1
|
Khakpour N, Zahmatkesh A, Hosseini SY, Ghamar H, Nezafat N. Identification of the Potential Role of the E4orf4 Protein in Adenovirus A, B, C, and D Groups in Cancer Therapy: Computational Approaches. Mol Biotechnol 2024:10.1007/s12033-024-01278-4. [PMID: 39269574 DOI: 10.1007/s12033-024-01278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
The human adenovirus (HADV) early region 4 open reading frame 4 (E4orf4) protein plays a regulatory role in promoting viral infection by interacting with various cellular proteins. E4orf4 can induce death in cancer cells. One of the death pathways that is induced by this protein is related to the formation of membrane blebbing following the phosphorylation of tyrosine amino acids. The activation of this pathway requires the interaction of E4orf4 with Src family kinases (SFKs). The modulation mechanism of Src-dependent signaling via E4orf4 is not yet fully understood. However, evidence suggests that a physical association between the Src kinase domain and the arginine-rich motif of E4orf4 is crucial. Physically connecting E4orf4 to Src kinase leads to the deregulation of the Src-related signaling pathway, thereby inducing cytoplasmic death. In this study, we mapped the E4orf4 interaction site in Src to investigate the interaction between E4orf4 and Src in detail. We also compared the binding strength of E4orf4 proteins from different HADV groups. To this end, we performed bioinformatics structural analysis of the Src kinase domain and E4orf4 to identify E4orf4 interaction sites. The group with the lowest binding energy was predicted to be the most likely candidate for the highest cytoplasmic death in tumor cells based on the energy of the E4orf4-Src complex in various HADV groups. These results show that HADV-A and HADV-C have minimal binding energies to the E4orf4-Src complex, while the dissociation constant (Kd) of HADV-A was less than that of HADV-C. According to the obtained results, E4orf4 of the HADV-A group is more effective at triggering cytoplasmic death based on its most robust interaction with the Src kinase domain.
Collapse
Affiliation(s)
- Niloofar Khakpour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Zahmatkesh
- Shiraz Transplant Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Ghamar
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Computational Vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Filippone MG, Freddi S, Zecchini S, Restelli S, Colaluca IN, Bertalot G, Pece S, Tosoni D, Di Fiore PP. Aberrant phosphorylation inactivates Numb in breast cancer causing expansion of the stem cell pool. J Cell Biol 2022; 221:213525. [PMID: 36200956 PMCID: PMC9545709 DOI: 10.1083/jcb.202112001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/19/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022] Open
Abstract
Asymmetric cell division is a key tumor suppressor mechanism that prevents the uncontrolled expansion of the stem cell (SC) compartment by generating daughter cells with alternative fates: one retains SC identity and enters quiescence and the other becomes a rapidly proliferating and differentiating progenitor. A critical player in this process is Numb, which partitions asymmetrically at SC mitosis and inflicts different proliferative and differentiative fates in the two daughters. Here, we show that asymmetric Numb partitioning per se is insufficient for the proper control of mammary SC dynamics, with differential phosphorylation and functional inactivation of Numb in the two progeny also required. The asymmetric phosphorylation/inactivation of Numb in the progenitor is mediated by the atypical PKCζ isoform. This mechanism is subverted in breast cancer via aberrant activation of PKCs that phosphorylate Numb in both progenies, leading to symmetric division and expansion of the cancer SC compartment, associated with aggressive disease. Thus, Numb phosphorylation represents a target for breast cancer therapy.
Collapse
Affiliation(s)
- Maria Grazia Filippone
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Stefano Freddi
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Silvia Zecchini
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Silvia Restelli
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Ivan Nicola Colaluca
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Giovanni Bertalot
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Salvatore Pece
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy,Dipartimento di Oncologia e Emato-Oncologia, Università degli Studi di Milano, Milan, Italy
| | - Daniela Tosoni
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Pier Paolo Di Fiore
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy,Dipartimento di Oncologia e Emato-Oncologia, Università degli Studi di Milano, Milan, Italy,Correspondence to Pier Paolo Di Fiore:
| |
Collapse
|
3
|
Banerjee SL, Lessard F, Chartier FJM, Jacquet K, Osornio-Hernandez AI, Teyssier V, Ghani K, Lavoie N, Lavoie JN, Caruso M, Laprise P, Elowe S, Lambert JP, Bisson N. EPH receptor tyrosine kinases phosphorylate the PAR-3 scaffold protein to modulate downstream signaling networks. Cell Rep 2022; 40:111031. [PMID: 35793621 DOI: 10.1016/j.celrep.2022.111031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 11/03/2022] Open
Abstract
EPH receptors (EPHRs) constitute the largest family among receptor tyrosine kinases in humans. They are mainly involved in short-range cell-cell communication events that regulate cell adhesion, migration, and boundary formation. However, the molecular mechanisms by which EPHRs control these processes are less understood. To address this, we unravel EPHR-associated complexes under native conditions using mass-spectrometry-based BioID proximity labeling. We obtain a composite proximity network from EPHA4, -B2, -B3, and -B4 that comprises 395 proteins, most of which were not previously linked to EPHRs. We examine the contribution of several BioID-identified candidates via loss-of-function in an EPHR-dependent cell-segregation assay. We find that the signaling scaffold PAR-3 is required for cell sorting and that EPHRs directly phosphorylate PAR-3. We also delineate a signaling complex involving the C-terminal SRC kinase (CSK), whose recruitment to PAR-3 is dependent on EPHR signals. Our work describes signaling networks by which EPHRs regulate cellular phenotypes.
Collapse
Affiliation(s)
- Sara L Banerjee
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Frédéric Lessard
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - François J M Chartier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Kévin Jacquet
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
| | - Ana I Osornio-Hernandez
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Valentine Teyssier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Karim Ghani
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
| | - Noémie Lavoie
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Josée N Lavoie
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| | - Manuel Caruso
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| | - Patrick Laprise
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| | - Sabine Elowe
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada; Department of Pediatrics, Université Laval, Québec, QC, Canada
| | - Jean-Philippe Lambert
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; Department of Molecular Medicine, Université Laval, Québec, QC, Canada; Centre de recherche en données massives de l'Université Laval, Québec, QC, Canada; Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Endocrinologie-néphrologie, Québec, QC, Canada
| | - Nicolas Bisson
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada.
| |
Collapse
|
4
|
Huang H, Li Y, Wang L, Song Y, Zhang G. Membrane proteomic analysis identifies the polarity protein PARD3 as a novel antiviral protein against PEDV infection. J Proteomics 2021; 253:104462. [PMID: 34954106 PMCID: PMC8695312 DOI: 10.1016/j.jprot.2021.104462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/01/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly pathogenic enteric coronavirus causing lethal watery diarrhea in suckling piglets. PEDV could remodel host membrane structures for their replication, assembly and escape from host cells. However, little is known about the host membrane proteins of PEDV infection. In this study, we analyzed differentially abundant proteins (DAPs) between PEDV infection group and control group and identified the polarity protein PARD3 as one of the most significantly DAPs. PARD3 is implicated in the formation of tight junctions at epithelial cell-cell contacts. Then, we found that PEDV infection promoted the degradation of PARD3 via the ubiquitin proteasome pathway. Moreover, knockdown of PARD3 promoted the proliferation of PEDV. Further study showed that the downregulation of PARD3 altered the normal morphology of the tight junction proteins and promoted apical and basolateral virus proliferation. Tight junctions enable epithelial cells to form physical barriers, which act as an innate immune mechanism that can impede viral infection and PEDV affected the barrier functions by causing degradation of PARD3. Taken together, this work is the first time to investigate the membrane protein profile of PEDV-infected cells using quantitative proteomics and suggests that PARD3 could be a potential novel antiviral protein against PEDV infection. Significance Membrane proteins are involved in various physiological and biochemical functions critical for cellular function. It is also dynamic in nature, where many proteins are changed during in response to environmental stress. However, membrane proteins are difficult to study because of their hydrophobicity. Membrane proteomic methods using mass spectrometry analysis have been developed and applied for the characterization of the plasma membrane and subcellular organelles of various virus infected cells. Porcine epidemic diarrhea virus (PEDV) is an enteric pathogen of importance to the swine industry, causing high mortality in neonatal piglets. Because PEDV infected Vero cells can lead to significant changes in cell membrane morphology and form syncytial lesions. Here, we isolated the membrane proteins of PEDV infected and control cells and applied isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantitatively identify the differentially abundant proteins (DAPs) in PEDV-infected Vero cells and confirmed the DAPs by performing RT-qPCR and Western blot analysis. Among these differential proteins, we focused on a down-regulated protein PARD3 which is important for cell tight junction and cell polarity. Loss of PARD3 can destroy the tight junction of cells and promote the proliferation of PEDV in the apical and basolateral sides. These findings will provide valuable information to better understand the mechanisms underlying the host defense responses to PEDV infection.
Collapse
Affiliation(s)
- Huimin Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yongtao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Li Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Huayuan Road No. 116, Zhengzhou 450002, China
| | - Yapeng Song
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Huayuan Road No. 116, Zhengzhou 450002, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
5
|
The polarity protein PARD3 and cancer. Oncogene 2021; 40:4245-4262. [PMID: 34099863 DOI: 10.1038/s41388-021-01813-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/10/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Tissue disorganisation is one of the main hallmarks of cancer. Polarity proteins are responsible for the arrangement of cells within epithelial tissues through the asymmetric organisation of cellular components. Partition defective 3 (PARD3) is a master regulator of the Par polarity complex primarily due to its ability to form large complexes via its self-homologous binding domain. In addition to its role in polarity, PARD3 is a scaffolding protein that binds to intracellular signalling molecules, many of which are frequently deregulated in cancer. The role of PARD3 has been implicated in multiple solid cancers as either a tumour suppressor or promoter. This dual functionality is both physiologically and cell context dependent. In this review, we will discuss PARD3's role in tumourigenesis in both laboratory and clinical settings. We will also review several of the mechanisms underpinning PARD3's function including its association with intracellular signalling pathways and its role in the regulation of asymmetric cell division.
Collapse
|
6
|
Luthold C, Varlet AA, Lambert H, Bordeleau F, Lavoie JN. Chaperone-Assisted Mitotic Actin Remodeling by BAG3 and HSPB8 Involves the Deacetylase HDAC6 and Its Substrate Cortactin. Int J Mol Sci 2020; 22:ijms22010142. [PMID: 33375626 PMCID: PMC7795263 DOI: 10.3390/ijms22010142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
The fidelity of actin dynamics relies on protein quality control, but the underlying molecular mechanisms are poorly defined. During mitosis, the cochaperone BCL2-associated athanogene 3 (BAG3) modulates cell rounding, cortex stability, spindle orientation, and chromosome segregation. Mitotic BAG3 shows enhanced interactions with its preferred chaperone partner HSPB8, the autophagic adaptor p62/SQSTM1, and HDAC6, a deacetylase with cytoskeletal substrates. Here, we show that depletion of BAG3, HSPB8, or p62/SQSTM1 can recapitulate the same inhibition of mitotic cell rounding. Moreover, depletion of either of these proteins also interfered with the dynamic of the subcortical actin cloud that contributes to spindle positioning. These phenotypes were corrected by drugs that limit the Arp2/3 complex or HDAC6 activity, arguing for a role for BAG3 in tuning branched actin network assembly. Mechanistically, we found that cortactin acetylation/deacetylation is mitotically regulated and is correlated with a reduced association of cortactin with HDAC6 in situ. Remarkably, BAG3 depletion hindered the mitotic decrease in cortactin–HDAC6 association. Furthermore, expression of an acetyl-mimic cortactin mutant in BAG3-depleted cells normalized mitotic cell rounding and the subcortical actin cloud organization. Together, these results reinforce a BAG3′s function for accurate mitotic actin remodeling, via tuning cortactin and HDAC6 spatial dynamics.
Collapse
Affiliation(s)
- Carole Luthold
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada; (C.L.); (A.-A.V.); (H.L.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
| | - Alice-Anaïs Varlet
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada; (C.L.); (A.-A.V.); (H.L.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
| | - Herman Lambert
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada; (C.L.); (A.-A.V.); (H.L.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
| | - François Bordeleau
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada; (C.L.); (A.-A.V.); (H.L.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: (F.B.); (J.N.L.)
| | - Josée N. Lavoie
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada; (C.L.); (A.-A.V.); (H.L.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: (F.B.); (J.N.L.)
| |
Collapse
|
7
|
Jacquet K, Rodrigue MA, Richard DE, Lavoie JN. The adenoviral protein E4orf4: a probing tool to decipher mechanical stress-induced nuclear envelope remodeling in tumor cells. Cell Cycle 2020; 19:2963-2981. [PMID: 33103553 DOI: 10.1080/15384101.2020.1836441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The human adenovirus (Ad) type 2/5 early region 4 (E4) ORF4 protein (E4orf4) exerts a remarkable tumor cell-selective killing activity in mammalian cells. This indicates that E4orf4 can target tumor cell-defining features and is a unique tool to probe cancer cell vulnerabilities. Recently, we found that E4orf4, through an interaction with the polarity protein PAR3, subverts nuclear envelope (NE) remodeling processes in a tumor cell-selective manner. In this Perspective, we outline mechanical signals that modify nuclear dynamics and tumor cell behavior to highlight potential mechanisms for E4orf4's tumoricidal activity. Through an analysis of E4orf4's cellular targets, we define a protein subnetwork that comprises phosphatase systems interconnected to polarity protein hubs, which could contribute to enhanced NE plasticity. We infer that elucidating E4orf4's protein network at a functional level could uncover key mechanisms of NE remodeling that define the tumor cell phenotype.
Collapse
Affiliation(s)
- Kévin Jacquet
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada
| | - Marc-Antoine Rodrigue
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada
| | - Darren E Richard
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval , Québec, Canada.,Endocrinology and Nephrology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada
| | - Josée N Lavoie
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval , Québec, Canada
| |
Collapse
|
8
|
Georgi F, Andriasyan V, Witte R, Murer L, Hemmi S, Yu L, Grove M, Meili N, Kuttler F, Yakimovich A, Turcatti G, Greber UF. The FDA-Approved Drug Nelfinavir Inhibits Lytic Cell-Free but Not Cell-Associated Nonlytic Transmission of Human Adenovirus. Antimicrob Agents Chemother 2020; 64:e01002-20. [PMID: 32601166 PMCID: PMC7449217 DOI: 10.1128/aac.01002-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Adenoviruses (AdVs) are prevalent and give rise to chronic and recurrent disease. Human AdV (HAdV) species B and C, such as HAdV-C2, -C5, and -B14, cause respiratory disease and constitute a health threat for immunocompromised individuals. HAdV-Cs are well known for lysing cells owing to the E3 CR1-β-encoded adenovirus death protein (ADP). We previously reported a high-throughput image-based screening framework and identified an inhibitor of HAdV-C2 multiround infection, nelfinavir mesylate. Nelfinavir is the active ingredient of Viracept, an FDA-approved inhibitor of human immunodeficiency virus (HIV) aspartyl protease that is used to treat AIDS. It is not effective against single-round HAdV infections. Here, we show that nelfinavir inhibits lytic cell-free transmission of HAdV, indicated by the suppression of comet-shaped infection foci in cell culture. Comet-shaped foci occur upon convection-based transmission of cell-free viral particles from an infected cell to neighboring uninfected cells. HAdV lacking ADP was insensitive to nelfinavir but gave rise to comet-shaped foci, indicating that ADP enhances but is not required for cell lysis. This was supported by the notion that HAdV-B14 and -B14p1 lacking ADP were highly sensitive to nelfinavir, although HAdV-A31, -B3, -B7, -B11, -B16, -B21, -D8, -D30, and -D37 were less sensitive. Conspicuously, nelfinavir uncovered slow-growing round HAdV-C2 foci, independent of neutralizing antibodies in the medium, indicative of nonlytic cell-to-cell transmission. Our study demonstrates the repurposing potential of nelfinavir with postexposure efficacy against different HAdVs and describes an alternative nonlytic cell-to-cell transmission mode of HAdV.
Collapse
Affiliation(s)
- Fanny Georgi
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Vardan Andriasyan
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Robert Witte
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Luca Murer
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Silvio Hemmi
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Lisa Yu
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Melanie Grove
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Nicole Meili
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Fabien Kuttler
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Artur Yakimovich
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- Artificial Intelligence for Life Sciences CIC, London, United Kingdom
| | - Gerardo Turcatti
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Georgi F, Greber UF. The Adenovirus Death Protein - a small membrane protein controls cell lysis and disease. FEBS Lett 2020; 594:1861-1878. [PMID: 32472693 DOI: 10.1002/1873-3468.13848] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/16/2022]
Abstract
Human adenoviruses (HAdVs) cause widespread acute and persistent infections. Infections are usually mild and controlled by humoral and cell-based immunity. Reactivation of persistently infected immune cells can lead to a life-threatening disease in immunocompromised individuals, especially children and transplant recipients. To date, no effective therapy or vaccine against HAdV disease is available to the public. HAdV-C2 and C5 are the best-studied of more than 100 HAdV types. They persist in infected cells and release their progeny by host cell lysis to neighbouring cells and fluids, a process facilitated by the adenovirus death protein (ADP). ADP consists of about 100 amino acids and harbours a single membrane-spanning domain. It undergoes post-translational processing in endoplasmic reticulum and Golgi compartments, before localizing to the inner nuclear membrane. Here, we discuss the current knowledge on how ADP induces membrane rupture. Membrane rupture is essential for both progression of disease and efficacy of therapeutic viruses in clinical applications, in particular oncolytic therapy.
Collapse
Affiliation(s)
- Fanny Georgi
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|