1
|
Yuan L, Meng Y, Xiang J. SNX16 is required for hepatocellular carcinoma survival via modulating the EGFR-AKT signaling pathway. Sci Rep 2024; 14:13093. [PMID: 38849490 PMCID: PMC11161632 DOI: 10.1038/s41598-024-64015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Sorting nexin 16 (SNX16), a pivotal sorting nexin, emerges in tumor progression complexity, fueling research interest. However, SNX16's biological impact and molecular underpinnings in hepatocellular carcinoma (HCC) remain elusive. This study probes SNX16's function, clinical relevance via mRNA, and protein expression in HCC. Overexpression/knockdown assays of SNX16 were employed to elucidate impacts on HCC cell invasion, proliferation, and EMT. Additionally, the study delved into SNX16's regulation of the EGFR-AKT signaling cascade mechanism. SNX16 overexpression in HCC correlates with poor patient survival; enhancing proliferation, migration, invasion, and tumorigenicity, while SNX16 knockdown suppresses these processes. SNX16 downregulation curbs phospho-EGFR, dampening AKT signaling. EGFR suppression counters SNX16-overexpression-induced HCC proliferation, motility, and invasiveness. Our findings delineate SNX16's regulatory role in HCC, implicating it as a prospective therapeutic target.
Collapse
Affiliation(s)
- Lebin Yuan
- Department of General Surgery, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
| | - Yanqiu Meng
- Oncology Department, First Affiliated Hospital of Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jiajia Xiang
- Molecular Centre Laboratory, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
2
|
Mulligan RJ, Yap CC, Winckler B. Endosomal Transport to Lysosomes and the Trans-Golgi Network in Neurons and Other Cells: Visualizing Maturational Flux. Methods Mol Biol 2023; 2557:595-618. [PMID: 36512240 DOI: 10.1007/978-1-0716-2639-9_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
High-level microscopy enables the comprehensive study of dynamic intracellular processes. Here we describe a toolkit of combinatorial approaches for fixed cell imaging and live cell imaging to investigate the interactions along the trans-Golgi network (TGN)-endosome-lysosome transport axis, which underlie the maturation of endosomal compartments and degradative flux. For fixed cell approaches, we specifically highlight how choices of permeabilization conditions, antibody selection, and antibody multiplexing affect interpretation of results. For live cell approaches, we emphasize the use of sensors that read out pH and degradative capacity in combination with endosomal identity for elucidating dynamic compartment changes.
Collapse
Affiliation(s)
| | - Chan Choo Yap
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA.
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Mahmutefendić Lučin H, Blagojević Zagorac G, Marcelić M, Lučin P. Host Cell Signatures of the Envelopment Site within Beta-Herpes Virions. Int J Mol Sci 2022; 23:9994. [PMID: 36077391 PMCID: PMC9456339 DOI: 10.3390/ijms23179994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
Beta-herpesvirus infection completely reorganizes the membrane system of the cell. This system is maintained by the spatiotemporal arrangement of more than 3000 cellular proteins that continuously adapt the configuration of membrane organelles according to cellular needs. Beta-herpesvirus infection establishes a new configuration known as the assembly compartment (AC). The AC membranes are loaded with virus-encoded proteins during the long replication cycle and used for the final envelopment of the newly formed capsids to form infectious virions. The identity of the envelopment membranes is still largely unknown. Electron microscopy and immunofluorescence studies suggest that the envelopment occurs as a membrane wrapping around the capsids, similar to the growth of phagophores, in the area of the AC with the membrane identities of early/recycling endosomes and the trans-Golgi network. During wrapping, host cell proteins that define the identity and shape of these membranes are captured along with the capsids and incorporated into the virions as host cell signatures. In this report, we reviewed the existing information on host cell signatures in human cytomegalovirus (HCMV) virions. We analyzed the published proteomes of the HCMV virion preparations that identified a large number of host cell proteins. Virion purification methods are not yet advanced enough to separate all of the components of the rich extracellular material, including the large amounts of non-vesicular extracellular particles (NVEPs). Therefore, we used the proteomic data from large and small extracellular vesicles (lEVs and sEVs) and NVEPs to filter out the host cell proteins identified in the viral proteomes. Using these filters, we were able to narrow down the analysis of the host cell signatures within the virions and determine that envelopment likely occurs at the membranes derived from the tubular recycling endosomes. Many of these signatures were also found at the autophagosomes, suggesting that the CMV-infected cell forms membrane organelles with phagophore growth properties using early endosomal host cell machinery that coordinates endosomal recycling.
Collapse
Affiliation(s)
| | | | | | - Pero Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
4
|
Tanasic D, Berns N, Riechmann V. Myosin V facilitates polarised E-cadherin secretion. Traffic 2022; 23:374-390. [PMID: 35575181 DOI: 10.1111/tra.12846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
E-cadherin has a fundamental role in epithelial tissues by providing cell-cell adhesion. Polarised E-cadherin exocytosis to the lateral plasma membrane is central for cell polarity and epithelial homeostasis. Loss of E-cadherin secretion compromises tissue integrity and is a prerequisite for metastasis. Despite this pivotal role of E-cadherin secretion, the transport mechanism is still unknown. Here we identify Myosin V as the motor for E-cadherin secretion. Our data reveal that Myosin V and F-actin are required for the formation of a continuous apicolateral E-cadherin belt, the zonula adherens. We show by live imaging how Myosin V transports E-cadherin vesicles to the plasma membrane, and distinguish two distinct transport tracks: an apical actin network leading to the zonula adherens and parallel actin bundles leading to the basal-most region of the lateral membrane. E-cadherin secretion starts in endosomes, where Rab11 and Sec15 recruit Myosin V for transport to the zonula adherens. We also shed light on the endosomal sorting of E-cadherin by showing how Rab7 and Snx16 cooperate in moving E-cadherin into the Rab11 compartment. Thus, our data help to understand how polarised E-cadherin secretion maintains epithelial architecture and prevents metastasis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dajana Tanasic
- Department of Cell and Molecular Biology and Division of Signaling and Functional Genomics at the German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13-17, Mannheim, Germany
| | - Nicola Berns
- Department of Cell and Molecular Biology and Division of Signaling and Functional Genomics at the German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13-17, Mannheim, Germany
| | - Veit Riechmann
- Department of Cell and Molecular Biology and Division of Signaling and Functional Genomics at the German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13-17, Mannheim, Germany
| |
Collapse
|
5
|
Shi W, Jiang L, Ye M, Wang B, Chang Y, Shan Z, Wang X, Hu Y, Chen H, Li C. A Single Amino Acid Residue R144 of SNX16 Affects Its Ability to Inhibit the Replication of Influenza A Virus. Viruses 2022; 14:825. [PMID: 35458555 PMCID: PMC9032038 DOI: 10.3390/v14040825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
Influenza A virus (IAV) is an important zoonotic pathogen, posing a severe burden for the health of both animals and humans. Many host factors are involved in the life cycle of IAV to regulate its replication. Herein, we identified sorting nexin-16 (SNX16) as a new host factor that negatively modulates the replication of IAV. When transiently overexpressed in cells, SNX16 appears to be expressed as two obvious bands. Mutagenesis analysis indicated that the amino acid residue R144 of SNX16 was responsible for its two-band expression phenotype. We found that the R144A mutation of SNX16 changed its cellular distribution in A549 cells and partially weakened the inhibitory effect of SNX16 on IAV replication. Further investigation revealed that SNX16 could negatively regulate the early stage of the replication cycle of IAV. Taken together, our results demonstrated that SNX16 is a novel restriction host factor for the replication of IAV by engaging in the early stage of IAV life cycle, and a single amino acid residue at position 144 plays an important role in the cellular distribution and anti-influenza function of SNX16.
Collapse
Affiliation(s)
- Wenjun Shi
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (W.S.); (X.W.)
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| | - Li Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| | - Miaomiao Ye
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| | - Bo Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| | - Yu Chang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| | - Zhibo Shan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| | - Xuyuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (W.S.); (X.W.)
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| | - Yuzhen Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| | - Hualan Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (W.S.); (X.W.)
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| |
Collapse
|
6
|
Vieira N, Rito T, Correia-Neves M, Sousa N. Sorting Out Sorting Nexins Functions in the Nervous System in Health and Disease. Mol Neurobiol 2021; 58:4070-4106. [PMID: 33931804 PMCID: PMC8280035 DOI: 10.1007/s12035-021-02388-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022]
Abstract
Endocytosis is a fundamental process that controls protein/lipid composition of the plasma membrane, thereby shaping cellular metabolism, sensing, adhesion, signaling, and nutrient uptake. Endocytosis is essential for the cell to adapt to its surrounding environment, and a tight regulation of the endocytic mechanisms is required to maintain cell function and survival. This is particularly significant in the central nervous system (CNS), where composition of neuronal cell surface is crucial for synaptic functioning. In fact, distinct pathologies of the CNS are tightly linked to abnormal endolysosomal function, and several genome wide association analysis (GWAS) and biochemical studies have identified intracellular trafficking regulators as genetic risk factors for such pathologies. The sorting nexins (SNXs) are a family of proteins involved in protein trafficking regulation and signaling. SNXs dysregulation occurs in patients with Alzheimer’s disease (AD), Down’s syndrome (DS), schizophrenia, ataxia and epilepsy, among others, establishing clear roles for this protein family in pathology. Interestingly, restoration of SNXs levels has been shown to trigger synaptic plasticity recovery in a DS mouse model. This review encompasses an historical and evolutionary overview of SNXs protein family, focusing on its organization, phyla conservation, and evolution throughout the development of the nervous system during speciation. We will also survey SNXs molecular interactions and highlight how defects on SNXs underlie distinct pathologies of the CNS. Ultimately, we discuss possible strategies of intervention, surveying how our knowledge about the fundamental processes regulated by SNXs can be applied to the identification of novel therapeutic avenues for SNXs-related disorders.
Collapse
Affiliation(s)
- Neide Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Teresa Rito
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
7
|
Cavin1 intrinsically disordered domains are essential for fuzzy electrostatic interactions and caveola formation. Nat Commun 2021; 12:931. [PMID: 33568658 PMCID: PMC7875971 DOI: 10.1038/s41467-021-21035-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/06/2021] [Indexed: 01/30/2023] Open
Abstract
Caveolae are spherically shaped nanodomains of the plasma membrane, generated by cooperative assembly of caveolin and cavin proteins. Cavins are cytosolic peripheral membrane proteins with negatively charged intrinsically disordered regions that flank positively charged α-helical regions. Here, we show that the three disordered domains of Cavin1 are essential for caveola formation and dynamic trafficking of caveolae. Electrostatic interactions between disordered regions and α-helical regions promote liquid-liquid phase separation behaviour of Cavin1 in vitro, assembly of Cavin1 oligomers in solution, generation of membrane curvature, association with caveolin-1, and Cavin1 recruitment to caveolae in cells. Removal of the first disordered region causes irreversible gel formation in vitro and results in aberrant caveola trafficking through the endosomal system. We propose a model for caveola assembly whereby fuzzy electrostatic interactions between Cavin1 and caveolin-1 proteins, combined with membrane lipid interactions, are required to generate membrane curvature and a metastable caveola coat.
Collapse
|
8
|
Hanley SE, Cooper KF. Sorting Nexins in Protein Homeostasis. Cells 2020; 10:cells10010017. [PMID: 33374212 PMCID: PMC7823608 DOI: 10.3390/cells10010017] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis is maintained by removing misfolded, damaged, or excess proteins and damaged organelles from the cell by three major pathways; the ubiquitin-proteasome system, the autophagy-lysosomal pathway, and the endo-lysosomal pathway. The requirement for ubiquitin provides a link between all three pathways. Sorting nexins are a highly conserved and diverse family of membrane-associated proteins that not only traffic proteins throughout the cells but also provide a second common thread between protein homeostasis pathways. In this review, we will discuss the connections between sorting nexins, ubiquitin, and the interconnected roles they play in maintaining protein quality control mechanisms. Underlying their importance, genetic defects in sorting nexins are linked with a variety of human diseases including neurodegenerative, cardiovascular diseases, viral infections, and cancer. This serves to emphasize the critical roles sorting nexins play in many aspects of cellular function.
Collapse
|
9
|
Radler MR, Suber A, Spiliotis ET. Spatial control of membrane traffic in neuronal dendrites. Mol Cell Neurosci 2020; 105:103492. [PMID: 32294508 PMCID: PMC7317674 DOI: 10.1016/j.mcn.2020.103492] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Neuronal dendrites are highly branched and specialized compartments with distinct structures and secretory organelles (e.g., spines, Golgi outposts), and a unique cytoskeletal organization that includes microtubules of mixed polarity. Dendritic membranes are enriched with proteins, which specialize in the formation and function of the post-synaptic membrane of the neuronal synapse. How these proteins partition preferentially in dendrites, and how they traffic in a manner that is spatiotemporally accurate and regulated by synaptic activity are long-standing questions of neuronal cell biology. Recent studies have shed new insights into the spatial control of dendritic membrane traffic, revealing new classes of proteins (e.g., septins) and cytoskeleton-based mechanisms with dendrite-specific functions. Here, we review these advances by revisiting the fundamental mechanisms that control membrane traffic at the levels of protein sorting and motor-driven transport on microtubules and actin filaments. Overall, dendrites possess unique mechanisms for the spatial control of membrane traffic, which might have specialized and co-evolved with their highly arborized morphology.
Collapse
Affiliation(s)
- Megan R Radler
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Ayana Suber
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Kitamata M, Hotta M, Hamada‐Nakahara S, Suetsugu S. The membrane binding and deformation property of vaccinia virus K1 ankyrin repeat domain protein. Genes Cells 2020; 25:187-196. [DOI: 10.1111/gtc.12749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Manabu Kitamata
- Graduate School of Science and Technology Nara Institute of Science and Technology Ikoma Japan
| | - Mitsukuni Hotta
- Graduate School of Science and Technology Nara Institute of Science and Technology Ikoma Japan
| | | | - Shiro Suetsugu
- Graduate School of Science and Technology Nara Institute of Science and Technology Ikoma Japan
| |
Collapse
|