1
|
Mayer I, Karimian T, Gordiyenko K, Angelin A, Kumar R, Hirtz M, Mikut R, Reischl M, Stegmaier J, Zhou L, Ma R, Nienhaus GU, Rabe KS, Lanzerstorfer P, Domínguez CM, Niemeyer CM. Surface-Patterned DNA Origami Rulers Reveal Nanoscale Distance Dependency of the Epidermal Growth Factor Receptor Activation. NANO LETTERS 2024; 24:1611-1619. [PMID: 38267020 PMCID: PMC10853960 DOI: 10.1021/acs.nanolett.3c04272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
The nanoscale arrangement of ligands can have a major effect on the activation of membrane receptor proteins and thus cellular communication mechanisms. Here we report on the technological development and use of tailored DNA origami-based molecular rulers to fabricate "Multiscale Origami Structures As Interface for Cells" (MOSAIC), to enable the systematic investigation of the effect of the nanoscale spacing of epidermal growth factor (EGF) ligands on the activation of the EGF receptor (EGFR). MOSAIC-based analyses revealed that EGF distances of about 30-40 nm led to the highest response in EGFR activation of adherent MCF7 and Hela cells. Our study emphasizes the significance of DNA-based platforms for the detailed investigation of the molecular mechanisms of cellular signaling cascades.
Collapse
Affiliation(s)
- Ivy Mayer
- Institute
for Biological Interfaces (IBG-1), Karlsruhe
Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Tina Karimian
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
| | - Klavdiya Gordiyenko
- Institute
for Biological Interfaces (IBG-1), Karlsruhe
Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Alessandro Angelin
- Institute
for Biological Interfaces (IBG-1), Karlsruhe
Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Ravi Kumar
- Institute
of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Michael Hirtz
- Institute
of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Ralf Mikut
- Institute
for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Markus Reischl
- Institute
for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Johannes Stegmaier
- Institute
for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
- Institute
of Imaging and Computer Vision, RWTH Aachen
University, 52074 Aachen, Germany
| | - Lu Zhou
- Institute
of Applied Physics (APH), Karlsruhe Institute
of Technology (KIT), 76049 Karlsruhe, Germany
| | - Rui Ma
- Institute
of Applied Physics (APH), Karlsruhe Institute
of Technology (KIT), 76049 Karlsruhe, Germany
| | - Gerd Ulrich Nienhaus
- Institute
of Applied Physics (APH), Karlsruhe Institute
of Technology (KIT), 76049 Karlsruhe, Germany
- Institute
of Biological and Chemical Systems (IBCS) and Institute of Nanotechnology
(INT), Karlsruhe Institute of Technology
(KIT), 76021 Karlsruhe, Germany
- Department
of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Kersten S. Rabe
- Institute
for Biological Interfaces (IBG-1), Karlsruhe
Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Peter Lanzerstorfer
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
| | - Carmen M. Domínguez
- Institute
for Biological Interfaces (IBG-1), Karlsruhe
Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Christof M. Niemeyer
- Institute
for Biological Interfaces (IBG-1), Karlsruhe
Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Watson JL, Seinkmane E, Styles CT, Mihut A, Krüger LK, McNally KE, Planelles-Herrero VJ, Dudek M, McCall PM, Barbiero S, Vanden Oever M, Peak-Chew SY, Porebski BT, Zeng A, Rzechorzek NM, Wong DCS, Beale AD, Stangherlin A, Riggi M, Iwasa J, Morf J, Miliotis C, Guna A, Inglis AJ, Brugués J, Voorhees RM, Chambers JE, Meng QJ, O'Neill JS, Edgar RS, Derivery E. Macromolecular condensation buffers intracellular water potential. Nature 2023; 623:842-852. [PMID: 37853127 PMCID: PMC10665201 DOI: 10.1038/s41586-023-06626-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 09/08/2023] [Indexed: 10/20/2023]
Abstract
Optimum protein function and biochemical activity critically depends on water availability because solvent thermodynamics drive protein folding and macromolecular interactions1. Reciprocally, macromolecules restrict the movement of 'structured' water molecules within their hydration layers, reducing the available 'free' bulk solvent and therefore the total thermodynamic potential energy of water, or water potential. Here, within concentrated macromolecular solutions such as the cytosol, we found that modest changes in temperature greatly affect the water potential, and are counteracted by opposing changes in osmotic strength. This duality of temperature and osmotic strength enables simple manipulations of solvent thermodynamics to prevent cell death after extreme cold or heat shock. Physiologically, cells must sustain their activity against fluctuating temperature, pressure and osmotic strength, which impact water availability within seconds. Yet, established mechanisms of water homeostasis act over much slower timescales2,3; we therefore postulated the existence of a rapid compensatory response. We find that this function is performed by water potential-driven changes in macromolecular assembly, particularly biomolecular condensation of intrinsically disordered proteins. The formation and dissolution of biomolecular condensates liberates and captures free water, respectively, quickly counteracting thermal or osmotic perturbations of water potential, which is consequently robustly buffered in the cytoplasm. Our results indicate that biomolecular condensation constitutes an intrinsic biophysical feedback response that rapidly compensates for intracellular osmotic and thermal fluctuations. We suggest that preserving water availability within the concentrated cytosol is an overlooked evolutionary driver of protein (dis)order and function.
Collapse
Affiliation(s)
| | | | | | - Andrei Mihut
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | - Michal Dudek
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK
| | - Patrick M McCall
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | | | | | | | | | - Aiwei Zeng
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | - Alessandra Stangherlin
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Margot Riggi
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Janet Iwasa
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Jörg Morf
- Laboratory of Nuclear Dynamics, Babraham Institute, Cambridge, UK
| | | | - Alina Guna
- California Institute of Technology, Pasadena, CA, USA
| | | | - Jan Brugués
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | | | | | - Qing-Jun Meng
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK
| | | | - Rachel S Edgar
- Department of Infectious Disease, Imperial College London, London, UK.
| | | |
Collapse
|
3
|
Watson JL, Krüger LK, Ben-Sasson AJ, Bittleston A, Shahbazi MN, Planelles-Herrero VJ, Chambers JE, Manton JD, Baker D, Derivery E. Synthetic Par polarity induces cytoskeleton asymmetry in unpolarized mammalian cells. Cell 2023; 186:4710-4727.e35. [PMID: 37774705 PMCID: PMC10765089 DOI: 10.1016/j.cell.2023.08.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/04/2023] [Accepted: 08/25/2023] [Indexed: 10/01/2023]
Abstract
Polarized cells rely on a polarized cytoskeleton to function. Yet, how cortical polarity cues induce cytoskeleton polarization remains elusive. Here, we capitalized on recently established designed 2D protein arrays to ectopically engineer cortical polarity of virtually any protein of interest during mitosis in various cell types. This enables direct manipulation of polarity signaling and the identification of the cortical cues sufficient for cytoskeleton polarization. Using this assay, we dissected the logic of the Par complex pathway, a key regulator of cytoskeleton polarity during asymmetric cell division. We show that cortical clustering of any Par complex subunit is sufficient to trigger complex assembly and that the primary kinetic barrier to complex assembly is the relief of Par6 autoinhibition. Further, we found that inducing cortical Par complex polarity induces two hallmarks of asymmetric cell division in unpolarized mammalian cells: spindle orientation, occurring via Par3, and central spindle asymmetry, depending on aPKC activity.
Collapse
Affiliation(s)
- Joseph L Watson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Lara K Krüger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Ariel J Ben-Sasson
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alice Bittleston
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Marta N Shahbazi
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | | | - Joseph E Chambers
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Hills Rd, Cambridge, UK
| | - James D Manton
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Emmanuel Derivery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
| |
Collapse
|
4
|
Zhang Y, Rémy M, Apartsin E, Prouvé E, Feuillie C, Labrugère C, Cam N, Durrieu MC. Controlling differentiation of stem cells via bioactive disordered cues. Biomater Sci 2023; 11:6116-6134. [PMID: 37602410 DOI: 10.1039/d3bm00605k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Ideal bone tissue engineering is to induce bone regeneration through the synergistic integration of biomaterial scaffolds, bone progenitor cells, and bone-forming factors. Biomimetic scaffolds imitate the native extracellular matrix (ECM) and are often utilized in vitro as analogues of the natural ECM to facilitate investigations of cell-ECM interactions and processes. In vivo, the cellular microenvironment has a crucial impact on regulating cell behavior and functions. A PET surface was activated and then functionalized with mimetic peptides to promote human mesenchymal stem cell (hMSC) adhesion and differentiation into an osteogenic lineage. Spray technology was used to randomly micropattern peptides (RGD and BMP-2 mimetic peptides) on the PET surface. The distribution of the peptides grafted on the surface, the roughness of the surfaces and the chemistry of the surfaces in each step of the treatment were ascertained by atomic force microscopy, fluorescence microscopy, time-of-flight secondary ion mass spectrometry, Toluidine Blue O assay, and X-ray photoelectron spectroscopy. Subsequently, cell lineage differentiation was evaluated by quantifying the expression of immunofluorescence markers: osteoblast markers (Runx-2, OPN) and osteocyte markers (E11, DMP1, and SOST). In this article, we hypothesized that a unique combination of bioactive micro/nanopatterns on a polymer surface improves the rate of morphology change and enhances hMSC differentiation. In DMEM, after 14 days, disordered micropatterned surfaces with RGD and BMP-2 led to a higher osteoblast marker expression than surfaces with a homogeneous dual peptide conjugation. Finally, hMSCs cultured in osteogenic differentiation medium (ODM) showed accelerated cell differentiation. In ODM, our results highlighted the expression of osteocyte markers when hMSCs were seeded on PET surfaces with random micropatterns.
Collapse
Affiliation(s)
- Yujie Zhang
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | - Murielle Rémy
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | - Evgeny Apartsin
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | - Emilie Prouvé
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | - Cécile Feuillie
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | | | - Nithavong Cam
- Univ. Bordeaux, CNRS, PLACAMAT, UAR 3626, F-33600 Pessac, France
| | | |
Collapse
|
5
|
Levin JT, Pan A, Barrett MT, Alushin GM. A platform for dissecting force sensitivity and multivalency in actin networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553463. [PMID: 37645911 PMCID: PMC10462062 DOI: 10.1101/2023.08.15.553463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The physical structure and dynamics of cells are supported by micron-scale actin networks with diverse geometries, protein compositions, and mechanical properties. These networks are composed of actin filaments and numerous actin binding proteins (ABPs), many of which engage multiple filaments simultaneously to crosslink them into specific functional architectures. Mechanical force has been shown to modulate the interactions between several ABPs and individual actin filaments, but it is unclear how this phenomenon contributes to the emergent force-responsive functional dynamics of actin networks. Here, we engineer filament linker complexes and combine them with photo-micropatterning of myosin motor proteins to produce an in vitro reconstitution platform for examining how force impacts the behavior of ABPs within multi-filament assemblies. Our system enables the monitoring of dozens of actin networks with varying architectures simultaneously using total internal reflection fluorescence microscopy, facilitating detailed dissection of the interplay between force-modulated ABP binding and network geometry. We apply our system to study a dimeric form of the critical cell-cell adhesion protein α-catenin, a model force-sensitive ABP. We find that myosin forces increase α-catenin's engagement of small filament bundles embedded within networks. This activity is absent in a force-sensing deficient mutant, whose binding scales linearly with bundle size in both the presence and absence of force. These data are consistent with filaments in smaller bundles bearing greater per-filament loads that enhance α-catenin binding, a mechanism that could equalize α-catenin's distribution across actin-myosin networks of varying sizes in cells to regularize their stability and composition.
Collapse
Affiliation(s)
- Joseph T. Levin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, New York, USA
| | - Ariel Pan
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, New York, USA
| | - Michael T. Barrett
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, New York, USA
| | - Gregory M. Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
6
|
Jin M, Wu K, Wang M, Zhang Y, Yang C, Li Z. High-Resolution, Multiplex Antibody Patterning using Micropillar-Focused Droplet Printing, and Microcontact Printing. Adv Biol (Weinh) 2023; 7:e2300111. [PMID: 37178384 DOI: 10.1002/adbi.202300111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Antibody arrays have great implications in many biomedical settings. However, commonly used patterning methods have difficulties in generating antibody arrays with both high resolution and multiplexity, limiting their applications. Here, a convenient and versatile technique for the patterning of multiple antibodies with resolution down to 20 µm is reported using micropillar-focused droplet printing and microcontact printing. Droplets of antibody solutions are first printed and stably confined on the micropillars of a stamp, and then the antibodies absorbed on the micropillars are contact-printed to the target substrate, generating antibody patterns faithfully replicating the micropillar array. The effect of different parameters on the patterning results is investigated, including hydrophobicity of the stamps, override time of the droplet printing, incubation time, and the diameters of the capillary tips and micropillars. To demonstrate the utility of the method, multiplex arrays of anti-EpCAM and anti-CD68 antibodies is generated to capture breast cancer cells and macrophages, respectively, on the same substrate, and successful capturing of individual cell types and enrichment among the cells are achieved. It is envision that this method would serve as a versatile and useful protein patterning tool for biomedical applications.
Collapse
Affiliation(s)
- Meichi Jin
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Kai Wu
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Mengzhen Wang
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
- School of Dentistry, Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Yang Zhang
- School of Dentistry, Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Chengbin Yang
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Zida Li
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
7
|
Carpentier N, Urbani L, Dubruel P, Van Vlierberghe S. The native liver as inspiration to create superior in vitro hepatic models. Biomater Sci 2023; 11:1091-1115. [PMID: 36594602 DOI: 10.1039/d2bm01646j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Drug induced liver injury (DILI) is one of the major reasons of drug withdrawal during the different phases of drug development. The later in the drug development a drug is discovered to be toxic, the higher the economical as well as the ethical impact will be. In vitro models for early detection of drug liver toxicity are under constant development, however to date a superior model of the liver is still lacking. Ideally, a highly reliable model should be established to maintain the different hepatic cell functionalities to the greatest extent possible, during a period of time long enough to allow for tracking of the toxicity of compounds. In the case of DILI, toxicity can appear even after months of exposure. To reach this goal, an in vitro model should be developed that mimics the in vivo liver environment, function and response to external stimuli. The different approaches for the development of liver models currently used in the field of tissue engineering will be described in this review. Combining different technologies, leading to optimal materials, cells and 3D-constructs will ultimately lead to an ideal superior model that fully recapitulates the liver.
Collapse
Affiliation(s)
- Nathan Carpentier
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium.
| | - Luca Urbani
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK.,Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium.
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium.
| |
Collapse
|
8
|
Elongator stabilizes microtubules to control central spindle asymmetry and polarized trafficking of cell fate determinants. Nat Cell Biol 2022; 24:1606-1616. [PMID: 36302967 PMCID: PMC7613801 DOI: 10.1038/s41556-022-01020-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/19/2022] [Indexed: 01/18/2023]
Abstract
Asymmetric cell division gives rise to two daughter cells that inherit different determinants, thereby acquiring different fates. Polarized trafficking of endosomes containing fate determinants recently emerged as an evolutionarily conserved feature of asymmetric cell division to enhance the robustness of asymmetric cell fate determination in flies, fish and mammals. In particular, polarized sorting of signalling endosomes by an asymmetric central spindle contributes to asymmetric cell division in Drosophila melanogaster. However, how central spindle asymmetry arises remains elusive. Here we identify a moonlighting function of the Elongator complex-an established protein acetylase and tRNA methylase involved in the fidelity of protein translation-as a key factor for central spindle asymmetry. Elongator controls spindle asymmetry by stabilizing microtubules differentially on the anterior side of the central spindle. Accordingly, lowering the activity of Elongator on the anterior side using nanobodies mistargets endosomes to the wrong cell. Molecularly, Elongator regulates microtubule dynamics independently of its acetylation and methylation enzymatic activities. Instead, Elongator directly binds to microtubules and increases their polymerization speed while decreasing their catastrophe frequency. Our data establish a non-canonical role of Elongator at the core of cytoskeleton polarity and asymmetric signalling.
Collapse
|
9
|
Karimian T, Hager R, Karner A, Weghuber J, Lanzerstorfer P. A Simplified and Robust Activation Procedure of Glass Surfaces for Printing Proteins and Subcellular Micropatterning Experiments. BIOSENSORS 2022; 12:140. [PMID: 35323410 PMCID: PMC8946821 DOI: 10.3390/bios12030140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 05/08/2023]
Abstract
Depositing biomolecule micropatterns on solid substrates via microcontact printing (µCP) usually requires complex chemical substrate modifications to initially create reactive surface groups. Here, we present a simplified activation procedure for untreated solid substrates based on a commercial polymer metal ion coating (AnteoBindTM Biosensor reagent) that allows for direct µCP and the strong attachment of proteins via avidity binding. In proof-of-concept experiments, we identified the optimum working concentrations of the surface coating, characterized the specificity of protein binding and demonstrated the suitability of this approach by subcellular micropatterning experiments in living cells. Altogether, this method represents a significant enhancement and simplification of existing µCP procedures and further increases the accessibility of protein micropatterning for cell biological research questions.
Collapse
Affiliation(s)
- Tina Karimian
- School of Engineering, University of Applied Sciences Upper Austria, 4600 Wels, Austria; (T.K.); (R.H.); (J.W.)
| | - Roland Hager
- School of Engineering, University of Applied Sciences Upper Austria, 4600 Wels, Austria; (T.K.); (R.H.); (J.W.)
| | - Andreas Karner
- School of Engineering, University of Applied Sciences Upper Austria, 4020 Linz, Austria;
| | - Julian Weghuber
- School of Engineering, University of Applied Sciences Upper Austria, 4600 Wels, Austria; (T.K.); (R.H.); (J.W.)
- FFoQSI GmbH, Austrian Competence Center for Feed and Food Quality, Safety & Innovation, 3430 Tulln, Austria
| | - Peter Lanzerstorfer
- School of Engineering, University of Applied Sciences Upper Austria, 4600 Wels, Austria; (T.K.); (R.H.); (J.W.)
| |
Collapse
|
10
|
Missirlis D, Baños M, Lussier F, Spatz JP. Facile and Versatile Method for Micropatterning Poly(acrylamide) Hydrogels Using Photocleavable Comonomers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3643-3652. [PMID: 35006666 PMCID: PMC8796170 DOI: 10.1021/acsami.1c17901] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We here present a micropatterning strategy to introduce small molecules and ligands on patterns of arbitrary shapes on the surface of poly(acrylamide)-based hydrogels. The main advantages of the presented approach are the ease of use, the lack of need to prefabricate photomasks, the use of mild UV light and biocompatible bioconjugation chemistries, and the capacity to pattern low-molecular-weight ligands, such as peptides, peptidomimetics, or DNA fragments. To achieve the above, a monomer containing a caged amine (NVOC group) was co-polymerized in the hydrogel network; upon UV light illumination using a commercially available setup, primary amines were locally deprotected and served as reactive groups for further functionalization. Cell patterning on various cell adhesive ligands was demonstrated, with cells responding to a combination of pattern shape and substrate elasticity. The approach is compatible with standard traction force microscopy (TFM) experimentation and can further be extended to reference-free TFM.
Collapse
Affiliation(s)
- Dimitris Missirlis
- Department
of Cellular Biophysics, Max-Planck-Institute
for Medical Research, Jahnstr. 29, Heidelberg 69120, Germany
- . Tel: +49 6221 486430
| | - Miguel Baños
- Department
of Cellular Biophysics, Max-Planck-Institute
for Medical Research, Jahnstr. 29, Heidelberg 69120, Germany
| | - Felix Lussier
- Department
of Cellular Biophysics, Max-Planck-Institute
for Medical Research, Jahnstr. 29, Heidelberg 69120, Germany
| | - Joachim P. Spatz
- Department
of Cellular Biophysics, Max-Planck-Institute
for Medical Research, Jahnstr. 29, Heidelberg 69120, Germany
- Department
of Biophysical Chemistry, Physical Chemistry Institute, Heidelberg University, INF-253, Heidelberg 69120, Germany
| |
Collapse
|
11
|
Hager R, Müller U, Ollinger N, Weghuber J, Lanzerstorfer P. Subcellular Dynamic Immunopatterning of Cytosolic Protein Complexes on Microstructured Polymer Substrates. ACS Sens 2021; 6:4076-4088. [PMID: 34652152 PMCID: PMC8630788 DOI: 10.1021/acssensors.1c01574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Analysis of protein–protein
interactions in living cells
by protein micropatterning is currently limited to the spatial arrangement
of transmembrane proteins and their corresponding downstream molecules.
Here, we present a robust and straightforward method for dynamic immunopatterning
of cytosolic protein complexes by use of an artificial transmembrane
bait construct in combination with microstructured antibody arrays
on cyclic olefin polymer substrates. As a proof, the method was used
to characterize Grb2-mediated signaling pathways downstream of the
epidermal growth factor receptor (EGFR). Ternary protein complexes
(Shc1:Grb2:SOS1 and Grb2:Gab1:PI3K) were identified, and we found
that EGFR downstream signaling is based on constitutively bound (Grb2:SOS1
and Grb2:Gab1) as well as on agonist-dependent protein associations
with transient interaction properties (Grb2:Shc1 and Grb2:PI3K). Spatiotemporal
analysis further revealed significant differences in stability and
exchange kinetics of protein interactions. Furthermore, we could show
that this approach is well suited to study the efficacy and specificity
of SH2 and SH3 protein domain inhibitors in a live cell context. Altogether,
this method represents a significant enhancement of quantitative subcellular
micropatterning approaches as an alternative to standard biochemical
analyses.
Collapse
Affiliation(s)
- Roland Hager
- University of Applied Sciences Upper Austria, School of Engineering, 4600 Wels, Austria
| | - Ulrike Müller
- University of Applied Sciences Upper Austria, School of Engineering, 4600 Wels, Austria
| | - Nicole Ollinger
- Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, Head Office: FFoQSI GmbH, Technopark 1C, 3430 Tulln, Austria
| | - Julian Weghuber
- University of Applied Sciences Upper Austria, School of Engineering, 4600 Wels, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, Head Office: FFoQSI GmbH, Technopark 1C, 3430 Tulln, Austria
| | - Peter Lanzerstorfer
- University of Applied Sciences Upper Austria, School of Engineering, 4600 Wels, Austria
| |
Collapse
|
12
|
Khalil NN, McCain ML. Engineering the Cellular Microenvironment of Post-infarct Myocardium on a Chip. Front Cardiovasc Med 2021; 8:709871. [PMID: 34336962 PMCID: PMC8316619 DOI: 10.3389/fcvm.2021.709871] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023] Open
Abstract
Myocardial infarctions are one of the most common forms of cardiac injury and death worldwide. Infarctions cause immediate necrosis in a localized region of the myocardium, which is followed by a repair process with inflammatory, proliferative, and maturation phases. This repair process culminates in the formation of scar tissue, which often leads to heart failure in the months or years after the initial injury. In each reparative phase, the infarct microenvironment is characterized by distinct biochemical, physical, and mechanical features, such as inflammatory cytokine production, localized hypoxia, and tissue stiffening, which likely each contribute to physiological and pathological tissue remodeling by mechanisms that are incompletely understood. Traditionally, simplified two-dimensional cell culture systems or animal models have been implemented to elucidate basic pathophysiological mechanisms or predict drug responses following myocardial infarction. However, these conventional approaches offer limited spatiotemporal control over relevant features of the post-infarct cellular microenvironment. To address these gaps, Organ on a Chip models of post-infarct myocardium have recently emerged as new paradigms for dissecting the highly complex, heterogeneous, and dynamic post-infarct microenvironment. In this review, we describe recent Organ on a Chip models of post-infarct myocardium, including their limitations and future opportunities in disease modeling and drug screening.
Collapse
Affiliation(s)
- Natalie N Khalil
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States.,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
13
|
Abstract
Micropatterning is a process to precisely deposit molecules, typically proteins, onto a substrate of choice with micrometer resolution. Watson et al. (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202009063) describe an innovative yet accessible strategy to enable the reproducible micropatterning of virtually any protein while maintaining its biological activity.
Collapse
Affiliation(s)
- Simon Latour
- University of Toronto, Institute of Biomedical Engineering, Toronto, Canada
| | - Alison P. McGuigan
- University of Toronto, Institute of Biomedical Engineering, Toronto, Canada
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, Toronto, Canada
| |
Collapse
|