1
|
Plygawko AT, Stephan-Otto Attolini C, Pitsidianaki I, Cook DP, Darby AC, Campbell K. The Drosophila adult midgut progenitor cells arise from asymmetric divisions of neuroblast-like cells. Dev Cell 2024:S1534-5807(24)00630-0. [PMID: 39532106 DOI: 10.1016/j.devcel.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/21/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
The Drosophila adult midgut progenitor cells (AMPs) give rise to all cells in the adult midgut epithelium, including the intestinal stem cells (ISCs). While they share many characteristics with the ISCs, it remains unclear how they are generated in the early embryo. Here, we show that they arise from a population of endoderm cells, which exhibit multiple similarities with Drosophila neuroblasts. These cells, which we have termed endoblasts, are patterned by homothorax (Hth) and undergo asymmetric divisions using the same molecular machinery as neuroblasts. We also show that the conservation of this molecular machinery extends to the generation of the enteroendocrine lineages. Parallels have previously been drawn between the pupal ISCs and larval neuroblasts. Our results suggest that these commonalities exist from the earliest stages of specification of progenitor cells of the intestinal and nervous systems and may represent an ancestral pathway for multipotent progenitor cell specification.
Collapse
Affiliation(s)
- Andrew T Plygawko
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ioanna Pitsidianaki
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alistair C Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kyra Campbell
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
2
|
Stehbens SJ, Scarpa E, White MD. Perspectives in collective cell migration - moving forward. J Cell Sci 2024; 137:jcs261549. [PMID: 38904172 DOI: 10.1242/jcs.261549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Collective cell migration, where cells move as a cohesive unit, is a vital process underlying morphogenesis and cancer metastasis. Thanks to recent advances in imaging and modelling, we are beginning to understand the intricate relationship between a cell and its microenvironment and how this shapes cell polarity, metabolism and modes of migration. The use of biophysical and mathematical models offers a fresh perspective on how cells migrate collectively, either flowing in a fluid-like state or transitioning to more static states. Continuing to unite researchers in biology, physics and mathematics will enable us to decode more complex biological behaviours that underly collective cell migration; only then can we understand how this coordinated movement of cells influences the formation and organisation of tissues and directs the spread of metastatic cancer. In this Perspective, we highlight exciting discoveries, emerging themes and common challenges that have arisen in recent years, and possible ways forward to bridge the gaps in our current understanding of collective cell migration.
Collapse
Affiliation(s)
- Samantha J Stehbens
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St Lucia, Brisbane, QLD 4072, Australia
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, Brisbane, QLD 4072, Australia
| | - Elena Scarpa
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3DY, UK
| | - Melanie D White
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, Brisbane, QLD 4072, Australia
- The University of Queensland, School of Biomedical Sciences, St Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
3
|
Stansak KL, Baum LD, Ghosh S, Thapa P, Vanga V, Walters BJ. PCP auto count: a novel Fiji/ImageJ plug-in for automated quantification of planar cell polarity and cell counting. Front Cell Dev Biol 2024; 12:1394031. [PMID: 38827526 PMCID: PMC11140036 DOI: 10.3389/fcell.2024.1394031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/19/2024] [Indexed: 06/04/2024] Open
Abstract
Introdution: During development, planes of cells give rise to complex tissues and organs. The proper functioning of these tissues is critically dependent on proper inter- and intra-cellular spatial orientation, a feature known as planar cell polarity (PCP). To study the genetic and environmental factors affecting planar cell polarity, investigators must often manually measure cell orientations, which is a time-consuming endeavor. To automate cell counting and planar cell polarity data collection we developed a Fiji/ImageJ plug-in called PCP Auto Count (PCPA). Methods: PCPA analyzes binary images and identifies "chunks" of white pixels that contain "caves" of infiltrated black pixels. For validation, inner ear sensory epithelia including cochleae and utricles from mice were immunostained for βII-spectrin and imaged with a confocal microscope. Images were preprocessed using existing Fiji functionality to enhance contrast, make binary, and reduce noise. An investigator rated PCPA cochlear hair cell angle measurements for accuracy using a one to five agreement scale. For utricle samples, PCPA derived measurements were directly compared against manually derived angle measurements and the concordance correlation coefficient (CCC) and Bland-Altman limits of agreement were calculated. PCPA was also tested against previously published images examining PCP in various tissues and across various species suggesting fairly broad utility. Results: PCPA was able to recognize and count 99.81% of cochlear hair cells, and was able to obtain ideally accurate planar cell polarity measurements for at least 96% of hair cells. When allowing for a <10° deviation from "perfect" measurements, PCPA's accuracy increased to 98%-100% for all users and across all samples. When PCPA's measurements were compared with manual angle measurements for E17.5 utricles there was negligible bias (<0.5°), and a CCC of 0.999. Qualitative examination of example images of Drosophila ommatidia, mouse ependymal cells, and mouse radial progenitors revealed a high level of accuracy for PCPA across a variety of stains, tissue types, and species. Discussion: Altogether, the data suggest that the PCPA plug-in suite is a robust and accurate tool for the automated collection of cell counts and PCP angle measurements.
Collapse
Affiliation(s)
| | | | | | | | | | - Bradley J. Walters
- University of Mississippi Medical Center, Department of Otolaryngology—Head and Neck Surgery, Jackson, MS, United States
| |
Collapse
|
4
|
Stansak KL, Baum LD, Ghosh S, Thapa P, Vanga V, Walters BJ. PCP Auto Count: A Novel Fiji/ImageJ plug-in for automated quantification of planar cell polarity and cell counting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.578047. [PMID: 38352473 PMCID: PMC10862842 DOI: 10.1101/2024.01.30.578047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Background During development, planes of cells give rise to complex tissues and organs. The proper functioning of these tissues is critically dependent on proper inter- and intra-cellular spatial orientation, a feature known as planar cell polarity (PCP). To study the genetic and environmental factors affecting planar cell polarity investigators must often manually measure cell orientations, which is a time-consuming endeavor. Methodology To automate cell counting and planar cell polarity data collection we developed a Fiji/ImageJ plug-in called PCP Auto Count (PCPA). PCPA analyzes binary images and identifies "chunks" of white pixels that contain "caves" of infiltrated black pixels. Inner ear sensory epithelia including cochleae (P4) and utricles (E17.5) from mice were immunostained for βII-spectrin and imaged on a confocal microscope. Images were preprocessed using existing Fiji functionality to enhance contrast, make binary, and reduce noise. An investigator rated PCPA cochlear angle measurements for accuracy using a 1-5 agreement scale. For utricle samples, we directly compared PCPA derived measurements against manually derived angle measurements using concordance correlation coefficients (CCC) and Bland-Altman limits of agreement. Finally, PCPA was tested against a variety of images copied from publications examining PCP in various tissues and across various species. Results PCPA was able to recognize and count 99.81% of cochlear hair cells (n = 1,1541 hair cells) in a sample set, and was able to obtain ideally accurate planar cell polarity measurements for over 96% of hair cells. When allowing for a <10° deviation from "perfect" measurements, PCPA's accuracy increased to >98%. When manual angle measurements for E17.5 utricles were compared, PCPA's measurements fell within -9 to +10 degrees of manually obtained mean angle measures with a CCC of 0.999. Qualitative examination of example images of Drosophila ommatidia, mouse ependymal cells, and mouse radial progenitors revealed a high level of accuracy for PCPA across a variety of stains, tissue types, and species. Altogether, the data suggest that the PCPA plug-in suite is a robust and accurate tool for the automated collection of cell counts and PCP angle measurements.
Collapse
Affiliation(s)
- Kendra L. Stansak
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Luke D. Baum
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Sumana Ghosh
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Punam Thapa
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Vineel Vanga
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Bradley J. Walters
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| |
Collapse
|
5
|
Thottacherry JJ, Chen J, Johnston DS. Apical-basal polarity in the gut. Semin Cell Dev Biol 2023; 150-151:15-22. [PMID: 36670034 DOI: 10.1016/j.semcdb.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/24/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023]
Abstract
Apical-Basal polarity is a fundamental property of all epithelial cells that underlies both their form and function. The gut is made up of a single layer of intestinal epithelial cells, with distinct apical, lateral and basal domains. Occluding junctions at the apical side of the lateral domains create a barrier between the gut lumen and the body, which is crucial for tissue homeostasis, protection against gastrointestinal pathogens and for the maintenance of the immune response. Apical-basal polarity in most epithelia is established by conserved polarity factors, but recent evidence suggests that the gut epithelium in at least some organisms polarises by novel mechanisms. In this review, we discuss the recent advances in understanding polarity factors by focussing on work in C. elegans, Drosophila, Zebrafish and Mouse.
Collapse
Affiliation(s)
- Joseph Jose Thottacherry
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Jia Chen
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom.
| |
Collapse
|
6
|
Ouyang L, Li J, Chen X, Huang H, Tian Y, Li X, Pang D, Wei X, Xie J, Wang L, Liu D, Tu P, Li J, Hu Z. Chinese dragon's blood ethyl acetate extract suppresses gastric cancer progression through induction of apoptosis and autophagy mediated by activation of MAPK and downregulation of the mTOR-Beclin1 signalling cascade. Phytother Res 2023; 37:689-701. [PMID: 36245270 DOI: 10.1002/ptr.7652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/24/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022]
Abstract
Gastric cancer (GC) is a malignancy with high morbidity and mortality. Chinese dragon's blood is a traditional Chinese medicine derived from the red resin of Dracaena cochinchinensis (Lour.) S. C. Chen. However, the antigastric cancer effect of Chinese dragon's blood has not yet been reported. Herein, we demonstrated that Chinese dragon's blood ethyl acetate extract (CDBEE) suppressed the proliferative and metastatic potential of human gastric cancer MGC-803 and HGC-27 cells. CDBEE suppressed epithelial-mesenchymal transition in MGC-803 and HGC-27 cells. Moreover, CDBEE induced apoptotic and autophagic cell death in MGC-803 and HGC-27 cells. The cytotoxicity of CDBEE in human gastric epithelial GES-1 cells was dramatically weaker than that in human gastric cancer cells. Mechanistically, the activation of the mitogen-activated protein kinase (MAPK) signalling pathway was involved in the growth inhibition of MGC-803 and HGC-27 cells by CDBEE. Additionally, CDBEE-induced autophagic cell death was mediated by downregulation of the mammalian target of rapamycin (mTOR)-Beclin1 signalling cascade and upregulation of the ATG3/ATG7-LC3 signalling cascade. Importantly, CDBEE exhibited potent anti-GC efficacy in vivo without obvious toxicity or side effects. Therefore, CDBEE may be a promising candidate drug for the treatment of gastric cancer, especially for GC patients with aberrant MAPK signalling or mTOR signalling.
Collapse
Affiliation(s)
- Lishan Ouyang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaonan Chen
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Huiming Huang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Tian
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xingxing Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Daoran Pang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuejiao Wei
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jinxin Xie
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Longyan Wang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dongxiao Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
"Pulsed Hypoxia" Gradually Reprograms Breast Cancer Fibroblasts into Pro-Tumorigenic Cells via Mesenchymal-Epithelial Transition. Int J Mol Sci 2023; 24:ijms24032494. [PMID: 36768815 PMCID: PMC9916667 DOI: 10.3390/ijms24032494] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Hypoxia arises in most growing solid tumors and can lead to pleotropic effects that potentially increase tumor aggressiveness and resistance to therapy through regulation of the expression of genes associated with the epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). The main goal of the current work was to obtain and investigate the intermediate phenotype of tumor cells undergoing the hypoxia-dependent transition from fibroblast to epithelial morphology. Primary breast cancer fibroblasts BrC4f, being cancer-associated fibroblasts, were subjected to one or two rounds of "pulsed hypoxia" (PH). PH induced transformation of fibroblast-shaped cells to semi-epithelial cells. Western blot analysis, fluorescent microscopy and flow cytometry of transformed cells demonstrated the decrease in the mesenchymal markers vimentin and N-cad and an increase in the epithelial marker E-cad. These cells kept mesenchymal markers αSMA and S100A4 and high ALDH activity. Real-time PCR data of the cells after one (BrC4f_Hyp1) and two (BrC4f_Hyp2) rounds of PH showed consistent up-regulation of TWIST1 gene as an early response and ZEB1/2 and SLUG transcriptional activity as a subsequent response. Reversion of BrC4f_Hyp2 cells to normoxia conditions converted them to epithelial-like cells (BrC4e) with decreased expression of EMT genes and up-regulation of MET-related OVOL2 and c-MYC genes. Transplantation of BrC4f and BrC4f_Hyp2 cells into SCID mice showed the acceleration of tumor growth up to 61.6% for BrC4f_Hyp2 cells. To summarize, rounds of PH imitate the MET process of tumorigenesis in which cancer-associated fibroblasts pass through intermediate stages and become more aggressive epithelial-like tumor cells.
Collapse
|
8
|
Matrix from urine stem cells boosts tissue-specific stem cell mediated functional cartilage reconstruction. Bioact Mater 2022; 23:353-367. [PMID: 36474659 PMCID: PMC9709166 DOI: 10.1016/j.bioactmat.2022.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Articular cartilage has a limited capacity to self-heal once damaged. Tissue-specific stem cells are a solution for cartilage regeneration; however, ex vivo expansion resulting in cell senescence remains a challenge as a large quantity of high-quality tissue-specific stem cells are needed for cartilage regeneration. Our previous report demonstrated that decellularized extracellular matrix (dECM) deposited by human synovium-derived stem cells (SDSCs), adipose-derived stem cells (ADSCs), urine-derived stem cells (UDSCs), or dermal fibroblasts (DFs) provided an ex vivo solution to rejuvenate human SDSCs in proliferation and chondrogenic potential, particularly for dECM deposited by UDSCs. To make the cell-derived dECM (C-dECM) approach applicable clinically, in this study, we evaluated ex vivo rejuvenation of rabbit infrapatellar fat pad-derived stem cells (IPFSCs), an easily accessible alternative for SDSCs, by the abovementioned C-dECMs, in vivo application for functional cartilage repair in a rabbit osteochondral defect model, and potential cellular and molecular mechanisms underlying this rejuvenation. We found that C-dECM rejuvenation promoted rabbit IPFSCs' cartilage engineering and functional regeneration in both ex vivo and in vivo models, particularly for the dECM deposited by UDSCs, which was further confirmed by proteomics data. RNA-Seq analysis indicated that both mesenchymal-epithelial transition (MET) and inflammation-mediated macrophage activation and polarization are potentially involved in the C-dECM-mediated promotion of IPFSCs' chondrogenic capacity, which needs further investigation.
Collapse
|
9
|
L1CAM and laminin vascular network: Association with the high-risk replacement histopathologic growth pattern in uveal melanoma liver metastases. J Transl Med 2022; 102:1214-1224. [PMID: 36775447 DOI: 10.1038/s41374-022-00803-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022] Open
Abstract
The replacement histopathologic growth pattern (rHGP) in melanoma liver metastases connotes an aggressive phenotype (vascular co-option; angiotropic extravascular migratory spread) and adverse prognosis. Herein, replacement and desmoplastic HGP (dHGP) were studied in uveal melanoma liver metastases (MUM). In particular, L1CAM and a "laminin vascular network" were detected at the advancing front of 14/20 cases (p = 0.014) and 16/20 cases (p = 6.4e-05) rHGPs, respectively, but both were absent in the dHGP (8/8 cases) (p = 0.014, and p = 6.3e-05, respectively). L1CAM highlighted progressive extension of angiotropic melanoma cells along sinusoidal vessels in a pericytic location (pericytic mimicry) into the hepatic parenchyma. An inverse relationship between L1CAM expression and melanin index (p = 0.012) suggested differentiation toward an amelanotic embryonic migratory phenotype in rHGP. Laminin labeled the basement membrane zone interposed between sinusoidal vascular channels and angiotropic melanoma cells at the advancing front. Other new findings: any percentage of rHGP and pure rHGP had a significant adverse effect on metastasis-specific overall survival (p = 0.038; p = 0.0064), as well as predominant rHGP (p = 0.0058). Pure rHGP also was associated with diminished metastasis-free survival relative to dHGP (p = 0.040), possibly having important implications for mechanisms of tumor spread. In conclusion, we report for the first time that L1CAM and a laminin vascular network are directly involved in this high-risk replacement phenotype. Further, this study provides more detailed information about the adverse prognostic effect of the rHGP in MUM.
Collapse
|
10
|
Chen J, St Johnston D. De novo apical domain formation inside the Drosophila adult midgut epithelium. eLife 2022; 11:e76366. [PMID: 36169289 PMCID: PMC9545526 DOI: 10.7554/elife.76366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
In the adult Drosophila midgut, basal intestinal stem cells give rise to enteroblasts that integrate into the epithelium as they differentiate into enterocytes. Integrating enteroblasts must generate a new apical domain and break through the septate junctions between neighbouring enterocytes, while maintaining barrier function. We observe that enteroblasts form an apical membrane initiation site (AMIS) when they reach the septate junction between the enterocytes. Cadherin clears from the apical surface and an apical space appears between above the enteroblast. New septate junctions then form laterally with the enterocytes and the AMIS develops into an apical domain below the enterocyte septate junction. The enteroblast therefore forms a pre-assembled apical compartment before it has a free apical surface in contact with the gut lumen. Finally, the enterocyte septate junction disassembles and the enteroblast/pre-enterocyte reaches the gut lumen with a fully formed brush border. The process of enteroblast integration resembles lumen formation in mammalian epithelial cysts, highlighting the similarities between the fly midgut and mammalian epithelia.
Collapse
Affiliation(s)
- Jia Chen
- The Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | | |
Collapse
|
11
|
Integrative, In Silico and Comparative Analysis of Breast Cancer Secretome Highlights Invasive-Ductal-Carcinoma-Grade Progression Biomarkers. Cancers (Basel) 2022; 14:cancers14163854. [PMID: 36010848 PMCID: PMC9406168 DOI: 10.3390/cancers14163854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Globally, BC is the most frequently diagnosed cancer in women. The aim of this study was to identify novel secreted biomarkers that may indicate progression to high-grade BC malignancies and therefore predict metastatic potential. A total of 33 studies of breast cancer and 78 of other malignancies were screened via a systematic review for eligibility, yielding 26 datasets, 8 breast cancer secretome datasets, and 18 of other cancers that were included in the comparative secretome analysis. Sequential bioinformatic analysis using online resources enabled the identification of enriched GO_terms, overlapping clusters, and pathway reconstruction. This study identified putative predictors of IDC grade progression and their association with breast cancer patient mortality outcomes, namely, HSPG2, ACTG1, and LAMA5 as biomarkers of in silico pathway prediction, offering a putative approach by which the abovementioned proteins may mediate their effects, enabling disease progression. This study also identified ITGB1, FBN1, and THBS1 as putative pan-cancer detection biomarkers. The present study highlights novel, putative secretome biomarkers that may provide insight into the tumor biology and could inform clinical decision making in the context of IDC management in a non-invasive manner.
Collapse
|
12
|
Chen J, St Johnston D. Epithelial Cell Polarity During Drosophila Midgut Development. Front Cell Dev Biol 2022; 10:886773. [PMID: 35846367 PMCID: PMC9281564 DOI: 10.3389/fcell.2022.886773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
The adult Drosophila midgut epithelium is derived from a group of stem cells called adult midgut precursors (AMPs) that are specified during the migration of the endoderm in early embryogenesis. AMPs are maintained and expanded in AMP nests that lie on the basal side of the larval midgut throughout the larval development. During metamorphosis, the larval midgut undergoes histolysis and programmed cell death, while the central cells in the AMP nests form the future adult midgut and the peripheral cells form the transient pupal midgut. Here we review what is known about how cells polarise in the embryonic, larval, pupal and adult midgut, and discuss the open questions about the mechanisms that control the changes in cell arrangements, cell shape and cell polarity during midgut development.
Collapse
Affiliation(s)
| | - Daniel St Johnston
- Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Cote LE, Feldman JL. Won't You be My Neighbor: How Epithelial Cells Connect Together to Build Global Tissue Polarity. Front Cell Dev Biol 2022; 10:887107. [PMID: 35800889 PMCID: PMC9253303 DOI: 10.3389/fcell.2022.887107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial tissues form continuous barriers to protect against external environments. Within these tissues, epithelial cells build environment-facing apical membranes, junction complexes that anchor neighbors together, and basolateral surfaces that face other cells. Critically, to form a continuous apical barrier, neighboring epithelial cells must align their apico-basolateral axes to create global polarity along the entire tissue. Here, we will review mechanisms of global tissue-level polarity establishment, with a focus on how neighboring epithelial cells of different origins align their apical surfaces. Epithelial cells with different developmental origins and/or that polarize at different times and places must align their respective apico-basolateral axes. Connecting different epithelial tissues into continuous sheets or tubes, termed epithelial fusion, has been most extensively studied in cases where neighboring cells initially dock at an apical-to-apical interface. However, epithelial cells can also meet basal-to-basal, posing several challenges for apical continuity. Pre-existing basement membrane between the tissues must be remodeled and/or removed, the cells involved in docking are specialized, and new cell-cell adhesions are formed. Each of these challenges can involve changes to apico-basolateral polarity of epithelial cells. This minireview highlights several in vivo examples of basal docking and how apico-basolateral polarity changes during epithelial fusion. Understanding the specific molecular mechanisms of basal docking is an area ripe for further exploration that will shed light on complex morphogenetic events that sculpt developing organisms and on the cellular mechanisms that can go awry during diseases involving the formation of cysts, fistulas, atresias, and metastases.
Collapse
|
14
|
Yang ZS, Pan HY, Shi WW, Chen ST, Wang Y, Li MY, Zhang HY, Yang C, Liu AX, Yang ZM. Regulation and Function of Laminin A5 during Mouse and Human Decidualization. Int J Mol Sci 2021; 23:199. [PMID: 35008625 PMCID: PMC8745792 DOI: 10.3390/ijms23010199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 01/03/2023] Open
Abstract
Decidualization is essential to the establishment of pregnancy in rodents and primates. Laminin A5 (encoding by Laminin α5) is a member of the laminin family, which is mainly expressed in the basement membranes. Although laminins regulate cellular phenotype maintenance, adhesion, migration, growth, and differentiation, the expression, function, and regulation of laminin A5 during early pregnancy are still unknown. Therefore, we investigated the expression and role of laminin A5 during mouse and human decidualization. Laminin A5 is highly expressed in mouse decidua and artificially induced deciduoma. Laminin A5 is significantly increased under in vitro decidualization. Laminin A5 knockdown significantly inhibits the expression of Prl8a2, a marker for mouse decidualization. Progesterone stimulates the expression of laminin A5 in ovariectomized mouse uterus and cultured mouse stromal cells. We also show that progesterone regulates laminin A5 through the PKA-CREB-C/EBPβ pathway. Laminin A5 is also highly expressed in human pregnant decidua and cultured human endometrial stromal cells during in vitro decidualization. Laminin A5 knockdown by siRNA inhibits human in vitro decidualization. Collectively, our study reveals that laminin A5 may play a pivotal role during mouse and human decidualization via the PKA-CREB-C/EBPβ pathway.
Collapse
Affiliation(s)
- Zhen-Shan Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.-S.Y.); (H.-Y.P.); (W.-W.S.); (S.-T.C.); (Y.W.); (M.-Y.L.); (H.-Y.Z.); (C.Y.)
| | - Hai-Yang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.-S.Y.); (H.-Y.P.); (W.-W.S.); (S.-T.C.); (Y.W.); (M.-Y.L.); (H.-Y.Z.); (C.Y.)
| | - Wen-Wen Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.-S.Y.); (H.-Y.P.); (W.-W.S.); (S.-T.C.); (Y.W.); (M.-Y.L.); (H.-Y.Z.); (C.Y.)
| | - Si-Ting Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.-S.Y.); (H.-Y.P.); (W.-W.S.); (S.-T.C.); (Y.W.); (M.-Y.L.); (H.-Y.Z.); (C.Y.)
| | - Ying Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.-S.Y.); (H.-Y.P.); (W.-W.S.); (S.-T.C.); (Y.W.); (M.-Y.L.); (H.-Y.Z.); (C.Y.)
| | - Meng-Yuan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.-S.Y.); (H.-Y.P.); (W.-W.S.); (S.-T.C.); (Y.W.); (M.-Y.L.); (H.-Y.Z.); (C.Y.)
| | - Hai-Yi Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.-S.Y.); (H.-Y.P.); (W.-W.S.); (S.-T.C.); (Y.W.); (M.-Y.L.); (H.-Y.Z.); (C.Y.)
| | - Chen Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.-S.Y.); (H.-Y.P.); (W.-W.S.); (S.-T.C.); (Y.W.); (M.-Y.L.); (H.-Y.Z.); (C.Y.)
| | - Ai-Xia Liu
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Xueshi Road, Hangzhou 310006, China
| | - Zeng-Ming Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.-S.Y.); (H.-Y.P.); (W.-W.S.); (S.-T.C.); (Y.W.); (M.-Y.L.); (H.-Y.Z.); (C.Y.)
| |
Collapse
|