1
|
Deguchi T, Sergeev NA, Ries J. Tracking Single Kinesin in Live Cells Using MINFLUX. Methods Mol Biol 2025; 2881:119-131. [PMID: 39704940 DOI: 10.1007/978-1-0716-4280-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
MINFLUX is a super-resolution fluorescence microscopy technique that enables single-molecule tracking in live cells at a single-nanometer spatial and sub-millisecond temporal resolution. This chapter describes a method for tracking fluorescently labeled human kinesin-1 in live cells using MINFLUX and analyzing kinesin stepping dynamics.
Collapse
Affiliation(s)
- Takahiro Deguchi
- European Molecular Biology Laboratory, Cell Biology and Biophysics, Heidelberg, Germany
| | - Nikolay Arkadievich Sergeev
- European Molecular Biology Laboratory, Cell Biology and Biophysics, Heidelberg, Germany
- Max Perutz Labs, Vienna Biocenter Campus, Vienna, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Jonas Ries
- European Molecular Biology Laboratory, Cell Biology and Biophysics, Heidelberg, Germany.
- Max Perutz Labs, Vienna Biocenter Campus, Vienna, Austria.
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria.
- Faculty of Physics, University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Duan D, Koleske AJ. Phase separation of microtubule-binding proteins - implications for neuronal function and disease. J Cell Sci 2024; 137:jcs263470. [PMID: 39679446 DOI: 10.1242/jcs.263470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Protein liquid-liquid phase separation (LLPS) is driven by intrinsically disordered regions and multivalent binding domains, both of which are common features of diverse microtubule (MT) regulators. Many in vitro studies have dissected the mechanisms by which MT-binding proteins (MBPs) regulate MT nucleation, stabilization and dynamics, and investigated whether LLPS plays a role in these processes. However, more recent in vivo studies have focused on how MBP LLPS affects biological functions throughout neuronal development. Dysregulation of MBP LLPS can lead to formation of aggregates - an underlying feature in many neurodegenerative diseases - such as the tau neurofibrillary tangles present in Alzheimer's disease. In this Review, we highlight progress towards understanding the regulation of MT dynamics through the lens of phase separation of MBPs and associated cytoskeletal regulators, from both in vitro and in vivo studies. We also discuss how LLPS of MBPs regulates neuronal development and maintains homeostasis in mature neurons.
Collapse
Affiliation(s)
- Daisy Duan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
3
|
Perez-Bertoldi JM, Zhao Y, Thawani A, Yildiz A, Nogales E. HURP regulates Kif18A recruitment and activity to synergistically control microtubule dynamics. Nat Commun 2024; 15:9687. [PMID: 39516196 PMCID: PMC11549086 DOI: 10.1038/s41467-024-53691-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
During mitosis, microtubule dynamics are regulated to ensure proper alignment and segregation of chromosomes. The dynamics of kinetochore-attached microtubules are regulated by hepatoma-upregulated protein (HURP) and the mitotic kinesin-8 Kif18A, but the underlying mechanism remains elusive. Using single-molecule imaging in vitro, we demonstrate that Kif18A motility is regulated by HURP. While sparse decoration of HURP activates the motor, higher concentrations hinder processive motility. To shed light on this behavior, we determine the binding mode of HURP to microtubules using cryo-EM. The structure helps rationalize why HURP functions as a microtubule stabilizer. Additionally, HURP partially overlaps with the microtubule-binding site of the Kif18A motor domain, indicating that excess HURP inhibits Kif18A motility by steric exclusion. We also observe that HURP and Kif18A function together to suppress dynamics of the microtubule plus-end, providing a mechanistic basis for how they collectively serve in microtubule length control.
Collapse
Affiliation(s)
| | - Yuanchang Zhao
- Physics Department, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Akanksha Thawani
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, CA, USA.
- Physics Department, University of California, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
4
|
Jiang R, Feng Q, Nong D, Kang YJ, Sept D, Hancock WO. Motor Clustering Enhances Kinesin-driven Vesicle Transport. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619892. [PMID: 39484389 PMCID: PMC11526910 DOI: 10.1101/2024.10.23.619892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Intracellular vesicles are typically transported by a small number of kinesin and dynein motors. However, the slow microtubule binding rate of kinesin-1 observed in in vitro biophysical studies suggests that long-range transport may require a high number of motors. To address the discrepancy in motor requirements between in vivo and in vitro studies, we reconstituted motility of 120-nm-diameter liposomes driven by multiple GFP-labeled kinesin-1 motors. Consistent with predictions based on previous binding rate measurements, we found that long-distance transport requires a high number of kinesin-1 motors. We hypothesized that this discrepancy from in vivo observations may arise from differences in motor organization and tested whether motor clustering can enhance transport efficiency using a DNA scaffold. Clustering just three motors improved liposome travel distances across a wide range of motor numbers. Our findings demonstrate that, independent of motor number, the arrangement of motors on a vesicle regulates transport distance, suggesting that differences in motor organization may explain the disparity between in vivo and in vitro motor requirements for long-range transport.
Collapse
Affiliation(s)
- Rui Jiang
- Intercollege Program in Integrative and Biomedical Physiology, Pennsylvania State University, University Park, PA 16802
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802
| | - Qingzhou Feng
- Molecular Cellular and Integrative Biomedical Sciences Program, Pennsylvania State University, University Park PA 16802
| | - Daguan Nong
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802
| | - You Jung Kang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - William O. Hancock
- Intercollege Program in Integrative and Biomedical Physiology, Pennsylvania State University, University Park, PA 16802
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802
- Molecular Cellular and Integrative Biomedical Sciences Program, Pennsylvania State University, University Park PA 16802
| |
Collapse
|
5
|
Durairajan SSK, Selvarasu K, Singh AK, Patnaik S, Iyaswamy A, Jaiswal Y, Williams LL, Huang JD. Unraveling the interplay of kinesin-1, tau, and microtubules in neurodegeneration associated with Alzheimer's disease. Front Cell Neurosci 2024; 18:1432002. [PMID: 39507380 PMCID: PMC11537874 DOI: 10.3389/fncel.2024.1432002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Alzheimer's disease (AD) is marked by the gradual and age-related deterioration of nerve cells in the central nervous system. The histopathological features observed in the brain affected by AD are the aberrant buildup of extracellular and intracellular amyloid-β and the formation of neurofibrillary tangles consisting of hyperphosphorylated tau protein. Axonal transport is a fundamental process for cargo movement along axons and relies on molecular motors like kinesins and dyneins. Kinesin's responsibility for transporting crucial cargo within neurons implicates its dysfunction in the impaired axonal transport observed in AD. Impaired axonal transport and dysfunction of molecular motor proteins, along with dysregulated signaling pathways, contribute significantly to synaptic impairment and cognitive decline in AD. Dysregulation in tau, a microtubule-associated protein, emerges as a central player, destabilizing microtubules and disrupting the transport of kinesin-1. Kinesin-1 superfamily members, including kinesin family members 5A, 5B, and 5C, and the kinesin light chain, are intricately linked to AD pathology. However, inconsistencies in the abundance of kinesin family members in AD patients underline the necessity for further exploration into the mechanistic impact of these motor proteins on neurodegeneration and axonal transport disruptions across a spectrum of neurological conditions. This review underscores the significance of kinesin-1's anterograde transport in AD. It emphasizes the need for investigations into the underlying mechanisms of the impact of motor protein across various neurological conditions. Despite current limitations in scientific literature, our study advocates for targeting kinesin and autophagy dysfunctions as promising avenues for novel therapeutic interventions and diagnostics in AD.
Collapse
Affiliation(s)
- Siva Sundara Kumar Durairajan
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Karthikeyan Selvarasu
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Abhay Kumar Singh
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Supriti Patnaik
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, India
| | - Yogini Jaiswal
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, Kannapolis, NC, United States
| | - Leonard L. Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, Kannapolis, NC, United States
| | - Jian-Dong Huang
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
6
|
Yildiz A. Mechanism and regulation of kinesin motors. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00780-6. [PMID: 39394463 DOI: 10.1038/s41580-024-00780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/13/2024]
Abstract
Kinesins are a diverse superfamily of microtubule-based motors that perform fundamental roles in intracellular transport, cytoskeletal dynamics and cell division. These motors share a characteristic motor domain that powers unidirectional motility and force generation along microtubules, and they possess unique tail domains that recruit accessory proteins and facilitate oligomerization, regulation and cargo recognition. The location, direction and timing of kinesin-driven processes are tightly regulated by various cofactors, adaptors, microtubule tracks and microtubule-associated proteins. This Review focuses on recent structural and functional studies that reveal how members of the kinesin superfamily use the energy of ATP hydrolysis to transport cargoes, depolymerize microtubules and regulate microtubule dynamics. I also survey how accessory proteins and post-translational modifications regulate the autoinhibition, cargo binding and motility of some of the best-studied kinesins. Despite much progress, the mechanism and regulation of kinesins are still emerging, and unresolved questions can now be tackled using newly developed approaches in biophysics and structural biology.
Collapse
Affiliation(s)
- Ahmet Yildiz
- Physics Department, University of California at Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
7
|
Jongsma MLM, Bakker N, Voortman LM, Koning RI, Bos E, Akkermans JJLL, Janssen L, Neefjes J. Systems mapping of bidirectional endosomal transport through the crowded cell. Curr Biol 2024; 34:4476-4494.e11. [PMID: 39276769 PMCID: PMC11466077 DOI: 10.1016/j.cub.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/02/2024] [Accepted: 08/15/2024] [Indexed: 09/17/2024]
Abstract
Kinesin and dynein-dynactin motors move endosomes and other vesicles bidirectionally along microtubules, a process mainly studied under in vitro conditions. Here, we provide a physiological bidirectional transport model following color-coded, endogenously tagged transport-related proteins as they move through a crowded cellular environment. Late endosomes (LEs) surf bidirectionally on Protrudin-enriched endoplasmic reticulum (ER) membrane contact sites, while hopping and gliding along microtubules and bypassing cellular obstacles, such as mitochondria. During bidirectional transport, late endosomes do not switch between opposing Rab7 GTPase effectors, RILP and FYCO1, or their associated dynein and KIF5B motor proteins, respectively. In the endogenous setting, far fewer motors associate with endosomal membranes relative to effectors, implying coordination of transport with other aspects of endosome physiology through GTPase-regulated mechanisms. We find that directionality of transport is provided in part by various microtubule-associated proteins (MAPs), including MID1, EB1, and CEP169, which recruit Lis1-activated dynein motors to microtubule plus ends for transport of early and late endosomal populations. At these microtubule plus ends, activated dynein motors encounter the dynactin subunit p150glued and become competent for endosomal capture and minus-end movement in collaboration with membrane-associated Rab7-RILP. We show that endosomes surf over the ER through the crowded cell and move bidirectionally under the control of MAPs for motor activation and through motor replacement and capture by endosomal anchors.
Collapse
Affiliation(s)
- Marlieke L M Jongsma
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| | - Nina Bakker
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Lenard M Voortman
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Roman I Koning
- Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, the Netherlands
| | - Erik Bos
- Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, the Netherlands
| | - Jimmy J L L Akkermans
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Lennert Janssen
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
8
|
Seo D, Yue Y, Yamazaki S, Verhey KJ, Gammon DB. Poxvirus A51R Proteins Negatively Regulate Microtubule-Dependent Transport by Kinesin-1. Int J Mol Sci 2024; 25:7825. [PMID: 39063067 PMCID: PMC11277487 DOI: 10.3390/ijms25147825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Microtubule (MT)-dependent transport is a critical means of intracellular movement of cellular cargo by kinesin and dynein motors. MT-dependent transport is tightly regulated by cellular MT-associated proteins (MAPs) that directly bind to MTs and either promote or impede motor protein function. Viruses have been widely shown to usurp MT-dependent transport to facilitate their virion movement to sites of replication and/or for exit from the cell. However, it is unclear if viruses also negatively regulate MT-dependent transport. Using single-molecule motility and cellular transport assays, we show that the vaccinia virus (VV)-encoded MAP, A51R, inhibits kinesin-1-dependent transport along MTs in vitro and in cells. This inhibition is selective as the function of kinesin-3 is largely unaffected by VV A51R. Interestingly, we show that A51R promotes the perinuclear accumulation of cellular cargo transported by kinesin-1 such as lysosomes and mitochondria during infection. Moreover, A51R also regulates the release of specialized VV virions that exit the cell using kinesin-1-dependent movement. Using a fluorescently tagged rigor mutant of kinesin-1, we show that these motors accumulate on A51R-stabilized MTs, suggesting these stabilized MTs may form a "kinesin-1 sink" to regulate MT-dependent transport in the cell. Collectively, our findings uncover a new mechanism by which viruses regulate host cytoskeletal processes.
Collapse
Affiliation(s)
- Dahee Seo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yang Yue
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Shin Yamazaki
- Department of Neuroscience and Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kristen J. Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Don B. Gammon
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
9
|
Cross JA, Dawson WM, Shukla SR, Weijman JF, Mantell J, Dodding MP, Woolfson DN. A de novo designed coiled coil-based switch regulates the microtubule motor kinesin-1. Nat Chem Biol 2024; 20:916-923. [PMID: 38849529 PMCID: PMC11213707 DOI: 10.1038/s41589-024-01640-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/09/2024] [Indexed: 06/09/2024]
Abstract
Many enzymes are allosterically regulated via conformational change; however, our ability to manipulate these structural changes and control function is limited. Here we install a conformational switch for allosteric activation into the kinesin-1 microtubule motor in vitro and in cells. Kinesin-1 is a heterotetramer that accesses open active and closed autoinhibited states. The equilibrium between these states centers on a flexible elbow within a complex coiled-coil architecture. We target the elbow to engineer a closed state that can be opened with a de novo designed peptide. The alternative states are modeled computationally and confirmed by biophysical measurements and electron microscopy. In cells, peptide-driven activation increases kinesin transport, demonstrating a primary role for conformational switching in regulating motor activity. The designs are enabled by our understanding of ubiquitous coiled-coil structures, opening possibilities for controlling other protein activities.
Collapse
Affiliation(s)
- Jessica A Cross
- School of Biochemistry, University of Bristol, Bristol, UK.
- School of Chemistry, University of Bristol, Bristol, UK.
| | | | - Shivam R Shukla
- School of Biochemistry, University of Bristol, Bristol, UK
- School of Chemistry, University of Bristol, Bristol, UK
| | | | - Judith Mantell
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Mark P Dodding
- School of Biochemistry, University of Bristol, Bristol, UK.
- Bristol BioDesign Institute, University of Bristol, Bristol, UK.
| | - Derek N Woolfson
- School of Biochemistry, University of Bristol, Bristol, UK.
- School of Chemistry, University of Bristol, Bristol, UK.
- Bristol BioDesign Institute, University of Bristol, Bristol, UK.
| |
Collapse
|
10
|
Shen Y, Ori-McKenney KM. Microtubule-associated protein MAP7 promotes tubulin posttranslational modifications and cargo transport to enable osmotic adaptation. Dev Cell 2024; 59:1553-1570.e7. [PMID: 38574732 PMCID: PMC11187767 DOI: 10.1016/j.devcel.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/11/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Cells remodel their cytoskeletal networks to adapt to their environment. Here, we analyze the mechanisms utilized by the cell to tailor its microtubule landscape in response to changes in osmolarity that alter macromolecular crowding. By integrating live-cell imaging, ex vivo enzymatic assays, and in vitro reconstitution, we probe the impact of cytoplasmic density on microtubule-associated proteins (MAPs) and tubulin posttranslational modifications (PTMs). We find that human epithelial cells respond to fluctuations in cytoplasmic density by modulating microtubule acetylation, detyrosination, or MAP7 association without differentially affecting polyglutamylation, tyrosination, or MAP4 association. These MAP-PTM combinations alter intracellular cargo transport, enabling the cell to respond to osmotic challenges. We further dissect the molecular mechanisms governing tubulin PTM specification and find that MAP7 promotes acetylation and inhibits detyrosination. Our data identify MAP7 in modulating the tubulin code, resulting in microtubule cytoskeleton remodeling and alteration of intracellular transport as an integrated mechanism of cellular adaptation.
Collapse
Affiliation(s)
- Yusheng Shen
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Kassandra M Ori-McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
11
|
Beaudet D, Berger CL, Hendricks AG. The types and numbers of kinesins and dyneins transporting endocytic cargoes modulate their motility and response to tau. J Biol Chem 2024; 300:107323. [PMID: 38677516 PMCID: PMC11130734 DOI: 10.1016/j.jbc.2024.107323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Organelles and vesicular cargoes are transported by teams of kinesin and dynein motors along microtubules. We isolated endocytic organelles from cells at different stages of maturation and reconstituted their motility along microtubules in vitro. We asked how the sets of motors transporting a cargo determine its motility and response to the microtubule-associated protein tau. Here, we find that phagosomes move in both directions along microtubules, but the directional bias changes during maturation. Early phagosomes exhibit retrograde-biased transport while late phagosomes are directionally unbiased. Correspondingly, early and late phagosomes are bound by different numbers and combinations of kinesins-1, -2, -3, and dynein. Tau stabilizes microtubules and directs transport within neurons. While single-molecule studies show that tau differentially regulates the motility of kinesins and dynein in vitro, less is known about its role in modulating the trafficking of endogenous cargoes transported by their native teams of motors. Previous studies showed that tau preferentially inhibits kinesin motors, which biases late phagosome transport towards the microtubule minus-end. Here, we show that tau strongly inhibits long-range, dynein-mediated motility of early phagosomes. Tau reduces forces generated by teams of dynein motors on early phagosomes and accelerates dynein unbinding under load. Thus, cargoes differentially respond to tau, where dynein complexes on early phagosomes are more sensitive to tau inhibition than those on late phagosomes. Mathematical modeling further explains how small changes in the number of kinesins and dynein on cargoes impact the net directionality but also that cargoes with different sets of motors respond differently to tau.
Collapse
Affiliation(s)
- Daniel Beaudet
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Christopher L Berger
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Adam G Hendricks
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Perez-Bertoldi JM, Zhao Y, Thawani A, Yildiz A, Nogales E. Molecular interplay between HURP and Kif18A in mitotic spindle regulation. RESEARCH SQUARE 2024:rs.3.rs-4249615. [PMID: 38854046 PMCID: PMC11160874 DOI: 10.21203/rs.3.rs-4249615/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
During mitosis, microtubule dynamics are regulated to ensure proper alignment and segregation of chromosomes. The dynamics of kinetochore-attached microtubules are regulated by hepatoma-upregulated protein (HURP) and the mitotic kinesin-8 Kif18A, but the underlying mechanism remains elusive. Using single-molecule imaging in vitro, we demonstrate that Kif18A motility is regulated by HURP. While sparse decoration of HURP activates the motor, higher concentrations hinder processive motility. To shed light on this behavior, we determined the binding mode of HURP to microtubules using Cryo-EM. The structure reveals that one HURP motif spans laterally across β-tubulin, while a second motif binds between adjacent protofilaments. HURP partially overlaps with the microtubule-binding site of the Kif18A motor domain, indicating that excess HURP inhibits Kif18A motility by steric exclusion. We also observed that HURP and Kif18A function together to suppress dynamics of the microtubule plus-end, providing a mechanistic basis for how they collectively serve in spindle length control.
Collapse
Affiliation(s)
| | - Yuanchang Zhao
- Physics Department, University of California, Berkeley, CA, USA
| | - Akanksha Thawani
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
- Physics Department, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
13
|
Chen Q, Li S, Fu F, Huang Q, Zhang R. MAP7 drives EMT and cisplatin resistance in ovarian cancer via wnt/β-catenin signaling. Heliyon 2024; 10:e30409. [PMID: 38726137 PMCID: PMC11078642 DOI: 10.1016/j.heliyon.2024.e30409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Methods Our approach encompasses analyzing MAP7's expression levels across various datasets and clinical specimens, evaluating its association with patient outcomes, and probing its influence on ovarian cancer cell dynamics such as proliferation, migration, invasion, and apoptosis. Results We have identified significant upregulation of MAP7 in ovarian cancer tissues, which correlates with advanced disease stages, higher pathological grades, and unfavorable prognoses. Functionally, the inhibition of MAP7 suppresses cancer cell proliferation, migration, and invasion while promoting apoptosis. Notably, the silencing of MAP7 attenuates the epithelial-mesenchymal transition (EMT) and disrupts Wnt/β-catenin pathway signaling-two critical processes implicated in metastasis and chemoresistance. In cisplatin-resistant A2780-DDP cells, the downregulation of MAP7 effectively reverses their resistance to cisplatin. Furthermore, the nuclear localization of MAP7 in these cells underscores its pivotal role in driving cisplatin resistance by modulating the transcriptional regulation and interaction dynamics of β-catenin. Conclusion Our findings position MAP7 as a pivotal element in ovarian cancer advancement and cisplatin resistance, primarily through its modulation of EMT and the Wnt/β-catenin pathway. Its association with poor clinical outcomes underscores its potential as both a prognostic marker and a therapeutic target. Strategies aimed at MAP7 could represent a new frontier in combating chemotherapy resistance in ovarian cancer, emphasizing its significance in crafting complementary treatments for this disease.
Collapse
Affiliation(s)
- Qingqing Chen
- The Third School of Clinical Medicine,Southern Medical University, Guangzhou, 510500, China
| | - Shaojing Li
- Shanghai Fengxian District Central Hospital, 6600 Nanfeng Road, Fengxian District, Shanghai, 201400, China
| | - Furong Fu
- Pingyang Hospital affiliated to Wenzhou Medical University, No.555, Kunao Road, Zhejiang Province, China
| | - Qunhuan Huang
- Shanghai Fengxian District Central Hospital, 6600 Nanfeng Road, Fengxian District, Shanghai, 201400, China
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Zhang
- The Third School of Clinical Medicine,Southern Medical University, Guangzhou, 510500, China
- Shanghai Fengxian District Central Hospital, 6600 Nanfeng Road, Fengxian District, Shanghai, 201400, China
| |
Collapse
|
14
|
Nguyen T, Narayanareddy BRJ, Gross SP, Miles CE. Competition between physical search and a weak-to-strong transition rate-limits kinesin binding times. PLoS Comput Biol 2024; 20:e1012158. [PMID: 38768214 PMCID: PMC11142708 DOI: 10.1371/journal.pcbi.1012158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/31/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
The self-organization of cells relies on the profound complexity of protein-protein interactions. Challenges in directly observing these events have hindered progress toward understanding their diverse behaviors. One notable example is the interaction between molecular motors and cytoskeletal systems that combine to perform a variety of cellular functions. In this work, we leverage theory and experiments to identify and quantify the rate-limiting mechanism of the initial association between a cargo-bound kinesin motor and a microtubule track. Recent advances in optical tweezers provide binding times for several lengths of kinesin motors trapped at varying distances from a microtubule, empowering the investigation of competing models. We first explore a diffusion-limited model of binding. Through Brownian dynamics simulations and simulation-based inference, we find this simple diffusion model fails to explain the experimental binding times, but an extended model that accounts for the ADP state of the molecular motor agrees closely with the data, even under the scrutiny of penalizing for additional model complexity. We provide quantification of both kinetic rates and biophysical parameters underlying the proposed binding process. Our model suggests that a typical binding event is limited by ADP state rather than physical search. Lastly, we predict how these association rates can be modulated in distinct ways through variation of environmental concentrations and physical properties.
Collapse
Affiliation(s)
- Trini Nguyen
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | | | - Steven P. Gross
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Department of Physics, University of California, Irvine, Irvine, California, United States of America
| | - Christopher E. Miles
- Department of Mathematics, University of California, Irvine, Irvine, California, United States of America
| |
Collapse
|
15
|
Perez-Bertoldi JM, Zhao Y, Thawani A, Yildiz A, Nogales E. Molecular interplay between HURP and Kif18A in mitotic spindle regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589088. [PMID: 38645125 PMCID: PMC11030443 DOI: 10.1101/2024.04.11.589088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
During mitosis, microtubule dynamics are regulated to ensure proper alignment and segregation of chromosomes. The dynamics of kinetochore-attached microtubules are regulated by hepatoma-upregulated protein (HURP) and the mitotic kinesin-8 Kif18A, but the underlying mechanism remains elusive. Using single-molecule imaging in vitro , we demonstrate that Kif18A motility is regulated by HURP. While sparse decoration of HURP activates the motor, higher concentrations hinder processive motility. To shed light on this behavior, we determined the binding mode of HURP to microtubules using Cryo-EM. The structure reveals that one HURP motif spans laterally across β-tubulin, while a second motif binds between adjacent protofilaments. HURP partially overlaps with the microtubule-binding site of the Kif18A motor domain, indicating that excess HURP inhibits Kif18A motility by steric exclusion. We also observed that HURP and Kif18A function together to suppress dynamics of the microtubule plus-end, providing a mechanistic basis for how they collectively serve in spindle length control.
Collapse
|
16
|
Wang L, Yan M, Bu T, Wu X, Li L, Silvestrini B, Sun F, Cheng CY, Chen H. Map-1a regulates Sertoli cell BTB dynamics through the cytoskeletal organization of microtubule and F-actin. Reprod Biol Endocrinol 2024; 22:36. [PMID: 38570783 PMCID: PMC10988971 DOI: 10.1186/s12958-024-01204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Microtubule-associated protein 1a (Map1a) is a microtubule (MT) regulatory protein that binds to the MT protofilaments in mammalian cells to promote MT stabilization. Maps work with MT cleavage proteins and other MT catastrophe-inducing proteins to confer MT dynamics to support changes in the Sertoli cell shape to sustain spermatogenesis. However, no functional studies are found in the literature to probe its role in spermatogenesis. Using an RNAi approach, coupled with the use of toxicant-induced testis (in vivo)- and Sertoli cell (in vitro)-injury models, RNA-Seq analysis, transcriptome profiling, and relevant bioinformatics analysis, immunofluorescence analysis, and pertinent biochemical assays for cytoskeletal organization, we have delineated the functional role of Map1a in Sertoli cells and testes. Map1a was shown to support MT structural organization, and its knockdown (KD) also perturbed the structural organization of actin, vimentin, and septin cytoskeletons as these cytoskeletons are intimately related, working in concert to support spermatogenesis. More importantly, cadmium-induced Sertoli cell injury that perturbed the MT structural organization across the cell cytoplasm was associated with disruptive changes in the distribution of Map1a and a surge in p-p38-MAPK (phosphorylated p38-mitogen-activated protein kinase) expression but not total p38-MAPK. These findings thus support the notion that p-p38-MAPK activation is involved in cadmium-induced Sertoli cell injury. This conclusion was supported by studies using doramapimod, a specific p38-MAPK phosphorylation (activation) inhibitor, which was capable of restoring the cadmium-induced disruptive structural organization of MTs across the Sertoli cell cytoplasm. In summary: this study provides mechanistic insights regarding restoration of toxicant-induced Sertoli cell and testis injury and male infertility.
Collapse
Affiliation(s)
- Lingling Wang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Tiao Bu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang 325027, Wenzhou, China
| | - Bruno Silvestrini
- Faculty of Pharmacy, University of Rome La Sapienza, P. Le Aldo Moro 5, 00185, Rome, Italy
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| | - C Yan Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Hao Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
17
|
Andreu-Carbó M, Egoldt C, Velluz MC, Aumeier C. Microtubule damage shapes the acetylation gradient. Nat Commun 2024; 15:2029. [PMID: 38448418 PMCID: PMC10918088 DOI: 10.1038/s41467-024-46379-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
The properties of single microtubules within the microtubule network can be modulated through post-translational modifications (PTMs), including acetylation within the lumen of microtubules. To access the lumen, the enzymes could enter through the microtubule ends and at damage sites along the microtubule shaft. Here we show that the acetylation profile depends on damage sites, which can be caused by the motor protein kinesin-1. Indeed, the entry of the deacetylase HDAC6 into the microtubule lumen can be modulated by kinesin-1-induced damage sites. In contrast, activity of the microtubule acetylase αTAT1 is independent of kinesin-1-caused shaft damage. On a cellular level, our results show that microtubule acetylation distributes in an exponential gradient. This gradient results from tight regulation of microtubule (de)acetylation and scales with the size of the cells. The control of shaft damage represents a mechanism to regulate PTMs inside the microtubule by giving access to the lumen.
Collapse
Affiliation(s)
| | - Cornelia Egoldt
- Department of Biochemistry, University of Geneva, 1211, Geneva, Switzerland
| | | | - Charlotte Aumeier
- Department of Biochemistry, University of Geneva, 1211, Geneva, Switzerland.
| |
Collapse
|
18
|
Adler A, Bangera M, Beugelink JW, Bahri S, van Ingen H, Moores CA, Baldus M. A structural and dynamic visualization of the interaction between MAP7 and microtubules. Nat Commun 2024; 15:1948. [PMID: 38431715 PMCID: PMC10908866 DOI: 10.1038/s41467-024-46260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Microtubules (MTs) are key components of the eukaryotic cytoskeleton and are essential for intracellular organization, organelle trafficking and mitosis. MT tasks depend on binding and interactions with MT-associated proteins (MAPs). MT-associated protein 7 (MAP7) has the unusual ability of both MT binding and activating kinesin-1-mediated cargo transport along MTs. Additionally, the protein is reported to stabilize MTs with its 112 amino-acid long MT-binding domain (MTBD). Here we investigate the structural basis of the interaction of MAP7 MTBD with the MT lattice. Using a combination of solid and solution-state nuclear magnetic resonance (NMR) spectroscopy with electron microscopy, fluorescence anisotropy and isothermal titration calorimetry, we shed light on the binding mode of MAP7 to MTs at an atomic level. Our results show that a combination of interactions between MAP7 and MT lattice extending beyond a single tubulin dimer and including tubulin C-terminal tails contribute to formation of the MAP7-MT complex.
Collapse
Affiliation(s)
- Agnes Adler
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Mamata Bangera
- Institute of Structural and Molecular Biology, School of Natural Sciences, Birkbeck, University of London, London, WC1E 7HX, UK
| | - J Wouter Beugelink
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Salima Bahri
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Hugo van Ingen
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, School of Natural Sciences, Birkbeck, University of London, London, WC1E 7HX, UK.
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
19
|
Heber S, McClintock MA, Simon B, Mehtab E, Lapouge K, Hennig J, Bullock SL, Ephrussi A. Tropomyosin 1-I/C coordinates kinesin-1 and dynein motors during oskar mRNA transport. Nat Struct Mol Biol 2024; 31:476-488. [PMID: 38297086 PMCID: PMC10948360 DOI: 10.1038/s41594-024-01212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
Dynein and kinesin motors mediate long-range intracellular transport, translocating towards microtubule minus and plus ends, respectively. Cargoes often undergo bidirectional transport by binding to both motors simultaneously. However, it is not known how motor activities are coordinated in such circumstances. In the Drosophila female germline, sequential activities of the dynein-dynactin-BicD-Egalitarian (DDBE) complex and of kinesin-1 deliver oskar messenger RNA from nurse cells to the oocyte, and within the oocyte to the posterior pole. We show through in vitro reconstitution that Tm1-I/C, a tropomyosin-1 isoform, links kinesin-1 in a strongly inhibited state to DDBE-associated oskar mRNA. Nuclear magnetic resonance spectroscopy, small-angle X-ray scattering and structural modeling indicate that Tm1-I/C suppresses kinesin-1 activity by stabilizing its autoinhibited conformation, thus preventing competition with dynein until kinesin-1 is activated in the oocyte. Our work reveals a new strategy for ensuring sequential activity of microtubule motors.
Collapse
Affiliation(s)
- Simone Heber
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mark A McClintock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Eve Mehtab
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Karine Lapouge
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
| | - Simon L Bullock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
20
|
Chiba K, Niwa S. Autoinhibition and activation of kinesin-1 and their involvement in amyotrophic lateral sclerosis. Curr Opin Cell Biol 2024; 86:102301. [PMID: 38096601 DOI: 10.1016/j.ceb.2023.102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Kinesin-1, composed of kinesin heavy chain and kinesin light chain, is a founding member of kinesin superfamily and transports various neuronal cargos. Kinesin-1 is one of the most abundant ATPases in the cell and thus need to be tightly regulated to avoid wastage of energy. It has been well established that kinesin-1 is regulated by the autoinhibition mechanism. This review focuses on the recent researches that have contributed to the understanding of mechanisms for the autoinhibition of kinesin-1 and its unlocking. Recent electron microscopic studies have shown an unanticipated structure of autoinhibited kinesin-1. Biochemical reconstitution have revealed detailed molecular mechanisms how the autoinhibition is unlocked. Importantly, misregulation of kinesin-1 is emerging as one of the major causes of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Kyoko Chiba
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-0845, Japan
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-0845, Japan; Graduate School of Life Sciences, Tohoku University, 2-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
21
|
Volkov VA, Akhmanova A. Phase separation on microtubules: from droplet formation to cellular function? Trends Cell Biol 2024; 34:18-30. [PMID: 37453878 DOI: 10.1016/j.tcb.2023.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Microtubules are cytoskeletal polymers that play important roles in numerous cellular processes, ranging from the control of cell shape and polarity to cell division and intracellular transport. Many of these roles rely on proteins that bind to microtubule ends and shafts, carry intrinsically disordered regions, and form complex multivalent interaction networks. A flurry of recent studies demonstrated that these properties allow diverse microtubule-binding proteins to undergo liquid-liquid phase separation (LLPS) in vitro. It is proposed that LLPS could potentially affect multiple microtubule-related processes, such as microtubule nucleation, control of microtubule dynamics and organization, and microtubule-based transport. Here, we discuss the evidence in favor and against the occurrence of LLPS and its functional significance for microtubule-based processes in cells.
Collapse
Affiliation(s)
- Vladimir A Volkov
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK.
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands.
| |
Collapse
|
22
|
Nguyen T, Narayanareddy BJ, Gross SP, Miles CE. ADP release can explain spatially-dependent kinesin binding times. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.563482. [PMID: 37986962 PMCID: PMC10659338 DOI: 10.1101/2023.11.08.563482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The self-organization of cells relies on the profound complexity of protein-protein interactions. Challenges in directly observing these events have hindered progress toward understanding their diverse behaviors. One notable example is the interaction between molecular motors and cytoskeletal systems that combine to perform a variety of cellular functions. In this work, we leverage theory and experiments to identify and quantify the rate-limiting mechanism of the initial association between a cargo-bound kinesin motor and a microtubule track. Recent advances in optical tweezers provide binding times for several lengths of kinesin motors trapped at varying distances from a microtubule, empowering the investigation of competing models. We first explore a diffusion-limited model of binding. Through Brownian dynamics simulations and simulation-based inference, we find this simple diffusion model fails to explain the experimental binding times, but an extended model that accounts for the ADP state of the molecular motor agrees closely with the data, even under the scrutiny of penalizing for additional model complexity. We provide quantification of both kinetic rates and biophysical parameters underlying the proposed binding process. Our model suggests that most but not every motor binding event is limited by their ADP state. Lastly, we predict how these association rates can be modulated in distinct ways through variation of environmental concentrations and spatial distances.
Collapse
Affiliation(s)
- Trini Nguyen
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697
| | | | - Steven P. Gross
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697
| | - Christopher E. Miles
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697
- Center for Multiscale Cell Fate, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
23
|
Tan Z, Yue Y, Leprevost F, Haynes S, Basrur V, Nesvizhskii AI, Verhey KJ, Cianfrocco MA. Autoinhibited kinesin-1 adopts a hierarchical folding pattern. eLife 2023; 12:RP86776. [PMID: 37910016 PMCID: PMC10619981 DOI: 10.7554/elife.86776] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Conventional kinesin-1 is the primary anterograde motor in cells for transporting cellular cargo. While there is a consensus that the C-terminal tail of kinesin-1 inhibits motility, the molecular architecture of a full-length autoinhibited kinesin-1 remains unknown. Here, we combine crosslinking mass spectrometry (XL-MS), electron microscopy (EM), and AlphaFold structure prediction to determine the architecture of the full-length autoinhibited kinesin-1 homodimer (kinesin-1 heavy chain [KHC]) and kinesin-1 heterotetramer (KHC bound to kinesin light chain 1 [KLC1]). Our integrative analysis shows that kinesin-1 forms a compact, bent conformation through a break in coiled-coil 3. Moreover, our XL-MS analysis demonstrates that kinesin light chains stabilize the folded inhibited state rather than inducing a new structural state. Using our structural model, we show that disruption of multiple interactions between the motor, stalk, and tail domains is required to activate the full-length kinesin-1. Our work offers a conceptual framework for understanding how cargo adaptors and microtubule-associated proteins relieve autoinhibition to promote activation.
Collapse
Affiliation(s)
- Zhenyu Tan
- Department of Biophysics, University of MichiganAnn ArborUnited States
- Life Sciences Institute, University of MichiganAnn ArborUnited States
| | - Yang Yue
- Department of Cell & Developmental Biology, University of MichiganAnn ArborUnited States
| | - Felipe Leprevost
- Department of Pathology, University of MichiganAnn ArborUnited States
| | - Sarah Haynes
- Department of Pathology, University of MichiganAnn ArborUnited States
| | - Venkatesha Basrur
- Department of Pathology, University of MichiganAnn ArborUnited States
| | - Alexey I Nesvizhskii
- Department of Pathology, University of MichiganAnn ArborUnited States
- Department of Computational Medicine and Bioinformatics, University of MichiganAnn ArborUnited States
| | - Kristen J Verhey
- Department of Cell & Developmental Biology, University of MichiganAnn ArborUnited States
| | - Michael A Cianfrocco
- Life Sciences Institute, University of MichiganAnn ArborUnited States
- Department of Biological Chemistry, University of MichiganAnn ArborUnited States
| |
Collapse
|
24
|
Kharrat M, Issa AB, Tlili A, Jallouli O, Alila-Fersi O, Maalej M, Chouchen J, Ghouylia Y, Kamoun F, Triki C, Fakhfakh F. A Novel Mutation in the MAP7D3 Gene in Two Siblings with Severe Intellectual Disability and Autistic Traits: Concurrent Assessment of BDNF Functional Polymorphism, X-Inactivation and Oxidative Stress to Explain Disease Severity. J Mol Neurosci 2023; 73:853-864. [PMID: 37817054 DOI: 10.1007/s12031-023-02163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023]
Abstract
Intellectual disabilities (ID) and autism spectrum disorders (ASD) are characterized by extreme genetic and phenotypic heterogeneity. However, understanding this heterogeneity is difficult due to the intricate interplay among multiple interconnected genes, epigenetic factors, oxidative stress, and environmental factors. Employing next-generation sequencing (NGS), we revealed the genetic cause of ID and autistic traits in two patients from a consanguineous family followed by segregation analysis. Furthermore, in silico prediction methods and 3D modeling were conducted to predict the effect of the variants. To establish genotype-phenotype correlation, X-chromosome inactivation using Methylation-specific PCR and oxidative stress markers were also investigated. By analyzing the NGS data of the two patients, we identified a novel frameshift mutation c.2174_2177del (p.Thr725MetfsTer2) in the MAP7D3 gene inherited from their mother along with the functional BDNF Val66Met polymorphism inherited from their father. The 3D modeling demonstrated that the p.Thr725MetfsTer2 variant led to the loss of the C-terminal tail of the MAP7D3 protein. This change could destabilize its structure and impact kinesin-1's binding to microtubules via an allosteric effect. Moreover, the analysis of oxidative stress biomarkers revealed an elevated oxidative stress in the two patients compared to the controls. To the best of our knowledge, this is the first report describing severe ID and autistic traits in familial cases with novel frameshift mutation c.2174_2177del in the MAP7D3 gene co-occurring with the functional polymorphism Val66M in the BDNF gene. Besides, our study underlines the importance of investigating combined genetic variations, X-chromosome inactivation (XCI) patterns, and oxidative stress markers for a better understanding of ID and autism etiology.
Collapse
Affiliation(s)
- Marwa Kharrat
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax University, Sfax, Tunisia.
| | - Abir Ben Issa
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Olfa Jallouli
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Olfa Alila-Fersi
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax University, Sfax, Tunisia
| | - Marwa Maalej
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax University, Sfax, Tunisia
| | - Jihen Chouchen
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Yosra Ghouylia
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Fatma Kamoun
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Chahnez Triki
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Faiza Fakhfakh
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax University, Sfax, Tunisia.
| |
Collapse
|
25
|
Tan Z, Yue Y, da Veiga Leprevost F, Haynes SE, Basrur V, Nesvizhskii AI, Verhey KJ, Cianfrocco MA. Autoinhibited kinesin-1 adopts a hierarchical folding pattern. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525761. [PMID: 36747757 PMCID: PMC9901034 DOI: 10.1101/2023.01.26.525761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Conventional kinesin-1 is the primary anterograde motor in cells for transporting cellular cargo. While there is a consensus that the C-terminal tail of kinesin-1 inhibits motility, the molecular architecture of a full-length autoinhibited kinesin-1 remains unknown. Here, we combine cross-linking mass spectrometry (XL-MS), electron microscopy (EM), and AlphaFold structure prediction to determine the architecture of the full-length autoinhibited kinesin-1 homodimer [kinesin-1 heavy chain (KHC)] and kinesin-1 heterotetramer [KHC bound to kinesin light chain 1 (KLC1)]. Our integrative analysis shows that kinesin-1 forms a compact, bent conformation through a break in coiled coil 3. Moreover, our XL-MS analysis demonstrates that kinesin light chains stabilize the folded inhibited state rather than inducing a new structural state. Using our structural model, we show that disruption of multiple interactions between the motor, stalk, and tail domains is required to activate the full-length kinesin-1. Our work offers a conceptual framework for understanding how cargo adaptors and microtubule-associated proteins relieve autoinhibition to promote activation.
Collapse
Affiliation(s)
- Zhenyu Tan
- Department of Biophysics, University of Michigan
- Life Sciences Institute, University of Michigan
| | - Yang Yue
- Department of Cell & Developmental Biology, University of Michigan
| | | | | | | | - Alexey I. Nesvizhskii
- Department of Pathology, University of Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan
| | | | - Michael A. Cianfrocco
- Life Sciences Institute, University of Michigan
- Department of Biological Chemistry, University of Michigan
| |
Collapse
|
26
|
Petzoldt AG. Presynaptic Precursor Vesicles-Cargo, Biogenesis, and Kinesin-Based Transport across Species. Cells 2023; 12:2248. [PMID: 37759474 PMCID: PMC10527734 DOI: 10.3390/cells12182248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The faithful formation and, consequently, function of a synapse requires continuous and tightly controlled delivery of synaptic material. At the presynapse, a variety of proteins with unequal molecular properties are indispensable to compose and control the molecular machinery concerting neurotransmitter release through synaptic vesicle fusion with the presynaptic membrane. As presynaptic proteins are produced mainly in the neuronal soma, they are obliged to traffic along microtubules through the axon to reach the consuming presynapse. This anterograde transport is performed by highly specialised and diverse presynaptic precursor vesicles, membranous organelles able to transport as different proteins such as synaptic vesicle membrane and membrane-associated proteins, cytosolic active zone proteins, ion-channels, and presynaptic membrane proteins, coordinating synaptic vesicle exo- and endocytosis. This review aims to summarise and categorise the diverse and numerous findings describing presynaptic precursor cargo, mode of trafficking, kinesin-based axonal transport and the molecular mechanisms of presynaptic precursor vesicles biogenesis in both vertebrate and invertebrate model systems.
Collapse
Affiliation(s)
- Astrid G Petzoldt
- Institute for Biology and Genetics, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| |
Collapse
|
27
|
Suber Y, Alam MNA, Nakos K, Bhakt P, Spiliotis ET. Microtubule-associated septin complexes modulate kinesin and dynein motility with differential specificities. J Biol Chem 2023; 299:105084. [PMID: 37495111 PMCID: PMC10463263 DOI: 10.1016/j.jbc.2023.105084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
Long-range membrane traffic is guided by microtubule-associated proteins and posttranslational modifications, which collectively comprise a traffic code. The regulatory principles of this code and how it orchestrates the motility of kinesin and dynein motors are largely unknown. Septins are a large family of GTP-binding proteins, which assemble into complexes that associate with microtubules. Using single-molecule in vitro motility assays, we tested how the microtubule-associated SEPT2/6/7, SEPT2/6/7/9, and SEPT5/7/11 complexes affect the motilities of the constitutively active kinesins KIF5C and KIF1A and the dynein-dynactin-bicaudal D (DDB) motor complex. We found that microtubule-associated SEPT2/6/7 is a potent inhibitor of DDB and KIF5C, preventing mainly their association with microtubules. SEPT2/6/7 also inhibits KIF1A by obstructing stepping along microtubules. On SEPT2/6/7/9-coated microtubules, KIF1A inhibition is dampened by SEPT9, which alone enhances KIF1A, showing that individual septin subunits determine the regulatory properties of septin complexes. Strikingly, SEPT5/7/11 differs from SEPT2/6/7, in permitting the motility of KIF1A and immobilizing DDB to the microtubule lattice. In hippocampal neurons, filamentous SEPT5 colocalizes with somatodendritic microtubules that underlie Golgi membranes and lack SEPT6. Depletion of SEPT5 disrupts Golgi morphology and polarization of Golgi ribbons into the shaft of somato-proximal dendrites, which is consistent with the tethering of DDB to microtubules by SEPT5/7/11. Collectively, these results suggest that microtubule-associated complexes have differential specificities in the regulation of the motility and positioning of microtubule motors. We posit that septins are an integral part of the microtubule-based code that spatially controls membrane traffic.
Collapse
Affiliation(s)
- Yani Suber
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Md Noor A Alam
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Konstantinos Nakos
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Priyanka Bhakt
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
28
|
Kuo WH, Chu PY, Wang CC, Huang PS, Chan SH. MAP7D3, a novel prognostic marker for triple-negative breast cancer, drives cell invasiveness and cancer-initiating cell properties to promote metastatic progression. Biol Direct 2023; 18:44. [PMID: 37550720 PMCID: PMC10405500 DOI: 10.1186/s13062-023-00400-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Patients with triple-negative breast cancer (TNBC) tend to develop visceral metastasis within five years, making them the most challenging BC patients to treat. The MAP7 protein family is a group of microtubule-binding proteins with a well-known role in microtubule-related cell migration, but its role in metastasis-related properties of TNBC remains unclear. METHODS qRT-PCR and western blot were used to validate mRNA and protein expression of the MAP7 family in the isogenic pairs of TNBC cell lines with low and high metastasis potential. Functional characterization of MAP7D3 was carried out using cell-based and mouse models. The clinical association between MAP7D3 and TNBC was established using datasets in the public domain. RESULTS MAP7D3 expression was consistently upregulated in the metastatic subline IV2 and 468-LN at both mRNA and protein levels. Knockdown of MAP7D3 inhibited the 3D colony-forming ability, cell migration, and invasion ability of IV2 and 468-LN, indicating its significant contribution to the metastasis phenotypes. Mechanistically, inhibition of MAP7D3 could significantly increase the sensitivity of metastatic TNBC cells to docetaxel and gemcitabine treatment by reducing the expression of proteins related to breast cancer-initiating cells (BCICs) and drug resistance, as well as suppressing the activity of Rac1. The animal study showed that the depletion of MAP7D3 drastically reduced TNBC tumor growth and impaired the metastatic capability of TNBC cells. Elevated expression of MAP7D3 was found in the metastatic lymph nodes and was significantly associated with advanced stage and higher grade TNBC. Moreover, MAP7D3 expression was significantly correlated with the TNBC population, and its high expression was significantly associated with lymph node metastasis and poor survival outcomes of patients with TNBC. CONCLUSION Our study indicates that targeting MAP7D3 could be a promising therapeutic strategy for addressing the progression of TNBC, and MAP7D3 may serve as a novel predictive biomarker for the survival outcomes of triple-negative breast cancer.
Collapse
Affiliation(s)
- Wen-Hung Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Pei-Yi Chu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 402, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua, 500, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Chen-Chi Wang
- Department of Surgery, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Ping-Shen Huang
- Department of Nutrition, China Medical University, Taichung, 40402, Taiwan
| | - Shih-Hsuan Chan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 40402, Taiwan.
- Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
29
|
Shen Y, Ori-McKenney KM. Macromolecular Crowding Tailors the Microtubule Cytoskeleton Through Tubulin Modifications and Microtubule-Associated Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544846. [PMID: 37398431 PMCID: PMC10312695 DOI: 10.1101/2023.06.14.544846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cells remodel their cytoskeletal networks to adapt to their environment. Here, we analyze the mechanisms utilized by the cell to tailor its microtubule landscape in response to changes in osmolarity that alter macromolecular crowding. By integrating live cell imaging, ex vivo enzymatic assays, and in vitro reconstitution, we probe the impact of acute perturbations in cytoplasmic density on microtubule-associated proteins (MAPs) and tubulin posttranslational modifications (PTMs), unraveling the molecular underpinnings of cellular adaptation via the microtubule cytoskeleton. We find that cells respond to fluctuations in cytoplasmic density by modulating microtubule acetylation, detyrosination, or MAP7 association, without differentially affecting polyglutamylation, tyrosination, or MAP4 association. These MAP-PTM combinations alter intracellular cargo transport, enabling the cell to respond to osmotic challenges. We further dissect the molecular mechanisms governing tubulin PTM specification, and find that MAP7 promotes acetylation by biasing the conformation of the microtubule lattice, and directly inhibits detyrosination. Acetylation and detyrosination can therefore be decoupled and utilized for distinct cellular purposes. Our data reveal that the MAP code dictates the tubulin code, resulting in remodeling of the microtubule cytoskeleton and alteration of intracellular transport as an integrated mechanism of cellular adaptation.
Collapse
Affiliation(s)
- Yusheng Shen
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Kassandra M Ori-McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
30
|
Adler A, Kjaer LF, Beugelink JW, Baldus M, van Ingen H. Resonance assignments of the microtubule-binding domain of the microtubule-associated protein 7 (MAP7). BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:10.1007/s12104-023-10124-8. [PMID: 37099260 DOI: 10.1007/s12104-023-10124-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/30/2023] [Indexed: 06/02/2023]
Abstract
The microtubule-associated protein 7 (MAP7) is a protein involved in cargo transport along microtubules (MTs) by interacting with kinesin-1 through the C-terminal kinesin-binding domain. Moreover, the protein is reported to stabilize MT, thereby playing a key role in axonal branch development. An important element for this latter function is the 112 amino-acid long N-terminal microtubule-binding domain (MTBD) of MAP7. Here we report NMR backbone and side-chain assignments that suggest a primarily alpha-helical secondary fold of this MTBD in solution. The MTBD contains a central long α-helical segment that includes a short four-residue 'hinge' sequence with decreased helicity and increased flexibility. Our data represent a first step towards analysing the complex interaction of MAP7 with MTs at an atomic level via NMR spectroscopy.
Collapse
Affiliation(s)
- Agnes Adler
- Bijvoet Center for Biomolecular Research, NMR Spectroscopy, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Lenette F Kjaer
- Bijvoet Center for Biomolecular Research, NMR Spectroscopy, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Institute of Structural Biology Grenoble, Grenoble, Auvergne-Rhône-Alpes, France
| | - J Wouter Beugelink
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Marc Baldus
- Bijvoet Center for Biomolecular Research, NMR Spectroscopy, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands.
| | - Hugo van Ingen
- Bijvoet Center for Biomolecular Research, NMR Spectroscopy, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands.
| |
Collapse
|
31
|
Jansen KI, Iwanski MK, Burute M, Kapitein LC. A live-cell marker to visualize the dynamics of stable microtubules throughout the cell cycle. J Cell Biol 2023; 222:e202106105. [PMID: 36880745 PMCID: PMC9998657 DOI: 10.1083/jcb.202106105] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/08/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
The microtubule (MT) cytoskeleton underlies processes such as intracellular transport and cell division. Immunolabeling for posttranslational modifications of tubulin has revealed the presence of different MT subsets, which are believed to differ in stability and function. Whereas dynamic MTs can readily be studied using live-cell plus-end markers, the dynamics of stable MTs have remained obscure due to a lack of tools to directly visualize these MTs in living cells. Here, we present StableMARK (Stable Microtubule-Associated Rigor-Kinesin), a live-cell marker to visualize stable MTs with high spatiotemporal resolution. We demonstrate that a rigor mutant of Kinesin-1 selectively binds to stable MTs without affecting MT organization and organelle transport. These MTs are long-lived, undergo continuous remodeling, and often do not depolymerize upon laser-based severing. Using this marker, we could visualize the spatiotemporal regulation of MT stability before, during, and after cell division. Thus, this live-cell marker enables the exploration of different MT subsets and how they contribute to cellular organization and transport.
Collapse
Affiliation(s)
- Klara I. Jansen
- Department of Biology, Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Malina K. Iwanski
- Department of Biology, Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Mithila Burute
- Department of Biology, Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Lukas C. Kapitein
- Department of Biology, Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
32
|
Carmona B, Marinho HS, Matos CL, Nolasco S, Soares H. Tubulin Post-Translational Modifications: The Elusive Roles of Acetylation. BIOLOGY 2023; 12:biology12040561. [PMID: 37106761 PMCID: PMC10136095 DOI: 10.3390/biology12040561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Microtubules (MTs), dynamic polymers of α/β-tubulin heterodimers found in all eukaryotes, are involved in cytoplasm spatial organization, intracellular transport, cell polarity, migration and division, and in cilia biology. MTs functional diversity depends on the differential expression of distinct tubulin isotypes and is amplified by a vast number of different post-translational modifications (PTMs). The addition/removal of PTMs to α- or β-tubulins is catalyzed by specific enzymes and allows combinatory patterns largely enriching the distinct biochemical and biophysical properties of MTs, creating a code read by distinct proteins, including microtubule-associated proteins (MAPs), which allow cellular responses. This review is focused on tubulin-acetylation, whose cellular roles continue to generate debate. We travel through the experimental data pointing to α-tubulin Lys40 acetylation role as being a MT stabilizer and a typical PTM of long lived MTs, to the most recent data, suggesting that Lys40 acetylation enhances MT flexibility and alters the mechanical properties of MTs, preventing MTs from mechanical aging characterized by structural damage. Additionally, we discuss the regulation of tubulin acetyltransferases/desacetylases and their impacts on cell physiology. Finally, we analyze how changes in MT acetylation levels have been found to be a general response to stress and how they are associated with several human pathologies.
Collapse
Affiliation(s)
- Bruno Carmona
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| | - H Susana Marinho
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Catarina Lopes Matos
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Sofia Nolasco
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Helena Soares
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| |
Collapse
|
33
|
Iwanski MK, Kapitein LC. Cellular cartography: Towards an atlas of the neuronal microtubule cytoskeleton. Front Cell Dev Biol 2023; 11:1052245. [PMID: 37035244 PMCID: PMC10073685 DOI: 10.3389/fcell.2023.1052245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Microtubules, one of the major components of the cytoskeleton, play a crucial role during many aspects of neuronal development and function, such as neuronal polarization and axon outgrowth. Consequently, the microtubule cytoskeleton has been implicated in many neurodevelopmental and neurodegenerative disorders. The polar nature of microtubules is quintessential for their function, allowing them to serve as tracks for long-distance, directed intracellular transport by kinesin and dynein motors. Most of these motors move exclusively towards either the plus- or minus-end of a microtubule and some have been shown to have a preference for either dynamic or stable microtubules, those bearing a particular post-translational modification or those decorated by a specific microtubule-associated protein. Thus, it becomes important to consider the interplay of these features and their combinatorial effects on transport, as well as how different types of microtubules are organized in the cell. Here, we discuss microtubule subsets in terms of tubulin isotypes, tubulin post-translational modifications, microtubule-associated proteins, microtubule stability or dynamicity, and microtubule orientation. We highlight techniques used to study these features of the microtubule cytoskeleton and, using the information from these studies, try to define the composition, role, and organization of some of these subsets in neurons.
Collapse
Affiliation(s)
| | - Lukas C. Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
34
|
Canty JT, Hensley A, Aslan M, Jack A, Yildiz A. TRAK adaptors regulate the recruitment and activation of dynein and kinesin in mitochondrial transport. Nat Commun 2023; 14:1376. [PMID: 36914620 PMCID: PMC10011603 DOI: 10.1038/s41467-023-36945-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Mitochondrial transport along microtubules is mediated by Miro1 and TRAK adaptors that recruit kinesin-1 and dynein-dynactin. To understand how these opposing motors are regulated during mitochondrial transport, we reconstitute the bidirectional transport of Miro1/TRAK along microtubules in vitro. We show that the coiled-coil domain of TRAK activates dynein-dynactin and enhances the motility of kinesin-1 activated by its cofactor MAP7. We find that TRAK adaptors that recruit both motors move towards kinesin-1's direction, whereas kinesin-1 is excluded from binding TRAK transported by dynein-dynactin, avoiding motor tug-of-war. We also test the predictions of the models that explain how mitochondrial transport stalls in regions with elevated Ca2+. Transport of Miro1/TRAK by kinesin-1 is not affected by Ca2+. Instead, we demonstrate that the microtubule docking protein syntaphilin induces resistive forces that stall kinesin-1 and dynein-driven motility. Our results suggest that mitochondrial transport stalls by Ca2+-mediated recruitment of syntaphilin to the mitochondrial membrane, not by disruption of the transport machinery.
Collapse
Affiliation(s)
- John T Canty
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, 94720, USA.
- Department of Cancer Immunology, Genentech Inc., 1 DNA Way, 94080, South San Francisco, CA, USA.
| | - Andrew Hensley
- Physics Department, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Merve Aslan
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Amanda Jack
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, 94720, USA.
- Physics Department, University of California at Berkeley, Berkeley, CA, 94720, USA.
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
35
|
Deguchi T, Iwanski MK, Schentarra EM, Heidebrecht C, Schmidt L, Heck J, Weihs T, Schnorrenberg S, Hoess P, Liu S, Chevyreva V, Noh KM, Kapitein LC, Ries J. Direct observation of motor protein stepping in living cells using MINFLUX. Science 2023; 379:1010-1015. [PMID: 36893247 PMCID: PMC7614483 DOI: 10.1126/science.ade2676] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/23/2023] [Indexed: 03/11/2023]
Abstract
Dynamic measurements of molecular machines can provide invaluable insights into their mechanism, but these measurements have been challenging in living cells. Here, we developed live-cell tracking of single fluorophores with nanometer spatial and millisecond temporal resolution in two and three dimensions using the recently introduced super-resolution technique MINFLUX. Using this approach, we resolved the precise stepping motion of the motor protein kinesin-1 as it walked on microtubules in living cells. Nanoscopic tracking of motors walking on the microtubules of fixed cells also enabled us to resolve the architecture of the microtubule cytoskeleton with protofilament resolution.
Collapse
Affiliation(s)
- Takahiro Deguchi
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Malina K Iwanski
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Eva-Maria Schentarra
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Christopher Heidebrecht
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Lisa Schmidt
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Jennifer Heck
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | - Philipp Hoess
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Sheng Liu
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
| | - Veronika Chevyreva
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- The FIRC Institute of Molecular Oncology, Milano, Italy
| | - Kyung-Min Noh
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Jonas Ries
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
36
|
Xu A, Basant A, Schleich S, Newsome TP, Way M. Kinesin-1 transports morphologically distinct intracellular virions during vaccinia infection. J Cell Sci 2023; 136:jcs260175. [PMID: 36093836 PMCID: PMC9659004 DOI: 10.1242/jcs.260175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Intracellular mature viruses (IMVs) are the first and most abundant infectious form of vaccinia virus to assemble during its replication cycle. IMVs can undergo microtubule-based motility, but their directionality and the motor involved in their transport remain unknown. Here, we demonstrate that IMVs, like intracellular enveloped viruses (IEVs), the second form of vaccinia that are wrapped in Golgi-derived membranes, recruit kinesin-1 and undergo anterograde transport. In vitro reconstitution of virion transport in infected cell extracts revealed that IMVs and IEVs move toward microtubule plus ends with respective velocities of 0.66 and 0.56 µm/s. Quantitative imaging established that IMVs and IEVs recruit an average of 139 and 320 kinesin-1 motor complexes, respectively. In the absence of kinesin-1, there was a near-complete loss of in vitro motility and reduction in the intracellular spread of both types of virions. Our observations demonstrate that kinesin-1 transports two morphologically distinct forms of vaccinia. Reconstitution of vaccinia-based microtubule motility in vitro provides a new model to elucidate how motor number and regulation impacts transport of a bona fide kinesin-1 cargo.
Collapse
Affiliation(s)
- Amadeus Xu
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Angika Basant
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sibylle Schleich
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
| | - Timothy P. Newsome
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
| | - Michael Way
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
- Department of Infectious Disease, Imperial College, London W2 1PG, UK
| |
Collapse
|
37
|
van den Berg CM, Volkov VA, Schnorrenberg S, Huang Z, Stecker KE, Grigoriev I, Gilani S, Frikstad KAM, Patzke S, Zimmermann T, Dogterom M, Akhmanova A. CSPP1 stabilizes growing microtubule ends and damaged lattices from the luminal side. J Cell Biol 2023; 222:213861. [PMID: 36752787 PMCID: PMC9948759 DOI: 10.1083/jcb.202208062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/14/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023] Open
Abstract
Microtubules are dynamic cytoskeletal polymers, and their organization and stability are tightly regulated by numerous cellular factors. While regulatory proteins controlling the formation of interphase microtubule arrays and mitotic spindles have been extensively studied, the biochemical mechanisms responsible for generating stable microtubule cores of centrioles and cilia are poorly understood. Here, we used in vitro reconstitution assays to investigate microtubule-stabilizing properties of CSPP1, a centrosome and cilia-associated protein mutated in the neurodevelopmental ciliopathy Joubert syndrome. We found that CSPP1 preferentially binds to polymerizing microtubule ends that grow slowly or undergo growth perturbations and, in this way, resembles microtubule-stabilizing compounds such as taxanes. Fluorescence microscopy and cryo-electron tomography showed that CSPP1 is deposited in the microtubule lumen and inhibits microtubule growth and shortening through two separate domains. CSPP1 also specifically recognizes and stabilizes damaged microtubule lattices. These data help to explain how CSPP1 regulates the elongation and stability of ciliary axonemes and other microtubule-based structures.
Collapse
Affiliation(s)
- Cyntha M. van den Berg
- https://ror.org/04pp8hn57Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Vladimir A. Volkov
- https://ror.org/04pp8hn57Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands,https://ror.org/02e2c7k09Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | | | - Ziqiang Huang
- EMBL Imaging Centre, EMBL-Heidelberg, Heidelberg, Germany
| | - Kelly E. Stecker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands,Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Ilya Grigoriev
- https://ror.org/04pp8hn57Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Sania Gilani
- https://ror.org/00j9c2840Department of Radiation Biology, Institute of Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway,Department of Molecular Cell Biology, Institute of Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kari-Anne M. Frikstad
- https://ror.org/00j9c2840Department of Radiation Biology, Institute of Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sebastian Patzke
- https://ror.org/00j9c2840Department of Radiation Biology, Institute of Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | - Marileen Dogterom
- https://ror.org/02e2c7k09Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Anna Akhmanova
- https://ror.org/04pp8hn57Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands,Correspondence to Anna Akhmanova:
| |
Collapse
|
38
|
Zocchi R, Compagnucci C, Bertini E, Sferra A. Deciphering the Tubulin Language: Molecular Determinants and Readout Mechanisms of the Tubulin Code in Neurons. Int J Mol Sci 2023; 24:ijms24032781. [PMID: 36769099 PMCID: PMC9917122 DOI: 10.3390/ijms24032781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Microtubules (MTs) are dynamic components of the cell cytoskeleton involved in several cellular functions, such as structural support, migration and intracellular trafficking. Despite their high similarity, MTs have functional heterogeneity that is generated by the incorporation into the MT lattice of different tubulin gene products and by their post-translational modifications (PTMs). Such regulations, besides modulating the tubulin composition of MTs, create on their surface a "biochemical code" that is translated, through the action of protein effectors, into specific MT-based functions. This code, known as "tubulin code", plays an important role in neuronal cells, whose highly specialized morphologies and activities depend on the correct functioning of the MT cytoskeleton and on its interplay with a myriad of MT-interacting proteins. In recent years, a growing number of mutations in genes encoding for tubulins, MT-interacting proteins and enzymes that post-translationally modify MTs, which are the main players of the tubulin code, have been linked to neurodegenerative processes or abnormalities in neural migration, differentiation and connectivity. Nevertheless, the exact molecular mechanisms through which the cell writes and, downstream, MT-interacting proteins decipher the tubulin code are still largely uncharted. The purpose of this review is to describe the molecular determinants and the readout mechanisms of the tubulin code, and briefly elucidate how they coordinate MT behavior during critical neuronal events, such as neuron migration, maturation and axonal transport.
Collapse
Affiliation(s)
- Riccardo Zocchi
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Claudia Compagnucci
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Research Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence: (E.B.); or (A.S.); Tel.: +39-06-6859-2104 (E.B. & A.S.)
| | - Antonella Sferra
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence: (E.B.); or (A.S.); Tel.: +39-06-6859-2104 (E.B. & A.S.)
| |
Collapse
|
39
|
Dullovi A, Ozgencil M, Rajvee V, Tse WY, Cutillas PR, Martin SA, Hořejší Z. Microtubule-associated proteins MAP7 and MAP7D1 promote DNA double-strand break repair in the G1 cell cycle phase. iScience 2023; 26:106107. [PMID: 36852271 PMCID: PMC9958362 DOI: 10.1016/j.isci.2023.106107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/12/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The DNA-damage response is a complex signaling network that guards genomic integrity. The microtubule cytoskeleton is involved in the repair of DNA double-strand breaks; however, little is known about which cytoskeleton-related proteins are involved in DNA repair and how. Using quantitative proteomics, we discovered that microtubule associated proteins MAP7 and MAP7D1 interact with several DNA repair proteins including DNA double-strand break repair proteins RAD50, BRCA1 and 53BP1. We observed that downregulation of MAP7 and MAP7D1 leads to increased phosphorylation of p53 after γ-irradiation. Moreover, we determined that the downregulation of MAP7D1 leads to a strong G1 arrest and that the downregulation of MAP7 and MAP7D1 in G1 arrested cells negatively affects DNA repair, recruitment of RAD50 to chromatin and localization of 53BP1 to the sites of damage. These findings describe for the first time a novel function of MAP7 and MAP7D1 in cell cycle regulation and repair of DNA double-strand breaks.
Collapse
Affiliation(s)
- Arlinda Dullovi
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Meryem Ozgencil
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Vinothini Rajvee
- Mass Spectrometry Laboratory, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Wai Yiu Tse
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Pedro R. Cutillas
- Centre for Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sarah A. Martin
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Zuzana Hořejší
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK,Corresponding author
| |
Collapse
|
40
|
Li Q, Ferrare JT, Silver J, Wilson JO, Arteaga-Castaneda L, Qiu W, Vershinin M, King SJ, Neuman KC, Xu J. Cholesterol in the cargo membrane amplifies tau inhibition of kinesin-1-based transport. Proc Natl Acad Sci U S A 2023; 120:e2212507120. [PMID: 36626558 PMCID: PMC9934065 DOI: 10.1073/pnas.2212507120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023] Open
Abstract
Intracellular cargos are often membrane-enclosed and transported by microtubule-based motors in the presence of microtubule-associated proteins (MAPs). Whereas increasing evidence reveals how MAPs impact the interactions between motors and microtubules, critical questions remain about the impact of the cargo membrane on transport. Here we combined in vitro optical trapping with theoretical approaches to determine the effect of a lipid cargo membrane on kinesin-based transport in the presence of MAP tau. Our results demonstrate that attaching kinesin to a fluid lipid membrane reduces the inhibitory effect of tau on kinesin. Moreover, adding cholesterol, which reduces kinesin diffusion in the cargo membrane, amplifies the inhibitory effect of tau on kinesin binding in a dosage-dependent manner. We propose that reduction of kinesin diffusion in the cargo membrane underlies the effect of cholesterol on kinesin binding in the presence of tau, and we provide a simple model for this proposed mechanism. Our study establishes a direct link between cargo membrane cholesterol and MAP-based regulation of kinesin-1. The cholesterol effects uncovered here may more broadly extend to other lipid alterations that impact motor diffusion in the cargo membrane, including those associated with aging and neurological diseases.
Collapse
Affiliation(s)
- Qiaochu Li
- Department of Physics, University of California, Merced, CA95343
| | - James T. Ferrare
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Jonathan Silver
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, NIH, Bethesda, MD20892
| | - John O. Wilson
- Department of Physics, University of California, Merced, CA95343
| | | | - Weihong Qiu
- Department of Physics, Oregon State University, Corvallis, OR97331
| | - Michael Vershinin
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT84112
| | - Stephen J. King
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL32827
| | - Keir C. Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Jing Xu
- Department of Physics, University of California, Merced, CA95343
| |
Collapse
|
41
|
Beaudet D, Hendricks AG. Reconstitution of Organelle Transport Along Microtubules In Vitro. Methods Mol Biol 2023; 2623:113-132. [PMID: 36602683 DOI: 10.1007/978-1-0716-2958-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this chapter, we describe methods for reconstituting and analyzing the transport of isolated endogenous cargoes in vitro. Intracellular cargoes are transported along microtubules by teams of kinesin and dynein motors and their cargo-specific adaptor proteins. Observations from living cells show that organelles and vesicular cargoes exhibit diverse motility characteristics. Yet, our knowledge of the molecular mechanisms by which intracellular transport is regulated is not well understood. Here, we describe step-by-step protocols for the extraction of phagosomes from cells at different stages of maturation, and reconstitution of their motility along microtubules in vitro. Quantitative immunofluorescence and photobleaching techniques are also described to measure the number of motors and adaptor proteins on these isolated cargoes. In addition, we describe techniques for tracking the motility of isolated cargoes along microtubules using TIRF microscopy and quantitative force measurements using an optical trap. These methods enable us to study how the sets of motors and adaptors that drive the transport of endogenous cargoes regulate their trafficking in cells.
Collapse
Affiliation(s)
- Daniel Beaudet
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Adam G Hendricks
- Department of Bioengineering, McGill University, Montreal, QC, Canada.
| |
Collapse
|
42
|
Naderi E, Cornejo-Sanchez DM, Li G, Schrauwen I, Wang GT, Dewan AT, Leal SM. The genetic contribution of the X chromosome in age-related hearing loss. Front Genet 2023; 14:1106328. [PMID: 36896235 PMCID: PMC9988903 DOI: 10.3389/fgene.2023.1106328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Age-related (AR) hearing loss (HL) is the most common sensory impairment with heritability of 55%. The aim of this study was to identify genetic variants on chromosome X associated with ARHL through the analysis of data obtained from the UK Biobank. We performed association analysis between self-reported measures of HL and genotyped and imputed variants on chromosome X from ∼460,000 white Europeans. We identified three loci associated with ARHL with a genome-wide significance level (p < 5 × 10-8), ZNF185 (rs186256023, p = 4.9 × 10-10) and MAP7D2 (rs4370706, p = 2.3 × 10-8) in combined analysis of males and females, and LOC101928437 (rs138497700, p = 8.9 × 10-9) in the sex-stratified analysis of males. In-silico mRNA expression analysis showed MAP7D2 and ZNF185 are expressed in mice and adult human inner ear tissues, particularly in the inner hair cells. We estimated that only a small amount of variation of ARHL, 0.4%, is explained by variants on the X chromosome. This study suggests that although there are likely a few genes contributing to ARHL on the X chromosome, the role that the X chromosome plays in the etiology of ARHL may be limited.
Collapse
Affiliation(s)
- Elnaz Naderi
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Diana M Cornejo-Sanchez
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Guangyou Li
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Gao T Wang
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Andrew T Dewan
- Department of Chronic Disease Epidemiology and Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, United States
| | - Suzanne M Leal
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, United States.,Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
43
|
APC couples neuronal mRNAs to multiple kinesins, EB1, and shrinking microtubule ends for bidirectional mRNA motility. Proc Natl Acad Sci U S A 2022; 119:e2211536119. [PMID: 36469763 PMCID: PMC9897468 DOI: 10.1073/pnas.2211536119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Understanding where in the cytoplasm mRNAs are translated is increasingly recognized as being as important as knowing the timing and level of protein expression. mRNAs are localized via active motor-driven transport along microtubules (MTs) but the underlying essential factors and dynamic interactions are largely unknown. Using biochemical in vitro reconstitutions with purified mammalian proteins, multicolor TIRF-microscopy, and interaction kinetics measurements, we show that adenomatous polyposis coli (APC) enables kinesin-1- and kinesin-2-based mRNA transport, and that APC is an ideal adaptor for long-range mRNA transport as it forms highly stable complexes with 3'UTR fragments of several neuronal mRNAs (APC-RNPs). The kinesin-1 KIF5A binds and transports several neuronal mRNP components such as FMRP, PURα and mRNA fragments weakly, whereas the transport frequency of the mRNA fragments is significantly increased by APC. APC-RNP-motor complexes can assemble on MTs, generating highly processive mRNA transport events. We further find that end-binding protein 1 (EB1) recruits APC-RNPs to dynamically growing MT ends and APC-RNPs track shrinking MTs, producing MT minus-end-directed RNA motility due to the high dwell times of APC on MTs. Our findings establish APC as a versatile mRNA-kinesin adaptor and a key factor for the assembly and bidirectional movement of neuronal transport mRNPs.
Collapse
|
44
|
Zhao Y, Huang S, Tan X, Long L, He Q, Liang X, Bai J, Li Q, Lin J, Li Y, Liu N, Ma J, Chen Y. N 6 -Methyladenosine-Modified CBX1 Regulates Nasopharyngeal Carcinoma Progression Through Heterochromatin Formation and STAT1 Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2205091. [PMID: 36310139 PMCID: PMC9798977 DOI: 10.1002/advs.202205091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 05/16/2023]
Abstract
Epitranscriptomic remodeling such as N6 -methyladenosine (m6 A) modification plays a critical role in tumor development. However, little is known about the underlying mechanisms connecting m6 A modification and nasopharyngeal carcinoma (NPC) progression. Here, CBX1 is identified, a histone methylation regulator, to be significantly upregulated with m6 A hypomethylation in metastatic NPC tissues. The m6 A-modified CBX1 mRNA transcript is recognized and destabilized by the m6 A reader YTHDF3. Furthermore, it is revealed that CBX1 promotes NPC cell migration, invasion, and proliferation through transcriptional repression of MAP7 via H3K9me3-mediated heterochromatin formation. In addition to its oncogenic effect, CBX1 can facilitate immune evasion through IFN-γ-STAT1 signaling-mediated PD-L1 upregulation. Clinically, CBX1 serves as an independent predictor for unfavorable prognosis in NPC patients. The results reveal a crosstalk between epitranscriptomic and epigenetic regulation in NPC progression, and shed light on the functions of CBX1 in tumorigenesis and immunomodulation, which may provide an appealing therapeutic target in NPC.
Collapse
Affiliation(s)
- Yin Zhao
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Shengyan Huang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Xirong Tan
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Liufen Long
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Qingmei He
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Xiaoyu Liang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Jiewen Bai
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Qingjie Li
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Jiayi Lin
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Yingqin Li
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Na Liu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Jun Ma
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Yupei Chen
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| |
Collapse
|
45
|
Jongsma MLM, Bakker N, Neefjes J. Choreographing the motor-driven endosomal dance. J Cell Sci 2022; 136:282885. [PMID: 36382597 PMCID: PMC9845747 DOI: 10.1242/jcs.259689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The endosomal system orchestrates the transport of lipids, proteins and nutrients across the entire cell. Along their journey, endosomes mature, change shape via fusion and fission, and communicate with other organelles. This intriguing endosomal choreography, which includes bidirectional and stop-and-go motions, is coordinated by the microtubule-based motor proteins dynein and kinesin. These motors bridge various endosomal subtypes to the microtubule tracks thanks to their cargo-binding domain interacting with endosome-associated proteins, and their motor domain interacting with microtubules and associated proteins. Together, these interactions determine the mobility of different endosomal structures. In this Review, we provide a comprehensive overview of the factors regulating the different interactions to tune the fascinating dance of endosomes along microtubules.
Collapse
Affiliation(s)
- Marlieke L. M. Jongsma
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, 2333 ZC Leiden, The Netherlands
| | - Nina Bakker
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, 2333 ZC Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, 2333 ZC Leiden, The Netherlands,Author for correspondence ()
| |
Collapse
|
46
|
Forlani G, Antwi EB, Weis D, Öztürk MA, Queck BA, Brecht D, Di Ventura B. Analysis of Slow-Cycling Variants of the Light-Inducible Nuclear Protein Export System LEXY in Mammalian Cells. ACS Synth Biol 2022; 11:3529-3533. [PMID: 36180042 PMCID: PMC9594308 DOI: 10.1021/acssynbio.2c00232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The optogenetic tool LEXY consists of the second light oxygen voltage (LOV) domain of Avena sativa phototropin 1 mutated to contain a nuclear export signal. It allows exporting from the nucleus with blue light proteins of interest (POIs) genetically fused to it. Mutations slowing the dark recovery rate of the LOV domain within LEXY were recently shown to allow for better depletion of some POIs from the nucleus in Drosophila embryos and for the usage of low light illumination regimes. We investigated these variants in mammalian cells and found they increase the cytoplasmic localization of the proteins we tested after illumination, but also during the dark phases, which corresponds to higher leakiness of the system. These data suggest that, when aiming to sequester into the nucleus a protein with a cytoplasmic function, the original LEXY is preferable. The iLEXY variants are, instead, advantageous when wanting to deplete the nucleus of the POI as much as possible.
Collapse
Affiliation(s)
- Giada Forlani
- Centers
for Biological Signalling Studies BIOSS and CIBSS, Albert Ludwigs University of Freiburg, Freiburg, 79104, Germany,Faculty
of Biology, Institute of Biology II, Albert
Ludwigs University of Freiburg, Freiburg, 79104, Germany,Spemann
Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University of Freiburg, Freiburg, 79104, Germany
| | - Enoch B. Antwi
- Centers
for Biological Signalling Studies BIOSS and CIBSS, Albert Ludwigs University of Freiburg, Freiburg, 79104, Germany,Faculty
of Biology, Institute of Biology II, Albert
Ludwigs University of Freiburg, Freiburg, 79104, Germany,E-mail:
| | - Daniel Weis
- Faculty
of Biology, Institute of Biology II, Albert
Ludwigs University of Freiburg, Freiburg, 79104, Germany
| | - Mehmet A. Öztürk
- Centers
for Biological Signalling Studies BIOSS and CIBSS, Albert Ludwigs University of Freiburg, Freiburg, 79104, Germany,Faculty
of Biology, Institute of Biology II, Albert
Ludwigs University of Freiburg, Freiburg, 79104, Germany
| | - Bastian A.W. Queck
- Faculty
of Biology, Institute of Biology II, Albert
Ludwigs University of Freiburg, Freiburg, 79104, Germany,Department
of Bio- and Environmental Sciences, International Institute Zittau, Technische Universität Dresden, Zittau, 01069, Germany
| | - Dominik Brecht
- Faculty
of Biology, Institute of Biology II, Albert
Ludwigs University of Freiburg, Freiburg, 79104, Germany
| | - Barbara Di Ventura
- Centers
for Biological Signalling Studies BIOSS and CIBSS, Albert Ludwigs University of Freiburg, Freiburg, 79104, Germany,Faculty
of Biology, Institute of Biology II, Albert
Ludwigs University of Freiburg, Freiburg, 79104, Germany,E-mail:
| |
Collapse
|
47
|
The ubiquitous microtubule-associated protein 4 (MAP4) controls organelle distribution by regulating the activity of the kinesin motor. Proc Natl Acad Sci U S A 2022; 119:e2206677119. [PMID: 36191197 PMCID: PMC9565364 DOI: 10.1073/pnas.2206677119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of organelle transport by molecular motors along the cytoskeletal microtubules is central to maintaining cellular functions. Here, we show that the ubiquitous tau-related microtubule-associated protein 4 (MAP4) can bias the bidirectional transport of organelles toward the microtubule minus-ends. This is concurrent with MAP4 phosphorylation, mediated by the kinase GSK3β. We demonstrate that MAP4 achieves this bias by tethering the cargo to the microtubules, allowing it to impair the force generation of the plus-end motor kinesin-1. Consistent with this mechanism, MAP4 physically interacts with dynein and dynactin and, when phosphorylated, associates with the cargo-motor complex through its projection domain. Its phosphorylation coincides with the perinuclear accumulation of organelles, a phenotype that is rescued by abolishing the cargo-microtubule MAP4 tether or by the pharmacological inhibition of dynein, confirming the ability of kinesin to inch along, albeit inefficiently, in the presence of phosphorylated MAP4. These findings have broad biological significance because of the ubiquity of MAP4 and the involvement of GSK3β in multiple diseases, more specifically in cancer, where the MAP4-dependent redistribution of organelles may be prevalent in cancer cells, as we demonstrate here for mitochondria in lung carcinoma epithelial cells.
Collapse
|
48
|
Meiring JCM, Grigoriev I, Nijenhuis W, Kapitein LC, Akhmanova A. Opto-katanin, an optogenetic tool for localized, microtubule disassembly. Curr Biol 2022; 32:4660-4674.e6. [PMID: 36174574 DOI: 10.1016/j.cub.2022.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/01/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022]
Abstract
Microtubules are cytoskeletal polymers that separate chromosomes during mitosis and serve as rails for intracellular transport and organelle positioning. Manipulation of microtubules is widely used in cell and developmental biology, but tools for precise subcellular spatiotemporal control of microtubules are currently lacking. Here, we describe a light-activated system for localized recruitment of the microtubule-severing enzyme katanin. This system, named opto-katanin, uses targeted illumination with blue light to induce rapid, localized, and reversible microtubule depolymerization. This tool allows precise clearing of a subcellular region of microtubules while preserving the rest of the microtubule network, demonstrating that regulation of katanin recruitment to microtubules is sufficient to control its severing activity. The tool is not toxic in the absence of blue light and can be used to disassemble both dynamic and stable microtubules in primary neurons as well as in dividing cells. We show that opto-katanin can be used to locally block vesicle transport and to clarify the dependence of organelle morphology and dynamics on microtubules. Specifically, our data indicate that microtubules are not required for the maintenance of the Golgi stacks or the tubules of the endoplasmic reticulum but are needed for the formation of new membrane tubules. Finally, we demonstrate that this tool can be applied to study the contribution of microtubules to cell mechanics by showing that microtubule bundles can exert forces constricting the nucleus.
Collapse
Affiliation(s)
- Joyce C M Meiring
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, Utrecht 3584 CS, the Netherlands
| | - Ilya Grigoriev
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, Utrecht 3584 CS, the Netherlands
| | - Wilco Nijenhuis
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, Utrecht 3584 CS, the Netherlands; Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, UMC Utrecht, Utrecht 3584 CB, the Netherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, Utrecht 3584 CS, the Netherlands; Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, UMC Utrecht, Utrecht 3584 CB, the Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, Utrecht 3584 CS, the Netherlands.
| |
Collapse
|
49
|
Weijman JF, Yadav SKN, Surridge KJ, Cross JA, Borucu U, Mantell J, Woolfson DN, Schaffitzel C, Dodding MP. Molecular architecture of the autoinhibited kinesin-1 lambda particle. SCIENCE ADVANCES 2022; 8:eabp9660. [PMID: 36112680 PMCID: PMC9481135 DOI: 10.1126/sciadv.abp9660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Despite continuing progress in kinesin enzyme mechanochemistry and emerging understanding of the cargo recognition machinery, it is not known how these functions are coupled and controlled by the α-helical coiled coils encoded by a large component of kinesin protein sequences. Here, we combine computational structure prediction with single-particle negative-stain electron microscopy to reveal the coiled-coil architecture of heterotetrameric kinesin-1 in its compact state. An unusual flexion in the scaffold enables folding of the complex, bringing the kinesin heavy chain-light chain interface into close apposition with a tetrameric assembly formed from the region of the molecule previously assumed to be the folding hinge. This framework for autoinhibition is required to uncover how engagement of cargo and other regulatory factors drives kinesin-1 activation.
Collapse
Affiliation(s)
- Johannes F. Weijman
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Sathish K. N. Yadav
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Katherine J. Surridge
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Jessica A. Cross
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Ufuk Borucu
- GW4 Facility for High-Resolution Electron Cryo-Microscopy, University of Bristol, Bristol, UK
| | - Judith Mantell
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Derek N. Woolfson
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
- Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Mark P. Dodding
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
50
|
Willekers S, Tessadori F, van der Vaart B, Henning HH, Stucchi R, Altelaar M, Roelen BAJ, Akhmanova A, Bakkers J. The centriolar satellite protein Cfap53 facilitates formation of the zygotic microtubule organizing center in the zebrafish embryo. Development 2022; 149:dev198762. [PMID: 35980365 PMCID: PMC9481976 DOI: 10.1242/dev.198762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/20/2022] [Indexed: 12/02/2023]
Abstract
In embryos of most animal species, the zygotic centrosome is assembled by the centriole derived from the sperm cell and pericentriolar proteins present in the oocyte. This zygotic centrosome acts as a microtubule organizing center (MTOC) to assemble the sperm aster and mitotic spindle. As MTOC formation has been studied mainly in adult cells, very little is known about the formation of the zygotic MTOC. Here, we show that zebrafish (Danio rerio) embryos lacking either maternal or paternal Cfap53, a centriolar satellite protein, arrest during the first cell cycle. Although Cfap53 is dispensable for sperm aster function, it aids proper formation of the mitotic spindle. During cell division, Cfap53 colocalizes with γ-tubulin and with other centrosomal and centriolar satellite proteins at the MTOC. Furthermore, we find that γ-tubulin localization at the MTOC is impaired in the absence of Cfap53. Based on these results, we propose a model in which Cfap53 deposited in the oocyte and the sperm participates in the organization of the zygotic MTOC to allow mitotic spindle formation.
Collapse
Affiliation(s)
- Sven Willekers
- Hubrecht Institute-KNAW, Utrecht 3584 CT, The Netherlands
| | | | - Babet van der Vaart
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Heiko H. Henning
- Equine Sciences, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CM, The Netherlands
| | - Riccardo Stucchi
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Bernard A. J. Roelen
- Embryology, Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CT, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW, Utrecht 3584 CT, The Netherlands
- Department of Pediatric Cardiology, Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584 EA, The Netherlands
| |
Collapse
|