
| | - Alexandra P. Cogan
- Department of Biology/Chemistry, Cellular Communication Laboratory, Osnabrück University, 49076 Osnabrück, Germany
| | - Els Meert
- Department of Biology, Functional Biology Laboratory, KU Leuven, 3001 Heverlee, Belgium
| | - Joelle Rosseels
- Department of Biology, Functional Biology Laboratory, KU Leuven, 3001 Heverlee, Belgium
| | - Vanessa Franssens
- Department of Biology, Functional Biology Laboratory, KU Leuven, 3001 Heverlee, Belgium
| | - Sander K. Govers
- Department of Biology, Microbial Systems Cell Biology Laboratory, KU Leuven, 3001 Heverlee, Belgium
| | - Joris Winderickx
- Department of Biology, Functional Biology Laboratory, KU Leuven, 3001 Heverlee, Belgium
| | - Ayelén González Montoro
- Department of Biology/Chemistry, Cellular Communication Laboratory, Osnabrück University, 49076 Osnabrück, Germany
- Center of Cellular Nanoanalytics Osnabrück, 49076 Osnabrück, Germany
| |
Collapse
|
8
|
Busch JD, Fielden LF, Pfanner N, Wiedemann N. Mitochondrial protein transport: Versatility of translocases and mechanisms. Mol Cell 2023; 83:890-910. [PMID: 36931257 DOI: 10.1016/j.molcel.2023.02.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/17/2023]
Abstract
Biogenesis of mitochondria requires the import of approximately 1,000 different precursor proteins into and across the mitochondrial membranes. Mitochondria exhibit a wide variety of mechanisms and machineries for the translocation and sorting of precursor proteins. Five major import pathways that transport proteins to their functional intramitochondrial destination have been elucidated; these pathways range from the classical amino-terminal presequence-directed pathway to pathways using internal or even carboxy-terminal targeting signals in the precursors. Recent studies have provided important insights into the structural organization of membrane-embedded preprotein translocases of mitochondria. A comparison of the different translocases reveals the existence of at least three fundamentally different mechanisms: two-pore-translocase, β-barrel switching, and transport cavities open to the lipid bilayer. In addition, translocases are physically engaged in dynamic interactions with respiratory chain complexes, metabolite transporters, quality control factors, and machineries controlling membrane morphology. Thus, mitochondrial preprotein translocases are integrated into multi-functional networks of mitochondrial and cellular machineries.
Collapse
Affiliation(s)
- Jakob D Busch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Laura F Fielden
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
9
|
Lionaki E, Gkikas I, Tavernarakis N. Mitochondrial protein import machinery conveys stress signals to the cytosol and beyond. Bioessays 2023; 45:e2200160. [PMID: 36709422 DOI: 10.1002/bies.202200160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/14/2022] [Accepted: 01/02/2023] [Indexed: 01/30/2023]
Abstract
Mitochondria hold diverse and pivotal roles in fundamental processes that govern cell survival, differentiation, and death, in addition to organismal growth, maintenance, and aging. The mitochondrial protein import system is a major contributor to mitochondrial biogenesis and lies at the crossroads between mitochondrial and cellular homeostasis. Recent findings highlight the mitochondrial protein import system as a signaling hub, receiving inputs from other cellular compartments and adjusting its function accordingly. Impairment of protein import, in a physiological, or disease context, elicits adaptive responses inside and outside mitochondria. In this review, we discuss recent developments, relevant to the mechanisms of mitochondrial protein import regulation, with a particular focus on quality control, proteostatic and metabolic cellular responses, triggered upon impairment of mitochondrial protein import.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | - Ilias Gkikas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Heraklion, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
10
|
Takeda H, Busto JV, Lindau C, Tsutsumi A, Tomii K, Imai K, Yamamori Y, Hirokawa T, Motono C, Ganesan I, Wenz LS, Becker T, Kikkawa M, Pfanner N, Wiedemann N, Endo T. A multipoint guidance mechanism for β-barrel folding on the SAM complex. Nat Struct Mol Biol 2023; 30:176-187. [PMID: 36604501 DOI: 10.1038/s41594-022-00897-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/11/2022] [Indexed: 01/07/2023]
Abstract
Mitochondrial β-barrel proteins are essential for the transport of metabolites, ions and proteins. The sorting and assembly machinery (SAM) mediates their folding and membrane insertion. We report the cryo-electron microscopy structure of the yeast SAM complex carrying an early eukaryotic β-barrel folding intermediate. The lateral gate of Sam50 is wide open and pairs with the last β-strand (β-signal) of the substrate-the 19-β-stranded Tom40 precursor-to form a hybrid barrel in the membrane plane. The Tom40 barrel grows and curves, guided by an extended bridge with Sam50. Tom40's first β-segment (β1) penetrates into the nascent barrel, interacting with its inner wall. The Tom40 amino-terminal segment then displaces β1 to promote its pairing with Tom40's last β-strand to complete barrel formation with the assistance of Sam37's dynamic α-protrusion. Our study thus reveals a multipoint guidance mechanism for mitochondrial β-barrel folding.
Collapse
Affiliation(s)
- Hironori Takeda
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.,Nara Institute of Science and Technology, Ikoma, Japan
| | - Jon V Busto
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Caroline Lindau
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Akihisa Tsutsumi
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Tomii
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, AIST, Tokyo, Japan
| | - Yu Yamamori
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Takatsugu Hirokawa
- Cellular and Molecular Biotechnology Research Institute, AIST, Tokyo, Japan.,Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Chie Motono
- Cellular and Molecular Biotechnology Research Institute, AIST, Tokyo, Japan.,Computational Bio Big-Data Open Innovation Laboratory, AIST, Waseda University, Tokyo, Japan
| | - Iniyan Ganesan
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lena-Sophie Wenz
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany. .,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany. .,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan. .,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan.
| |
Collapse
|
11
|
The Journey of Mitochondrial Protein Import and the Roadmap to Follow. Int J Mol Sci 2023; 24:ijms24032479. [PMID: 36768800 PMCID: PMC9916854 DOI: 10.3390/ijms24032479] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are double membrane-bound organelles that play critical functions in cells including metabolism, energy production, regulation of intrinsic apoptosis, and maintenance of calcium homeostasis. Mitochondria are fascinatingly equipped with their own genome and machinery for transcribing and translating 13 essential proteins of the oxidative phosphorylation system (OXPHOS). The rest of the proteins (99%) that function in mitochondria in the various pathways described above are nuclear-transcribed and synthesized as precursors in the cytosol. These proteins are imported into the mitochondria by the unique mitochondrial protein import system that consists of seven machineries. Proper functioning of the mitochondrial protein import system is crucial for optimal mitochondrial deliverables, as well as mitochondrial and cellular homeostasis. Impaired mitochondrial protein import leads to proteotoxic stress in both mitochondria and cytosol, inducing mitochondrial unfolded protein response (UPRmt). Altered UPRmt is associated with the development of various disease conditions including neurodegenerative and cardiovascular diseases, as well as cancer. This review sheds light on the molecular mechanisms underlying the import of nuclear-encoded mitochondrial proteins, the consequences of defective mitochondrial protein import, and the pathological conditions that arise due to altered UPRmt.
Collapse
|
12
|
Diederichs KA, Pitt AS, Varughese JT, Hackel TN, Buchanan SK, Shaw PL. Mechanistic insights into fungal mitochondrial outer membrane protein biogenesis. Curr Opin Struct Biol 2022; 74:102383. [DOI: 10.1016/j.sbi.2022.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/11/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022]
|
13
|
Tachezy J, Makki A, Hrdý I. The hydrogenosomes of Trichomonas vaginalis. J Eukaryot Microbiol 2022; 69:e12922. [PMID: 35567536 DOI: 10.1111/jeu.12922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This review is dedicated to the 50th anniversary of the discovery of hydrogenosomes by Miklós Müller and Donald Lindmark, which we will celebrate the following year. It was a long journey from the first observation of enigmatic rows of granules in trichomonads at the end of the 19th century to their first biochemical characterization in 1973. The key experiments by Müller and Lindmark revealed that the isolated granules contain hydrogen-producing hydrogenase, similar to some anaerobic bacteria-a discovery that gave birth to the field of hydrogenosomes. It is also important to acknowledge the parallel work of the team of Apolena Čerkasovová, Jiří Čerkasov, and Jaroslav Kulda, who demonstrated that these granules, similar to mitochondria, produce ATP. However, the evolutionary origin of hydrogenosomes remained enigmatic until the turn of the millennium, when it was finally accepted that hydrogenosomes and mitochondria evolved from a common ancestor. After a historical introduction, the review provides an overview of hydrogenosome biogenesis, hydrogenosomal protein import, and the relationship between the peculiar structure of membrane translocases and its low inner membrane potential due to the lack of respiratory complexes. Next, it summarizes the current state of knowledge on energy metabolism, the oxygen defense system, and iron/sulfur cluster assembly.
Collapse
Affiliation(s)
- Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
| | - Abhijith Makki
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
| |
Collapse
|
14
|
Hoffmann JJ, Becker T. Crosstalk between Mitochondrial Protein Import and Lipids. Int J Mol Sci 2022; 23:ijms23095274. [PMID: 35563660 PMCID: PMC9101885 DOI: 10.3390/ijms23095274] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 12/10/2022] Open
Abstract
Mitochondria import about 1000 precursor proteins from the cytosol. The translocase of the outer membrane (TOM complex) forms the major entry site for precursor proteins. Subsequently, membrane-bound protein translocases sort the precursor proteins into the outer and inner membrane, the intermembrane space, and the matrix. The phospholipid composition of mitochondrial membranes is critical for protein import. Structural and biochemical data revealed that phospholipids affect the stability and activity of mitochondrial protein translocases. Integration of proteins into the target membrane involves rearrangement of phospholipids and distortion of the lipid bilayer. Phospholipids are present in the interface between subunits of protein translocases and affect the dynamic coupling of partner proteins. Phospholipids are required for full activity of the respiratory chain to generate membrane potential, which in turn drives protein import across and into the inner membrane. Finally, outer membrane protein translocases are closely linked to organellar contact sites that mediate lipid trafficking. Altogether, intensive crosstalk between mitochondrial protein import and lipid biogenesis controls mitochondrial biogenesis.
Collapse
|
15
|
Avendaño-Monsalve MC, Mendoza-Martínez AE, Ponce-Rojas JC, Poot-Hernández AC, Rincón-Heredia R, Funes S. Positively charged amino acids at the N terminus of select mitochondrial proteins mediate early recognition by import proteins αβ'-NAC and Sam37. J Biol Chem 2022; 298:101984. [PMID: 35487246 PMCID: PMC9136113 DOI: 10.1016/j.jbc.2022.101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/04/2022] Open
Abstract
A major challenge in eukaryotic cells is the proper distribution of nuclear-encoded proteins to the correct organelles. For a subset of mitochondrial proteins, a signal sequence at the N terminus (matrix-targeting sequence [MTS]) is recognized by protein complexes to ensure their proper translocation into the organelle. However, the early steps of mitochondrial protein targeting remain undeciphered. The cytosolic chaperone nascent polypeptide–associated complex (NAC), which in yeast is represented as the two different heterodimers αβ-NAC and αβ′-NAC, has been proposed to be involved during the early steps of mitochondrial protein targeting. We have previously described that the mitochondrial outer membrane protein Sam37 interacts with αβ′-NAC and together promote the import of specific mitochondrial precursor proteins. In this work, we aimed to detect the region in the MTS of mitochondrial precursors relevant for their recognition by αβ′-NAC during their sorting to the mitochondria. We used targeting signals of different mitochondrial proteins (αβ′-NAC-dependent Oxa1 and αβ′-NAC-independent Mdm38) and fused them to GFP to study their intracellular localization by biochemical and microscopy methods, and in addition followed their import kinetics in vivo. Our results reveal the presence of a positively charged amino acid cluster in the MTS of select mitochondrial precursors, such as Oxa1 and Fum1, which are crucial for their recognition by αβ′-NAC. Furthermore, we explored the presence of this cluster at the N terminus of the mitochondrial proteome and propose a set of precursors whose proper localization depends on both αβ′-NAC and Sam37.
Collapse
Affiliation(s)
- Maria Clara Avendaño-Monsalve
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico
| | - Ariann E Mendoza-Martínez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico
| | - José Carlos Ponce-Rojas
- Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California, USA
| | - Augusto César Poot-Hernández
- Unidad de Bioinformática y Manejo de la Información, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico
| | - Soledad Funes
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico.
| |
Collapse
|
16
|
Eaglesfield R, Tokatlidis K. Targeting and Insertion of Membrane Proteins in Mitochondria. Front Cell Dev Biol 2022; 9:803205. [PMID: 35004695 PMCID: PMC8740019 DOI: 10.3389/fcell.2021.803205] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/09/2021] [Indexed: 01/26/2023] Open
Abstract
Mitochondrial membrane proteins play an essential role in all major mitochondrial functions. The respiratory complexes of the inner membrane are key for the generation of energy. The carrier proteins for the influx/efflux of essential metabolites to/from the matrix. Many other inner membrane proteins play critical roles in the import and processing of nuclear encoded proteins (∼99% of all mitochondrial proteins). The outer membrane provides another lipidic barrier to nuclear-encoded protein translocation and is home to many proteins involved in the import process, maintenance of ionic balance, as well as the assembly of outer membrane components. While many aspects of the import and assembly pathways of mitochondrial membrane proteins have been elucidated, many open questions remain, especially surrounding the assembly of the respiratory complexes where certain highly hydrophobic subunits are encoded by the mitochondrial DNA and synthesised and inserted into the membrane from the matrix side. This review will examine the various assembly pathways for inner and outer mitochondrial membrane proteins while discussing the most recent structural and biochemical data examining the biogenesis process.
Collapse
Affiliation(s)
- Ross Eaglesfield
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Scotland, United Kingdom
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Scotland, United Kingdom
| |
Collapse
|
17
|
Zhao F, Zou MH. Role of the Mitochondrial Protein Import Machinery and Protein Processing in Heart Disease. Front Cardiovasc Med 2021; 8:749756. [PMID: 34651031 PMCID: PMC8505727 DOI: 10.3389/fcvm.2021.749756] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are essential organelles for cellular energy production, metabolic homeostasis, calcium homeostasis, cell proliferation, and apoptosis. About 99% of mammalian mitochondrial proteins are encoded by the nuclear genome, synthesized as precursors in the cytosol, and imported into mitochondria by mitochondrial protein import machinery. Mitochondrial protein import systems function not only as independent units for protein translocation, but also are deeply integrated into a functional network of mitochondrial bioenergetics, protein quality control, mitochondrial dynamics and morphology, and interaction with other organelles. Mitochondrial protein import deficiency is linked to various diseases, including cardiovascular disease. In this review, we describe an emerging class of protein or genetic variations of components of the mitochondrial import machinery involved in heart disease. The major protein import pathways, including the presequence pathway (TIM23 pathway), the carrier pathway (TIM22 pathway), and the mitochondrial intermembrane space import and assembly machinery, related translocases, proteinases, and chaperones, are discussed here. This review highlights the importance of mitochondrial import machinery in heart disease, which deserves considerable attention, and further studies are urgently needed. Ultimately, this knowledge may be critical for the development of therapeutic strategies in heart disease.
Collapse
Affiliation(s)
- Fujie Zhao
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
18
|
Geldon S, Fernández-Vizarra E, Tokatlidis K. Redox-Mediated Regulation of Mitochondrial Biogenesis, Dynamics, and Respiratory Chain Assembly in Yeast and Human Cells. Front Cell Dev Biol 2021; 9:720656. [PMID: 34557489 PMCID: PMC8452992 DOI: 10.3389/fcell.2021.720656] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
Mitochondria are double-membrane organelles that contain their own genome, the mitochondrial DNA (mtDNA), and reminiscent of its endosymbiotic origin. Mitochondria are responsible for cellular respiration via the function of the electron oxidative phosphorylation system (OXPHOS), located in the mitochondrial inner membrane and composed of the four electron transport chain (ETC) enzymes (complexes I-IV), and the ATP synthase (complex V). Even though the mtDNA encodes essential OXPHOS components, the large majority of the structural subunits and additional biogenetical factors (more than seventy proteins) are encoded in the nucleus and translated in the cytoplasm. To incorporate these proteins and the rest of the mitochondrial proteome, mitochondria have evolved varied, and sophisticated import machineries that specifically target proteins to the different compartments defined by the two membranes. The intermembrane space (IMS) contains a high number of cysteine-rich proteins, which are mostly imported via the MIA40 oxidative folding system, dependent on the reduction, and oxidation of key Cys residues. Several of these proteins are structural components or assembly factors necessary for the correct maturation and function of the ETC complexes. Interestingly, many of these proteins are involved in the metalation of the active redox centers of complex IV, the terminal oxidase of the mitochondrial ETC. Due to their function in oxygen reduction, mitochondria are the main generators of reactive oxygen species (ROS), on both sides of the inner membrane, i.e., in the matrix and the IMS. ROS generation is important due to their role as signaling molecules, but an excessive production is detrimental due to unwanted oxidation reactions that impact on the function of different types of biomolecules contained in mitochondria. Therefore, the maintenance of the redox balance in the IMS is essential for mitochondrial function. In this review, we will discuss the role that redox regulation plays in the maintenance of IMS homeostasis as well as how mitochondrial ROS generation may be a key regulatory factor for ETC biogenesis, especially for complex IV.
Collapse
Affiliation(s)
| | - Erika Fernández-Vizarra
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
19
|
Quality control of protein import into mitochondria. Biochem J 2021; 478:3125-3143. [PMID: 34436539 DOI: 10.1042/bcj20190584] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Mitochondria import about 1000 proteins that are produced as precursors on cytosolic ribosomes. Defects in mitochondrial protein import result in the accumulation of non-imported precursor proteins and proteotoxic stress. The cell is equipped with different quality control mechanisms to monitor protein transport into mitochondria. First, molecular chaperones guide unfolded proteins to mitochondria and deliver non-imported proteins to proteasomal degradation. Second, quality control factors remove translocation stalled precursor proteins from protein translocases. Third, protein translocases monitor protein sorting to mitochondrial subcompartments. Fourth, AAA proteases of the mitochondrial subcompartments remove mislocalized or unassembled proteins. Finally, impaired efficiency of protein transport is an important sensor for mitochondrial dysfunction and causes the induction of cellular stress responses, which could eventually result in the removal of the defective mitochondria by mitophagy. In this review, we summarize our current understanding of quality control mechanisms that govern mitochondrial protein transport.
Collapse
|
20
|
The Diversity of the Mitochondrial Outer Membrane Protein Import Channels: Emerging Targets for Modulation. Molecules 2021; 26:molecules26134087. [PMID: 34279427 PMCID: PMC8272145 DOI: 10.3390/molecules26134087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/21/2022] Open
Abstract
The functioning of mitochondria and their biogenesis are largely based on the proper function of the mitochondrial outer membrane channels, which selectively recognise and import proteins but also transport a wide range of other molecules, including metabolites, inorganic ions and nucleic acids. To date, nine channels have been identified in the mitochondrial outer membrane of which at least half represent the mitochondrial protein import apparatus. When compared to the mitochondrial inner membrane, the presented channels are mostly constitutively open and consequently may participate in transport of different molecules and contribute to relevant changes in the outer membrane permeability based on the channel conductance. In this review, we focus on the channel structure, properties and transported molecules as well as aspects important to their modulation. This information could be used for future studies of the cellular processes mediated by these channels, mitochondrial functioning and therapies for mitochondria-linked diseases.
Collapse
|
21
|
Grevel A, Becker T. Porins as helpers in mitochondrial protein translocation. Biol Chem 2021; 401:699-708. [PMID: 31967957 DOI: 10.1515/hsz-2019-0438] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 12/22/2022]
Abstract
Mitochondria import the vast majority of their proteins via dedicated protein machineries. The translocase of the outer membrane (TOM complex) forms the main entry site for precursor proteins that are produced on cytosolic ribosomes. Subsequently, different protein sorting machineries transfer the incoming preproteins to the mitochondrial outer and inner membranes, the intermembrane space, and the matrix. In this review, we highlight the recently discovered role of porin, also termed voltage-dependent anion channel (VDAC), in mitochondrial protein biogenesis. Porin forms the major channel for metabolites and ions in the outer membrane of mitochondria. Two different functions of porin in protein translocation have been reported. First, it controls the formation of the TOM complex by modulating the integration of the central receptor Tom22 into the mature translocase. Second, porin promotes the transport of carrier proteins toward the carrier translocase (TIM22 complex), which inserts these preproteins into the inner membrane. Therefore, porin acts as a coupling factor to spatially coordinate outer and inner membrane transport steps. Thus, porin links metabolite transport to protein import, which are both essential for mitochondrial function and biogenesis.
Collapse
Affiliation(s)
- Alexander Grevel
- Institute of Biochemistry und Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry und Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
22
|
Bausewein T, Naveed H, Liang J, Nussberger S. The structure of the TOM core complex in the mitochondrial outer membrane. Biol Chem 2021; 401:687-697. [PMID: 32142473 DOI: 10.1515/hsz-2020-0104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/03/2020] [Indexed: 02/05/2023]
Abstract
In the past three decades, significant advances have been made in providing the biochemical background of TOM (translocase of the outer mitochondrial membrane)-mediated protein translocation into mitochondria. In the light of recent cryoelectron microscopy-derived structures of TOM isolated from Neurospora crassa and Saccharomyces cerevisiae, the interpretation of biochemical and biophysical studies of TOM-mediated protein transport into mitochondria now rests on a solid basis. In this review, we compare the subnanometer structure of N. crassa TOM core complex with that of yeast. Both structures reveal remarkably well-conserved symmetrical dimers of 10 membrane protein subunits. The structural data also validate predictions of weakly stable regions in the transmembrane β-barrel domains of the protein-conducting subunit Tom40, which signal the existence of β-strands located in interfaces of protein-protein interactions.
Collapse
Affiliation(s)
- Thomas Bausewein
- Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60438Frankfurt am Main, Germany
| | - Hammad Naveed
- National University of Computer and Emerging Sciences, Department of Computer Science, A. K. Brohi Road H-11/4, Islamabad 44000, Pakistan
| | - Jie Liang
- Richard and Loan Hill Department of Bioengineering, MC-063, University of Illinois, Chicago, IL 60607-7052, USA
| | - Stephan Nussberger
- University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Department of Biophysics, Pfaffenwaldring 57, D-70569Stuttgart, Germany
| |
Collapse
|
23
|
Doan KN, Grevel A, Mårtensson CU, Ellenrieder L, Thornton N, Wenz LS, Opaliński Ł, Guiard B, Pfanner N, Becker T. The Mitochondrial Import Complex MIM Functions as Main Translocase for α-Helical Outer Membrane Proteins. Cell Rep 2021; 31:107567. [PMID: 32348752 DOI: 10.1016/j.celrep.2020.107567] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/19/2020] [Accepted: 04/02/2020] [Indexed: 01/08/2023] Open
Abstract
The mitochondrial outer membrane contains integral proteins with α-helical membrane anchors or a transmembrane β-barrel. The translocase of the outer membrane (TOM) cooperates with the sorting and assembly machinery (SAM) in the import of β-barrel proteins, whereas the mitochondrial import (MIM) complex inserts precursors of multi-spanning α-helical proteins. Single-spanning proteins constitute more than half of the integral outer membrane proteins; however, their biogenesis is poorly understood. We report that the yeast MIM complex promotes the insertion of proteins with N-terminal (signal-anchored) or C-terminal (tail-anchored) membrane anchors. The MIM complex exists in three dynamic populations. MIM interacts with TOM to accept precursor proteins from the receptor Tom70. Free MIM complexes insert single-spanning proteins that are imported in a Tom70-independent manner. Finally, coupling of MIM and SAM promotes early assembly steps of TOM subunits. We conclude that the MIM complex is a major and versatile protein translocase of the mitochondrial outer membrane.
Collapse
Affiliation(s)
- Kim Nguyen Doan
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Alexander Grevel
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Christoph U Mårtensson
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Lars Ellenrieder
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Nicolas Thornton
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Lena-Sophie Wenz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Łukasz Opaliński
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Bernard Guiard
- Centre de Génétique Moléculaire, CNRS, 91190 Gif-sur-Yvette, France
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
24
|
Needs HI, Protasoni M, Henley JM, Prudent J, Collinson I, Pereira GC. Interplay between Mitochondrial Protein Import and Respiratory Complexes Assembly in Neuronal Health and Degeneration. Life (Basel) 2021; 11:432. [PMID: 34064758 PMCID: PMC8151517 DOI: 10.3390/life11050432] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022] Open
Abstract
The fact that >99% of mitochondrial proteins are encoded by the nuclear genome and synthesised in the cytosol renders the process of mitochondrial protein import fundamental for normal organelle physiology. In addition to this, the nuclear genome comprises most of the proteins required for respiratory complex assembly and function. This means that without fully functional protein import, mitochondrial respiration will be defective, and the major cellular ATP source depleted. When mitochondrial protein import is impaired, a number of stress response pathways are activated in order to overcome the dysfunction and restore mitochondrial and cellular proteostasis. However, prolonged impaired mitochondrial protein import and subsequent defective respiratory chain function contributes to a number of diseases including primary mitochondrial diseases and neurodegeneration. This review focuses on how the processes of mitochondrial protein translocation and respiratory complex assembly and function are interlinked, how they are regulated, and their importance in health and disease.
Collapse
Affiliation(s)
- Hope I. Needs
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
| | - Margherita Protasoni
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| | - Jeremy M. Henley
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Julien Prudent
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
| | - Gonçalo C. Pereira
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| |
Collapse
|
25
|
Maity S, Chakrabarti O. Mitochondrial protein import as a quality control sensor. Biol Cell 2021; 113:375-400. [PMID: 33870508 DOI: 10.1111/boc.202100002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/04/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Mitochondria are organelles involved in various functions related to cellular metabolism and homoeostasis. Though mitochondria contain own genome, their nuclear counterparts encode most of the different mitochondrial proteins. These are synthesised as precursors in the cytosol and have to be delivered into the mitochondria. These organelles hence have elaborate machineries for the import of precursor proteins from cytosol. The protein import machineries present in both mitochondrial membrane and aqueous compartments show great variability in pre-protein recognition, translocation and sorting across or into it. Mitochondrial protein import machineries also interact transiently with other protein complexes of the respiratory chain or those involved in the maintenance of membrane architecture. Hence mitochondrial protein translocation is an indispensable part of the regulatory network that maintains protein biogenesis, bioenergetics, membrane dynamics and quality control of the organelle. Various stress conditions and diseases that are associated with mitochondrial import defects lead to changes in cellular transcriptomic and proteomic profiles. Dysfunction in mitochondrial protein import also causes over-accumulation of precursor proteins and their aggregation in the cytosol. Multiple pathways may be activated for buffering these harmful consequences. Here, we present a comprehensive picture of import machinery and its role in cellular quality control in response to defective mitochondrial import. We also discuss the pathological consequences of dysfunctional mitochondrial protein import in neurodegeneration and cancer.
Collapse
Affiliation(s)
- Sebabrata Maity
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India.,Homi Bhabha National Institute, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India.,Homi Bhabha National Institute, India
| |
Collapse
|
26
|
Reynaud K, Brothers M, Ly M, Ingolia NT. Dynamic post-transcriptional regulation by Mrn1 links cell wall homeostasis to mitochondrial structure and function. PLoS Genet 2021; 17:e1009521. [PMID: 33857138 PMCID: PMC8079021 DOI: 10.1371/journal.pgen.1009521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/27/2021] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
The RNA-binding protein Mrn1 in Saccharomyces cerevisiae targets over 300 messenger RNAs, including many involved in cell wall biogenesis. The impact of Mrn1 on these target transcripts is not known, however, nor is the cellular role for this regulation. We have shown that Mrn1 represses target mRNAs through the action of its disordered, asparagine-rich amino-terminus. Its endogenous targets include the paralogous SUN domain proteins Nca3 and Uth1, which affect mitochondrial and cell wall structure and function. While loss of MRN1 has no effect on fermentative growth, we found that mrn1Δ yeast adapt more quickly to respiratory conditions. These cells also have enlarged mitochondria in fermentative conditions, mediated in part by dysregulation of NCA3, and this may explain their faster switch to respiration. Our analyses indicated that Mrn1 acts as a hub for integrating cell wall integrity and mitochondrial biosynthesis in a carbon-source responsive manner.
Collapse
Affiliation(s)
- Kendra Reynaud
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, United States of America
| | - Molly Brothers
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Michael Ly
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Nicholas T. Ingolia
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
27
|
Diederichs KA, Buchanan SK, Botos I. Building Better Barrels - β-barrel Biogenesis and Insertion in Bacteria and Mitochondria. J Mol Biol 2021; 433:166894. [PMID: 33639212 PMCID: PMC8292188 DOI: 10.1016/j.jmb.2021.166894] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 01/20/2023]
Abstract
β-barrel proteins are folded and inserted into outer membranes by multi-subunit protein complexes that are conserved across different types of outer membranes. In Gram-negative bacteria this complex is the barrel-assembly machinery (BAM), in mitochondria it is the sorting and assembly machinery (SAM) complex, and in chloroplasts it is the outer envelope protein Oep80. Mitochondrial β-barrel precursor proteins are translocated from the cytoplasm to the intermembrane space by the translocase of the outer membrane (TOM) complex, and stabilized by molecular chaperones before interaction with the assembly machinery. Outer membrane bacterial BamA interacts with four periplasmic accessory proteins, whereas mitochondrial Sam50 interacts with two cytoplasmic accessory proteins. Despite these major architectural differences between BAM and SAM complexes, their core proteins, BamA and Sam50, seem to function the same way. Based on the new SAM complex structures, we propose that the mitochondrial β-barrel folding mechanism follows the budding model with barrel-switching aiding in the release of new barrels. We also built a new molecular model for Tom22 interacting with Sam37 to identify regions that could mediate TOM-SAM supercomplex formation.
Collapse
Affiliation(s)
- Kathryn A Diederichs
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Istvan Botos
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Takeda H, Tsutsumi A, Nishizawa T, Lindau C, Busto JV, Wenz LS, Ellenrieder L, Imai K, Straub SP, Mossmann W, Qiu J, Yamamori Y, Tomii K, Suzuki J, Murata T, Ogasawara S, Nureki O, Becker T, Pfanner N, Wiedemann N, Kikkawa M, Endo T. Mitochondrial sorting and assembly machinery operates by β-barrel switching. Nature 2021; 590:163-169. [PMID: 33408415 DOI: 10.1038/s41586-020-03113-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/09/2020] [Indexed: 01/06/2023]
Abstract
The mitochondrial outer membrane contains so-called β-barrel proteins, which allow communication between the cytosol and the mitochondrial interior1-3. Insertion of β-barrel proteins into the outer membrane is mediated by the multisubunit mitochondrial sorting and assembly machinery (SAM, also known as TOB)4-6. Here we use cryo-electron microscopy to determine the structures of two different forms of the yeast SAM complex at a resolution of 2.8-3.2 Å. The dimeric complex contains two copies of the β-barrel channel protein Sam50-Sam50a and Sam50b-with partially open lateral gates. The peripheral membrane proteins Sam35 and Sam37 cap the Sam50 channels from the cytosolic side, and are crucial for the structural and functional integrity of the dimeric complex. In the second complex, Sam50b is replaced by the β-barrel protein Mdm10. In cooperation with Sam50a, Sam37 recruits and traps Mdm10 by penetrating the interior of its laterally closed β-barrel from the cytosolic side. The substrate-loaded SAM complex contains one each of Sam50, Sam35 and Sam37, but neither Mdm10 nor a second Sam50, suggesting that Mdm10 and Sam50b function as placeholders for a β-barrel substrate released from Sam50a. Our proposed mechanism for dynamic switching of β-barrel subunits and substrate explains how entire precursor proteins can fold in association with the mitochondrial machinery for β-barrel assembly.
Collapse
Affiliation(s)
- Hironori Takeda
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kyoto, Japan
| | - Akihisa Tsutsumi
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Caroline Lindau
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jon V Busto
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lena-Sophie Wenz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Sanofi Deutschland GmbH, Frankfurt am Main, Germany
| | - Lars Ellenrieder
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Novartis Pharma AG, Basel, Switzerland
| | - Kenichiro Imai
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Sebastian P Straub
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Sanofi-Aventis (Suisse) ag, Vernier, Switzerland
| | - Waltraut Mossmann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jian Qiu
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany.,Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Yamamori
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Kentaro Tomii
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory (RWBC-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Junko Suzuki
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kyoto, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Satoshi Ogasawara
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kyoto, Japan. .,Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kyoto, Japan.
| |
Collapse
|
29
|
Araiso Y, Imai K, Endo T. Structural snapshot of the mitochondrial protein import gate. FEBS J 2020; 288:5300-5310. [PMID: 33305524 DOI: 10.1111/febs.15661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/28/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022]
Abstract
The translocase of the outer mitochondrial membrane (TOM) complex is the main entry gate for most mitochondrial proteins. The TOM complex is a multisubunit membrane protein complex consisting of a β-barrel protein Tom40 and six α-helical transmembrane (TM) proteins, receptor subunits Tom20, Tom22, and Tom70, and regulatory subunits Tom5, Tom6, and Tom7. Although nearly 30 years have passed since the main components of the TOM complex were identified and characterized, the structural details of the TOM complex remained poorly understood until recently. Thanks to the rapid development of the cryoelectron microscopy (EM) technology, high-resolution structures of the yeast TOM complex have become available. The identified structures showed a symmetric dimer containing five different subunits including Tom22. Biochemical and mutational analyses based on the TOM complex structure revealed the presence of different translocation paths within the Tom40 import channel for different classes of translocating precursor proteins. Previous studies including our cross-linking analyses indicated that the TOM complex in intact mitochondria is present as a mixture of the trimeric complex containing Tom22. Furthermore, the dimeric complex lacking Tom22, and the trimer and dimer may handle different sets of mitochondrial precursor proteins for translocation across the outer membrane. In this Structural Snapshot, we will discuss possible rearrangement of the subunit interactions upon dynamic conversion of the TOM complex between the different subunit assembly states, the Tom22-containing core dimer and trimer.
Collapse
Affiliation(s)
- Yuhei Araiso
- Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Japan
| | - Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Japan
| |
Collapse
|
30
|
Gupta A, Becker T. Mechanisms and pathways of mitochondrial outer membrane protein biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148323. [PMID: 33035511 DOI: 10.1016/j.bbabio.2020.148323] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 11/29/2022]
Abstract
Outer membrane proteins integrate mitochondria into the cellular environment. They warrant exchange of small molecules like metabolites and ions, transport proteins into mitochondria, form contact sites to other cellular organelles for lipid exchange, constitute a signaling platform for apoptosis and inflammation and mediate organelle fusion and fission. The outer membrane contains two types of integral membrane proteins. Proteins with a transmembrane β-barrel structure and proteins with a single or multiple α-helical membrane spans. All outer membrane proteins are produced on cytosolic ribosomes and imported into the target organelle. Precursors of β-barrel and α-helical proteins are transported into the outer membrane via distinct import routes. The translocase of the outer membrane (TOM complex) transports β-barrel precursors across the outer membrane and the sorting and assembly machinery (SAM complex) inserts them into the target membrane. The mitochondrial import (MIM) complex constitutes the major integration site for α-helical embedded proteins. The import of some MIM-substrates involves TOM receptors, while others are imported in a TOM-independent manner. Remarkably, TOM, SAM and MIM complexes dynamically interact to import a large set of different proteins and to coordinate their assembly into protein complexes. Thus, protein import into the mitochondrial outer membrane involves a dynamic platform of protein translocases.
Collapse
Affiliation(s)
- Arushi Gupta
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Universität Bonn, Nussallee 11, 53115 Bonn, Germany.
| |
Collapse
|
31
|
Grevel A, Pfanner N, Becker T. Coupling of import and assembly pathways in mitochondrial protein biogenesis. Biol Chem 2020; 401:117-129. [PMID: 31513529 DOI: 10.1515/hsz-2019-0310] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Biogenesis and function of mitochondria depend on the import of about 1000 precursor proteins that are produced on cytosolic ribosomes. The translocase of the outer membrane (TOM) forms the entry gate for most proteins. After passage through the TOM channel, dedicated preprotein translocases sort the precursor proteins into the mitochondrial subcompartments. Many proteins have to be assembled into oligomeric membrane-integrated complexes in order to perform their functions. In this review, we discuss a dual role of mitochondrial preprotein translocases in protein translocation and oligomeric assembly, focusing on the biogenesis of the TOM complex and the respiratory chain. The sorting and assembly machinery (SAM) of the outer mitochondrial membrane forms a dynamic platform for coupling transport and assembly of TOM subunits. The biogenesis of the cytochrome c oxidase of the inner membrane involves a molecular circuit to adjust translation of mitochondrial-encoded core subunits to the availability of nuclear-encoded partner proteins. Thus, mitochondrial protein translocases not only import precursor proteins but can also support their assembly into functional complexes.
Collapse
Affiliation(s)
- Alexander Grevel
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
32
|
Diederichs KA, Ni X, Rollauer SE, Botos I, Tan X, King MS, Kunji ERS, Jiang J, Buchanan SK. Structural insight into mitochondrial β-barrel outer membrane protein biogenesis. Nat Commun 2020; 11:3290. [PMID: 32620929 PMCID: PMC7335169 DOI: 10.1038/s41467-020-17144-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/13/2020] [Indexed: 11/09/2022] Open
Abstract
In mitochondria, β-barrel outer membrane proteins mediate protein import, metabolite transport, lipid transport, and biogenesis. The Sorting and Assembly Machinery (SAM) complex consists of three proteins that assemble as a 1:1:1 complex to fold β-barrel proteins and insert them into the mitochondrial outer membrane. We report cryoEM structures of the SAM complex from Myceliophthora thermophila, which show that Sam50 forms a 16-stranded transmembrane β-barrel with a single polypeptide-transport-associated (POTRA) domain extending into the intermembrane space. Sam35 and Sam37 are located on the cytosolic side of the outer membrane, with Sam35 capping Sam50, and Sam37 interacting extensively with Sam35. Sam35 and Sam37 each adopt a GST-like fold, with no functional, structural, or sequence similarity to their bacterial counterparts. Structural analysis shows how the Sam50 β-barrel opens a lateral gate to accommodate its substrates.
Collapse
Affiliation(s)
- Kathryn A Diederichs
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Xiaodan Ni
- Laboratory of Membrane Proteins and Structural Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah E Rollauer
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
- Vertex Pharmaceuticals, 50 Northern Avenue, Boston, MA, 02210, USA
| | - Istvan Botos
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Xiaofeng Tan
- Laboratory of Membrane Proteins and Structural Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Martin S King
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Edmund R S Kunji
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Jiansen Jiang
- Laboratory of Membrane Proteins and Structural Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
33
|
Khosravi S, Harner ME. The MICOS complex, a structural element of mitochondria with versatile functions. Biol Chem 2020; 401:765-778. [DOI: 10.1515/hsz-2020-0103] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/16/2020] [Indexed: 01/01/2023]
Abstract
AbstractMitochondria perform a plethora of functions in various cells of different tissues. Their architecture differs remarkably, for instance in neurons versus steroidogenic cells. Furthermore, aberrant mitochondrial architecture results in mitochondrial dysfunction. This indicates strongly that mitochondrial architecture and function are intimately linked. Therefore, a deep knowledge about the determinants of mitochondrial architecture and their function on a molecular level is of utmost importance. In the past decades, various proteins and protein complexes essential for formation of mitochondrial architecture have been identified. Here we will review the current knowledge of the MICOS complex, one of the major structural elements of mitochondria. MICOS is a multi-subunit complex present in the inner mitochondrial membrane. Multiple interaction partners in the inner and outer mitochondrial membrane point to participation in a multitude of important processes, such as generation of mitochondrial architecture, lipid metabolism, and protein import into mitochondria. Since the MICOS complex is highly conserved in form and function throughout evolution, we will highlight the importance of MICOS for mammals. We will emphasize in particular the current knowledge of the association of MICOS with severe human diseases, including Charcot–Marie–Tooth disease type 2, Alzheimer's disease, Parkinson's disease, Frontotemporal Dementia and Amyotrophic Lateral Sclerosis.
Collapse
Affiliation(s)
- Siavash Khosravi
- Department of Cell Biology, Biomedical Center, Ludwig-Maximilians University Munich, Großhaderner Str. 9, Planegg/Martinsried, MunichD-82152, Germany
| | - Max E. Harner
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians University Munich, Großhaderner Str. 9, Planegg/Martinsried, MunichD-82152, Germany
| |
Collapse
|
34
|
Avendaño-Monsalve MC, Ponce-Rojas JC, Funes S. From cytosol to mitochondria: the beginning of a protein journey. Biol Chem 2020; 401:645-661. [DOI: 10.1515/hsz-2020-0110] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/24/2020] [Indexed: 01/18/2023]
Abstract
AbstractMitochondrial protein import is one of the key processes during mitochondrial biogenesis that involves a series of events necessary for recognition and delivery of nucleus-encoded/cytosol-synthesized mitochondrial proteins into the organelle. The past research efforts have mainly unraveled how membrane translocases ensure the correct protein sorting within the different mitochondrial subcompartments. However, early steps of recognition and delivery remain relatively uncharacterized. In this review, we discuss our current understanding about the signals on mitochondrial proteins, as well as in the mRNAs encoding them, which with the help of cytosolic chaperones and membrane receptors support protein targeting to the organelle in order to avoid improper localization. In addition, we discuss recent findings that illustrate how mistargeting of mitochondrial proteins triggers stress responses, aiming to restore cellular homeostasis.
Collapse
Affiliation(s)
- Maria Clara Avendaño-Monsalve
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n Ciudad Universitaria Coyoacán, México, Cd.Mx. 04510, Mexico
| | - José Carlos Ponce-Rojas
- Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Soledad Funes
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n Ciudad Universitaria Coyoacán, México, Cd.Mx. 04510, Mexico
| |
Collapse
|
35
|
Pfanner N, Warscheid B, Wiedemann N. Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol 2020; 20:267-284. [PMID: 30626975 DOI: 10.1038/s41580-018-0092-0] [Citation(s) in RCA: 558] [Impact Index Per Article: 139.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mitochondria are essential for the viability of eukaryotic cells as they perform crucial functions in bioenergetics, metabolism and signalling and have been associated with numerous diseases. Recent functional and proteomic studies have revealed the remarkable complexity of mitochondrial protein organization. Protein machineries with diverse functions such as protein translocation, respiration, metabolite transport, protein quality control and the control of membrane architecture interact with each other in dynamic networks. In this Review, we discuss the emerging role of the mitochondrial protein import machinery as a key organizer of these mitochondrial protein networks. The preprotein translocases that reside on the mitochondrial membranes not only function during organelle biogenesis to deliver newly synthesized proteins to their final mitochondrial destination but also cooperate with numerous other mitochondrial protein complexes that perform a wide range of functions. Moreover, these protein networks form membrane contact sites, for example, with the endoplasmic reticulum, that are key for integration of mitochondria with cellular function, and defects in protein import can lead to diseases.
Collapse
Affiliation(s)
- Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Bettina Warscheid
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Institute of Biology II, Biochemistry - Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
36
|
Gray MW, Burger G, Derelle R, Klimeš V, Leger MM, Sarrasin M, Vlček Č, Roger AJ, Eliáš M, Lang BF. The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome. BMC Biol 2020; 18:22. [PMID: 32122349 PMCID: PMC7050145 DOI: 10.1186/s12915-020-0741-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/21/2020] [Indexed: 01/02/2023] Open
Abstract
Background Comparative analyses have indicated that the mitochondrion of the last eukaryotic common ancestor likely possessed all the key core structures and functions that are widely conserved throughout the domain Eucarya. To date, such studies have largely focused on animals, fungi, and land plants (primarily multicellular eukaryotes); relatively few mitochondrial proteomes from protists (primarily unicellular eukaryotic microbes) have been examined. To gauge the full extent of mitochondrial structural and functional complexity and to identify potential evolutionary trends in mitochondrial proteomes, more comprehensive explorations of phylogenetically diverse mitochondrial proteomes are required. In this regard, a key group is the jakobids, a clade of protists belonging to the eukaryotic supergroup Discoba, distinguished by having the most gene-rich and most bacteria-like mitochondrial genomes discovered to date. Results In this study, we assembled the draft nuclear genome sequence for the jakobid Andalucia godoyi and used a comprehensive in silico approach to infer the nucleus-encoded portion of the mitochondrial proteome of this protist, identifying 864 candidate mitochondrial proteins. The A. godoyi mitochondrial proteome has a complexity that parallels that of other eukaryotes, while exhibiting an unusually large number of ancestral features that have been lost particularly in opisthokont (animal and fungal) mitochondria. Notably, we find no evidence that the A. godoyi nuclear genome has or had a gene encoding a single-subunit, T3/T7 bacteriophage-like RNA polymerase, which functions as the mitochondrial transcriptase in all eukaryotes except the jakobids. Conclusions As genome and mitochondrial proteome data have become more widely available, a strikingly punctuate phylogenetic distribution of different mitochondrial components has been revealed, emphasizing that the pathways of mitochondrial proteome evolution are likely complex and lineage-specific. Unraveling this complexity will require comprehensive comparative analyses of mitochondrial proteomes from a phylogenetically broad range of eukaryotes, especially protists. The systematic in silico approach described here offers a valuable adjunct to direct proteomic analysis (e.g., via mass spectrometry), particularly in cases where the latter approach is constrained by sample limitation or other practical considerations.
Collapse
Affiliation(s)
- Michael W Gray
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Gertraud Burger
- Département de Biochimie and Robert-Cedergren Center for Bioinformatics and Genomics, Université de Montréal, Montréal, QC, Canada
| | - Romain Derelle
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Vladimír Klimeš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Michelle M Leger
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada.,Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Matt Sarrasin
- Département de Biochimie and Robert-Cedergren Center for Bioinformatics and Genomics, Université de Montréal, Montréal, QC, Canada
| | - Čestmír Vlček
- Current address: Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - B Franz Lang
- Département de Biochimie and Robert-Cedergren Center for Bioinformatics and Genomics, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
37
|
Jian F, Chen D, Chen L, Yan C, Lu B, Zhu Y, Chen S, Shi A, Chan DC, Song Z. Sam50 Regulates PINK1-Parkin-Mediated Mitophagy by Controlling PINK1 Stability and Mitochondrial Morphology. Cell Rep 2019; 23:2989-3005. [PMID: 29874585 DOI: 10.1016/j.celrep.2018.05.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 04/01/2018] [Accepted: 05/03/2018] [Indexed: 10/14/2022] Open
Abstract
PINK1 and Parkin mediate mitophagy, the cellular process that clears dysfunctional mitochondria. Mitophagy is regulated by mitochondrial dynamics, but the molecules linking these two processes remain poorly understood. Here, we show that Sam50, the core component of the sorting and assembly machinery (SAM), is a critical regulator of mitochondrial dynamics and PINK1-Parkin-mediated mitophagy. In response to Sam50 depletion, normal tubular mitochondria are first fragmented and subsequently merged into large spheres. Sam50 interacts with PINK1 to facilitate its processing and degradation. Depletion of Sam50 results in PINK1 accumulation, Parkin recruitment, and mitophagy. Interestingly, Sam50 deficiency induces a piecemeal mode of mitophagy that eliminates mitochondria "bit by bit" but spares mtDNA. In C. elegans, the Sam50 homolog gop-3 is required for the maintenance of mitochondrial morphology and mass. Our findings reveal that Sam50 directly links mitochondrial dynamics and mitophagy and that Sam50 depletion induces elimination of mitochondria without affecting mtDNA content.
Collapse
Affiliation(s)
- Fenglei Jian
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Dan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Li Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Chaojun Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Bin Lu
- Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yushan Zhu
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Medical Research Institute, Wuhan University, Hubei, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zhiyin Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
38
|
Iacovella MG, Bremang M, Basha O, Giacò L, Carotenuto W, Golfieri C, Szakal B, Dal Maschio M, Infantino V, Beznoussenko GV, Joseph CR, Visintin C, Mironov AA, Visintin R, Branzei D, Ferreira-Cerca S, Yeger-Lotem E, De Wulf P. Integrating Rio1 activities discloses its nutrient-activated network in Saccharomyces cerevisiae. Nucleic Acids Res 2019; 46:7586-7611. [PMID: 30011030 PMCID: PMC6125641 DOI: 10.1093/nar/gky618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022] Open
Abstract
The Saccharomyces cerevisiae kinase/adenosine triphosphatase Rio1 regulates rDNA transcription and segregation, pre-rRNA processing and small ribosomal subunit maturation. Other roles are unknown. When overexpressed, human ortholog RIOK1 drives tumor growth and metastasis. Likewise, RIOK1 promotes 40S ribosomal subunit biogenesis and has not been characterized globally. We show that Rio1 manages directly and via a series of regulators, an essential signaling network at the protein, chromatin and RNA levels. Rio1 orchestrates growth and division depending on resource availability, in parallel to the nutrient-activated Tor1 kinase. To define the Rio1 network, we identified its physical interactors, profiled its target genes/transcripts, mapped its chromatin-binding sites and integrated our data with yeast’s protein–protein and protein–DNA interaction catalogs using network computation. We experimentally confirmed network components and localized Rio1 also to mitochondria and vacuoles. Via its network, Rio1 commands protein synthesis (ribosomal gene expression, assembly and activity) and turnover (26S proteasome expression), and impinges on metabolic, energy-production and cell-cycle programs. We find that Rio1 activity is conserved to humans and propose that pathological RIOK1 may fuel promiscuous transcription, ribosome production, chromosomal instability, unrestrained metabolism and proliferation; established contributors to cancer. Our study will advance the understanding of numerous processes, here revealed to depend on Rio1 activity.
Collapse
Affiliation(s)
- Maria G Iacovella
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Michael Bremang
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy.,Current address: Proteome Sciences Plc, Hamilton House, Mabledon Place, London, United Kingdom
| | - Omer Basha
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel
| | - Luciano Giacò
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Walter Carotenuto
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Cristina Golfieri
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Barnabas Szakal
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Marianna Dal Maschio
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Valentina Infantino
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Galina V Beznoussenko
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Chinnu R Joseph
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Clara Visintin
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Alexander A Mironov
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Rosella Visintin
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Dana Branzei
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy.,Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Sébastien Ferreira-Cerca
- Lehrstuhl für Biochemie III, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel
| | - Peter De Wulf
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy.,Centre for Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
39
|
Becker T, Song J, Pfanner N. Versatility of Preprotein Transfer from the Cytosol to Mitochondria. Trends Cell Biol 2019; 29:534-548. [PMID: 31030976 DOI: 10.1016/j.tcb.2019.03.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 11/16/2022]
Abstract
Mitochondrial biogenesis requires the import of a large number of precursor proteins from the cytosol. Although specific membrane-bound preprotein translocases have been characterized in detail, it was assumed that protein transfer from the cytosol to mitochondria mainly involved unselective binding to molecular chaperones. Recent findings suggest an unexpected versatility of protein transfer to mitochondria. Cytosolic factors have been identified that bind to selected subsets of preproteins and guide them to mitochondrial receptors in a post-translational manner. Cotranslational import processes are emerging. Mechanisms for crosstalk between protein targeting to mitochondria and other cell organelles, in particular the endoplasmic reticulum (ER) and peroxisomes, have been uncovered. We discuss how a network of cytosolic machineries and targeting pathways promote and regulate preprotein transfer into mitochondria.
Collapse
Affiliation(s)
- Thomas Becker
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany.
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
40
|
Mitochondrial protein translocation-associated degradation. Nature 2019; 569:679-683. [PMID: 31118508 DOI: 10.1038/s41586-019-1227-y] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/25/2019] [Indexed: 01/12/2023]
Abstract
Mitochondrial biogenesis and functions depend on the import of precursor proteins via the 'translocase of the outer membrane' (TOM complex). Defects in protein import lead to an accumulation of mitochondrial precursor proteins that induces a range of cellular stress responses. However, constitutive quality-control mechanisms that clear trapped precursor proteins from the TOM channel under non-stress conditions have remained unknown. Here we report that in Saccharomyces cerevisiae Ubx2, which functions in endoplasmic reticulum-associated degradation, is crucial for this quality-control process. A pool of Ubx2 binds to the TOM complex to recruit the AAA ATPase Cdc48 for removal of arrested precursor proteins from the TOM channel. This mitochondrial protein translocation-associated degradation (mitoTAD) pathway continuously monitors the TOM complex under non-stress conditions to prevent clogging of the TOM channel with precursor proteins. The mitoTAD pathway ensures that mitochondria maintain their full protein-import capacity, and protects cells against proteotoxic stress induced by impaired transport of proteins into mitochondria.
Collapse
|
41
|
Makki A, Rada P, Žárský V, Kereïche S, Kováčik L, Novotný M, Jores T, Rapaport D, Tachezy J. Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis. PLoS Biol 2019; 17:e3000098. [PMID: 30608924 PMCID: PMC6334971 DOI: 10.1371/journal.pbio.3000098] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/16/2019] [Accepted: 12/11/2018] [Indexed: 11/30/2022] Open
Abstract
Mitochondria originated from proteobacterial endosymbionts, and their transition to organelles was tightly linked to establishment of the protein import pathways. The initial import of most proteins is mediated by the translocase of the outer membrane (TOM). Although TOM is common to all forms of mitochondria, an unexpected diversity of subunits between eukaryotic lineages has been predicted. However, experimental knowledge is limited to a few organisms, and so far, it remains unsettled whether the triplet-pore or the twin-pore structure is the generic form of TOM complex. Here, we analysed the TOM complex in hydrogenosomes, a metabolically specialised anaerobic form of mitochondria found in the excavate Trichomonas vaginalis. We demonstrate that the highly divergent β-barrel T. vaginalis TOM (TvTom)40-2 forms a translocation channel to conduct hydrogenosomal protein import. TvTom40-2 is present in high molecular weight complexes, and their analysis revealed the presence of four tail-anchored (TA) proteins. Two of them, Tom36 and Tom46, with heat shock protein (Hsp)20 and tetratricopeptide repeat (TPR) domains, can bind hydrogenosomal preproteins and most likely function as receptors. A third subunit, Tom22-like protein, has a short cis domain and a conserved Tom22 transmembrane segment but lacks a trans domain. The fourth protein, hydrogenosomal outer membrane protein 19 (Homp19) has no known homology. Furthermore, our data indicate that TvTOM is associated with sorting and assembly machinery (Sam)50 that is involved in β-barrel assembly. Visualisation of TvTOM by electron microscopy revealed that it forms three pores and has an unconventional skull-like shape. Although TvTOM seems to lack Tom7, our phylogenetic profiling predicted Tom7 in free-living excavates. Collectively, our results suggest that the triplet-pore TOM complex, composed of three conserved subunits, was present in the last common eukaryotic ancestor (LECA), while receptors responsible for substrate binding evolved independently in different eukaryotic lineages. The highly divergent outer membrane translocase (TOM) from the Trichomonas hydrogenosome (an organelle related to mitochondria) is composed of conserved core and lineage-specific subunits, and has an unconventional skull-like triplet-pore structure. Mitochondria carry out many vital functions in the eukaryotic cells, from energy metabolism to programmed cell death. These organelles descended from bacterial endosymbionts, and during their evolution, the cell established a mechanism to transport nuclear-encoded proteins into mitochondria. Embedded in the mitochondrial outer membrane is a molecular machine, known as the translocase of the outer membrane (TOM) complex, that plays a key role in protein import and biogenesis of the organelle. Here, we provide evidence that the TOM complex of hydrogenosomes, a metabolically specialised anaerobic form of mitochondria in Trichomonas vaginalis, is composed of highly divergent core subunits and lineage-specific peripheral subunits. Despite the evolutionary distance, the T. vaginalis TOM (TvTOM) complex has a conserved triplet-pore structure but with a unique skull-like shape suggesting that the TOM in the early mitochondrion could have formed three pores. Our results contribute to a better understanding of the evolution and adaptation of protein import machinery in anaerobic forms of mitochondria.
Collapse
Affiliation(s)
- Abhijith Makki
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Petr Rada
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Sami Kereïche
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lubomír Kováčik
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marian Novotný
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tobias Jores
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
42
|
Heinemeyer T, Stemmet M, Bardien S, Neethling A. Underappreciated Roles of the Translocase of the Outer and Inner Mitochondrial Membrane Protein Complexes in Human Disease. DNA Cell Biol 2018; 38:23-40. [PMID: 30481057 DOI: 10.1089/dna.2018.4292] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are critical for cellular survival, and for their proper functioning, translocation of ∼1500 proteins across the mitochondrial membranes is required. The translocase of the outer (TOMM) and inner mitochondrial membrane (TIMM) complexes are major components of this translocation machinery. Through specific processes, preproteins and other molecules are imported, translocated, and directed to specific mitochondrial compartments for their function. In this study, we review the association of subunits of these complexes with human disease. Pathogenic mutations have been identified in the TIMM8A (DDP) and DNAJC19 (TIMM14) genes and are linked to Mohr-Tranebjærg syndrome and dilated cardiomyopathy syndrome (with and without ataxia), respectively. Polymorphisms in TOMM40 have been associated with Alzheimer's disease, frontotemporal lobar degeneration, Parkinson's disease with dementia, dementia with Lewy bodies, nonpathological cognitive aging, and various cardiovascular-related traits. Furthermore, reduced protein expression levels of several complex subunits have been associated with Parkinson's disease, Meniere's disease, and cardiovascular disorders. However, increased mRNA and protein levels of complex subunits are found in cancers. This review highlights the importance of the mitochondrial import machinery in human disease and stresses the need for further studies. Ultimately, this knowledge may prove to be critical for the development of therapeutic modalities for these conditions.
Collapse
Affiliation(s)
- Thea Heinemeyer
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town, South Africa
| | - Monique Stemmet
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town, South Africa
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town, South Africa
| | - Annika Neethling
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town, South Africa
| |
Collapse
|
43
|
Mitochondrial diseases caused by dysfunctional mitochondrial protein import. Biochem Soc Trans 2018; 46:1225-1238. [PMID: 30287509 DOI: 10.1042/bst20180239] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/20/2018] [Accepted: 08/31/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria are essential organelles which perform complex and varied functions within eukaryotic cells. Maintenance of mitochondrial health and functionality is thus a key cellular priority and relies on the organelle's extensive proteome. The mitochondrial proteome is largely encoded by nuclear genes, and mitochondrial proteins must be sorted to the correct mitochondrial sub-compartment post-translationally. This essential process is carried out by multimeric and dynamic translocation and sorting machineries, which can be found in all four mitochondrial compartments. Interestingly, advances in the diagnosis of genetic disease have revealed that mutations in various components of the human import machinery can cause mitochondrial disease, a heterogenous and often severe collection of disorders associated with energy generation defects and a multisystem presentation often affecting the cardiovascular and nervous systems. Here, we review our current understanding of mitochondrial protein import systems in human cells and the molecular basis of mitochondrial diseases caused by defects in these pathways.
Collapse
|
44
|
Wan Y, Hopper AK. From powerhouse to processing plant: conserved roles of mitochondrial outer membrane proteins in tRNA splicing. Genes Dev 2018; 32:1309-1314. [PMID: 30228203 PMCID: PMC6169838 DOI: 10.1101/gad.316257.118] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/23/2018] [Indexed: 11/27/2022]
Abstract
In this study, Wan et al. report that budding yeast mitochondrial outer membrane (MOM) proteins Tom70, Tom22, and Sam37 are required for efficient tRNA splicing. They show that defective tRNA splicing in MOM mutants is due not to loss of respiratory metabolism but instead inefficient targeting/tethering of tRNA splicing endonuclease (SEN) subunits to mitochondria. The mitochondrial cytoplasmic surface serves as a processing site for numerous RNAs from budding yeast to metazoans. We report that budding yeast mitochondrial outer membrane (MOM) proteins that are subunits of the translocase of the outer mitochondrial membrane (Tom70 and Tom 22) and sorting and assembly machinery (Sam37) are required for efficient pretransfer RNA (pre-tRNA) splicing. Defective pre-tRNA splicing in MOM mutants is due not to loss of respiratory metabolism but instead inefficient targeting/tethering of tRNA splicing endonuclease (SEN) subunits to mitochondria. Schizosaccharomyces pombe SEN subunits also localize to mitochondria, and Tom70 is required for this localization and pre-tRNA splicing. Thus, the role of MOM protein in targeting/tethering SEN subunits to mitochondria has been conserved for >500 million years.
Collapse
Affiliation(s)
- Yao Wan
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Anita K Hopper
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
45
|
Plant mitochondrial protein import: the ins and outs. Biochem J 2018; 475:2191-2208. [PMID: 30018142 DOI: 10.1042/bcj20170521] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 01/29/2023]
Abstract
The majority of the mitochondrial proteome, required to fulfil its diverse range of functions, is cytosolically synthesised and translocated via specialised machinery. The dedicated translocases, receptors, and associated proteins have been characterised in great detail in yeast over the last several decades, yet many of the mechanisms that regulate these processes in higher eukaryotes are still unknown. In this review, we highlight the current knowledge of mitochondrial protein import in plants. Despite the fact that the mechanisms of mitochondrial protein import have remained conserved across species, many unique features have arisen in plants to encompass the developmental, tissue-specific, and stress-responsive regulation in planta. An understanding of unique features and mechanisms in plants provides us with a unique insight into the regulation of mitochondrial biogenesis in higher eukaryotes.
Collapse
|
46
|
Höhr AIC, Lindau C, Wirth C, Qiu J, Stroud DA, Kutik S, Guiard B, Hunte C, Becker T, Pfanner N, Wiedemann N. Membrane protein insertion through a mitochondrial β-barrel gate. Science 2018; 359:359/6373/eaah6834. [PMID: 29348211 DOI: 10.1126/science.aah6834] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/12/2017] [Accepted: 12/14/2017] [Indexed: 11/02/2022]
Abstract
The biogenesis of mitochondria, chloroplasts, and Gram-negative bacteria requires the insertion of β-barrel proteins into the outer membranes. Homologous Omp85 proteins are essential for membrane insertion of β-barrel precursors. It is unknown if precursors are threaded through the Omp85-channel interior and exit laterally or if they are translocated into the membrane at the Omp85-lipid interface. We have mapped the interaction of a precursor in transit with the mitochondrial Omp85-channel Sam50 in the native membrane environment. The precursor is translocated into the channel interior, interacts with an internal loop, and inserts into the lateral gate by β-signal exchange. Transport through the Omp85-channel interior followed by release through the lateral gate into the lipid phase may represent a basic mechanism for membrane insertion of β-barrel proteins.
Collapse
Affiliation(s)
- Alexandra I C Höhr
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Caroline Lindau
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Christophe Wirth
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Jian Qiu
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - David A Stroud
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Stephan Kutik
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Bernard Guiard
- Centre de Génétique Moléculaire, CNRS, 91190 Gif-sur-Yvette, France
| | - Carola Hunte
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
47
|
Becker T, Wagner R. Mitochondrial Outer Membrane Channels: Emerging Diversity in Transport Processes. Bioessays 2018; 40:e1800013. [DOI: 10.1002/bies.201800013] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/29/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Thomas Becker
- Faculty of MedicineInstitute of Biochemistry and Molecular Biology, ZBMZUniversity of FreiburgFreiburgD‐79104Germany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgFreiburgD‐79104Germany
| | - Richard Wagner
- Biophysics, Life Sciences & ChemistryJacobs University BremenBremenD‐28759Germany
| |
Collapse
|
48
|
Böttinger L, Mårtensson CU, Song J, Zufall N, Wiedemann N, Becker T. Respiratory chain supercomplexes associate with the cysteine desulfurase complex of the iron-sulfur cluster assembly machinery. Mol Biol Cell 2018; 29:776-785. [PMID: 29386296 PMCID: PMC5905291 DOI: 10.1091/mbc.e17-09-0555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial cytochrome bc1 complex and cytochrome c oxidase associate in respiratory chain supercomplexes. We identified a specific association of the iron–sulfur cluster biogenesis desulfurase with the respiratory chain supercomplexes. Our finding reveals a novel link between respiration and iron–sulfur cluster formation. Mitochondria are the powerhouses of eukaryotic cells. The activity of the respiratory chain complexes generates a proton gradient across the inner membrane, which is used by the F1FO-ATP synthase to produce ATP for cellular metabolism. In baker’s yeast, Saccharomyces cerevisiae, the cytochrome bc1 complex (complex III) and cytochrome c oxidase (complex IV) associate in respiratory chain supercomplexes. Iron–sulfur clusters (ISC) form reactive centers of respiratory chain complexes. The assembly of ISC occurs in the mitochondrial matrix and is essential for cell viability. The cysteine desulfurase Nfs1 provides sulfur for ISC assembly and forms with partner proteins the ISC-biogenesis desulfurase complex (ISD complex). Here, we report an unexpected interaction of the active ISD complex with the cytochrome bc1 complex and cytochrome c oxidase. The individual deletion of complex III or complex IV blocks the association of the ISD complex with respiratory chain components. We conclude that the ISD complex binds selectively to respiratory chain supercomplexes. We propose that this molecular link contributes to coordination of iron–sulfur cluster formation with respiratory activity.
Collapse
Affiliation(s)
- Lena Böttinger
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Christoph U Mårtensson
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Nicole Zufall
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
49
|
Koch B, Tucey TM, Lo TL, Novakovic S, Boag P, Traven A. The Mitochondrial GTPase Gem1 Contributes to the Cell Wall Stress Response and Invasive Growth of Candida albicans. Front Microbiol 2017; 8:2555. [PMID: 29326680 PMCID: PMC5742345 DOI: 10.3389/fmicb.2017.02555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/08/2017] [Indexed: 01/27/2023] Open
Abstract
The interactions of mitochondria with the endoplasmic reticulum (ER) are crucial for maintaining proper mitochondrial morphology, function and dynamics. This enables cells to utilize their mitochondria optimally for energy production and anabolism, and it further provides for metabolic control over developmental decisions. In fungi, a key mechanism by which ER and mitochondria interact is via a membrane tether, the protein complex ERMES (ER-Mitochondria Encounter Structure). In the model yeast Saccharomyces cerevisiae, the mitochondrial GTPase Gem1 interacts with ERMES, and it has been proposed to regulate its activity. Here we report on the first characterization of Gem1 in a human fungal pathogen. We show that in Candida albicans Gem1 has a dominant role in ensuring proper mitochondrial morphology, and our data is consistent with Gem1 working with ERMES in this role. Mitochondrial respiration and steady state cellular phospholipid homeostasis are not impacted by inactivation of GEM1 in C. albicans. There are two major virulence-related consequences of disrupting mitochondrial morphology by GEM1 inactivation: C. albicans becomes hypersusceptible to cell wall stress, and is unable to grow invasively. In the gem1Δ/Δ mutant, it is specifically the invasive capacity of hyphae that is compromised, not the ability to transition from yeast to hyphal morphology, and this phenotype is shared with ERMES mutants. As a consequence of the hyphal invasion defect, the gem1Δ/Δ mutant is drastically hypovirulent in the worm infection model. Activation of the mitogen activated protein (MAP) kinase Cek1 is reduced in the gem1Δ/Δ mutant, and this function could explain both the susceptibility to cell wall stress and lack of invasive growth. This result establishes a new, respiration-independent mechanism of mitochondrial control over stress signaling and hyphal functions in C. albicans. We propose that ER-mitochondria interactions and the ER-Mitochondria Organizing Network (ERMIONE) play important roles in adaptive responses in fungi, in particular cell surface-related mechanisms that drive invasive growth and stress responsive behaviors that support fungal pathogenicity.
Collapse
Affiliation(s)
- Barbara Koch
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Timothy M Tucey
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tricia L Lo
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stevan Novakovic
- Development and Stem Cells Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Peter Boag
- Development and Stem Cells Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ana Traven
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
50
|
Käser S, Willemin M, Schnarwiler F, Schimanski B, Poveda-Huertes D, Oeljeklaus S, Haenni B, Zuber B, Warscheid B, Meisinger C, Schneider A. Biogenesis of the mitochondrial DNA inheritance machinery in the mitochondrial outer membrane of Trypanosoma brucei. PLoS Pathog 2017; 13:e1006808. [PMID: 29287109 PMCID: PMC5764417 DOI: 10.1371/journal.ppat.1006808] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/11/2018] [Accepted: 12/13/2017] [Indexed: 12/22/2022] Open
Abstract
Mitochondria cannot form de novo but require mechanisms that mediate their inheritance to daughter cells. The parasitic protozoan Trypanosoma brucei has a single mitochondrion with a single-unit genome that is physically connected across the two mitochondrial membranes with the basal body of the flagellum. This connection, termed the tripartite attachment complex (TAC), is essential for the segregation of the replicated mitochondrial genomes prior to cytokinesis. Here we identify a protein complex consisting of three integral mitochondrial outer membrane proteins-TAC60, TAC42 and TAC40-which are essential subunits of the TAC. TAC60 contains separable mitochondrial import and TAC-sorting signals and its biogenesis depends on the main outer membrane protein translocase. TAC40 is a member of the mitochondrial porin family, whereas TAC42 represents a novel class of mitochondrial outer membrane β-barrel proteins. Consequently TAC40 and TAC42 contain C-terminal β-signals. Thus in trypanosomes the highly conserved β-barrel protein assembly machinery plays a major role in the biogenesis of its unique mitochondrial genome segregation system.
Collapse
Affiliation(s)
- Sandro Käser
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Mathilde Willemin
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Felix Schnarwiler
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Bernd Schimanski
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Daniel Poveda-Huertes
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Silke Oeljeklaus
- Department of Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Beat Haenni
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| |
Collapse
|