1
|
Adachi Y, Williams AM, Masuda M, Taketani Y, Anderson PJ, Ivanov P. Chronic stress antagonizes formation of Stress Granules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620814. [PMID: 39554104 PMCID: PMC11565828 DOI: 10.1101/2024.10.29.620814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Chronic stress mediates cellular changes that can contribute to human disease. However, fluctuations in RNA metabolism caused by chronic stress have been largely neglected in the field. Stress granules (SGs) are cytoplasmic ribonucleoprotein condensates formed in response to stress-induced inhibition of mRNA translation and polysome disassembly. Despite the broad interest in SG assembly and disassembly in response to acute stress, SG assembly in response to chronic stress has not been extensively investigated. In this study, we show that cells pre-conditioned with low dose chronic (24-hour exposure) stresses such as oxidative stress, endoplasmic reticulum stress, mitochondrial stress, and starvation, fail to assemble SGs in response to acute stress. While translation is drastically decreased by acute stress in pre-conditioned cells, polysome profiling analysis reveals the partial preservation of polysomes resistant to puromycin-induced disassembly. We showed that chronic stress slows down the rate of mRNA translation at the elongation phase and triggers phosphorylation of translation elongation factor eEF2. Polysome profiling followed by RNase treatment confirmed that chronic stress induces ribosome stalling. Chronic stress-induced ribosome stalling is distinct from ribosome collisions that are known to trigger a specific stress response pathway. In summary, chronic stress triggers ribosome stalling, which blocks polysome disassembly and SG formation by subsequent acute stress. Significant statements Stress granules (SGs) are dynamic cytoplasmic biocondensates assembled in response to stress-induced inhibition of mRNA translation and polysome disassembly. SGs have been proposed to contribute to the survival of cells exposed to toxic conditions. Although the mechanisms of SG assembly and disassembly in the acute stress response are well understood, the role of SGs in modulating the response to chronic stress is unclear. Here, we show that human cells pre-conditioned with chronic stress fail to assemble SGs in response to acute stress despite inhibition of mRNA translation. Mechanistically, chronic stress induces ribosome stalling, which prevents polysome disassembly and subsequent SG formation. This finding suggests that chronically stressed or diseased human cells may have a dysfunctional SG response that could inhibit cell survival and promote disease.
Collapse
|
2
|
Farberov S, Ziv O, Lau JY, Ben-Tov Perry R, Lubelsky Y, Miska E, Kudla G, Ulitsky I. Structural features within the NORAD long noncoding RNA underlie efficient repression of Pumilio activity. Nat Struct Mol Biol 2024:10.1038/s41594-024-01393-5. [PMID: 39327473 DOI: 10.1038/s41594-024-01393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
Long noncoding RNAs (lncRNAs) are increasingly appreciated for their important functions in mammalian cells. However, how their functional capacities are encoded in their sequences and manifested in their structures remains largely unknown. Some lncRNAs bind to and modulate the availability of RNA-binding proteins, but the structural principles that underlie this mode of regulation are unknown. The NORAD lncRNA is a known decoy for Pumilio proteins, which modulate the translation and stability of hundreds of messenger RNAs and, consequently, a regulator of genomic stability and aging. Here we probed the RNA structure and long-range RNA-RNA interactions formed by human NORAD inside cells under different stressful conditions. We discovered a highly modular structure consisting of well-defined domains that contribute independently to NORAD function. Following arsenite stress, most structural domains undergo relaxation and form interactions with other RNAs that are targeted to stress granules. We further revealed a unique structural organization that spatially clusters the multiple Pumilio binding sites along NORAD and consequently contributes to the derepression of Pumilio targets. We then applied these structural principles to design an effective artificial decoy for the let-7 microRNA. Our work demonstrates how the sequence of a lncRNA spatially clusters its function into separated domains and how structural principles can be employed for the rational design of lncRNAs with desired activities.
Collapse
Affiliation(s)
- Svetlana Farberov
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Omer Ziv
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Eleven Therapeutics, Cambridge, UK.
| | - Jian You Lau
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Rotem Ben-Tov Perry
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Lubelsky
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Eric Miska
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
| | - Grzegorz Kudla
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK.
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Pan CR, Knutson SD, Huth SW, MacMillan DWC. µMap proximity labeling in living cells reveals stress granule disassembly mechanisms. Nat Chem Biol 2024:10.1038/s41589-024-01721-2. [PMID: 39215100 DOI: 10.1038/s41589-024-01721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Phase-separated condensates are membrane-less intracellular structures comprising dynamic protein interactions that organize essential biological processes. Understanding the composition and dynamics of these organelles advances our knowledge of cellular behaviors and disease pathologies related to granule dysregulation. In this study, we apply microenvironment mapping with a HaloTag-based platform (HaloMap) to characterize intracellular stress granule dynamics in living cells. After validating the robustness and sensitivity of this approach, we then profile the stress granule proteome throughout the formation and disassembly and under pharmacological perturbation. These experiments reveal several ubiquitin-related modulators, including the HECT (homologous to E6AP C terminus) E3 ligases ITCH and NEDD4L, as well as the ubiquitin receptor toll-interacting protein TOLLIP, as key mediators of granule disassembly. In addition, we identify an autophagy-related pathway that promotes granule clearance. Collectively, this work establishes a general photoproximity labeling approach for unraveling intracellular protein interactomes and uncovers previously unexplored regulatory mechanisms of stress granule dynamics.
Collapse
Affiliation(s)
- Chenmengxiao Roderick Pan
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Steve D Knutson
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Sean W Huth
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
4
|
Sugawara K, Uno SN, Kamiya M, Sakamoto A, Urano Y, Funatsu T, Okabe K. Nanoscale dynamics and localization of single endogenous mRNAs in stress granules. Nucleic Acids Res 2024; 52:8675-8686. [PMID: 39069641 PMCID: PMC11347133 DOI: 10.1093/nar/gkae588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 06/04/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Stress granules (SGs) are cytoplasmic messenger ribonucleoprotein granules transiently formed in stressed mammalian cells. Although SG components have been well characterized, detailed insights into the molecular behavior inside SGs remain unresolved. We investigated nanoscale dynamics and localization of endogenous mRNAs in SGs combining single mRNA tracking and super-resolution localization microscopy. First, we developed a methodology for tracking single mRNAs within SGs, revealing that although mRNAs in SGs are mainly stationary (∼40%), they also move in a confined (∼25%) or freely diffusing (∼35%) manner. Second, the super-resolution localization microscopy showed that the mRNAs in SGs are heterogeneously distributed and partially form high-density clusters. Third, we simultaneously performed single mRNA tracking and super-resolution microscopy in SGs, demonstrating that single mRNA trajectories are mainly found around high-density clusters. Finally, a quantitative analysis of mRNA localization and dynamics during stress removal was conducted using live super-resolution imaging and single-molecule tracking. These results suggest that SGs have a highly organized structure that enables dynamic regulation of the mRNAs at the nanoscale, which is responsible for the ordered formation and the wide variety of functions of SGs.
Collapse
Affiliation(s)
- Ko Sugawara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- RIKEN Center for Biosystems Dynamics Research, Hyogo 650-0047, Japan
| | - Shin-nosuke Uno
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Akihiko Sakamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takashi Funatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kohki Okabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- JST, PRESTO, Saitama 332-0012, Japan
| |
Collapse
|
5
|
Lizarrondo J, Wilfling F. Selective Autophagy of Macromolecular Complexes: What Does It Take to be Taken? J Mol Biol 2024; 436:168574. [PMID: 38636617 DOI: 10.1016/j.jmb.2024.168574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Proteins are known to perform an astonishing array of functions thanks to their ability to cooperate and modulate each other's properties. Inside cells, proteins can assemble into large multi-subunit complexes to carry out complex cellular functions. The correct assembly and maintenance of the functional state of macromolecular protein complexes is crucial for human health. Failure to do so leads to loss of function and potential accumulation of harmful materials, which is associated with a variety of human diseases such as neurodegeneration and cancer. Autophagy engulfs cytosolic material in autophagosomes, and therefore is best suited to eliminate intact macromolecular complexes without disassembling them, which could interfere with de novo assembly. In this review, we discuss the role of autophagy in the selective degradation of macromolecular complexes. We highlight the current state of knowledge for different macromolecular complexes and their selective autophagic degradation. We emphasize the gaps in our understanding of what it takes for these large macromolecular complexes to be degraded and point to future work that may shed light on the regulation of the selective degradation of macromolecular complexes by autophagy.
Collapse
Affiliation(s)
- Javier Lizarrondo
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt a.M. 60598, Germany; Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, Frankfurt a.M. 60438, Germany
| | - Florian Wilfling
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, Frankfurt a.M. 60438, Germany.
| |
Collapse
|
6
|
Abstract
The translation of messenger RNA (mRNA) into proteins represents the culmination of gene expression. Recent technological advances have revolutionized our ability to investigate this process with unprecedented precision, enabling the study of translation at the single-molecule level in real time within live cells. In this review, we provide an overview of single-mRNA translation reporters. We focus on the core technology, as well as the rapid development of complementary probes, tags, and accessories that enable the visualization and quantification of a wide array of translation dynamics. We then highlight notable studies that have utilized these reporters in model systems to address key biological questions. The high spatiotemporal resolution of these studies is shedding light on previously unseen phenomena, uncovering the full heterogeneity and complexity of translational regulation.
Collapse
Affiliation(s)
- Tatsuya Morisaki
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA;
| | - O'Neil Wiggan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA;
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA;
- Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
7
|
Tat TT, Raza S, Khan S, Watson TL, Jung SY, Kiss DL. PCIF1 is partly cytoplasmic, dynamically localizes to stress granules and binds mRNA coding regions upon oxidative stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593175. [PMID: 38766247 PMCID: PMC11100685 DOI: 10.1101/2024.05.08.593175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
PCIF1 (Phosphorylated CTD-Interacting Factor 1) is the mRNA (2'-O-methyladenosine-N(6)-)-methyltransferase that catalyzes the formation of cap-adjacent N6,2'-O-dimethyladenosine (m6Am) by methylating adenosines at the first transcribed position of capped mRNAs. While previous studies assumed that PCIF1 was nuclear, cell fractionation and immunofluorescence both show that a population of PCIF1 is localized to the cytoplasm. Further, PCIF1 redistributes to stress granules upon oxidative stress. Immunoprecipitation studies with stressed cells show that PCIF1 also physically interacts with G3BP and other stress granule components. In addition, PCIF1 behaves as a stress granule component as it disassociates from stress granules upon recovery from stress. Overexpressing full-length PCIF1 also inhibits stress granule formation, while knocking out PCIF1 slows stress granule disassembly. Next, our enhanced crosslinking and immunoprecipitation (eCLIP) data show that PCIF1 binds mRNAs in their coding sequences rather than cap-proximal regions. Further PCIF1's association with mRNAs increased upon NaAsO2 stress. In contrast to eCLIP data, ChIP-Seq experiments show that PCIF1 is predominantly associated with transcription start sites rather than gene bodies, indicating that PCIF1's association with mature mRNA is not co-transcriptional. Collectively, our data suggest that PCIF1 has cytoplasmic RNA surveillance role(s) independent of transcription-associated cap-adjacent mRNA modification, particularly during the stress response.
Collapse
Affiliation(s)
- Trinh T. Tat
- Center for RNA Therapeutics, Baylor College of Medicine, Houston TX
- Department of Cardiovascular Sciences, Baylor College of Medicine, Houston TX
- Houston Methodist Academic Institute, Baylor College of Medicine, Houston TX
- Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030 USA
| | - Sabeen Raza
- Technology Operations, Baylor College of Medicine, Houston TX
- Houston Methodist Academic Institute, Baylor College of Medicine, Houston TX
- Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030 USA
| | - Shaheerah Khan
- Center for RNA Therapeutics, Baylor College of Medicine, Houston TX
- Department of Cardiovascular Sciences, Baylor College of Medicine, Houston TX
- Houston Methodist Academic Institute, Baylor College of Medicine, Houston TX
- Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030 USA
| | - Tiara L. Watson
- Center for RNA Therapeutics, Baylor College of Medicine, Houston TX
- Department of Cardiovascular Sciences, Baylor College of Medicine, Houston TX
- Houston Methodist Academic Institute, Baylor College of Medicine, Houston TX
- Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030 USA
| | - Sung Yun Jung
- Department of Molecular and Cellular Pharmacology, Baylor College of Medicine, Houston TX
| | - Daniel L. Kiss
- Center for RNA Therapeutics, Baylor College of Medicine, Houston TX
- Department of Cardiovascular Sciences, Baylor College of Medicine, Houston TX
- Houston Methodist Academic Institute, Baylor College of Medicine, Houston TX
- Weil Cornell Medical College, 6670 Bertner Ave, Houston, TX 77030 USA
- Houston Methodist Cancer Center, 6670 Bertner Ave, Houston, TX 77030 USA
- Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030 USA
| |
Collapse
|
8
|
Glauninger H, Bard JA, Wong Hickernell CJ, Airoldi EM, Li W, Singer RH, Paul S, Fei J, Sosnick TR, Wallace EWJ, Drummond DA. Transcriptome-wide mRNA condensation precedes stress granule formation and excludes stress-induced transcripts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589678. [PMID: 38659805 PMCID: PMC11042329 DOI: 10.1101/2024.04.15.589678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Stress-induced condensation of mRNA and proteins into stress granules is conserved across eukaryotes, yet the function, formation mechanisms, and relation to well-studied conserved transcriptional responses remain largely unresolved. Stress-induced exposure of ribosome-free mRNA following translational shutoff is thought to cause condensation by allowing new multivalent RNA-dependent interactions, with RNA length and associated interaction capacity driving increased condensation. Here we show that, in striking contrast, virtually all mRNA species condense in response to multiple unrelated stresses in budding yeast, length plays a minor role, and instead, stress-induced transcripts are preferentially excluded from condensates, enabling their selective translation. Using both endogenous genes and reporter constructs, we show that translation initiation blockade, rather than resulting ribosome-free RNA, causes condensation. These translation initiation-inhibited condensates (TIICs) are biochemically detectable even when stress granules, defined as microscopically visible foci, are absent or blocked. TIICs occur in unstressed yeast cells, and, during stress, grow before the appearance of visible stress granules. Stress-induced transcripts are excluded from TIICs primarily due to the timing of their expression, rather than their sequence features. Together, our results reveal a simple system by which cells redirect translational activity to newly synthesized transcripts during stress, with broad implications for cellular regulation in changing conditions.
Collapse
Affiliation(s)
- Hendrik Glauninger
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, USA
- Interdisciplinary Scientist Training Program, The University of Chicago, Chicago, IL, USA
| | - Jared A.M. Bard
- Department of Biology, Texas A&M University, College Station, TX, USA
| | | | - Edo M. Airoldi
- Fox School of Business and Management, Temple University, Philadelphia, PA, USA
| | - Weihan Li
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert H. Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sneha Paul
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Jingyi Fei
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Tobin R. Sosnick
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | | | - D. Allan Drummond
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Cayla M, Spanos C, McWilliam K, Waskett E, Rappsilber J, Matthews KR. Differentiation granules, a dynamic regulator of T. brucei development. Nat Commun 2024; 15:2972. [PMID: 38582942 PMCID: PMC10998879 DOI: 10.1038/s41467-024-47309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/26/2024] [Indexed: 04/08/2024] Open
Abstract
Adaptation to a change of environment is an essential process for survival, in particular for parasitic organisms exposed to a wide range of hosts. Such adaptations include rapid control of gene expression through the formation of membraneless organelles composed of poly-A RNA and proteins. The African trypanosome Trypanosoma brucei is exquisitely sensitive to well-defined environmental stimuli that trigger cellular adaptations through differentiation events that characterise its complex life cycle. The parasite has been shown to form stress granules in vitro, and it has been proposed that such a stress response could have been repurposed to enable differentiation and facilitate parasite transmission. Therefore, we explored the composition and positional dynamics of membraneless granules formed in response to starvation stress and during differentiation in the mammalian host between the replicative slender and transmission-adapted stumpy forms. We find that T. brucei differentiation does not reflect the default response to environmental stress. Instead, the developmental response of the parasites involves a specific and programmed hierarchy of membraneless granule assembly, with distinct components and regulation by protein kinases such as TbDYRK, that are required for the parasite to successfully progress through its life cycle development and prepare for transmission.
Collapse
Affiliation(s)
- Mathieu Cayla
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
- York Biomedical Research Institute, Department of Biology, University of York, York, UK.
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Kirsty McWilliam
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Eliza Waskett
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Eltayeb A, Al-Sarraj F, Alharbi M, Albiheyri R, Mattar EH, Abu Zeid IM, Bouback TA, Bamagoos A, Uversky VN, Rubio-Casillas A, Redwan EM. Intrinsic factors behind long COVID: IV. Hypothetical roles of the SARS-CoV-2 nucleocapsid protein and its liquid-liquid phase separation. J Cell Biochem 2024; 125:e30530. [PMID: 38349116 DOI: 10.1002/jcb.30530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 03/12/2024]
Abstract
When the SARS-CoV-2 virus infects humans, it leads to a condition called COVID-19 that has a wide spectrum of clinical manifestations, from no symptoms to acute respiratory distress syndrome. The virus initiates damage by attaching to the ACE-2 protein on the surface of endothelial cells that line the blood vessels and using these cells as hosts for replication. Reactive oxygen species levels are increased during viral replication, which leads to oxidative stress. About three-fifths (~60%) of the people who get infected with the virus eradicate it from their body after 28 days and recover their normal activity. However, a large fraction (~40%) of the people who are infected with the virus suffer from various symptoms (anosmia and/or ageusia, fatigue, cough, myalgia, cognitive impairment, insomnia, dyspnea, and tachycardia) beyond 12 weeks and are diagnosed with a syndrome called long COVID. Long-term clinical studies in a group of people who contracted SARS-CoV-2 have been contrasted with a noninfected matched group of people. A subset of infected people can be distinguished by a set of cytokine markers to have persistent, low-grade inflammation and often self-report two or more bothersome symptoms. No medication can alleviate their symptoms efficiently. Coronavirus nucleocapsid proteins have been investigated extensively as potential drug targets due to their key roles in virus replication, among which is their ability to bind their respective genomic RNAs for incorporation into emerging virions. This review highlights basic studies of the nucleocapsid protein and its ability to undergo liquid-liquid phase separation. We hypothesize that this ability of the nucleocapsid protein for phase separation may contribute to long COVID. This hypothesis unlocks new investigation angles and could potentially open novel avenues for a better understanding of long COVID and treating this condition.
Collapse
Affiliation(s)
- Ahmed Eltayeb
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faisal Al-Sarraj
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ehab H Mattar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isam M Abu Zeid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamer A Bouback
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Atif Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Moscow Region, Russia
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, Jalisco, Mexico
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Blake LA, De La Cruz A, Wu B. Imaging spatiotemporal translation regulation in vivo. Semin Cell Dev Biol 2024; 154:155-164. [PMID: 36963991 PMCID: PMC10514244 DOI: 10.1016/j.semcdb.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
Translation is regulated spatiotemporally to direct protein synthesis when and where it is needed. RNA localization and local translation have been observed in various subcellular compartments, allowing cells to rapidly and finely adjust their proteome post-transcriptionally. Local translation on membrane-bound organelles is important to efficiently synthesize proteins targeted to the organelles. Protein-RNA phase condensates restrict RNA spatially in membraneless organelles and play essential roles in translation regulation and RNA metabolism. In addition, the temporal translation kinetics not only determine the amount of protein produced, but also serve as an important checkpoint for the quality of ribosomes, mRNAs, and nascent proteins. Translation imaging provides a unique capability to study these fundamental processes in the native environment. Recent breakthroughs in imaging enabled real-time visualization of translation of single mRNAs, making it possible to determine the spatial distribution and key biochemical parameters of in vivo translation dynamics. Here we reviewed the recent advances in translation imaging methods and their applications to study spatiotemporal translation regulation in vivo.
Collapse
Affiliation(s)
- Lauren A Blake
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ana De La Cruz
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bin Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
Ahlstedt BA, Ganji R, Mukkavalli S, Paulo JA, Gygi SP, Raman M. UBXN1 maintains ER proteostasis and represses UPR activation by modulating translation. EMBO Rep 2024; 25:672-703. [PMID: 38177917 PMCID: PMC10897191 DOI: 10.1038/s44319-023-00027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
ER protein homeostasis (proteostasis) is essential for proper folding and maturation of proteins in the secretory pathway. Loss of ER proteostasis can lead to the accumulation of misfolded or aberrant proteins in the ER and triggers the unfolded protein response (UPR). In this study, we find that the p97 adaptor UBXN1 is an important negative regulator of the UPR. Loss of UBXN1 sensitizes cells to ER stress and activates the UPR. This leads to widespread upregulation of the ER stress transcriptional program. Using comparative, quantitative proteomics we show that deletion of UBXN1 results in a significant enrichment of proteins involved in ER-quality control processes including those involved in protein folding and import. Notably, we find that loss of UBXN1 does not perturb p97-dependent ER-associated degradation (ERAD). Our studies indicate that loss of UBXN1 increases translation in both resting and ER-stressed cells. Surprisingly, this process is independent of p97 function. Taken together, our studies have identified a new role for UBXN1 in repressing translation and maintaining ER proteostasis in a p97 independent manner.
Collapse
Affiliation(s)
- Brittany A Ahlstedt
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
- ALPCA diagnostics, Salem, NH, USA
| | - Rakesh Ganji
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Sirisha Mukkavalli
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
- Dana Farber Cancer Research Institute, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology Harvard Medical School, Boston, MA, USA
| | - Steve P Gygi
- Department of Cell Biology Harvard Medical School, Boston, MA, USA
| | - Malavika Raman
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
13
|
Solari CA, Ortolá Martínez MC, Fernandez JM, Bates C, Cueto G, Valacco MP, Morales-Polanco F, Moreno S, Rossi S, Ashe MP, Portela P. Riboproteome remodeling during quiescence exit in Saccharomyces cerevisiae. iScience 2024; 27:108727. [PMID: 38235324 PMCID: PMC10792236 DOI: 10.1016/j.isci.2023.108727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/15/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
The quiescent state is the prevalent mode of cellular life in most cells. Saccharomyces cerevisiae is a useful model for studying the molecular basis of the cell cycle, quiescence, and aging. Previous studies indicate that heterogeneous ribosomes show a specialized translation function to adjust the cellular proteome upon a specific stimulus. Using nano LC-MS/MS, we identified 69 of the 79 ribosomal proteins (RPs) that constitute the eukaryotic 80S ribosome during quiescence. Our study shows that the riboproteome is composed of 444 accessory proteins comprising cellular functions such as translation, protein folding, amino acid and glucose metabolism, cellular responses to oxidative stress, and protein degradation. Furthermore, the stoichiometry of both RPs and accessory proteins on ribosome particles is different depending on growth conditions and among monosome and polysome fractions. Deficiency of different RPs resulted in defects of translational capacity, suggesting that ribosome composition can result in changes in translational activity during quiescence.
Collapse
Affiliation(s)
- Clara A. Solari
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - María Clara Ortolá Martínez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Juan M. Fernandez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Christian Bates
- The Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Gerardo Cueto
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Instituto IEGEBA (CONICET-UBA), Buenos Aires, Argentina
| | - María Pía Valacco
- CEQUIBIEM- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Fabián Morales-Polanco
- The Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Silvia Moreno
- CEQUIBIEM- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Silvia Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Mark P. Ashe
- The Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Paula Portela
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| |
Collapse
|
14
|
Hu S, Zhang Y, Yi Q, Yang C, Liu Y, Bai Y. Time-resolved proteomic profiling reveals compositional and functional transitions across the stress granule life cycle. Nat Commun 2023; 14:7782. [PMID: 38012130 PMCID: PMC10682001 DOI: 10.1038/s41467-023-43470-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Stress granules (SGs) are dynamic, membrane-less organelles. With their formation and disassembly processes characterized, it remains elusive how compositional transitions are coordinated during prolonged stress to meet changing functional needs. Here, using time-resolved proteomic profiling of the acute to prolonged heat-shock SG life cycle, we identify dynamic SG proteins, further segregated into early and late proteins. Comparison of different groups of SG proteins suggests that their biochemical properties help coordinate SG compositional and functional transitions. In particular, early proteins, with high phase-separation-propensity, drive the rapid formation of the initial SG platform, while late proteins are subsequently recruited as discrete modules to further functionalize SGs. This model, supported by immunoblotting and immunofluorescence imaging, provides a conceptual framework for the compositional transitions throughout the acute to prolonged SG life cycle. Additionally, an early SG constituent, non-muscle myosin II, is shown to promote SG formation by increasing SG fusion, underscoring the strength of this dataset in revealing the complexity of SG regulation.
Collapse
Affiliation(s)
- Shuyao Hu
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| | - Yufeng Zhang
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Qianqian Yi
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Cuiwei Yang
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Yanfen Liu
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| | - Yun Bai
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
15
|
Meydan S, Guydosh NR. Is there a localized role for translational quality control? RNA (NEW YORK, N.Y.) 2023; 29:1623-1643. [PMID: 37582617 PMCID: PMC10578494 DOI: 10.1261/rna.079683.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
It is known that mRNAs and the machinery that translates them are not uniformly distributed throughout the cytoplasm. As a result, the expression of some genes is localized to particular parts of the cell and this makes it possible to carry out important activities, such as growth and signaling, in three-dimensional space. However, the functions of localized gene expression are not fully understood, and the underlying mechanisms that enable localized expression have not been determined in many cases. One consideration that could help in addressing these challenges is the role of quality control (QC) mechanisms that monitor translating ribosomes. On a global level, QC pathways are critical for detecting aberrant translation events, such as a ribosome that stalls while translating, and responding by activating stress pathways and resolving problematic ribosomes and mRNAs at the molecular level. However, it is unclear how these pathways, even when uniformly active throughout the cell, affect local translation. Importantly, some QC pathways have themselves been reported to be enriched in the proximity of particular organelles, but the extent of such localized activity remains largely unknown. Here, we describe the major QC pathways and review studies that have begun to explore their roles in localized translation. Given the limited data in this area, we also pose broad questions about the possibilities and limitations for how QC pathways could facilitate localized gene expression in the cell with the goal of offering ideas for future experimentation.
Collapse
Affiliation(s)
- Sezen Meydan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
- National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nicholas R Guydosh
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
16
|
Trendel J, Boileau E, Jochem M, Dieterich C, Krijgsveld J. PEPseq quantifies transcriptome-wide changes in protein occupancy and reveals selective translational repression after translational stress. Nucleic Acids Res 2023; 51:e79. [PMID: 37395449 PMCID: PMC10415142 DOI: 10.1093/nar/gkad557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/24/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023] Open
Abstract
Post-transcriptional gene regulation is accomplished by the interplay of the transcriptome with RNA-binding proteins, which occurs in a dynamic manner in response to altered cellular conditions. Recording the combined occupancy of all proteins binding to the transcriptome offers the opportunity to interrogate if a particular treatment leads to any interaction changes, pointing to sites in RNA that undergo post-transcriptional regulation. Here, we establish a method to monitor protein occupancy in a transcriptome-wide fashion by RNA sequencing. To this end, peptide-enhanced pull-down for RNA sequencing (or PEPseq) uses metabolic RNA labelling with 4-thiouridine (4SU) for light-induced protein-RNA crosslinking, and N-hydroxysuccinimide (NHS) chemistry to isolate protein-crosslinked RNA fragments across all long RNA biotypes. We use PEPseq to investigate changes in protein occupancy during the onset of arsenite-induced translational stress in human cells and reveal an increase of protein interactions in the coding region of a distinct set of mRNAs, including mRNAs coding for the majority of cytosolic ribosomal proteins. We use quantitative proteomics to demonstrate that translation of these mRNAs remains repressed during the initial hours of recovery after arsenite stress. Thus, we present PEPseq as a discovery platform for the unbiased investigation of post-transcriptional regulation.
Collapse
Affiliation(s)
- Jakob Trendel
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Etienne Boileau
- Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Germany
| | - Marco Jochem
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Dieterich
- Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Germany
| | - Jeroen Krijgsveld
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| |
Collapse
|
17
|
Jiang L, Cai H, Zhou W, Li Z, Zhang L, Bi H. RNA-Targeting Carbon Dots for Live-Cell Imaging of Granule Dynamics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210776. [PMID: 36645339 DOI: 10.1002/adma.202210776] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/02/2023] [Indexed: 05/26/2023]
Abstract
It is significant to monitor the different RNA granules dynamics and phase separation process inside cells under various stresses, for example, oxidative stress. The current small-molecule RNA probes work well only in fixed cells and usually encounter problems such as insufficient stability and biocompatibility, and thus a specific RNA-targeting fluorescent nanoprobe that can be used in the living cells is urgently desired. Here, the de novo design and microwave-assisted synthesis of a novel RNA-targeting, red-emissive carbon dots (named as M-CDs) are reported by choosing neutral red and levofloxacin as precursors. The as-synthesized M-CDs is water-soluble with a high fluorescence quantum yield of 22.83% and can selectively bind to RNA resulting in an enhanced red fluorescence. More interestingly, such an RNA-targeting, red-emissive M-CDs can be fast internalized into cells within 5 s and thus used for real-time imaging the dynamic process of intracellular stress granules under oxidative stress, revealing some characteristics of granules that have not been identified by previously reported RNA and protein biomarkers. This research paves a new pathway for visualizing bulk RNA dynamics and studying phase-separation behaviors in living cells by rational design of the fluorescent carbon dots in terms of structure and functionality.
Collapse
Affiliation(s)
- Lei Jiang
- School of Chemistry and Chemical Engineering, Anhui University, 111 Jiulong Road, Hefei, 230601, P. R. China
| | - Hao Cai
- School of Materials Science and Engineering, Anhui University, 111 Jiulong Road, Hefei, 23060, P. R. China
| | - Wanwan Zhou
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road, Hefei, Anhui, 230027, P. R. China
| | - Zijian Li
- School of Materials Science and Engineering, Anhui University, 111 Jiulong Road, Hefei, 23060, P. R. China
| | - Liang Zhang
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road, Hefei, Anhui, 230027, P. R. China
| | - Hong Bi
- School of Materials Science and Engineering, Anhui University, 111 Jiulong Road, Hefei, 23060, P. R. China
| |
Collapse
|
18
|
Liu Y, Yang Y, Xu C, Liu J, Chen J, Li G, Huang B, Pan Y, Zhang Y, Wei Q, Pandol SJ, Zhang F, Li L, Jin L. Circular RNA circGlis3 protects against islet β-cell dysfunction and apoptosis in obesity. Nat Commun 2023; 14:351. [PMID: 36681689 PMCID: PMC9867769 DOI: 10.1038/s41467-023-35998-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
Pancreatic β-cell compensation is a major mechanism in delaying T2DM progression. Here we report the abnormal high expression of circGlis3 in islets of male mice with obesity and serum of people with obesity. Increasing circGlis3 is regulated by Quaking (QKI)-mediated splicing circularization. circGlis3 overexpression enhances insulin secretion and inhibits obesity-induced apoptosis in vitro and in vivo. Mechanistically, circGlis3 promotes insulin secretion by up-regulating NeuroD1 and Creb1 via sponging miR-124-3p and decreases apoptosis via interacting with the pro-apoptotic factor SCOTIN. The RNA binding protein FUS recruits circGlis3 and collectively assemble abnormal stable cytoplasmic stress granules (SG) in response to cellular stress. These findings highlight a physiological role for circRNAs in β-cell compensation and indicate that modulation of circGlis3 expression may represent a potential strategy to prevent β-cell dysfunction and apoptosis after obesity.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, P. R. China
| | - Yue Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, P. R. China
| | - Chenying Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, P. R. China
| | - Jianxing Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, P. R. China
| | - Jiale Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, P. R. China
| | - Guoqing Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao, Nanjing, Jiangsu, 210009, China
| | - Bin Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, P. R. China
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, P. R. China
| | - Yanfeng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, P. R. China
| | - Qiong Wei
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao, Nanjing, Jiangsu, 210009, China
| | - Stephen J Pandol
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Fangfang Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, P. R. China.
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao, Nanjing, Jiangsu, 210009, China.
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, P. R. China.
| |
Collapse
|
19
|
Millar SR, Huang JQ, Schreiber KJ, Tsai YC, Won J, Zhang J, Moses AM, Youn JY. A New Phase of Networking: The Molecular Composition and Regulatory Dynamics of Mammalian Stress Granules. Chem Rev 2023. [PMID: 36662637 PMCID: PMC10375481 DOI: 10.1021/acs.chemrev.2c00608] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Stress granules (SGs) are cytosolic biomolecular condensates that form in response to cellular stress. Weak, multivalent interactions between their protein and RNA constituents drive their rapid, dynamic assembly through phase separation coupled to percolation. Though a consensus model of SG function has yet to be determined, their perceived implication in cytoprotective processes (e.g., antiviral responses and inhibition of apoptosis) and possible role in the pathogenesis of various neurodegenerative diseases (e.g., amyotrophic lateral sclerosis and frontotemporal dementia) have drawn great interest. Consequently, new studies using numerous cell biological, genetic, and proteomic methods have been performed to unravel the mechanisms underlying SG formation, organization, and function and, with them, a more clearly defined SG proteome. Here, we provide a consensus SG proteome through literature curation and an update of the user-friendly database RNAgranuleDB to version 2.0 (http://rnagranuledb.lunenfeld.ca/). With this updated SG proteome, we use next-generation phase separation prediction tools to assess the predisposition of SG proteins for phase separation and aggregation. Next, we analyze the primary sequence features of intrinsically disordered regions (IDRs) within SG-resident proteins. Finally, we review the protein- and RNA-level determinants, including post-translational modifications (PTMs), that regulate SG composition and assembly/disassembly dynamics.
Collapse
Affiliation(s)
- Sean R Millar
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jie Qi Huang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Karl J Schreiber
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Yi-Cheng Tsai
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jiyun Won
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Jianping Zhang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5, Canada
| | - Alan M Moses
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario M5T 3A1, Canada.,The Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Ji-Young Youn
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| |
Collapse
|
20
|
Helton NS, Moon SL. Is bRaQCing bad? New roles for ribosome associated quality control factors in stress granule regulation. Biochem Soc Trans 2022; 50:1715-1724. [PMID: 36484689 PMCID: PMC11368206 DOI: 10.1042/bst20220549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 09/04/2024]
Abstract
Maintenance of proteostasis is of utmost importance to cellular viability and relies on the coordination of many post-transcriptional processes to respond to stressful stimuli. Stress granules (SGs) are RNA-protein condensates that form after translation initiation is inhibited, such as during the integrated stress response (ISR), and may facilitate cellular adaptation to stress. The ribosome-associated quality control (RQC) pathway is a critical translation monitoring system that recognizes aberrant mRNAs encoding potentially toxic nascent peptides to target them for degradation. Both SG regulation and the RQC pathway are directly associated with translation regulation, thus it is of no surprise recent developments have demonstrated a connection between them. VCP's function in the stress activated RQC pathway, ribosome collisions activating the ISR, and the regulation of the 40S ribosomal subunit by canonical SG proteins during the RQC all connect SGs to the RQC pathway. Because mutations in genes that are involved in both SG and RQC regulation are associated with degenerative and neurological diseases, understanding the coordination and interregulation of SGs and RQC may shed light on disease mechanisms. This minireview will highlight recent advances in understanding how SGs and the RQC pathway interact in health and disease contexts.
Collapse
Affiliation(s)
- Noah S Helton
- The Center for RNA Biomedicine and the Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, U.S.A
| | - Stephanie L Moon
- The Center for RNA Biomedicine and the Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, U.S.A
| |
Collapse
|
21
|
Dhaliwal JS, Panozzo C, Benard L, Zerges W. An RNA granule for translation quality control in Saccharomyces cerevisiae. J Cell Sci 2022; 135:285862. [PMID: 36373798 DOI: 10.1242/jcs.260388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Cytoplasmic RNA granules compartmentalize phases of the translation cycle in eukaryotes. We previously reported the localization of oxidized RNA to cytoplasmic foci called oxidized RNA bodies (ORBs) in human cells. We show here that ORBs are RNA granules in Saccharomyces cerevisiae. Several lines of evidence support a role for ORBs in the compartmentalization of no-go decay and ribosome quality control, the translation quality control pathways that recognize and clear aberrant mRNAs, including those with oxidized bases. Translation is required by these pathways and ORBs. Translation quality control factors localize to ORBs. A substrate of translation quality control, a stalled mRNA-ribosome-nascent-chain complex, localizes to ORBs. Translation quality control mutants have altered ORB numbers, sizes or both. In addition, we identify 68 ORB proteins by immunofluorescence staining directed by proteomics, which further support their role in translation quality control and reveal candidate new factors for these pathways.
Collapse
Affiliation(s)
- James S Dhaliwal
- Department of Biology, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, Canada, H4B 1R6
| | - Cristina Panozzo
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Lionel Benard
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - William Zerges
- Department of Biology, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, Canada, H4B 1R6
| |
Collapse
|
22
|
Rhine K, Al-Azzam N, Yu T, Yeo GW. Aging RNA granule dynamics in neurodegeneration. Front Mol Biosci 2022; 9:991641. [PMID: 36188213 PMCID: PMC9523239 DOI: 10.3389/fmolb.2022.991641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/22/2022] [Indexed: 12/30/2022] Open
Abstract
Disordered RNA-binding proteins and repetitive RNA sequences are the main genetic causes of several neurodegenerative diseases, including amyotrophic lateral sclerosis and Huntington's disease. Importantly, these components also seed the formation of cytoplasmic liquid-like granules, like stress granules and P bodies. Emerging evidence demonstrates that healthy granules formed via liquid-liquid phase separation can mature into solid- or gel-like inclusions that persist within the cell. These solidified inclusions are a precursor to the aggregates identified in patients, demonstrating that dysregulation of RNA granule biology is an important component of neurodegeneration. Here, we review recent literature highlighting how RNA molecules seed proteinaceous granules, the mechanisms of healthy turnover of RNA granules in cells, which biophysical properties underly a transition to solid- or gel-like material states, and why persistent granules disrupt the cellular homeostasis of neurons. We also identify various methods that will illuminate the contributions of disordered proteins and RNAs to neurodegeneration in ongoing research efforts.
Collapse
Affiliation(s)
- Kevin Rhine
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States
- Stem Cell Program, University of California, San Diego, San Diego, CA, United States
- Institute for Genomic Medicine, University of California, San Diego, San Diego, CA, United States
| | - Norah Al-Azzam
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States
- Stem Cell Program, University of California, San Diego, San Diego, CA, United States
- Institute for Genomic Medicine, University of California, San Diego, San Diego, CA, United States
- Neurosciences Graduate Program, University of California, San Diego, San Diego, CA, United States
| | - Tao Yu
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States
- Stem Cell Program, University of California, San Diego, San Diego, CA, United States
- Institute for Genomic Medicine, University of California, San Diego, San Diego, CA, United States
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States
- Stem Cell Program, University of California, San Diego, San Diego, CA, United States
- Institute for Genomic Medicine, University of California, San Diego, San Diego, CA, United States
- Neurosciences Graduate Program, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
23
|
Delli Ponti R, Broglia L, Vandelli A, Armaos A, Torrent Burgas M, Sanchez de Groot N, Tartaglia GG. A high-throughput approach to predict A-to-I effects on RNA structure indicates a change of double-stranded content in non-coding RNAs. IUBMB Life 2022; 75:411-426. [PMID: 36057100 DOI: 10.1002/iub.2673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/21/2022] [Indexed: 11/09/2022]
Abstract
RNA molecules undergo a number of chemical modifications whose effects can alter their structure and molecular interactions. Previous studies have shown that RNA editing can impact the formation of ribonucleoprotein complexes and influence the assembly of membrane-less organelles such as stress-granules. For instance, N6-methyladenosine (m6A) enhances SG formation and N1-methyladenosine (m1A) prevents their transition to solid-like aggregates. Yet, very little is known about adenosine to inosine (A-to-I) modification that is very abundant in human cells and not only impacts mRNAs but also non-coding RNAs. Here, we built the CROSSalive predictor of A-to-I effects on RNA structure based on high-throughput in-cell experiments. Our method shows an accuracy of 90% in predicting the single and double-stranded content of transcripts and identifies a general enrichment of double-stranded regions caused by A-to-I in long intergenic non-coding RNAs (lincRNAs). For the individual cases of NEAT1, NORAD and XIST, we investigated the relationship between A-to-I editing and interactions with RNA-binding proteins using available CLIP data and catRAPID predictions. We found that A-to-I editing is linked to alteration of interaction sites with proteins involved in phase-separation, which suggests that RNP assembly can be influenced by A-to-I. CROSSalive is available at http://service.tartaglialab.com/new_submission/crossalive. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Riccardo Delli Ponti
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore
| | - Laura Broglia
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genoa, Italy
| | - Andrea Vandelli
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Alexandros Armaos
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genoa, Italy
| | - Marc Torrent Burgas
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Natalia Sanchez de Groot
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Gian Gaetano Tartaglia
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genoa, Italy.,Department of Biology 'Charles Darwin', Sapienza University of Rome, P.le A. Moro 5, Rome, Italy
| |
Collapse
|
24
|
Loh D, Reiter RJ. Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. Int J Mol Sci 2022; 23:8122. [PMID: 35897696 PMCID: PMC9368024 DOI: 10.3390/ijms23158122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
The relentless, protracted evolution of the SARS-CoV-2 virus imposes tremendous pressure on herd immunity and demands versatile adaptations by the human host genome to counter transcriptomic and epitranscriptomic alterations associated with a wide range of short- and long-term manifestations during acute infection and post-acute recovery, respectively. To promote viral replication during active infection and viral persistence, the SARS-CoV-2 envelope protein regulates host cell microenvironment including pH and ion concentrations to maintain a high oxidative environment that supports template switching, causing extensive mitochondrial damage and activation of pro-inflammatory cytokine signaling cascades. Oxidative stress and mitochondrial distress induce dynamic changes to both the host and viral RNA m6A methylome, and can trigger the derepression of long interspersed nuclear element 1 (LINE1), resulting in global hypomethylation, epigenetic changes, and genomic instability. The timely application of melatonin during early infection enhances host innate antiviral immune responses by preventing the formation of "viral factories" by nucleocapsid liquid-liquid phase separation that effectively blockades viral genome transcription and packaging, the disassembly of stress granules, and the sequestration of DEAD-box RNA helicases, including DDX3X, vital to immune signaling. Melatonin prevents membrane depolarization and protects cristae morphology to suppress glycolysis via antioxidant-dependent and -independent mechanisms. By restraining the derepression of LINE1 via multifaceted strategies, and maintaining the balance in m6A RNA modifications, melatonin could be the quintessential ancient molecule that significantly influences the outcome of the constant struggle between virus and host to gain transcriptomic and epitranscriptomic dominance over the host genome during acute infection and PASC.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
25
|
Glauninger H, Wong Hickernell CJ, Bard JAM, Drummond DA. Stressful steps: Progress and challenges in understanding stress-induced mRNA condensation and accumulation in stress granules. Mol Cell 2022; 82:2544-2556. [PMID: 35662398 PMCID: PMC9308734 DOI: 10.1016/j.molcel.2022.05.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/14/2022] [Accepted: 05/11/2022] [Indexed: 01/11/2023]
Abstract
Stress-induced condensation of mRNA and protein into massive cytosolic clusters is conserved across eukaryotes. Known as stress granules when visible by imaging, these structures remarkably have no broadly accepted biological function, mechanism of formation or dispersal, or even molecular composition. As part of a larger surge of interest in biomolecular condensation, studies of stress granules and related RNA/protein condensates have increasingly probed the biochemical underpinnings of condensation. Here, we review open questions and recent advances, including the stages from initial condensate formation to accumulation in mature stress granules, mechanisms by which stress-induced condensates form and dissolve, and surprising twists in understanding the RNA components of stress granules and their role in condensation. We outline grand challenges in understanding stress-induced RNA condensation, centering on the unique and substantial barriers in the molecular study of cellular structures, such as stress granules, for which no biological function has been firmly established.
Collapse
Affiliation(s)
- Hendrik Glauninger
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60673, USA
| | | | - Jared A M Bard
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60673, USA
| | - D Allan Drummond
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60673, USA.
| |
Collapse
|
26
|
Cialek CA, Galindo G, Morisaki T, Zhao N, Montgomery TA, Stasevich TJ. Imaging translational control by Argonaute with single-molecule resolution in live cells. Nat Commun 2022; 13:3345. [PMID: 35688806 PMCID: PMC9187665 DOI: 10.1038/s41467-022-30976-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/24/2022] [Indexed: 11/29/2022] Open
Abstract
A major challenge to our understanding of translational control has been deconvolving the individual impact specific regulatory factors have on the complex dynamics of mRNA translation. MicroRNAs (miRNAs), for example, guide Argonaute and associated proteins to target mRNAs, where they direct gene silencing in multiple ways that are not well understood. To better deconvolve these dynamics, we have developed technology to directly visualize and quantify the impact of human Argonaute2 (Ago2) on the translation and subcellular localization of individual reporter mRNAs in living cells. We show that our combined translation and Ago2 tethering sensor reflects endogenous miRNA-mediated gene silencing. Using the sensor, we find that Ago2 association leads to progressive silencing of translation at individual mRNA. Silencing was occasionally interrupted by brief bursts of translational activity and took 3–4 times longer than a single round of translation, consistent with a gradual increase in the inhibition of translation initiation. At later time points, Ago2-tethered mRNAs cluster and coalesce with P-bodies, where a translationally silent state is maintained. These results provide a framework for exploring miRNA-mediated gene regulation in live cells at the single-molecule level. Furthermore, our tethering-based, single-molecule reporter system will likely have wide-ranging application in studying RNA-protein interactions. Guided by miRNA, Argonaute proteins silence mRNA in multiple ways that are not well understood. Here, the authors develop live-cell biosensors to image the impact tethered regulatory factors, such as Argonaute, have on single-mRNA translation dynamics.
Collapse
Affiliation(s)
- Charlotte A Cialek
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Gabriel Galindo
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Tatsuya Morisaki
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ning Zhao
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Taiowa A Montgomery
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Timothy J Stasevich
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA. .,Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
27
|
He Z, Yang J, Sui C, Zhang P, Wang T, Mou T, Sun K, Wang Y, Xu Z, Li G, Deng H, Shi J, Zhuang B. FAM98A promotes resistance to 5-fluorouracil in colorectal cancer by suppressing ferroptosis. Arch Biochem Biophys 2022; 722:109216. [PMID: 35421356 DOI: 10.1016/j.abb.2022.109216] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND FAM98A is a microtubule-associated protein involved in cell proliferation and migration, and is frequently dysregulated in epithelial cancers. But its role in the development of colorectal cancer (CRC) cancer remains unknown. METHODS Immunohistochemical analysis was performed to examine the expression of FAM98A in CRC samples. We also investigated the effects of abnormal expression on the biological behavior of colorectal cancer cells both in vitro and in vivo. Immunoblotting and immunoprecipitation were used to screen FAM98A-related signalling pathways and downstream factors. RESULTS FAM98A was upregulated in CRC tissues and CRC cell lines. Overexpression of FAM98A promoted cell proliferation and recovered 5-FU suppressed CRC cell proliferation both in vitro and in vivo. In addition, the Enhanced expression of FAM98A inhibited ferroptosis in CRC cells by activating the translation of xCT in stress granules (SGs). Furthermore, we identified that metformin could reverse FAM98A-mediated 5-FU resistance in CRC cells. CONCLUSIONS Our results for the first time indicate that FAM98A plays a critical role in promoting CRC progression, which provides a novel target for clinical drug resistance of colorectal cancer. And metformin may sensitize 5-FU in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Zhanke He
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Junbo Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital School of Medicine, Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, China
| | - Chuyang Sui
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Penghao Zhang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ting Wang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Tingyu Mou
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Kai Sun
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yanan Wang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhijun Xu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Guoxin Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Haijun Deng
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Jiaolong Shi
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Baoxiong Zhuang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
28
|
Morisaki T, Stasevich TJ. Single-Molecule Imaging of mRNA Interactions with Stress Granules. Methods Mol Biol 2022; 2428:349-360. [PMID: 35171490 PMCID: PMC9191879 DOI: 10.1007/978-1-0716-1975-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Single-molecule imaging in living cells enables the investigation of molecular dynamics and interactions underlying the physiology of a cell. We recently developed a method to visualize translation events at single-mRNA resolution in living cells. Here we describe how we apply this method to visualize mRNA interactions with stress granules in the context of translational activity during cell stress.
Collapse
Affiliation(s)
- Tatsuya Morisaki
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Timothy J Stasevich
- World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
29
|
Regulation of spatially restricted gene expression: linking RNA localization and phase separation. Biochem Soc Trans 2021; 49:2591-2600. [PMID: 34821361 DOI: 10.1042/bst20210320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022]
Abstract
Subcellular restriction of gene expression is crucial to the functioning of a wide variety of cell types. The cellular machinery driving spatially restricted gene expression has been studied for many years, but recent advances have highlighted novel mechanisms by which cells can generate subcellular microenvironments with specialized gene expression profiles. Particularly intriguing are recent findings that phase separation plays a role in certain RNA localization pathways. The burgeoning field of phase separation has revolutionized how we view cellular compartmentalization, revealing that, in addition to membrane-bound organelles, phase-separated cytoplasmic microenvironments - termed biomolecular condensates - are compositionally and functionally distinct from the surrounding cytoplasm, without the need for a lipid membrane. The coupling of phase separation and RNA localization allows for precise subcellular targeting, robust translational repression and dynamic recruitment of accessory proteins. Despite the growing interest in the intersection between RNA localization and phase separation, it remains to be seen how exactly components of the localization machinery, particularly motor proteins, are able to associate with these biomolecular condensates. Further studies of the formation, function, and transport of biomolecular condensates promise to provide a new mechanistic understanding of how cells restrict gene expression at a subcellular level.
Collapse
|
30
|
Shirokikh NE. Translation complex stabilization on messenger RNA and footprint profiling to study the RNA responses and dynamics of protein biosynthesis in the cells. Crit Rev Biochem Mol Biol 2021; 57:261-304. [PMID: 34852690 DOI: 10.1080/10409238.2021.2006599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During protein biosynthesis, ribosomes bind to messenger (m)RNA, locate its protein-coding information, and translate the nucleotide triplets sequentially as codons into the corresponding sequence of amino acids, forming proteins. Non-coding mRNA features, such as 5' and 3' untranslated regions (UTRs), start sites or stop codons of different efficiency, stretches of slower or faster code and nascent polypeptide interactions can alter the translation rates transcript-wise. Most of the homeostatic and signal response pathways of the cells converge on individual mRNA control, as well as alter the global translation output. Among the multitude of approaches to study translational control, one of the most powerful is to infer the locations of translational complexes on mRNA based on the mRNA fragments protected by these complexes from endonucleolytic hydrolysis, or footprints. Translation complex profiling by high-throughput sequencing of the footprints allows to quantify the transcript-wise, as well as global, alterations of translation, and uncover the underlying control mechanisms by attributing footprint locations and sizes to different configurations of the translational complexes. The accuracy of all footprint profiling approaches critically depends on the fidelity of footprint generation and many methods have emerged to preserve certain or multiple configurations of the translational complexes, often in challenging biological material. In this review, a systematic summary of approaches to stabilize translational complexes on mRNA for footprinting is presented and major findings are discussed. Future directions of translation footprint profiling are outlined, focusing on the fidelity and accuracy of inference of the native in vivo translation complex distribution on mRNA.
Collapse
Affiliation(s)
- Nikolay E Shirokikh
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
31
|
Microtubule-based transport is essential to distribute RNA and nascent protein in skeletal muscle. Nat Commun 2021; 12:6079. [PMID: 34707124 PMCID: PMC8551216 DOI: 10.1038/s41467-021-26383-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
While the importance of RNA localization in highly differentiated cells is well appreciated, basic principles of RNA localization in skeletal muscle remain poorly characterized. Here, we develop a method to detect and quantify single molecule RNA localization patterns in skeletal myofibers, and uncover a critical role for directed transport of RNPs in muscle. We find that RNAs localize and are translated along sarcomere Z-disks, dispersing tens of microns from progenitor nuclei, regardless of encoded protein function. We find that directed transport along the lattice-like microtubule network of myofibers becomes essential to achieve this localization pattern as muscle development progresses; disruption of this network leads to extreme accumulation of RNPs and nascent protein around myonuclei. Our observations suggest that global active RNP transport may be required to distribute RNAs in highly differentiated cells and reveal fundamental mechanisms of gene regulation, with consequences for myopathies caused by perturbations to RNPs or microtubules.
Collapse
|
32
|
English AM, Green KM, Moon SL. A (dis)integrated stress response: Genetic diseases of eIF2α regulators. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1689. [PMID: 34463036 DOI: 10.1002/wrna.1689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/28/2023]
Abstract
The integrated stress response (ISR) is a conserved mechanism by which eukaryotic cells remodel gene expression to adapt to intrinsic and extrinsic stressors rapidly and reversibly. The ISR is initiated when stress-activated protein kinases phosphorylate the major translation initiation factor eukaryotic translation initiation factor 2ɑ (eIF2ɑ), which globally suppresses translation initiation activity and permits the selective translation of stress-induced genes including important transcription factors such as activating transcription factor 4 (ATF4). Translationally repressed messenger RNAs (mRNAs) and noncoding RNAs assemble into cytoplasmic RNA-protein granules and polyadenylated RNAs are concomitantly stabilized. Thus, regulated changes in mRNA translation, stability, and localization to RNA-protein granules contribute to the reprogramming of gene expression that defines the ISR. We discuss fundamental mechanisms of RNA regulation during the ISR and provide an overview of a growing class of genetic disorders associated with mutant alleles of key translation factors in the ISR pathway. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease Translation > Translation Regulation RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Alyssa M English
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katelyn M Green
- Department of Chemistry, Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephanie L Moon
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
33
|
Das S, Vera M, Gandin V, Singer RH, Tutucci E. Intracellular mRNA transport and localized translation. Nat Rev Mol Cell Biol 2021; 22:483-504. [PMID: 33837370 PMCID: PMC9346928 DOI: 10.1038/s41580-021-00356-8] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2021] [Indexed: 02/08/2023]
Abstract
Fine-tuning cellular physiology in response to intracellular and environmental cues requires precise temporal and spatial control of gene expression. High-resolution imaging technologies to detect mRNAs and their translation state have revealed that all living organisms localize mRNAs in subcellular compartments and create translation hotspots, enabling cells to tune gene expression locally. Therefore, mRNA localization is a conserved and integral part of gene expression regulation from prokaryotic to eukaryotic cells. In this Review, we discuss the mechanisms of mRNA transport and local mRNA translation across the kingdoms of life and at organellar, subcellular and multicellular resolution. We also discuss the properties of messenger ribonucleoprotein and higher order RNA granules and how they may influence mRNA transport and local protein synthesis. Finally, we summarize the technological developments that allow us to study mRNA localization and local translation through the simultaneous detection of mRNAs and proteins in single cells, mRNA and nascent protein single-molecule imaging, and bulk RNA and protein detection methods.
Collapse
Affiliation(s)
- Sulagna Das
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, NY, USA
| | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, NY, USA.
- Janelia Research Campus of the HHMI, Ashburn, VA, USA.
| | - Evelina Tutucci
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Creekmore BC, Chang YW, Lee EB. The Cryo-EM Effect: Structural Biology of Neurodegenerative Disease Proteostasis Factors. J Neuropathol Exp Neurol 2021; 80:494-513. [PMID: 33860329 PMCID: PMC8177850 DOI: 10.1093/jnen/nlab029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are characterized by the accumulation of misfolded proteins. This protein aggregation suggests that abnormal proteostasis contributes to aging-related neurodegeneration. A better fundamental understanding of proteins that regulate proteostasis may provide insight into the pathophysiology of neurodegenerative disease and may perhaps reveal novel therapeutic opportunities. The 26S proteasome is the key effector of the ubiquitin-proteasome system responsible for degrading polyubiquitinated proteins. However, additional factors, such as valosin-containing protein (VCP/p97/Cdc48) and C9orf72, play a role in regulation and trafficking of substrates through the normal proteostasis systems of a cell. Nonhuman AAA+ ATPases, such as the disaggregase Hsp104, also provide insights into the biochemical processes that regulate protein aggregation. X-ray crystallography and cryo-electron microscopy (cryo-EM) structures not bound to substrate have provided meaningful information about the 26S proteasome, VCP, and Hsp104. However, recent cryo-EM structures bound to substrate have provided new information about the function and mechanism of these proteostasis factors. Cryo-EM and cryo-electron tomography data combined with biochemical data have also increased the understanding of C9orf72 and its role in maintaining proteostasis. These structural insights provide a foundation for understanding proteostasis mechanisms with near-atomic resolution upon which insights can be gleaned regarding the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Benjamin C Creekmore
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi-Wei Chang
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
35
|
Cialek CA, Galindo G, Koch AL, Saxton MN, Stasevich TJ. Bead Loading Proteins and Nucleic Acids into Adherent Human Cells. J Vis Exp 2021:10.3791/62559. [PMID: 34152325 PMCID: PMC9074699 DOI: 10.3791/62559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Many live-cell imaging experiments use exogenous particles (e.g., peptides, antibodies, beads) to label or function within cells. However, introducing proteins into a cell across its membrane is difficult. The limited selection of current methods struggles with low efficiency, requires expensive and technically demanding equipment, or functions within narrow parameters. Here, we describe a relatively simple and cost-effective technique for loading DNA, RNA, and proteins into live human cells. Bead loading induces a temporary mechanical disruption to the cell membrane, allowing macromolecules to enter adherent, live mammalian cells. At less than 0.01 USD per experiment, bead loading is the least expensive cell loading method available. Moreover, bead loading does not substantially stress cells or impact their viability or proliferation. This manuscript describes the steps of the bead loading procedure, adaptations, variations, and technical limitations. This methodology is especially suited for live-cell imaging but provides a practical solution for other applications requiring the introduction of proteins, beads, RNA, or plasmids into living, adherent mammalian cells.
Collapse
Affiliation(s)
| | - Gabriel Galindo
- Department of Biochemistry and Molecular Biology, Colorado State University
| | - Amanda Lynn Koch
- Department of Biochemistry and Molecular Biology, Colorado State University
| | | | - Timothy John Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University; World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology;
| |
Collapse
|
36
|
Mukherjee N, Mukherjee C. Germ cell ribonucleoprotein granules in different clades of life: From insects to mammals. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1642. [PMID: 33555143 DOI: 10.1002/wrna.1642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Ribonucleoprotein (RNP) granules are no newcomers in biology. Found in all life forms, ranging across taxa, these membrane-less "organelles" have been classified into different categories based on their composition, structure, behavior, function, and localization. Broadly, they can be listed as stress granules (SGs), processing bodies (PBs), neuronal granules (NGs), and germ cell granules (GCGs). Keeping in line with the topic of this review, RNP granules present in the germ cells have been implicated in a wide range of cellular functions including cellular specification, differentiation, proliferation, and so forth. The mechanisms used by them can be diverse and many of them remain partly obscure and active areas of research. GCGs can be of different types in different organisms and at different stages of development, with multiple types coexisting in the same cell. In this review, the different known subcategories of GCGs have been studied with respect to five distinct model organisms, namely, Drosophila, Caenorhabditis elegans, Xenopus, Zebrafish, and mammals. Of them, the cytoplasmic polar granules in Drosophila, P granules in C. elegans, balbiani body in Xenopus and Zebrafish, and chromatoid bodies in mammals have been specifically emphasized upon. A descriptive account of the same has been provided along with insights into our current understanding of their functional significance with respect to cellular events relating to different developmental and reproductive processes. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease.
Collapse
|
37
|
Mateju D, Eichenberger B, Voigt F, Eglinger J, Roth G, Chao JA. Single-Molecule Imaging Reveals Translation of mRNAs Localized to Stress Granules. Cell 2020; 183:1801-1812.e13. [PMID: 33308477 DOI: 10.1016/j.cell.2020.11.010] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/14/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022]
Abstract
Cellular stress leads to reprogramming of mRNA translation and formation of stress granules (SGs), membraneless organelles consisting of mRNA and RNA-binding proteins. Although the function of SGs remains largely unknown, it is widely assumed they contain exclusively non-translating mRNA. Here, we re-examine this hypothesis using single-molecule imaging of mRNA translation in living cells. Although we observe non-translating mRNAs are preferentially recruited to SGs, we find unequivocal evidence that mRNAs localized to SGs can undergo translation. Our data indicate that SG-associated translation is not rare, and the entire translation cycle (initiation, elongation, and termination) can occur on SG-localized transcripts. Furthermore, translating mRNAs can be observed transitioning between the cytosol and SGs without changing their translational status. Together, these results demonstrate that mRNA localization to SGs is compatible with translation and argue against a direct role for SGs in inhibition of protein synthesis.
Collapse
Affiliation(s)
- Daniel Mateju
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Bastian Eichenberger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Franka Voigt
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Jan Eglinger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Gregory Roth
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
38
|
Maltby CJ, Schofield JPR, Houghton SD, O’Kelly I, Vargas-Caballero M, Deinhardt K, Coldwell MJ. A 5' UTR GGN repeat controls localisation and translation of a potassium leak channel mRNA through G-quadruplex formation. Nucleic Acids Res 2020; 48:9822-9839. [PMID: 32870280 PMCID: PMC7515701 DOI: 10.1093/nar/gkaa699] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022] Open
Abstract
RNA G-quadruplexes (G4s) are secondary structures proposed to function as regulators of post-transcriptional mRNA localisation and translation. G4s within some neuronal mRNAs are known to control distal localisation and local translation, contributing to distinct local proteomes that facilitate the synaptic remodelling attributed to normal cellular function. In this study, we characterise the G4 formation of a (GGN)13 repeat found within the 5' UTR of the potassium 2-pore domain leak channel Task3 mRNA. Biophysical analyses show that this (GGN)13 repeat forms a parallel G4 in vitro exhibiting the stereotypical potassium specificity of G4s, remaining thermostable under physiological ionic conditions. Through mouse brain tissue G4-RNA immunoprecipitation, we further confirm that Task3 mRNA forms a G4 structure in vivo. The G4 is inhibitory to translation of Task3 in vitro and is overcome through activity of a G4-specific helicase DHX36, increasing K+ leak currents and membrane hyperpolarisation in HEK293 cells. Further, we observe that this G4 is fundamental to ensuring delivery of Task3 mRNA to distal primary cortical neurites. It has been shown that aberrant Task3 expression correlates with neuronal dysfunction, we therefore posit that this G4 is important in regulated local expression of Task3 leak channels that maintain K+ leak within neurons.
Collapse
Affiliation(s)
- Connor J Maltby
- School of Biological Sciences, University of Southampton, Southampton, Hampshire SO17 1BJ, UK
| | - James P R Schofield
- School of Biological Sciences, University of Southampton, Southampton, Hampshire SO17 1BJ, UK
| | - Steven D Houghton
- School of Biological Sciences, University of Southampton, Southampton, Hampshire SO17 1BJ, UK
| | - Ita O’Kelly
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, Hampshire SO17 1BJ, UK
| | | | - Katrin Deinhardt
- School of Biological Sciences, University of Southampton, Southampton, Hampshire SO17 1BJ, UK
| | - Mark J Coldwell
- School of Biological Sciences, University of Southampton, Southampton, Hampshire SO17 1BJ, UK
| |
Collapse
|
39
|
Hickey KL, Dickson K, Cogan JZ, Replogle JM, Schoof M, D'Orazio KN, Sinha NK, Hussmann JA, Jost M, Frost A, Green R, Weissman JS, Kostova KK. GIGYF2 and 4EHP Inhibit Translation Initiation of Defective Messenger RNAs to Assist Ribosome-Associated Quality Control. Mol Cell 2020; 79:950-962.e6. [PMID: 32726578 PMCID: PMC7891188 DOI: 10.1016/j.molcel.2020.07.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
Ribosome-associated quality control (RQC) pathways protect cells from toxicity caused by incomplete protein products resulting from translation of damaged or problematic mRNAs. Extensive work in yeast has identified highly conserved mechanisms that lead to degradation of faulty mRNA and partially synthesized polypeptides. Here we used CRISPR-Cas9-based screening to search for additional RQC strategies in mammals. We found that failed translation leads to specific inhibition of translation initiation on that message. This negative feedback loop is mediated by two translation inhibitors, GIGYF2 and 4EHP. Model substrates and growth-based assays established that inhibition of additional rounds of translation acts in concert with known RQC pathways to prevent buildup of toxic proteins. Inability to block translation of faulty mRNAs and subsequent accumulation of partially synthesized polypeptides could explain the neurodevelopmental and neuropsychiatric disorders observed in mice and humans with compromised GIGYF2 function.
Collapse
Affiliation(s)
- Kelsey L Hickey
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kimberley Dickson
- Department of Biology, Lawerence University, Appleton, WI 54911, USA
| | - J Zachery Cogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph M Replogle
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael Schoof
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Karole N D'Orazio
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Niladri K Sinha
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jeffrey A Hussmann
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Marco Jost
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adam Frost
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Rachel Green
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA; Howard Hughes Medical Institute, Carnegie Institution for Science, Baltimore, MD 21218, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Carnegie Institution for Science, Baltimore, MD 21218, USA.
| | - Kamena K Kostova
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA.
| |
Collapse
|