1
|
Pimm ML, Haarer BK, Nobles AD, Haney LM, Marcin AG, Alcaide Eligio M, Henty-Ridilla JL. Coordination of actin plus-end dynamics by IQGAP1, formin, and capping protein. J Cell Biol 2024; 223:e202305065. [PMID: 38787349 PMCID: PMC11117073 DOI: 10.1083/jcb.202305065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Cell processes require precise regulation of actin polymerization that is mediated by plus-end regulatory proteins. Detailed mechanisms that explain plus-end dynamics involve regulators with opposing roles, including factors that enhance assembly, e.g., the formin mDia1, and others that stop growth (capping protein, CP). We explore IQGAP1's roles in regulating actin filament plus-ends and the consequences of perturbing its activity in cells. We confirm that IQGAP1 pauses elongation and interacts with plus ends through two residues (C756 and C781). We directly visualize the dynamic interplay between IQGAP1 and mDia1, revealing that IQGAP1 displaces the formin to influence actin assembly. Using four-color TIRF, we show that IQGAP1's displacement activity extends to formin-CP "decision complexes," promoting end-binding protein turnover at plus-ends. Loss of IQGAP1 or its plus-end activities disrupts morphology and migration, emphasizing its essential role. These results reveal a new role for IQGAP1 in promoting protein turnover on filament ends and provide new insights into how plus-end actin assembly is regulated in cells.
Collapse
Affiliation(s)
- Morgan L. Pimm
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Brian K. Haarer
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Alexander D. Nobles
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Laura M. Haney
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Alexandra G. Marcin
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Marcela Alcaide Eligio
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jessica L. Henty-Ridilla
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
2
|
Pimm ML, Haarer BK, Nobles AD, Haney LM, Marcin AG, Marcela Alcaide Eligio, Henty-Ridilla JL. Coordination of actin plus-end dynamics by IQGAP1, formin, and capping protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.04.539490. [PMID: 37205555 PMCID: PMC10187324 DOI: 10.1101/2023.05.04.539490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cell processes require precise regulation of actin polymerization that is mediated by plus-end regulatory proteins. Detailed mechanisms that explain plus-end dynamics involve regulators with opposing roles, including factors that enhance assembly, e.g., the formin mDia1, and others that stop growth (Capping Protein, CPz). We explore IQGAP1's roles regulating actin filament plus-ends and the consequences of perturbing its activity in cells. We confirm that IQGAP1 pauses elongation and interacts with plus ends through two residues (C756 and C781). We directly visualize the dynamic interplay between IQGAP1 and mDia1, revealing that IQGAP1 displaces the formin to influence actin assembly. Using four-color TIRF we show that IQGAP1's displacement activity extends to formin-CPz 'decision complexes', promoting end-binding protein turnover at plus-ends. Loss of IQGAP1 or its plus-end activities disrupts morphology and migration, emphasizing its essential role. These results reveal a new role for IQGAP1 in promoting protein turnover on filament ends and provide new insights into how plus-end actin assembly is regulated in cells.
Collapse
Affiliation(s)
- Morgan L Pimm
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Brian K Haarer
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Alexander D Nobles
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Laura M Haney
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Alexandra G Marcin
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Marcela Alcaide Eligio
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Jessica L Henty-Ridilla
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
3
|
Yumura S. Wound Repair of the Cell Membrane: Lessons from Dictyostelium Cells. Cells 2024; 13:341. [PMID: 38391954 PMCID: PMC10886852 DOI: 10.3390/cells13040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The cell membrane is frequently subjected to damage, either through physical or chemical means. The swift restoration of the cell membrane's integrity is crucial to prevent the leakage of intracellular materials and the uncontrolled influx of extracellular ions. Consequently, wound repair plays a vital role in cell survival, akin to the importance of DNA repair. The mechanisms involved in wound repair encompass a series of events, including ion influx, membrane patch formation, endocytosis, exocytosis, recruitment of the actin cytoskeleton, and the elimination of damaged membrane sections. Despite the absence of a universally accepted general model, diverse molecular models have been proposed for wound repair in different organisms. Traditional wound methods not only damage the cell membrane but also impact intracellular structures, including the underlying cortical actin networks, microtubules, and organelles. In contrast, the more recent improved laserporation selectively targets the cell membrane. Studies on Dictyostelium cells utilizing this method have introduced a novel perspective on the wound repair mechanism. This review commences by detailing methods for inducing wounds and subsequently reviews recent developments in the field.
Collapse
Affiliation(s)
- Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| |
Collapse
|
4
|
Alimov N, Hoeprich GJ, Padrick SB, Goode BL. Cyclase-associated protein interacts with actin filament barbed ends to promote depolymerization and formin displacement. J Biol Chem 2023; 299:105367. [PMID: 37863260 PMCID: PMC10692737 DOI: 10.1016/j.jbc.2023.105367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023] Open
Abstract
Cyclase-associated protein (CAP) has emerged as a central player in cellular actin turnover, but its molecular mechanisms of action are not yet fully understood. Recent studies revealed that the N terminus of CAP interacts with the pointed ends of actin filaments to accelerate depolymerization in conjunction with cofilin. Here, we use in vitro microfluidics-assisted TIRF microscopy to show that the C terminus of CAP promotes depolymerization at the opposite (barbed) ends of actin filaments. In the absence of actin monomers, full-length mouse CAP1 and C-terminal halves of CAP1 (C-CAP1) and CAP2 (C-CAP2) accelerate barbed end depolymerization. Using mutagenesis and structural modeling, we show that these activities are mediated by the WH2 and CARP domains of CAP. In addition, we observe that CAP collaborates with profilin to accelerate barbed end depolymerization and that these effects depend on their direct interaction, providing the first known example of CAP-profilin collaborative effects in regulating actin. In the presence of actin monomers, CAP1 attenuates barbed end growth and promotes formin dissociation. Overall, these findings demonstrate that CAP uses distinct domains and mechanisms to interact with opposite ends of actin filaments and drive turnover. Further, they contribute to the emerging view of actin barbed ends as sites of dynamic molecular regulation, where numerous proteins compete and cooperate with each other to tune polymer dynamics, similar to the rich complexity seen at microtubule ends.
Collapse
Affiliation(s)
- Nikita Alimov
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Gregory J Hoeprich
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Shae B Padrick
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA.
| |
Collapse
|
5
|
Cima F, Varello R. Immunotoxic effects of exposure to the antifouling copper(I) biocide on target and nontarget bivalve species: a comparative in vitro study between Mytilus galloprovincialis and Ruditapes philippinarum. Front Physiol 2023; 14:1230943. [PMID: 37654677 PMCID: PMC10466049 DOI: 10.3389/fphys.2023.1230943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
Edible bivalves constitute an important bioresource from an economic point of view, and studies on their immune responses to environmental pollutants are crucial for both the preservation of biodiversity and economic reasons. The worldwide diffusion of copper(I)-based antifouling paints has increased copper leaching into coastal environments and its potential impact on both target and nontarget organisms. In this study, immunotoxicity assays were carried out with short-term (60 min) cultures of hemocytes from the bivalves Mytilus galloprovincialis-a mussel dominant in the macrofouling community-and Ruditapes philippinarum-a clam dominant in the soft-sediment community-exposed to CuCl to compare the toxic effects on their immune responses. The LC50 values were similar, 40 μM (3.94 mg L-1) for the mussel and 44 μM (4.33 mg L-1) for the clam. In both species, apoptosis occurred after exposure to 1 µM (98.9 μg L-1) CuCl, the concentration able to significantly increase the intracellular Ca2+ content. Biomarkers of cell morphology and motility revealed microfilament disruption, a significant decrease in yeast phagocytosis and lysosome hydrolase (β-glucuronidase) inhibition beginning from 0.5 µM (49.5 μg L-1) CuCl in both the mussel and clam. The same concentration of CuCl affected biomarkers of oxidative stress, as a significant decrease in reduced glutathione content in the cytoplasm and inhibition of mitochondrial cytochrome-c oxidase (COX) were detected in both species. Comparison of the biomarkers showed that clam is more sensitive than the mussel regarding alterations to the lysosomal membrane and reactive oxygen species (ROS) production, which supports the potential harmful effects of antifouling biocides on the survival of nontarget pivotal species in the coastal community.
Collapse
Affiliation(s)
- Francesca Cima
- Laboratory of Biology of Ascidians, Department of Biology (DiBio), University of Padova, Padova, Italy
| | | |
Collapse
|
6
|
Liu X, Sun Y, Wang S, Zhang S, Tian Q. Actin restricts cell proliferation and promotes differentiation during planarian regeneration. Biochem Biophys Res Commun 2023; 640:150-156. [PMID: 36508928 DOI: 10.1016/j.bbrc.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/11/2022]
Abstract
Actin is an integral component of the cytoskeleton, which plays an important role in various fundamental cellular processes, such as affecting the polarity of embryonic cells during embryonic development in various model organisms. Meanwhile, previous studies have demonstrated that the polymerization of the actin cytoskeleton can affect cell migration, proliferation, and differentiation. Actin polymerization state regulated osteogenic differentiation and affected cell proliferation. However, the function of actin in regenerative biology has not been thoroughly elucidated. The planarian flatworm, which contains a large number of adult somatic stem cells (neoblasts), is an ideal model organism to study regenerative biology. Here, we identified a homolog of actin in planarian Dugesia japonica and found that RNAi targeting actin during planarian regeneration results in the formation of protrusions on the dorsal side, where the division of phospho-H3 mitotic cells is increased. In addition, a decrease in differentiation is observed in regenerating tissues after Djactin RNAi. These results indicate that Djactin functions in proliferation and differentiation control in planarian regeneration.
Collapse
Affiliation(s)
- Xiaomai Liu
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yujia Sun
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shaocong Wang
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shoutao Zhang
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan, China.
| | - Qingnan Tian
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
7
|
Ishikawa-Ankerhold HC, Kurzbach S, Kinali AS, Müller-Taubenberger A. Formation of Cytoplasmic Actin-Cofilin Rods is Triggered by Metabolic Stress and Changes in Cellular pH. Front Cell Dev Biol 2021; 9:742310. [PMID: 34869330 PMCID: PMC8635511 DOI: 10.3389/fcell.2021.742310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Actin dynamics plays a crucial role in regulating essential cell functions and thereby is largely responsible to a considerable extent for cellular energy consumption. Certain pathological conditions in humans, like neurological disorders such as Alzheimer’s disease or amyotrophic lateral sclerosis (ALS) as well as variants of nemaline myopathy are associated with cytoskeletal abnormalities, so-called actin-cofilin rods. Actin-cofilin rods are aggregates consisting mainly of actin and cofilin, which are formed as a result of cellular stress and thereby help to ensure the survival of cells under unfavorable conditions. We have used Dictyostelium discoideum, an established model system for cytoskeletal research to study formation and principles of cytoplasmic actin rod assembly in response to energy depletion. Experimentally, depletion of ATP was provoked by addition of either sodium azide, dinitrophenol, or 2-deoxy-glucose, and the formation of rod assembly was recorded by live-cell imaging. Furthermore, we show that hyperosmotic shock induces actin-cofilin rods, and that a drop in the intracellular pH accompanies this condition. Our data reveal that acidification of the cytoplasm can induce the formation of actin-cofilin rods to varying degrees and suggest that a local reduction in cellular pH may be a cause for the formation of cytoplasmic rods. We hypothesize that local phase separation mechanistically triggers the assembly of actin-cofilin rods and thereby influences the material properties of actin structures.
Collapse
Affiliation(s)
- Hellen C Ishikawa-Ankerhold
- Department of Internal Medicine I, University Hospital, LMU Munich, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Sophie Kurzbach
- Department of Cell Biology (Anatomy III), Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Arzu S Kinali
- Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | | |
Collapse
|
8
|
Tu H, Zhang A, Fu X, Xu S, Bai X, Wang H, Gao J. SMPX Deficiency Causes Stereocilia Degeneration and Progressive Hearing Loss in CBA/CaJ Mice. Front Cell Dev Biol 2021; 9:750023. [PMID: 34722533 PMCID: PMC8551870 DOI: 10.3389/fcell.2021.750023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
The small muscle protein, x-linked (SMPX) encodes a small protein containing 88 amino acids. Malfunction of this protein can cause a sex-linked non-syndromic hearing loss, named X-linked deafness 4 (DFNX4). Herein, we reported a point mutation and a frameshift mutation in two Chinese families who developed gradual hearing loss with age. To explore the impaired sites in the hearing system and the mechanism of DFNX4, we established and validated an Smpx null mouse model using CRISPR-Cas9. By analyzing auditory brainstem response (ABR), male Smpx null mice showed a progressive hearing loss starting from high frequency at the 3rd month. Hearing loss in female mice was milder and occurred later compared to male mice, which was very similar to human beings. Through morphological analyses of mice cochleas, we found the hair cell bundles progressively degenerated from the shortest row. Cellular edema occurred at the end phase of stereocilia degeneration, followed by cell death. By transfecting exogenous fluorescent Smpx into living hair cells, Smpx was observed to be expressed in stereocilia. Through noise exposure, it was shown that Smpx might participate in maintaining hair cell bundles. This Smpx knock-out mouse might be used as a suitable model to explore the pathology of DFNX4.
Collapse
Affiliation(s)
- Hailong Tu
- School of Life Sciences, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Aizhen Zhang
- School of Life Sciences, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Xiaolong Fu
- School of Life Sciences, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Shiqi Xu
- University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Xiaohui Bai
- Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Jinan, China
| | - Haibo Wang
- School of Life Sciences, Shandong Provincial ENT Hospital, Shandong University, Jinan, China.,Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Jinan, China
| | - Jiangang Gao
- School of Life Sciences, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| |
Collapse
|