1
|
Garza-Miyazato D, Hanashima S, Umegawa Y, Murata M, Kinoshita M, Matsumori N, Greimel P. Mode of molecular interaction of triterpenoid saponin ginsenoside Rh2 with membrane lipids in liquid-disordered phases. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184366. [PMID: 38960300 DOI: 10.1016/j.bbamem.2024.184366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Ginsenoside Rh2 (Rh2) is a ginseng saponin comprising a triterpene core and one unit of glucose and has attracted much attention due to its diverse biological activities. In the present study, we used small-angle X-ray diffraction, solid-state NMR, fluorescence microscopy, and MD simulations to investigate the molecular interaction of Rh2 with membrane lipids in the liquid-disordered (Ld) phase mainly composed of palmitoyloleoylphosphatidylcholine compared with those in liquid-ordered (Lo) phase mainly composed of sphingomyelin and cholesterol. The electron density profiles determined by X-ray diffraction patterns indicated that Rh2 tends to be present in the shallow interior of the bilayer in the Ld phase, while Rh2 accumulation was significantly smaller in the Lo phase. Order parameters at intermediate depths in the bilayer leaflet obtained from 2H NMR spectra and MD simulations indicated that Rh2 reduces the order of the acyl chains of lipids in the Ld phase. The dihydroxy group and glucose moiety at both ends of the hydrophobic triterpene core of Rh2 cause tilting of the molecular axis relative to the membrane normal, which may enhance membrane permeability by loosening the packing of lipid acyl chains. These features of Rh2 are distinct from steroidal saponins such as digitonin and dioscin, which exert strong membrane-disrupting activity.
Collapse
Affiliation(s)
- Darcy Garza-Miyazato
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan.
| | - Yuichi Umegawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Forefront Research Centre for Fundamental Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - Masanao Kinoshita
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Peter Greimel
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| |
Collapse
|
2
|
Mori T, Niki T, Uchida Y, Mukai K, Kuchitsu Y, Kishimoto T, Sakai S, Makino A, Kobayashi T, Arai H, Yokota Y, Taguchi T, Suzuki KGN. A non-toxic equinatoxin-II reveals the dynamics and distribution of sphingomyelin in the cytosolic leaflet of the plasma membrane. Sci Rep 2024; 14:16872. [PMID: 39043900 PMCID: PMC11266560 DOI: 10.1038/s41598-024-67803-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Sphingomyelin (SM) is a major sphingolipid in mammalian cells. SM is enriched in the extracellular leaflet of the plasma membrane (PM). Besides this localization, recent electron microscopic and biochemical studies suggest the presence of SM in the cytosolic leaflet of the PM. In the present study, we generated a non-toxic SM-binding variant (NT-EqtII) based on equinatoxin-II (EqtII) from the sea anemone Actinia equina, and examined the dynamics of SM in the cytosolic leaflet of living cell PMs. NT-EqtII with two point mutations (Leu26Ala and Pro81Ala) had essentially the same specificity and affinity to SM as wild-type EqtII. NT-EqtII expressed in the cytosol was recruited to the PM in various cell lines. Super-resolution microscopic observation revealed that NT-EqtII formed tiny domains that were significantly colocalized with cholesterol and N-terminal Lyn. Meanwhile, single molecule observation at high resolutions down to 1 ms revealed that all the examined lipid probes including NT-EqtII underwent apparent fast simple Brownian diffusion, exhibiting that SM and other lipids in the cytosolic leaflet rapidly moved in and out of domains. Thus, the novel SM-binding probe demonstrated the presence of the raft-like domain in the cytosolic leaflet of living cell PMs.
Collapse
Affiliation(s)
- Toshiki Mori
- United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Takahiro Niki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yasunori Uchida
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kojiro Mukai
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yoshihiko Kuchitsu
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takuma Kishimoto
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido, Japan
| | - Shota Sakai
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Asami Makino
- Lipid Biology Laboratory, RIKEN, Wako, Saitama, Japan
| | | | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yasunari Yokota
- Department of EECE, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Tomohiko Taguchi
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| | - Kenichi G N Suzuki
- United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu, Japan.
- Division of Advanced Bioimaging, National Cancer Center Research Institute (NCCRI), Tokyo, Japan.
| |
Collapse
|
3
|
Shi YW, Xu CC, Sun CY, Liu JX, Zhao SY, Liu D, Fan XJ, Wang CP. GM1 Ameliorates Neuronal Injury in Rats after Cerebral Ischemia and Reperfusion: Potential Contribution of Effects on SPTBN1-mediated Signaling. Neuroscience 2024; 551:103-118. [PMID: 38810691 DOI: 10.1016/j.neuroscience.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Monosialoganglioside GM1 (GM1) has long been used as a therapeutic agent for neurological diseases in the clinical treatment of ischemic stroke. However, the mechanism underlying the neuroprotective function of GM1 is still obscure until now. In this study, we investigated the effects of GM1 in ischemia and reperfusion (I/R) brain injury models. Middle cerebral artery occlusion and reperfusion (MCAO/R) rats were treated with GM1 (60 mg·kg-1·d-1, tail vein injection) for 2 weeks. The results showed that GM1 substantially attenuated the MCAO/R-induced neurological dysfunction and inhibited the inflammatory responses and cell apoptosis in ischemic parietal cortex. We further revealed that GM1 inhibited the activation of NFκB/MAPK signaling pathway induced by MCAO/R injury. To explore its underlying mechanism of the neuroprotective effect, transcriptome sequencing was introduced to screen the differentially expressed genes (DEGs). By function enrichment and PPI network analyses, Sptbn1 was identified as a node gene in the network regulated by GM1 treatment. In the MCAO/R model of rats and oxygen-glucose deprivation and reperfusion (OGD/R) model of primary culture of rat cortical neurons, we first found that SPTBN1 was involved in the attenuation of I/R induced neuronal injury after GM1 administration. In SPTBN1-knockdown SH-SY5Y cells, the treatment with GM1 (20 μM) significantly increased SPTBN1 level. Moreover, OGD/R decreased SPTBN1 level in SPTBN1-overexpressed SH-SY5Y cells. These results indicated that GM1 might achieve its potent neuroprotective effects by regulating inflammatory response, cell apoptosis, and cytomembrane and cytoskeleton signals through SPTBN1. Therefore, SPTBN1 may be a potential target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yun-Wei Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China; School of Life Science, Nantong Laboratory of Development and Diseases, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Chun-Cheng Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Chun-Yan Sun
- Qilu Pharmaceutical Co., Ltd., Ji'nan 250104, Shandong, People's Republic of China
| | - Jia-Xing Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Shu-Yong Zhao
- Qilu Pharmaceutical Co., Ltd., Ji'nan 250104, Shandong, People's Republic of China
| | - Dong Liu
- School of Life Science, Nantong Laboratory of Development and Diseases, Nantong University, Nantong 226019, Jiangsu, People's Republic of China.
| | - Xing-Juan Fan
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, People's Republic of China.
| | - Cai-Ping Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Ukleja M, Kricks L, Torrens G, Peschiera I, Rodrigues-Lopes I, Krupka M, García-Fernández J, Melero R, Del Campo R, Eulalio A, Mateus A, López-Bravo M, Rico AI, Cava F, Lopez D. Flotillin-mediated stabilization of unfolded proteins in bacterial membrane microdomains. Nat Commun 2024; 15:5583. [PMID: 38961085 PMCID: PMC11222466 DOI: 10.1038/s41467-024-49951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
The function of many bacterial processes depends on the formation of functional membrane microdomains (FMMs), which resemble the lipid rafts of eukaryotic cells. However, the mechanism and the biological function of these membrane microdomains remain unclear. Here, we show that FMMs in the pathogen methicillin-resistant Staphylococcus aureus (MRSA) are dedicated to confining and stabilizing proteins unfolded due to cellular stress. The FMM scaffold protein flotillin forms a clamp-shaped oligomer that holds unfolded proteins, stabilizing them and favoring their correct folding. This process does not impose a direct energy cost on the cell and is crucial to survival of ATP-depleted bacteria, and thus to pathogenesis. Consequently, FMM disassembling causes the accumulation of unfolded proteins, which compromise MRSA viability during infection and cause penicillin re-sensitization due to PBP2a unfolding. Thus, our results indicate that FMMs mediate ATP-independent stabilization of unfolded proteins, which is essential for bacterial viability during infection.
Collapse
Affiliation(s)
- Marta Ukleja
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Lara Kricks
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Gabriel Torrens
- Department of Molecular Biology, Umeå University, Umeå, SE-901 87, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS). Umeå Center for Microbial Research (UCMR). Science for Life Laboratory (SciLifeLab), Umeå, SE-901 87, Sweden
| | - Ilaria Peschiera
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Ines Rodrigues-Lopes
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504, Coimbra, Portugal
| | - Marcin Krupka
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Julia García-Fernández
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Roberto Melero
- Department of Structural Biology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Rosa Del Campo
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ramón y Cajal Hospital, 28034, Madrid, Spain
| | - Ana Eulalio
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504, Coimbra, Portugal
- Department of Life Sciences, Center for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, United Kingdom
| | - André Mateus
- The Laboratory for Molecular Infection Medicine Sweden (MIMS). Umeå Center for Microbial Research (UCMR). Science for Life Laboratory (SciLifeLab), Umeå, SE-901 87, Sweden
- Department of Chemistry, Umeå University, Umeå, SE-901 87, Sweden
| | - María López-Bravo
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Ana I Rico
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Felipe Cava
- Department of Molecular Biology, Umeå University, Umeå, SE-901 87, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS). Umeå Center for Microbial Research (UCMR). Science for Life Laboratory (SciLifeLab), Umeå, SE-901 87, Sweden
| | - Daniel Lopez
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain.
| |
Collapse
|
5
|
Kaluzhskiy L, Yablokov E, Gnedenko O, Burkatovskii D, Maslov I, Bogorodskiy A, Ershov P, Tsybruk T, Zelepuga E, Rutckova T, Kozlovskaya E, Dmitrenok P, Gilep A, Borshchevskiy V, Strushkevich N, Ivanov A. The effect of membrane composition on the interaction between human CYP51 and its flavonoid inhibitor - luteolin 7,3'-disulfate. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184286. [PMID: 38272204 DOI: 10.1016/j.bbamem.2024.184286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Cytochromes P450 (CYP) are a family of membrane proteins involved in the production of endogenous molecules and the metabolism of xenobiotics. It is well-known that the composition of the membrane can influence the activity and orientation of CYP proteins. However, little is known about how membrane composition affects the ligand binding properties of CYP. In this study, we utilized surface plasmon resonance and fluorescence lifetime analysis to examine the impact of membrane micro-environment composition on the interaction between human microsomal CYP51 (CYP51A1) and its inhibitor, luteolin 7,3'-disulphate (LDS). We observed that membranes containing cholesterol or sphingomyelin exhibited the lowest apparent equilibrium dissociation constant for the CYP51A1-LDS complex. Additionally, the tendency for relation between kinetic parameters of the CYP51A1-LDS complex and membrane viscosity and overall charge was observed. These findings suggest that the specific composition of the membrane, particularly the presence of cholesterol and sphingomyelin, plays a vital role in regulating the interaction between CYP enzymes and their ligands.
Collapse
Affiliation(s)
- Leonid Kaluzhskiy
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia.
| | - Evgeniy Yablokov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia.
| | - Oksana Gnedenko
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia.
| | - Dmitrii Burkatovskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia.
| | - Ivan Maslov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia.
| | - Andrey Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Pavel Ershov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia
| | - Tatsiana Tsybruk
- Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220141 Minsk, Belarus
| | - Elena Zelepuga
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-letiya Vladivostoka, 690022 Vladivostok, Russia.
| | - Tatyana Rutckova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Emma Kozlovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Pavel Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-letiya Vladivostoka, 690022 Vladivostok, Russia.
| | - Andrei Gilep
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220141 Minsk, Belarus.
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - Natallia Strushkevich
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia.
| | - Alexis Ivanov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia.
| |
Collapse
|
6
|
Kemmoku H, Takahashi K, Mukai K, Mori T, Hirosawa KM, Kiku F, Uchida Y, Kuchitsu Y, Nishioka Y, Sawa M, Kishimoto T, Tanaka K, Yokota Y, Arai H, Suzuki KGN, Taguchi T. Single-molecule localization microscopy reveals STING clustering at the trans-Golgi network through palmitoylation-dependent accumulation of cholesterol. Nat Commun 2024; 15:220. [PMID: 38212328 PMCID: PMC10784591 DOI: 10.1038/s41467-023-44317-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024] Open
Abstract
Stimulator of interferon genes (STING) is critical for the type I interferon response to pathogen- or self-derived DNA in the cytosol. STING may function as a scaffold to activate TANK-binding kinase 1 (TBK1), but direct cellular evidence remains lacking. Here we show, using single-molecule imaging of STING with enhanced time resolutions down to 5 ms, that STING becomes clustered at the trans-Golgi network (about 20 STING molecules per cluster). The clustering requires STING palmitoylation and the Golgi lipid order defined by cholesterol. Single-molecule imaging of TBK1 reveals that STING clustering enhances the association with TBK1. We thus provide quantitative proof-of-principle for the signaling STING scaffold, reveal the mechanistic role of STING palmitoylation in the STING activation, and resolve the long-standing question of the requirement of STING translocation for triggering the innate immune signaling.
Collapse
Affiliation(s)
- Haruka Kemmoku
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kanoko Takahashi
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kojiro Mukai
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Toshiki Mori
- United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | | | - Fumika Kiku
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yasunori Uchida
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yoshihiko Kuchitsu
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yu Nishioka
- Research and Development, Carna Biosciences, Inc., Kobe, Japan
| | - Masaaki Sawa
- Research and Development, Carna Biosciences, Inc., Kobe, Japan
| | - Takuma Kishimoto
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido, Japan
| | - Kazuma Tanaka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido, Japan
| | - Yasunari Yokota
- Department of EECE, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Kenichi G N Suzuki
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan.
- Division of Advanced Bioimaging, National Cancer Center Research Institute, Tokyo, Japan.
| | - Tomohiko Taguchi
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
7
|
Area-Gomez E, Schon EA. Towards a Unitary Hypothesis of Alzheimer's Disease Pathogenesis. J Alzheimers Dis 2024; 98:1243-1275. [PMID: 38578892 DOI: 10.3233/jad-231318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The "amyloid cascade" hypothesis of Alzheimer's disease (AD) pathogenesis invokes the accumulation in the brain of plaques (containing the amyloid-β protein precursor [AβPP] cleavage product amyloid-β [Aβ]) and tangles (containing hyperphosphorylated tau) as drivers of pathogenesis. However, the poor track record of clinical trials based on this hypothesis suggests that the accumulation of these peptides is not the only cause of AD. Here, an alternative hypothesis is proposed in which the AβPP cleavage product C99, not Aβ, is the main culprit, via its role as a regulator of cholesterol metabolism. C99, which is a cholesterol sensor, promotes the formation of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM), a cholesterol-rich lipid raft-like subdomain of the ER that communicates, both physically and biochemically, with mitochondria. We propose that in early-onset AD (EOAD), MAM-localized C99 is elevated above normal levels, resulting in increased transport of cholesterol from the plasma membrane to membranes of intracellular organelles, such as ER/endosomes, thereby upregulating MAM function and driving pathology. By the same token, late-onset AD (LOAD) is triggered by any genetic variant that increases the accumulation of intracellular cholesterol that, in turn, boosts the levels of C99 and again upregulates MAM function. Thus, the functional cause of AD is upregulated MAM function that, in turn, causes the hallmark disease phenotypes, including the plaques and tangles. Accordingly, the MAM hypothesis invokes two key interrelated elements, C99 and cholesterol, that converge at the MAM to drive AD pathogenesis. From this perspective, AD is, at bottom, a lipid disorder.
Collapse
Affiliation(s)
- Estela Area-Gomez
- Department of Neurology, Columbia University, New York, NY, USA
- Centro de Investigaciones Biológicas "Margarita Salas", Spanish National Research Council, Madrid, Spain
| | - Eric A Schon
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Genetics and Development>, Columbia University, New York, NY, USA
| |
Collapse
|
8
|
Wooding FBP, Kinoshita M. Milk fat globule membrane: formation and transformation. J DAIRY RES 2023; 90:367-375. [PMID: 38226400 DOI: 10.1017/s0022029923000742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The milk fat globule membrane (MFGM) is formed by complex cell biological processes in the lactating mammary epithelial cell which result in the release of the milk fat globule (MFG) into the secretory alveolus. The MFG is bounded by a continuous unit membrane (UM), separated from the MFG lipid by a thin layer of cytoplasm. This unique apocrine secretion process has been shown in all of the mammary species so far investigated. Once the MFG is released into the alveolus there is a considerable transformation of the UM with its attached cytoplasm. This is the MFGM. The transformation is stable and expressed milk shows the same transformed MFGM structure. Again, this transformation of structure is common to all mammalian species so far investigated. However, the explanation of the transformation very much depends on the method of investigation. Transmission electron microscope (TEM) studies suggest a literal breakdown to a discontinuous UM plus cytoplasm in patches and strands, whereas more recent confocal laser scanning light microscopy (CLSM) studies indicate a separation, in a continuous UM, of two phases, one liquid ordered and the other liquid disordered. This review is designed to show that the TEM and CLSM results show different views of the same structures once certain deficiencies in techniques are factored in.
Collapse
Affiliation(s)
- F B Peter Wooding
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, UK
| | - Masanao Kinoshita
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Mayor S, Bhat A, Kusumi A. A Survey of Models of Cell Membranes: Toward a New Understanding of Membrane Organization. Cold Spring Harb Perspect Biol 2023; 15:a041394. [PMID: 37643877 PMCID: PMC10547391 DOI: 10.1101/cshperspect.a041394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The cell membrane, the boundary that separates living cells from their environment, has been the subject of study for over a century. The fluid-mosaic model of Singer and Nicolson in 1972 proposed the plasma membrane as a two-dimensional fluid composed of lipids and proteins. Fifty years hence, advances in biophysical and biochemical tools, particularly optical imaging techniques, have allowed for a better understanding of the physical nature, organization, and composition of cell membranes. This has been made possible by visualizing membrane heterogeneities and their dynamics and appreciating the asymmetrical arrangement of lipids in living cell membranes. Despite these advances, mechanisms underlying the local spatiotemporal organization of membrane components remain unclear. This review surveys various models of membrane organization, culminating in a new model that incorporates nonequilibrium processes and forces exerted by interactions with extramembrane elements such as the actin cytoskeleton. The proposed model provides a comprehensive understanding of membrane organization, taking into account the dynamic nature of the cell membrane and its interactions with its immediate environment.
Collapse
Affiliation(s)
- Satyajit Mayor
- National Centre for Biological Science, TIFR, Bangalore 560065, India
| | - Abrar Bhat
- National Centre for Biological Science, TIFR, Bangalore 560065, India
| | - Akihiro Kusumi
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
Sakamoto K, Akimoto T, Muramatsu M, Sansom MSP, Metzler R, Yamamoto E. Heterogeneous biological membranes regulate protein partitioning via fluctuating diffusivity. PNAS NEXUS 2023; 2:pgad258. [PMID: 37593200 PMCID: PMC10427746 DOI: 10.1093/pnasnexus/pgad258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/22/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Cell membranes phase separate into ordered L o and disordered L d domains depending on their compositions. This membrane compartmentalization is heterogeneous and regulates the localization of specific proteins related to cell signaling and trafficking. However, it is unclear how the heterogeneity of the membranes affects the diffusion and localization of proteins in L o and L d domains. Here, using Langevin dynamics simulations coupled with the phase-field (LDPF) method, we investigate several tens of milliseconds-scale diffusion and localization of proteins in heterogeneous biological membrane models showing phase separation into L o and L d domains. The diffusivity of proteins exhibits temporal fluctuations depending on the field composition. Increases in molecular concentrations and domain preference of the molecule induce subdiffusive behavior due to molecular collisions by crowding and confinement effects, respectively. Moreover, we quantitatively demonstrate that the protein partitioning into the L o domain is determined by the difference in molecular diffusivity between domains, molecular preference of domain, and molecular concentration. These results pave the way for understanding how biological reactions caused by molecular partitioning may be controlled in heterogeneous media. Moreover, the methodology proposed here is applicable not only to biological membrane systems but also to the study of diffusion and localization phenomena of molecules in various heterogeneous systems.
Collapse
Affiliation(s)
- Ken Sakamoto
- Department of System Design Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Takuma Akimoto
- Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Mayu Muramatsu
- Department of Mechanical Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ralf Metzler
- Institute of Physics & Astronomy, University of Potsdam, Potsdam-Golm 14476, Germany
- Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Eiji Yamamoto
- Department of System Design Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
11
|
Yilmaz N, Panevska A, Tomishige N, Richert L, Mély Y, Sepčić K, Greimel P, Kobayashi T. Assembly dynamics and structure of an aegerolysin, ostreolysin A6. J Biol Chem 2023; 299:104940. [PMID: 37343702 PMCID: PMC10366546 DOI: 10.1016/j.jbc.2023.104940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/08/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023] Open
Abstract
Ostreolysin A6 (OlyA6) is an oyster mushroom-derived membrane-binding protein that, upon recruitment of its partner protein, pleurotolysin B, forms a cytolytic membrane pore complex. OlyA6 itself is not cytolytic but has been reported to exhibit pro-apoptotic activities in cell culture. Here we report the formation dynamics and the structure of OlyA6 assembly on a lipid membrane containing an OlyA6 high-affinity receptor, ceramide phosphoethanolamine, and cholesterol. High-speed atomic force microscopy revealed the reorganization of OlyA6 dimers from initial random surface coverage to 2D protein crystals composed of hexameric OlyA6 repeat units. Crystal growth took place predominantly in the longitudinal direction by the association of OlyA6 dimers, forming a hexameric unit cell. Molecular-level examination of the OlyA6 crystal elucidated the arrangement of dimers within the unit cell and the structure of the dimer that recruits pleurotolysin B for pore formation.
Collapse
Affiliation(s)
- Neval Yilmaz
- Lipid Biology Laboratory, RIKEN, 2-1, Wako, Saitama, Japan; NanoLSI, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan.
| | - Anastasija Panevska
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nario Tomishige
- Lipid Biology Laboratory, RIKEN, 2-1, Wako, Saitama, Japan; Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Ludovic Richert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Greimel
- Lipid Biology Laboratory, RIKEN, 2-1, Wako, Saitama, Japan.
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, 2-1, Wako, Saitama, Japan; Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| |
Collapse
|
12
|
Abstract
Lipids are essential cellular components forming membranes, serving as energy reserves, and acting as chemical messengers. Dysfunction in lipid metabolism and signaling is associated with a wide range of diseases including cancer and autoimmunity. Heterogeneity in cell behavior including lipid signaling is increasingly recognized as a driver of disease and drug resistance. This diversity in cellular responses as well as the roles of lipids in health and disease drive the need to quantify lipids within single cells. Single-cell lipid assays are challenging due to the small size of cells (∼1 pL) and the large numbers of lipid species present at concentrations spanning orders of magnitude. A growing number of methodologies enable assay of large numbers of lipid analytes, perform high-resolution spatial measurements, or permit highly sensitive lipid assays in single cells. Covered in this review are mass spectrometry, Raman imaging, and fluorescence-based assays including microscopy and microseparations.
Collapse
Affiliation(s)
- Ming Yao
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; , ,
| | | | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; , ,
| |
Collapse
|
13
|
Shelby SA, Castello-Serrano I, Wisser KC, Levental I, Veatch SL. Membrane phase separation drives responsive assembly of receptor signaling domains. Nat Chem Biol 2023; 19:750-758. [PMID: 36997644 PMCID: PMC10771812 DOI: 10.1038/s41589-023-01268-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/17/2023] [Indexed: 04/01/2023]
Abstract
Plasma membrane heterogeneity has been tied to a litany of cellular functions and is often explained by analogy to membrane phase separation; however, models based on phase separation alone fall short of describing the rich organization available within cell membranes. Here we present comprehensive experimental evidence motivating an updated model of plasma membrane heterogeneity in which membrane domains assemble in response to protein scaffolds. Quantitative super-resolution nanoscopy measurements in live B lymphocytes detect membrane domains that emerge upon clustering B cell receptors (BCRs). These domains enrich and retain membrane proteins based on their preference for the liquid-ordered phase. Unlike phase-separated membranes that consist of binary phases with defined compositions, membrane composition at BCR clusters is modulated through the protein constituents in clusters and the composition of the membrane overall. This tunable domain structure is detected through the variable sorting of membrane probes and impacts the magnitude of BCR activation.
Collapse
Affiliation(s)
- Sarah A Shelby
- Program in Biophysics, University of Michigan, Ann Arbor, MI, USA
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Ivan Castello-Serrano
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | | | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Sarah L Veatch
- Program in Biophysics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Suzuki KGN, Komura N, Ando H. Recently developed glycosphingolipid probes and their dynamic behavior in cell plasma membranes as revealed by single-molecule imaging. Glycoconj J 2023; 40:305-314. [PMID: 37133616 DOI: 10.1007/s10719-023-10116-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
Glycosphingolipids, including gangliosides, are representative lipid raft markers that perform a variety of physiological roles in cell membranes. However, studies aimed at revealing their dynamic behavior in living cells are rare, mostly due to a lack of suitable fluorescent probes. Recently, the ganglio-series, lacto-series, and globo-series glycosphingolipid probes, which mimic the behavior of the parental molecules in terms of partitioning to the raft fraction, were developed by conjugating hydrophilic dyes to the terminal glycans of glycosphingolipids using state-of-art entirely chemical-based synthetic techniques. High-speed, single-molecule observation of these fluorescent probes revealed that gangliosides were scarcely trapped in small domains (100 nm in diameter) for more than 5 ms in steady-state cells, suggesting that rafts including gangliosides were always moving and very small. Furthermore, dual-color, single-molecule observations clearly showed that homodimers and clusters of GPI-anchored proteins were stabilized by transiently recruiting sphingolipids, including gangliosides, to form homodimer rafts and the cluster rafts, respectively. In this review, we briefly summarize recent studies, the development of a variety of glycosphingolipid probes as well as the identification of the raft structures including gangliosides in living cells by single-molecule imaging.
Collapse
Affiliation(s)
- Kenichi G N Suzuki
- Institute for Glyco-core Research (iGCORE), Gifu University, 501-1193, Gifu, Japan.
| | - Naoko Komura
- Institute for Glyco-core Research (iGCORE), Gifu University, 501-1193, Gifu, Japan.
| | - Hiromune Ando
- Institute for Glyco-core Research (iGCORE), Gifu University, 501-1193, Gifu, Japan.
| |
Collapse
|
15
|
Kusumi A, Tsunoyama TA, Tang B, Hirosawa KM, Morone N, Fujiwara TK, Suzuki KGN. Cholesterol- and actin-centered view of the plasma membrane: updating the Singer-Nicolson fluid mosaic model to commemorate its 50th anniversary †. Mol Biol Cell 2023; 34:pl1. [PMID: 37039596 PMCID: PMC10162409 DOI: 10.1091/mbc.e20-12-0809] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/07/2022] [Accepted: 02/07/2023] [Indexed: 04/12/2023] Open
Abstract
Two very polarized views exist for understanding the cellular plasma membrane (PM). For some, it is the simple fluid described by the original Singer-Nicolson fluid mosaic model. For others, due to the presence of thousands of molecular species that extensively interact with each other, the PM forms various clusters and domains that are constantly changing and therefore, no simple rules exist that can explain the structure and molecular dynamics of the PM. In this article, we propose that viewing the PM from its two predominant components, cholesterol and actin filaments, provides an excellent and transparent perspective of PM organization, dynamics, and mechanisms for its functions. We focus on the actin-induced membrane compartmentalization and lipid raft domains coexisting in the PM and how they interact with each other to perform PM functions. This view provides an important update of the fluid mosaic model.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Taka A. Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
| | - Bo Tang
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
| | - Koichiro M. Hirosawa
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Nobuhiro Morone
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK
| | - Takahiro K. Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Kenichi G. N. Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
16
|
Ondevilla JC, Hanashima S, Mukogawa A, Miyazato DG, Umegawa Y, Murata M. Effect of the number of sugar units on the interaction between diosgenyl saponin and membrane lipids. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184145. [PMID: 36914020 DOI: 10.1016/j.bbamem.2023.184145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/15/2023]
Abstract
Saponin is the main bioactive component of the Dioscorea species, which are traditionally used for treating chronic diseases. An understanding of the interaction process of bioactive saponins with biomembranes provides insights into their development as therapeutic agents. The biological effects of saponins have been thought to be associated with membrane cholesterol (Chol). To shed light on the exact mechanisms of their interactions, we investigated the effects of diosgenyl saponins trillin (TRL) and dioscin (DSN) on the dynamic behavior of lipids and membrane properties in palmitoyloleolylphosphatidylcholine (POPC) bilayers using solid-state NMR and fluorescence spectroscopy. The membrane effects of diosgenin, a sapogenin of TRL and DSN, are similar to those of Chol, suggesting that diosgenin plays a major role in membrane binding and POPC chain ordering. The amphiphilicity of TRL and DSN enabled them to interact with POPC bilayers, regardless of Chol. In the presence of Chol, the sugar residues more prominently influenced the membrane-disrupting effects of saponins. The activity of DSN, which bears three sugar units, led to perturbation and further disruption of the membrane in the presence of Chol. However, TRL, which bears one sugar residue, increased the ordering of POPC chains while maintaining the integrity of the bilayer. This effect on the phospholipid bilayers is similar to that of cholesteryl glucoside. The influence of the number of sugars in saponin is discussed in more detail.
Collapse
Affiliation(s)
- Joan Candice Ondevilla
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry, De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan.
| | - Akane Mukogawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Darcy Garza Miyazato
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yuichi Umegawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Forefront Research Centre for Fundamental Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Forefront Research Centre for Fundamental Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
17
|
Veatch SL, Rogers N, Decker A, Shelby SA. The plasma membrane as an adaptable fluid mosaic. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184114. [PMID: 36581017 PMCID: PMC9922517 DOI: 10.1016/j.bbamem.2022.184114] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
The fluid mosaic model proposed by Singer and Nicolson established a powerful framework to interrogate biological membranes that has stood the test of time. They proposed that the membrane is a simple fluid, meaning that proteins and lipids are randomly distributed over distances larger than those dictated by direct interactions. Here we present an update to this model that describes a spatially adaptable fluid membrane capable of tuning local composition in response to forces originating outside the membrane plane. This revision is rooted in the thermodynamics of lipid mixtures, draws from recent experimental results, and suggests new modes of membrane function.
Collapse
Affiliation(s)
- Sarah L Veatch
- Program in Biophysics, University of Michigan, Ann Arbor, MI, USA.
| | - Nat Rogers
- Program in Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Adam Decker
- Program in Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Sarah A Shelby
- Program in Biophysics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
18
|
Refinement of Singer-Nicolson fluid-mosaic model by microscopy imaging: Lipid rafts and actin-induced membrane compartmentalization. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184093. [PMID: 36423676 DOI: 10.1016/j.bbamem.2022.184093] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
This year celebrates the 50th anniversary of the Singer-Nicolson fluid mosaic model for biological membranes. The next level of sophistication we have achieved for understanding plasma membrane (PM) structures, dynamics, and functions during these 50 years includes the PM interactions with cortical actin filaments and the partial demixing of membrane constituent molecules in the PM, particularly raft domains. Here, first, we summarize our current knowledge of these two structures and emphasize that they are interrelated. Second, we review the structure, molecular dynamics, and function of raft domains, with main focuses on raftophilic glycosylphosphatidylinositol-anchored proteins (GPI-APs) and their signal transduction mechanisms. We pay special attention to the results obtained by single-molecule imaging techniques and other advanced microscopy methods. We also clarify the limitations of present optical microscopy methods for visualizing raft domains, but emphasize that single-molecule imaging techniques can "detect" raft domains associated with molecules of interest in the PM.
Collapse
|
19
|
Levental I, Lyman E. Regulation of membrane protein structure and function by their lipid nano-environment. Nat Rev Mol Cell Biol 2023; 24:107-122. [PMID: 36056103 PMCID: PMC9892264 DOI: 10.1038/s41580-022-00524-4] [Citation(s) in RCA: 173] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 02/04/2023]
Abstract
Transmembrane proteins comprise ~30% of the mammalian proteome, mediating metabolism, signalling, transport and many other functions required for cellular life. The microenvironment of integral membrane proteins (IMPs) is intrinsically different from that of cytoplasmic proteins, with IMPs solvated by a compositionally and biophysically complex lipid matrix. These solvating lipids affect protein structure and function in a variety of ways, from stereospecific, high-affinity protein-lipid interactions to modulation by bulk membrane properties. Specific examples of functional modulation of IMPs by their solvating membranes have been reported for various transporters, channels and signal receptors; however, generalizable mechanistic principles governing IMP regulation by lipid environments are neither widely appreciated nor completely understood. Here, we review recent insights into the inter-relationships between complex lipidomes of mammalian membranes, the membrane physicochemical properties resulting from such lipid collectives, and the regulation of IMPs by either or both. The recent proliferation of high-resolution methods to study such lipid-protein interactions has led to generalizable insights, which we synthesize into a general framework termed the 'functional paralipidome' to understand the mutual regulation between membrane proteins and their surrounding lipid microenvironments.
Collapse
Affiliation(s)
- Ilya Levental
- Department of Molecular Physiology and Biological Physics, Center for Molecular and Cell Physiology, University of Virginia, Charlottesville, VA, USA.
| | - Ed Lyman
- Department of Physics and Astronomy, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA.
| |
Collapse
|
20
|
Single-Molecule Imaging of Ganglioside Probes in Living Cell Plasma Membranes. Methods Mol Biol 2023; 2613:215-227. [PMID: 36587082 DOI: 10.1007/978-1-0716-2910-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Gangliosides play a variety of physiological roles and are one of the most important lipid raft constituents. However, their dynamic behaviors have scarcely been investigated in living cells because of the lack of fluorescent probes that behave like their parental molecules. Recently, fluorescent ganglioside probes that mimic native ganglioside behaviors have been developed. In this chapter, I discuss the recent advances in research related to the lateral localization and dynamic behaviors of gangliosides in the plasma membranes of living cells.
Collapse
|
21
|
Umebayashi M, Takemoto S, Reymond L, Sundukova M, Hovius R, Bucci A, Heppenstall PA, Yokota H, Johnsson K, Riezman H. A covalently linked probe to monitor local membrane properties surrounding plasma membrane proteins. J Cell Biol 2022; 222:213783. [PMID: 36571579 PMCID: PMC9802683 DOI: 10.1083/jcb.202206119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/21/2022] [Accepted: 12/09/2022] [Indexed: 12/27/2022] Open
Abstract
Functional membrane proteins in the plasma membrane are suggested to have specific membrane environments that play important roles to maintain and regulate their function. However, the local membrane environments of membrane proteins remain largely unexplored due to the lack of available techniques. We have developed a method to probe the local membrane environment surrounding membrane proteins in the plasma membrane by covalently tethering a solvatochromic, environment-sensitive dye, Nile Red, to a GPI-anchored protein and the insulin receptor through a flexible linker. The fluidity of the membrane environment of the GPI-anchored protein depended upon the saturation of the acyl chains of the lipid anchor. The local environment of the insulin receptor was distinct from the average plasma membrane fluidity and was quite dynamic and heterogeneous. Upon addition of insulin, the local membrane environment surrounding the receptor specifically increased in fluidity in an insulin receptor-kinase dependent manner and on the distance between the dye and the receptor.
Collapse
Affiliation(s)
- Miwa Umebayashi
- https://ror.org/01swzsf04Department of Biochemistry and National Centre for Competence in Research in Chemical Biology, Sciences II, University of Geneva, Geneva, Switzerland,Myoridge Co. Ltd., Kyoto, Japan
| | - Satoko Takemoto
- Image Processing Research Team, RIKEN Centre for Advanced Photonics, Wako, Japan
| | - Luc Reymond
- Ecole Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering (ISIC), Institute of Bioengineering, National Centre of Competence in Research (NCCR) in Chemical Biology, Lausanne, Switzerland
| | - Mayya Sundukova
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory Rome, Monterotondo, Italy,https://ror.org/000xsnr85Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain,Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Leioa, Spain
| | - Ruud Hovius
- Ecole Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering (ISIC), Institute of Bioengineering, National Centre of Competence in Research (NCCR) in Chemical Biology, Lausanne, Switzerland
| | - Annalisa Bucci
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory Rome, Monterotondo, Italy
| | - Paul A. Heppenstall
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory Rome, Monterotondo, Italy
| | - Hideo Yokota
- Image Processing Research Team, RIKEN Centre for Advanced Photonics, Wako, Japan
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Howard Riezman
- https://ror.org/01swzsf04Department of Biochemistry and National Centre for Competence in Research in Chemical Biology, Sciences II, University of Geneva, Geneva, Switzerland,Correspondence to Howard Riezman:
| |
Collapse
|
22
|
Hirano K, Kinoshita M, Matsumori N. Impact of sphingomyelin acyl chain heterogeneity upon properties of raft-like membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184036. [PMID: 36055359 DOI: 10.1016/j.bbamem.2022.184036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/26/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Sphingomyelin (SM) is a main component of lipid rafts and characteristic of abundance of long and saturated acyl chains. Recently, we reported that fluorescence-labeled lipids including C16:0 and C18:0SMs retained membrane behaviors of inherent lipids. Here, we newly prepared fluorescent SMs with longer acyl chains, C22:0 and C24:1, for observing their partition and diffusion in SM/cholesterol (chol)/dioleoylphosphatidylcholine (DOPC) bilayers. Although fluorescent C24:1SM underwent a uniform distribution between ordered (Lo) and disordered (Ld) phases, other fluorescent SMs with saturated acyl chains were preferentially distributed in the Lo phase. Interestingly, when the acyl chains of fluorescent and membrane SMs are different, distribution of fluorescent SM to the Lo phase was reduced compared to when the acyl chains are the same. This tendency was also observed for C16:0SM/C22:0SM/chol/DOPC quaternary bilayers, where the minor SM was more excluded out of the Lo phase than the major SM. We also found that the coexistence of SMs induces SM efflux out of the Lo phase and simultaneous DOPC influx to the Lo phase, consequently reducing the difference in fluidity between the two phases. These results suggest that physicochemical properties of lipid rafts are regulated by the acyl chain heterogeneity of SMs.
Collapse
Affiliation(s)
- Kana Hirano
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masanao Kinoshita
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
23
|
Maier AG, van Ooij C. The role of cholesterol in invasion and growth of malaria parasites. Front Cell Infect Microbiol 2022; 12:984049. [PMID: 36189362 PMCID: PMC9522969 DOI: 10.3389/fcimb.2022.984049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria parasites are unicellular eukaryotic pathogens that develop through a complex lifecycle involving two hosts, an anopheline mosquito and a vertebrate host. Throughout this lifecycle, the parasite encounters widely differing conditions and survives in distinct ways, from an intracellular lifestyle in the vertebrate host to exclusively extracellular stages in the mosquito. Although the parasite relies on cholesterol for its growth, the parasite has an ambiguous relationship with cholesterol: cholesterol is required for invasion of host cells by the parasite, including hepatocytes and erythrocytes, and for the development of the parasites in those cells. However, the parasite is unable to produce cholesterol itself and appears to remove cholesterol actively from its own plasma membrane, thereby setting up a cholesterol gradient inside the infected host erythrocyte. Overall a picture emerges in which the parasite relies on host cholesterol and carefully controls its transport. Here, we describe the role of cholesterol at the different lifecycle stages of the parasites.
Collapse
Affiliation(s)
- Alexander G. Maier
- Research School of Biology, The Australian National University, Canberra ACT, Australia
- *Correspondence: Alexander G. Maier, ; Christiaan van Ooij,
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- *Correspondence: Alexander G. Maier, ; Christiaan van Ooij,
| |
Collapse
|
24
|
Inimitable Impacts of Ceramides on Lipid Rafts Formed in Artificial and Natural Cell Membranes. MEMBRANES 2022; 12:membranes12080727. [PMID: 35893445 PMCID: PMC9330320 DOI: 10.3390/membranes12080727] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/02/2023]
Abstract
Ceramide is the simplest precursor of sphingolipids and is involved in a variety of biological functions ranging from apoptosis to the immune responses. Although ceramide is a minor constituent of plasma membranes, it drastically increases upon cellular stimulation. However, the mechanistic link between ceramide generation and signal transduction remains unknown. To address this issue, the effect of ceramide on phospholipid membranes has been examined in numerous studies. One of the most remarkable findings of these studies is that ceramide induces the coalescence of membrane domains termed lipid rafts. Thus, it has been hypothesised that ceramide exerts its biological activity through the structural alteration of lipid rafts. In the present article, we first discuss the characteristic hydrogen bond functionality of ceramides. Then, we showed the impact of ceramide on the structures of artificial and cell membranes, including the coalescence of the pre-existing lipid raft into a large patch called a signal platform. Moreover, we proposed a possible structure of the signal platform, in which sphingomyelin/cholesterol-rich and sphingomyelin/ceramide-rich domains coexist. This structure is considered to be beneficial because membrane proteins and their inhibitors are separately compartmentalised in those domains. Considering the fact that ceramide/cholesterol content regulates the miscibility of those two domains in model membranes, the association and dissociation of membrane proteins and their inhibitors might be controlled by the contents of ceramide and cholesterol in the signal platform.
Collapse
|
25
|
Zhang S, Zhu N, Gu J, Li HF, Qiu Y, Liao DF, Qin L. Crosstalk between Lipid Rafts and Aging: New Frontiers for Delaying Aging. Aging Dis 2022; 13:1042-1055. [PMID: 35855333 PMCID: PMC9286918 DOI: 10.14336/ad.2022.0116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/16/2022] [Indexed: 12/15/2022] Open
Abstract
With the rapid aging in the global population, delay of aging has become a hot research topic. Lipid rafts (LRs) are microdomains in the plasma membrane that contain sphingolipids and cholesterol. Emerging evidence indicates an interesting interplay between LRs and aging. LRs and their components are altered with aging. Further, the aging process is strongly influenced by LRs. In recent years, LRs and their component signaling molecules have been recognized to affect aging by interfering with its hallmarks. Therefore, targeting LRs is a promising strategy to delay aging.
Collapse
Affiliation(s)
- Shuo Zhang
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Neng Zhu
- 2Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Jia Gu
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Hong-Fang Li
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yun Qiu
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Duan-Fang Liao
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Li Qin
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.,3Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
26
|
Murata M, Matsumori N, Kinoshita M, London E. Molecular substructure of the liquid-ordered phase formed by sphingomyelin and cholesterol: sphingomyelin clusters forming nano-subdomains are a characteristic feature. Biophys Rev 2022; 14:655-678. [PMID: 35791389 DOI: 10.1007/s12551-022-00967-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
As a model of lipid rafts, the liquid-ordered (Lo) phase formed by sphingomyelin (SM) and cholesterol (Cho) in bilayer membranes has long attracted the attention of biophysics researchers. New approaches and methodologies have led to a better understanding of the molecular basis of the Lo domain structure. This review summarizes studies on model membrane systems consisting of SM/unsaturated phospholipid/Cho implying that the Lo phase contains SM-based nanodomains (or nano-subdomains). Some of the Lo phase properties may be attributed to these nanodomains. Several studies suggest that the nanodomains contain clustered SM molecules packed densely to form gel-phase-like subdomains of single-digit nanometer size at physiological temperatures. Cho and unsaturated lipids located in the Lo phase are likely to be concentrated at the boundaries between the subdomains. These subdomains are not readily detected in the Lo phase formed by saturated phosphatidylcholine (PC) molecules, suggesting that they are strongly stabilized by homophilic interactions specific to SM, e.g., between SM amide groups. This model for the Lo phase is supported by experiments using dihydro-SM, which is thought to have stronger homophilic interactions than SM, as well as by studies using the enantiomer of SM having opposite stereochemistry to SM at the 2 and 3 positions and by some molecular dynamics (MD) simulations of lipid bilayers containing Lo-lipids. Nanosized gel subdomains seem to play an important role in controlling membrane organization and function in biological membranes.
Collapse
Affiliation(s)
- Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, 560-0043 Japan.,ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka, 560-0043 Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Masanao Kinoshita
- ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka, 560-0043 Japan.,Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215 USA
| |
Collapse
|
27
|
Clusters of apoptotic signaling molecule-enriched rafts, CASMERs: membrane platforms for protein assembly in Fas/CD95 signaling and targets in cancer therapy. Biochem Soc Trans 2022; 50:1105-1118. [PMID: 35587168 PMCID: PMC9246327 DOI: 10.1042/bst20211115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022]
Abstract
Mammalian cells show the ability to commit suicide through the activation of death receptors at the cell surface. Death receptors, among which Fas/CD95 is one of their most representative members, lack enzymatic activity, and depend on protein-protein interactions to signal apoptosis. Fas/CD95 death receptor-mediated apoptosis requires the formation of the so-called death-inducing signaling complex (DISC), bringing together Fas/CD95, Fas-associated death domain-containing protein and procaspase-8. In the last two decades, cholesterol-rich lipid raft platforms have emerged as scaffolds where Fas/CD95 can be recruited and clustered. The co-clustering of Fas/CD95 and rafts facilitates DISC formation, bringing procaspase-8 molecules to be bunched together in a limited membrane region, and leading to their autoproteolytic activation by oligomerization. Lipid raft platforms serve as a specific region for the clustering of Fas/CD95 and DISC, as well as for the recruitment of additional downstream signaling molecules, thus forming the so-called cluster of apoptotic signaling molecule-enriched rafts, or CASMER. These raft/CASMER structures float in the membrane like icebergs, in which the larger portion lies inside the cell and communicates with other subcellular structures to facilitate apoptotic signal transmission. This allows an efficient spatiotemporal compartmentalization of apoptosis signaling machinery during the triggering of cell death. This concept of proapoptotic raft platforms as a basic chemical-biological structure in the regulation of cell death has wide-ranging implications in human biology and disease, as well as in cancer therapy. Here, we discuss how these raft-centered proapoptotic hubs operate as a major linchpin for apoptosis signaling and as a promising target in cancer therapy.
Collapse
|
28
|
Tsuchikawa H, Monji M, Umegawa Y, Yasuda T, Slotte JP, Murata M. Depth-Dependent Segmental Melting of the Sphingomyelin Alkyl Chain in Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5515-5524. [PMID: 35477243 DOI: 10.1021/acs.langmuir.2c00092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The chain melting of lipid bilayers has often been investigated in detail using calorimetric methods, such as differential scanning calorimetry (DSC), and the resultant main transition temperature is regarded as one of the most important parameters in model membrane experiments. However, it is not always clear whether the hydrocarbon chains of lipids are gradually melting along the depth of the lipid bilayer or whether they all melt concurrently in a very narrow temperature range, as implied by DSC. In this study, we focused on stearoyl-d-sphingomyelin (SSM) as an example of raft-forming lipids. We synthesized deuterium-labeled SSMs at the 4', 10', and 16' positions, and their depth-dependent melting was measured using solid-state deuterium NMR by changing the temperature by 1.0 °C, and comparing with that observed from a saturated lipid, palmitoylstearoylphosphatidylcholine (PSPC). The results showed that SSM exhibited a characteristic depth-dependent melting, which was not observed for PSPC. The strong intermolecular hydrogen bonds between the sphingomyelin amide moiety probably caused the chain melting to start from the chain terminus through the middle part and end in the upper part. This depth-dependent melting implies that the small gel-like domains of SSM remain at temperatures slightly above the main transition temperature. These sphingomyelin features may be responsible for the biological properties of SM-based lipid rafts.
Collapse
Affiliation(s)
- Hiroshi Tsuchikawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560- 0043, Japan
- Faculty of Medicine, Oita University, Oita, Oita 879-5593, Japan
| | - Mami Monji
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560- 0043, Japan
| | - Yuichi Umegawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560- 0043, Japan
- Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Tomokazu Yasuda
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560- 0043, Japan
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, Turku FIN-20520, Finland
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560- 0043, Japan
- Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
29
|
Hanashima S, Ikeda R, Matsubara Y, Yasuda T, Tsuchikawa H, Slotte JP, Murata M. Effect of cholesterol on the lactosylceramide domains in phospholipid bilayers. Biophys J 2022; 121:1143-1155. [PMID: 35218738 PMCID: PMC9034317 DOI: 10.1016/j.bpj.2022.02.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/22/2021] [Accepted: 02/22/2022] [Indexed: 11/02/2022] Open
Abstract
Lactosylceramide (LacCer) in the plasma membranes of immune cells is an important lipid for signaling in innate immunity through the formation of LacCer-rich domains together with cholesterol (Cho). However, the properties of the LacCer domains formed in multicomponent membranes remain unclear. In this study, we examined the properties of the LacCer domains formed in Cho containing 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) membranes by deuterium solid-state NMR and fluorescence lifetimes. The potent affinity of LacCer-LacCer (homophilic interaction) is known to induce a thermally stable gel phase in the unitary LacCer bilayer. In LacCer/Cho binary membranes, Cho gradually destabilized the LacCer gel phase to form the liquid-ordered (Lo) phase by its potent order effect. In the LacCer/POPC binary systems without Cho, the 2H NMR spectra of 10',10'-d2-LacCer and 18',18',18'-d3-LacCer probes revealed that LacCer was poorly miscible with POPC in the membranes and formed stable gel phases without being distributed in the liquid crystalline (Ld) domain. The lamellar structure of the LacCer/POPC membrane was gradually disrupted at around 60 °C, while the addition of Cho increased the thermal stability of the lamellarity. Furthermore, the area of the LacCer gel phase and its chain order were decreased in the LacCer/POPC/Cho ternary membranes, while the Lo domain, which was observed in the LacCer/Cho binary membrane, was not observed. Cho surrounding the LacCer gel domain liberated LacCer and facilitated forming the submicron- to nano-scale small domains in the Ld domain of the LacCer/POPC/Cho membranes, as revealed by the fluorescence lifetimes of trans-parinaric acid (tPA) and tPA-LacCer. Our findings on the membrane properties of the LacCer domains, particularly in the presence of Cho, would help elucidate the properties of the LacCer domains in biological membranes.
Collapse
Affiliation(s)
- Shinya Hanashima
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan.
| | - Ryuji Ikeda
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Yuki Matsubara
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Tomokazu Yasuda
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Hiroshi Tsuchikawa
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6 A, FIN 20520 Turku, Finland
| | - Michio Murata
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan; JST ERATO, Lipid Active Structure Project, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
30
|
It Takes More than Two to Tango: Complex, Hierarchal, and Membrane-Modulated Interactions in the Regulation of Receptor Tyrosine Kinases. Cancers (Basel) 2022; 14:cancers14040944. [PMID: 35205690 PMCID: PMC8869822 DOI: 10.3390/cancers14040944] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/18/2022] Open
Abstract
The search for an understanding of how cell fate and motility are regulated is not a purely scientific undertaking, but it can also lead to rationally designed therapies against cancer. The discovery of tyrosine kinases about half a century ago, the subsequent characterization of certain transmembrane receptors harboring tyrosine kinase activity, and their connection to the development of human cancer ushered in a new age with the hope of finding a treatment for malignant diseases in the foreseeable future. However, painstaking efforts were required to uncover the principles of how these receptors with intrinsic tyrosine kinase activity are regulated. Developments in molecular and structural biology and biophysical approaches paved the way towards better understanding of these pathways. Discoveries in the past twenty years first resulted in the formulation of textbook dogmas, such as dimerization-driven receptor association, which were followed by fine-tuning the model. In this review, the role of molecular interactions taking place during the activation of receptor tyrosine kinases, with special attention to the epidermal growth factor receptor family, will be discussed. The fact that these receptors are anchored in the membrane provides ample opportunities for modulatory lipid-protein interactions that will be considered in detail in the second part of the manuscript. Although qualitative and quantitative alterations in lipids in cancer are not sufficient in their own right to drive the malignant transformation, they both contribute to tumor formation and also provide ways to treat cancer. The review will be concluded with a summary of these medical aspects of lipid-protein interactions.
Collapse
|
31
|
Suresh P, London E. Using cyclodextrin-induced lipid substitution to study membrane lipid and ordered membrane domain (raft) function in cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183774. [PMID: 34534531 PMCID: PMC9128603 DOI: 10.1016/j.bbamem.2021.183774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023]
Abstract
Methods for efficient cyclodextrin-induced lipid exchange have been developed in our lab. These make it possible to almost completely replace the lipids in the outer leaflet of artificial membranes or the plasma membranes of living cells with exogenous lipids. Lipid replacement/substitution allows detailed studies of how lipid composition and asymmetry influence the structure and function of membrane domains and membrane proteins. In this review, we both summarize progress on cyclodextrin exchange in cells, mainly by the use of methyl-alpha cyclodextrin to exchange phospholipids and sphingolipids, and discuss the issues to consider when carrying out lipid exchange experiments upon cells. Issues that impact interpretation of lipid exchange are also discussed. This includes how overly naïve interpretation of how lipid exchange-induced changes in domain formation can impact protein function.
Collapse
|
32
|
Nieto-Garai JA, Lorizate M, Contreras FX. Shedding light on membrane rafts structure and dynamics in living cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2022; 1864:183813. [PMID: 34748743 DOI: 10.1016/j.bbamem.2021.183813] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
Cellular membranes are fundamental building blocks regulating an extensive repertoire of biological functions. These structures contain lipids and membrane proteins that are known to laterally self-aggregate in the plane of the membrane, forming defined membrane nanoscale domains essential for protein activity. Membrane rafts are described as heterogeneous, dynamic, and short-lived cholesterol- and sphingolipid-enriched membrane nanodomains (10-200 nm) induced by lipid-protein and lipid-lipid interactions. Those membrane nanodomains have been extensively characterized using model membranes and in silico methods. However, despite the development of advanced fluorescence microscopy techniques, undoubted nanoscale visualization by imaging techniques of membrane rafts in the membrane of unperturbed living cells is still uncompleted, increasing the skepticism about their existence. Here, we broadly review recent biochemical and microscopy techniques used to investigate membrane rafts in living cells and we enumerate persistent open questions to answer before unlocking the mystery of membrane rafts in living cells.
Collapse
Affiliation(s)
- Jon Ander Nieto-Garai
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Bilbao, Spain.
| | - Maier Lorizate
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Bilbao, Spain; Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, 48940 Bilbao, Spain
| | - F-Xabier Contreras
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Bilbao, Spain; Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, 48940 Bilbao, Spain; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| |
Collapse
|
33
|
Takahashi M, Komura N, Yoshida Y, Yamaguchi E, Hasegawa A, Tanaka HN, Imamura A, Ishida H, Suzuki KGN, Ando H. Development of lacto-series ganglioside fluorescent probe using late-stage sialylation and behavior analysis with single-molecule imaging. RSC Chem Biol 2022; 3:868-885. [PMID: 35866169 PMCID: PMC9257605 DOI: 10.1039/d2cb00083k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/28/2022] [Indexed: 11/21/2022] Open
Abstract
Gangliosides are a family of sialic-acid-containing glycosphingolipids that form dynamic domains (lipid rafts) with proteins in cell plasma membranes (PMs), and are involved in various biological processes. The dynamic behavior...
Collapse
Affiliation(s)
- Maina Takahashi
- The United Graduate School of Agricultural Science, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Department of Applied Bioorganic Chemistry, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Naoko Komura
- Institute for Glyco-core Research (iGCORE), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Yukako Yoshida
- Department of Applied Bioorganic Chemistry, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Eriko Yamaguchi
- Institute for Glyco-core Research (iGCORE), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Ami Hasegawa
- Department of Applied Bioorganic Chemistry, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Hide-Nori Tanaka
- The United Graduate School of Agricultural Science, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Department of Applied Bioorganic Chemistry, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Institute for Glyco-core Research (iGCORE), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Akihiro Imamura
- The United Graduate School of Agricultural Science, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Department of Applied Bioorganic Chemistry, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Institute for Glyco-core Research (iGCORE), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Hideharu Ishida
- The United Graduate School of Agricultural Science, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Department of Applied Bioorganic Chemistry, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Institute for Glyco-core Research (iGCORE), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Kenichi G N Suzuki
- The United Graduate School of Agricultural Science, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Department of Applied Bioorganic Chemistry, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Institute for Glyco-core Research (iGCORE), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Hiromune Ando
- The United Graduate School of Agricultural Science, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Department of Applied Bioorganic Chemistry, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Institute for Glyco-core Research (iGCORE), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| |
Collapse
|
34
|
Westra M, Gutierrez Y, MacGillavry HD. Contribution of Membrane Lipids to Postsynaptic Protein Organization. Front Synaptic Neurosci 2021; 13:790773. [PMID: 34887741 PMCID: PMC8649999 DOI: 10.3389/fnsyn.2021.790773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
The precise subsynaptic organization of proteins at the postsynaptic membrane controls synaptic transmission. In particular, postsynaptic receptor complexes are concentrated in distinct membrane nanodomains to optimize synaptic signaling. However, despite the clear functional relevance of subsynaptic receptor organization to synaptic transmission and plasticity, the mechanisms that underlie the nanoscale organization of the postsynaptic membrane remain elusive. Over the last decades, the field has predominantly focused on the role of protein-protein interactions in receptor trafficking and positioning in the synaptic membrane. In contrast, the contribution of lipids, the principal constituents of the membrane, to receptor positioning at the synapse remains poorly understood. Nevertheless, there is compelling evidence that the synaptic membrane is enriched in specific lipid species and that deregulation of lipid homeostasis in neurons severely affects synaptic functioning. In this review we focus on how lipids are organized at the synaptic membrane, with special emphasis on how current models of membrane organization could contribute to protein distribution at the synapse and synaptic transmission. Finally, we will present an outlook on how novel technical developments could be applied to study the dynamic interplay between lipids and proteins at the postsynaptic membrane.
Collapse
Affiliation(s)
- Manon Westra
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Yolanda Gutierrez
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Harold D MacGillavry
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
35
|
Barrantes FJ. Fluorescence sensors for imaging membrane lipid domains and cholesterol. CURRENT TOPICS IN MEMBRANES 2021; 88:257-314. [PMID: 34862029 DOI: 10.1016/bs.ctm.2021.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lipid membrane domains are supramolecular lateral heterogeneities of biological membranes. Of nanoscopic dimensions, they constitute specialized hubs used by the cell as transient signaling platforms for a great variety of biologically important mechanisms. Their property to form and dissolve in the bulk lipid bilayer endow them with the ability to engage in highly dynamic processes, and temporarily recruit subpopulations of membrane proteins in reduced nanometric compartments that can coalesce to form larger mesoscale assemblies. Cholesterol is an essential component of these lipid domains; its unique molecular structure is suitable for interacting intricately with crevices and cavities of transmembrane protein surfaces through its rough β face while "talking" to fatty acid acyl chains of glycerophospholipids and sphingolipids via its smooth α face. Progress in the field of membrane domains has been closely associated with innovative improvements in fluorescence microscopy and new fluorescence sensors. These advances enabled the exploration of the biophysical properties of lipids and their supramolecular platforms. Here I review the rationale behind the use of biosensors over the last few decades and their contributions towards elucidation of the in-plane and transbilayer topography of cholesterol-enriched lipid domains and their molecular constituents. The challenges introduced by super-resolution optical microscopy are discussed, as well as possible scenarios for future developments in the field, including virtual ("no staining") staining.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Biomedical Research Institute (BIOMED), Catholic University of Argentina (UCA)-National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
36
|
Borges AR, Link F, Engstler M, Jones NG. The Glycosylphosphatidylinositol Anchor: A Linchpin for Cell Surface Versatility of Trypanosomatids. Front Cell Dev Biol 2021; 9:720536. [PMID: 34790656 PMCID: PMC8591177 DOI: 10.3389/fcell.2021.720536] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022] Open
Abstract
The use of glycosylphosphatidylinositol (GPI) to anchor proteins to the cell surface is widespread among eukaryotes. The GPI-anchor is covalently attached to the C-terminus of a protein and mediates the protein’s attachment to the outer leaflet of the lipid bilayer. GPI-anchored proteins have a wide range of functions, including acting as receptors, transporters, and adhesion molecules. In unicellular eukaryotic parasites, abundantly expressed GPI-anchored proteins are major virulence factors, which support infection and survival within distinct host environments. While, for example, the variant surface glycoprotein (VSG) is the major component of the cell surface of the bloodstream form of African trypanosomes, procyclin is the most abundant protein of the procyclic form which is found in the invertebrate host, the tsetse fly vector. Trypanosoma cruzi, on the other hand, expresses a variety of GPI-anchored molecules on their cell surface, such as mucins, that interact with their hosts. The latter is also true for Leishmania, which use GPI anchors to display, amongst others, lipophosphoglycans on their surface. Clearly, GPI-anchoring is a common feature in trypanosomatids and the fact that it has been maintained throughout eukaryote evolution indicates its adaptive value. Here, we explore and discuss GPI anchors as universal evolutionary building blocks that support the great variety of surface molecules of trypanosomatids.
Collapse
Affiliation(s)
- Alyssa R Borges
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Fabian Link
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nicola G Jones
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
37
|
Abe M, Makino A, Murate M, Hullin-Matsuda F, Yanagawa M, Sako Y, Kobayashi T. PMP2/FABP8 induces PI(4,5)P 2-dependent transbilayer reorganization of sphingomyelin in the plasma membrane. Cell Rep 2021; 37:109935. [PMID: 34758297 DOI: 10.1016/j.celrep.2021.109935] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/20/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Sphingomyelin (SM) is a mammalian lipid mainly distributed in the outer leaflet of the plasma membrane (PM). We show that peripheral myelin protein 2 (PMP2), a member of the fatty-acid-binding protein (FABP) family, can localize at the PM and controls the transbilayer distribution of SM. Genetic screening with genome-wide small hairpin RNA libraries identifies PMP2 as a protein involved in the transbilayer movement of SM. A biochemical assay demonstrates that PMP2 is a phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-binding protein. PMP2 induces the tubulation of model membranes in a PI(4,5)P2-dependent manner, accompanied by the modification of the transbilayer membrane distribution of lipids. In the PM of PMP2-overexpressing cells, inner-leaflet SM is increased whereas outer-leaflet SM is reduced. PMP2 is a causative protein of Charcot-Marie-Tooth disease (CMT). A mutation in PMP2 associated with CMT increases its affinity for PI(4,5)P2, inducing membrane tubulation and the subsequent transbilayer movement of lipids.
Collapse
Affiliation(s)
- Mitsuhiro Abe
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Cellular Informatics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan.
| | - Asami Makino
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Cellular Informatics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Motohide Murate
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Cellular Informatics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Françoise Hullin-Matsuda
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Université de Lyon, CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Claude Bernard Lyon 1, 69495 Pierre-Benite, France
| | - Masataka Yanagawa
- Cellular Informatics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Cellular Informatics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France.
| |
Collapse
|
38
|
Winkler PM, García-Parajo MF. Correlative nanophotonic approaches to enlighten the nanoscale dynamics of living cell membranes. Biochem Soc Trans 2021; 49:2357-2369. [PMID: 34495333 PMCID: PMC8589428 DOI: 10.1042/bst20210457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 01/31/2023]
Abstract
Dynamic compartmentalization is a prevailing principle regulating the spatiotemporal organization of the living cell membrane from the nano- up to the mesoscale. This non-arbitrary organization is intricately linked to cell function. On living cell membranes, dynamic domains or 'membrane rafts' enriched with cholesterol, sphingolipids and other certain proteins exist at the nanoscale serving as signaling and sorting platforms. Moreover, it has been postulated that other local organizers of the cell membrane such as intrinsic protein interactions, the extracellular matrix and/or the actin cytoskeleton synergize with rafts to provide spatiotemporal hierarchy to the membrane. Elucidating the intricate coupling of multiple spatial and temporal scales requires the application of correlative techniques, with a particular need for simultaneous nanometer spatial precision and microsecond temporal resolution. Here, we review novel fluorescence-based techniques that readily allow to decode nanoscale membrane dynamics with unprecedented spatiotemporal resolution and single-molecule sensitivity. We particularly focus on correlative approaches from the field of nanophotonics. Notably, we introduce a versatile planar nanoantenna platform combined with fluorescence correlation spectroscopy to study spatiotemporal heterogeneities on living cell membranes at the nano- up to the mesoscale. Finally, we outline remaining future technological challenges and comment on potential directions to advance our understanding of cell membrane dynamics under the influence of the actin cytoskeleton and extracellular matrix in uttermost detail.
Collapse
Affiliation(s)
- Pamina M. Winkler
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
| | - María F. García-Parajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
39
|
Wi JH, Heo CH, Gwak H, Jung C, Kim SY. Probing Physical Properties of the Cellular Membrane in Senescent Cells by Fluorescence Imaging. J Phys Chem B 2021; 125:10182-10194. [PMID: 34473497 DOI: 10.1021/acs.jpcb.1c05403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cellular senescence is the irreversible cell cycle arrest in response to various types of stress. Although the plasma membrane and its composition are significantly affected by cellular senescence, detailed studies on the physical properties of the plasma membrane have shown inconclusive results. In this study, we utilized both ensemble and single-molecule fluorescence imaging to investigate how membrane properties, such as fluidity, hydrophobicity, and ganglioside GM1 level are affected by cellular senescence. The diffusion coefficient of lipid probes, as well as the type of diffusion determined by an exponent α, which is the slope of the log-log plot of mean squared displacement as a function of time lag, were analyzed. We found that the number of molecules with a lower diffusion coefficient increased as cells became senescent. The changes in the population with a lower diffusion coefficient, observed after methyl-β-cyclodextrin treatment, and the increase in ceramide levels, detected using a ceramide-specific antibody, suggest that ceramide-rich lipid rafts were enhanced in senescent cells. Our results emphasize the importance of membrane properties in cellular senescence and might serve as a base for in-depth studies to determine how such domains facilitate the signaling pathway specific to cellular senescence.
Collapse
Affiliation(s)
- Ji Hun Wi
- Theragnosis Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.,Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Cheol Ho Heo
- Theragnosis Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - HyeRan Gwak
- Theragnosis Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Cheulhee Jung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - So Yeon Kim
- Theragnosis Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
40
|
Yokoyama N, Hanafusa K, Hotta T, Oshima E, Iwabuchi K, Nakayama H. Multiplicity of Glycosphingolipid-Enriched Microdomain-Driven Immune Signaling. Int J Mol Sci 2021; 22:9565. [PMID: 34502474 PMCID: PMC8430928 DOI: 10.3390/ijms22179565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Glycosphingolipids (GSLs), together with cholesterol, sphingomyelin (SM), and glycosylphosphatidylinositol (GPI)-anchored and membrane-associated signal transduction molecules, form GSL-enriched microdomains. These specialized microdomains interact in a cis manner with various immune receptors, affecting immune receptor-mediated signaling. This, in turn, results in the regulation of a broad range of immunological functions, including phagocytosis, cytokine production, antigen presentation and apoptosis. In addition, GSLs alone can regulate immunological functions by acting as ligands for immune receptors, and exogenous GSLs can alter the organization of microdomains and microdomain-associated signaling. Many pathogens, including viruses, bacteria and fungi, enter host cells by binding to GSL-enriched microdomains. Intracellular pathogens survive inside phagocytes by manipulating intracellular microdomain-driven signaling and/or sphingolipid metabolism pathways. This review describes the mechanisms by which GSL-enriched microdomains regulate immune signaling.
Collapse
Affiliation(s)
- Noriko Yokoyama
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Kei Hanafusa
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Tomomi Hotta
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Eriko Oshima
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
| | - Hitoshi Nakayama
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
| |
Collapse
|
41
|
Lipid-based and protein-based interactions synergize transmembrane signaling stimulated by antigen clustering of IgE receptors. Proc Natl Acad Sci U S A 2021; 118:2026583118. [PMID: 34433665 DOI: 10.1073/pnas.2026583118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Antigen (Ag) crosslinking of immunoglobulin E-receptor (IgE-FcεRI) complexes in mast cells stimulates transmembrane (TM) signaling, requiring phosphorylation of the clustered FcεRI by lipid-anchored Lyn tyrosine kinase. Previous studies showed that this stimulated coupling between Lyn and FcεRI occurs in liquid ordered (Lo)-like nanodomains of the plasma membrane and that Lyn binds directly to cytosolic segments of FcεRI that it initially phosphorylates for amplified activity. Net phosphorylation above a nonfunctional threshold is achieved in the stimulated state but not in the resting state, and current evidence supports the hypothesis that this relies on Ag crosslinking to disrupt a balance between Lyn and tyrosine phosphatase activities. However, the structural interactions that underlie the stimulation process remain poorly defined. This study evaluates the relative contributions and functional importance of different types of interactions leading to suprathreshold phosphorylation of Ag-crosslinked IgE-FcεRI in live rat basophilic leukemia mast cells. Our high-precision diffusion measurements by imaging fluorescence correlation spectroscopy on multiple structural variants of Lyn and other lipid-anchored probes confirm subtle, stimulated stabilization of the Lo-like nanodomains in the membrane inner leaflet and concomitant sharpening of segregation from liquid disordered (Ld)-like regions. With other structural variants, we determine that lipid-based interactions are essential for access by Lyn, leading to phosphorylation of and protein-based binding to clustered FcεRI. By contrast, TM tyrosine phosphatase, PTPα, is excluded from these regions due to its Ld-preference and steric exclusion of TM segments. Overall, we establish a synergy of lipid-based, protein-based, and steric interactions underlying functional TM signaling in mast cells.
Collapse
|
42
|
Urbančič I, Schiffelers L, Jenkins E, Gong W, Santos AM, Schneider F, O'Brien-Ball C, Vuong MT, Ashman N, Sezgin E, Eggeling C. Aggregation and mobility of membrane proteins interplay with local lipid order in the plasma membrane of T cells. FEBS Lett 2021; 595:2127-2146. [PMID: 34160065 DOI: 10.1002/1873-3468.14153] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 01/17/2023]
Abstract
To disentangle the elusive lipid-protein interactions in T-cell activation, we investigate how externally imposed variations in mobility of key membrane proteins (T-cell receptor [TCR], kinase Lck, and phosphatase CD45) affect the local lipid order and protein colocalisation. Using spectral imaging with polarity-sensitive membrane probes in model membranes and live Jurkat T cells, we find that partial immobilisation of proteins (including TCR) by aggregation or ligand binding changes their preference towards a more ordered lipid environment, which can recruit Lck. Our data suggest that the cellular membrane is poised to modulate the frequency of protein encounters upon alterations of their mobility, for example in ligand binding, which offers new mechanistic insight into the involvement of lipid-mediated interactions in membrane-hosted signalling events.
Collapse
Affiliation(s)
- Iztok Urbančič
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, UK
- Jožef Stefan Institute, Ljubljana, Slovenia
| | - Lisa Schiffelers
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | - Edward Jenkins
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | - Weijian Gong
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | - Ana Mafalda Santos
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | - Falk Schneider
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | | | - Mai Tuyet Vuong
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | - Nicole Ashman
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | - Erdinc Sezgin
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, UK
- Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Christian Eggeling
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, UK
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Jena, Germany
| |
Collapse
|
43
|
Ohtani R, Anegawa Y, Watanabe H, Tajima Y, Kinoshita M, Matsumori N, Kawano K, Yanaka S, Kato K, Nakamura M, Ohba M, Hayami S. Metal Complex Lipids for Fluid–Fluid Phase Separation in Coassembled Phospholipid Membranes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ryo Ohtani
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Yuka Anegawa
- Department of Chemistry Graduate School of Science Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Hikaru Watanabe
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Yutaro Tajima
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Masanao Kinoshita
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Nobuaki Matsumori
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kenichi Kawano
- Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS) National Institutes of Natural Sciences 5-1 Higashiyama Myodaiji Okazaki 444-8787 Japan
- Graduate School of Pharmaceutical Sciences Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya Aichi 467-8603 Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS) National Institutes of Natural Sciences 5-1 Higashiyama Myodaiji Okazaki 444-8787 Japan
- Graduate School of Pharmaceutical Sciences Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya Aichi 467-8603 Japan
| | - Masaaki Nakamura
- Department of Chemistry Graduate School of Science Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Masaaki Ohba
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Shinya Hayami
- Department of Chemistry Graduate School of Science Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| |
Collapse
|
44
|
Ohtani R, Anegawa Y, Watanabe H, Tajima Y, Kinoshita M, Matsumori N, Kawano K, Yanaka S, Kato K, Nakamura M, Ohba M, Hayami S. Metal Complex Lipids for Fluid-Fluid Phase Separation in Coassembled Phospholipid Membranes. Angew Chem Int Ed Engl 2021; 60:13603-13608. [PMID: 33723910 DOI: 10.1002/anie.202102774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 11/08/2022]
Abstract
We demonstrate a fluid-fluid phase separation in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes using a metal complex lipid of type [Mn(L1)] (1; HL1=1-(2-hydroxybenzamide)-2-(2-hydroxy-3-formyl-5-hexadecyloxybenzylideneamino)ethane). Small amount of 1 produces two separated domains in DMPC, whose phase transition temperatures of lipids (Tc ) are both lower than that of the pristine DMPC. Variable temperature fluorescent microscopy for giant-unilamellar vesicles of DMPC/1 hybrids demonstrates that visible phase separations remain in fluid phases up to 37 °C, which is clearly over the Tc of DMPC. This provides a new dimension for the application of metal complex lipids toward controlling lipid distributions in fluid membranes.
Collapse
Affiliation(s)
- Ryo Ohtani
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuka Anegawa
- Department of Chemistry, Graduate School of Science, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Hikaru Watanabe
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yutaro Tajima
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masanao Kinoshita
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kenichi Kawano
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Masaaki Nakamura
- Department of Chemistry, Graduate School of Science, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Masaaki Ohba
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
45
|
Nakano M, Hanashima S, Hara T, Kabayama K, Asahina Y, Hojo H, Komura N, Ando H, Nyholm TKM, Slotte JP, Murata M. FRET detects lateral interaction between transmembrane domain of EGF receptor and ganglioside GM3 in lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183623. [PMID: 33933428 DOI: 10.1016/j.bbamem.2021.183623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/16/2022]
Abstract
Ganglioside GM3 in the plasma membranes suppresses cell growth by preventing the autophosphorylation of the epidermal growth factor receptor (EGFR). Biological studies have suggested that GM3 interacts with the transmembrane segment of EGFR. Further biophysical experiments are particularly important for quantitative evaluation of the peptide-glycolipid interplay in bilayer membranes using a simple reconstituted system. To examine these interactions in this way, we synthesized the transmembrane segment of EGFR bearing a nitrobenzoxadiazole fluorophore (NBD-TM) at the N-terminus. The affinity between EGFR and GM3 was evaluated based on Förster resonance energy transfer (FRET) between NBD-TM and ATTO594-labeled GM3 in bilayers where their non-specific interaction due to lateral proximity was subtracted by using NBD-labeled phospholipid. This method for selectively detecting the specific lipid-peptide interactions in model lipid bilayers disclosed that the lateral interaction between GM3 and the transmembrane segment of EGFR plays a certain role in disturbing the formation of active EGFR dimers.
Collapse
Affiliation(s)
- Mikito Nakano
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Toshiaki Hara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan; ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuya Asahina
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita 565-0871, Japan
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita 565-0871, Japan
| | - Naoko Komura
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Hiromune Ando
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Thomas K M Nyholm
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan; ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka 560-0043, Japan.
| |
Collapse
|
46
|
Kusumi A, Fujiwara TK, Tsunoyama TA, Kasai RS, Liu AA, Hirosawa KM, Kinoshita M, Matsumori N, Komura N, Ando H, Suzuki KGN. Defining raft domains in the plasma membrane. Traffic 2021; 21:106-137. [PMID: 31760668 DOI: 10.1111/tra.12718] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/03/2023]
Abstract
Many plasma membrane (PM) functions depend on the cholesterol concentration in the PM in strikingly nonlinear, cooperative ways: fully functional in the presence of physiological cholesterol levels (35~45 mol%), and nonfunctional below 25 mol% cholesterol; namely, still in the presence of high concentrations of cholesterol. This suggests the involvement of cholesterol-based complexes/domains formed cooperatively. In this review, by examining the results obtained by using fluorescent lipid analogs and avoiding the trap of circular logic, often found in the raft literature, we point out the fundamental similarities of liquid-ordered (Lo)-phase domains in giant unilamellar vesicles, Lo-phase-like domains formed at lower temperatures in giant PM vesicles, and detergent-resistant membranes: these domains are formed by cooperative interactions of cholesterol, saturated acyl chains, and unsaturated acyl chains, in the presence of >25 mol% cholesterol. The literature contains evidence, indicating that the domains formed by the same basic cooperative molecular interactions exist and play essential roles in signal transduction in the PM. Therefore, as a working definition, we propose that raft domains in the PM are liquid-like molecular complexes/domains formed by cooperative interactions of cholesterol with saturated acyl chains as well as unsaturated acyl chains, due to saturated acyl chains' weak multiple accommodating interactions with cholesterol and cholesterol's low miscibility with unsaturated acyl chains and TM proteins. Molecules move within raft domains and exchange with those in the bulk PM. We provide a logically established collection of fluorescent lipid probes that preferentially partition into raft and non-raft domains, as defined here, in the PM.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Takahiro K Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Taka A Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Rinshi S Kasai
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - An-An Liu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Koichiro M Hirosawa
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Masanao Kinoshita
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Naoko Komura
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Hiromune Ando
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Kenichi G N Suzuki
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| |
Collapse
|
47
|
Abstract
Lateral organization in the plane of the plasma membrane is an important driver of biological processes. The past dozen years have seen increasing experimental support for the notion that lipid organization plays an important role in modulating this heterogeneity. Various biophysical mechanisms rooted in the concept of liquid-liquid phase separation have been proposed to explain diverse experimental observations of heterogeneity in model and cell membranes with distinct but overlapping applicability. In this review, we focus on the evidence for and the consequences of the hypothesis that the plasma membrane is poised near an equilibrium miscibility critical point. Critical phenomena explain certain features of the heterogeneity observed in cells and model systems but also go beyond heterogeneity to predict other interesting phenomena, including responses to perturbations in membrane composition.
Collapse
Affiliation(s)
- Thomas R Shaw
- Program in Applied Physics, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Subhadip Ghosh
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sarah L Veatch
- Program in Applied Physics, University of Michigan, Ann Arbor, Michigan 48109, USA; .,Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
48
|
Abstract
Systematically dissecting the molecular basis of the cell surface as well as its related biological activities is considered as one of the most cutting-edge fields in fundamental sciences. The advent of various advanced cell imaging techniques allows us to gain a glimpse of how the cell surface is structured and coordinated with other cellular components to respond to intracellular signals and environmental stimuli. Nowadays, cell surface-related studies have entered a new era featured by a redirected aim of not just understanding but artificially manipulating/remodeling the cell surface properties. To meet this goal, biologists and chemists are intensely engaged in developing more maneuverable cell surface labeling strategies by exploiting the cell's intrinsic biosynthetic machinery or direct chemical/physical binding methods for imaging, sensing, and biomedical applications. In this review, we summarize the recent advances that focus on the visualization of various cell surface structures/dynamics and accurate monitoring of the microenvironment of the cell surface. Future challenges and opportunities in these fields are discussed, and the importance of cell surface-based studies is highlighted.
Collapse
Affiliation(s)
- Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | | | | | | |
Collapse
|
49
|
What Can Mushroom Proteins Teach Us about Lipid Rafts? MEMBRANES 2021; 11:membranes11040264. [PMID: 33917311 PMCID: PMC8067419 DOI: 10.3390/membranes11040264] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/25/2022]
Abstract
The lipid raft hypothesis emerged as a need to explain the lateral organization and behavior of lipids in the environment of biological membranes. The idea, that lipids segregate in biological membranes to form liquid-disordered and liquid-ordered states, was faced with a challenge: to show that lipid-ordered domains, enriched in sphingomyelin and cholesterol, actually exist in vivo. A great deal of indirect evidence and the use of lipid-binding probes supported this idea, but there was a lack of tools to demonstrate the existence of such domains in living cells. A whole new toolbox had to be invented to biochemically characterize lipid rafts and to define how they are involved in several cellular functions. A potential solution came from basic biochemical experiments in the late 1970s, showing that some mushroom extracts exert hemolytic activities. These activities were later assigned to aegerolysin-based sphingomyelin/cholesterol-specific cytolytic protein complexes. Recently, six sphingomyelin/cholesterol binding proteins from different mushrooms have been identified and have provided some insight into the nature of sphingomyelin/cholesterol-rich domains in living vertebrate cells. In this review, we dissect the accumulated knowledge and introduce the mushroom lipid raft binding proteins as molecules of choice to study the dynamics and origins of these liquid-ordered domains in mammalian cells.
Collapse
|
50
|
Koyama-Honda I, Fujiwara TK, Kasai RS, Suzuki KGN, Kajikawa E, Tsuboi H, Tsunoyama TA, Kusumi A. High-speed single-molecule imaging reveals signal transduction by induced transbilayer raft phases. J Cell Biol 2021; 219:211461. [PMID: 33053147 PMCID: PMC7563750 DOI: 10.1083/jcb.202006125] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/09/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
Using single-molecule imaging with enhanced time resolutions down to 5 ms, we found that CD59 cluster rafts and GM1 cluster rafts were stably induced in the outer leaflet of the plasma membrane (PM), which triggered the activation of Lyn, H-Ras, and ERK and continually recruited Lyn and H-Ras right beneath them in the inner leaflet with dwell lifetimes <0.1 s. The detection was possible due to the enhanced time resolutions employed here. The recruitment depended on the PM cholesterol and saturated alkyl chains of Lyn and H-Ras, whereas it was blocked by the nonraftophilic transmembrane protein moiety and unsaturated alkyl chains linked to the inner-leaflet molecules. Because GM1 cluster rafts recruited Lyn and H-Ras as efficiently as CD59 cluster rafts, and because the protein moieties of Lyn and H-Ras were not required for the recruitment, we conclude that the transbilayer raft phases induced by the outer-leaflet stabilized rafts recruit lipid-anchored signaling molecules by lateral raft-lipid interactions and thus serve as a key signal transduction platform.
Collapse
Affiliation(s)
- Ikuko Koyama-Honda
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Takahiro K Fujiwara
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Rinshi S Kasai
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kenichi G N Suzuki
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan.,Institute for Glyco-core Research, Gifu University, Nagoya, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University, Gifu, Japan
| | - Eriko Kajikawa
- Laboratory for Organismal Patterning, Center for Biosystems Dynamics Research, RIKEN Kobe, Kobe, Japan
| | - Hisae Tsuboi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Taka A Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| |
Collapse
|