1
|
Kritikaki E, Terzis G, Soundararajan M, Vogiatzis I, Simoes DC. Role of pulmonary rehabilitation in extracellular matrix protein expression in vastus lateralis muscle in atrophic and nonatrophic patients with COPD. ERJ Open Res 2025; 11:00543-2024. [PMID: 39834596 PMCID: PMC11745040 DOI: 10.1183/23120541.00543-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/01/2024] [Indexed: 01/22/2025] Open
Abstract
Background In response to exercise-based pulmonary rehabilitation (PR), the type of muscle fibre remodelling differs between COPD patients with peripheral muscle wasting (atrophic patients with COPD) and those without wasting (nonatrophic patients with COPD). Extracellular matrix (ECM) proteins are major constituents of the cell micro-environment steering cell behaviour and regeneration. We investigated whether the composition of ECM in atrophic compared to nonatrophic patients with COPD differs in response to PR. Methods Vastus lateralis muscle biopsies from 29 male COPD patients (mean±sem forced expiratory volume in 1 s: 43±6% predicted) classified according to their fat-free mass index as atrophic (<17 kg·m-2, n=10) or nonatrophic (≥17 kg·m-2, n=19) were analysed before and after a 10-week PR programme for myofibre distribution and size, whereas a selection of ECM molecules was quantified using ELISA and real-time PCR. Results In nonatrophic patients with COPD PR was associated with increased myofibre type I distribution (by 6.6±2.3%) and cross-sectional area (CSA) (by 16.4±4.8%), whereas in atrophic patients with COPD, PR induced increased myofibre type IIa distribution (by 9.6±2.8%) and CSA (by 12.1±3.2%). PR induced diverse intramuscular ECM adaptations in atrophic compared to nonatrophic patients with COPD. Accordingly, following PR there was a significant increase in protein levels of ECM biomarkers (collagen type I by 90 pg·mL-1; collagen type IV by 120 pg·mL-1; decorin by 70 pg·mL-1) only in nonatrophic patients with COPD. Conversely, post-PR, osteopontin, a protein known for its dystrophic effects, and tenacin C, a necroptosis compensatory factor facilitating muscle regeneration, were upregulated at protein levels (by 280 pg·mL-1and 40 pg·mL-1, respectively) in atrophic patients with COPD, whereas fibronectin protein levels were decreased. Conclusions These findings suggest that the differential PR-induced myofibre adaptations in atrophic compared to nonatrophic patients with COPD could be associated with inadequate remodelling of the intramuscular ECM environment.
Collapse
Affiliation(s)
- Efpraxia Kritikaki
- Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle upon Tyne, UK
| | - Gerasimos Terzis
- Sports Performance Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Meera Soundararajan
- Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle upon Tyne, UK
| | - Ioannis Vogiatzis
- Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle upon Tyne, UK
| | - Davina C.M. Simoes
- Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle upon Tyne, UK
| |
Collapse
|
2
|
Zhu C, Song Q, Li X, He X, Li J. Enhanced Immune Responses Against Mycobacterium tuberculosis Through Heat-Killed BCG with Squalene-in-water Emulsion Adjuvant. Indian J Microbiol 2024; 64:1929-1937. [PMID: 39678980 PMCID: PMC11645453 DOI: 10.1007/s12088-024-01278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/04/2024] [Indexed: 12/17/2024] Open
Abstract
The increasing challenge of drug-resistant tuberculosis (TB) calls for the development of innovative therapeutic strategies, highlighting the potential of adjunctive immunotherapies that are both cost-effective and safe. Host-directed therapy (HDT) using immunomodulators shows promise in enhancing treatment efficacy by modulating immune responses, thereby shortening the duration of therapy and reducing drug resistance risks. This study investigated the immunomodulatory potential of combining Heat-killed Bacillus Calmette-Guérin (hBCG) with a Squalene-based oil-in-Water Emulsion (SWE) adjuvant against TB. The therapeutic efficacy of the hBCG-SWE regimen was assessed in a guinea pig model infected with Mycobacterium tuberculosis (M. tb). Furthermore, the impact of hBCG-SWE on TNF-α and MCP-1 production was evaluated in RAW264.7 macrophages, examining the role of TLR2/4 and MyD88 signaling pathways using ELISA, both with and without specific inhibitors. Our findings revealed that hBCG-SWE significantly enhanced TNF-α and MCP-1 production compared to hBCG alone, indicating activation through TLR2/4 and MyD88-dependent pathways. In guinea pigs, hBCG-SWE administration led to notable reductions in lung pathology and spleen bacterial loads versus control groups. These results highlight the capacity of hBCG-SWE to boost innate immunity and provide robust protection against M. tb. Future research should focus on evaluating the ability of hBCG-SWE to shorten conventional chemotherapy and exploring ways to amplify its immunomodulatory efficacy through advanced formulation techniques.
Collapse
Affiliation(s)
- Chuanzhi Zhu
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149 China
| | - Qingde Song
- Beijing Key Laboratory of Organ Transplantation and Immunology Regulation, The Eighth Medical Centre, Chinese PLA General Hospital, Beijing, 100091 China
| | - Xinrong Li
- Beijing Key Laboratory of Organ Transplantation and Immunology Regulation, The Eighth Medical Centre, Chinese PLA General Hospital, Beijing, 100091 China
- Clinical Laboratory, Guangzhou Development District Hospital, Chinese Association of Medicinal Biotechnology Southern Center of Biology Diagnosis and Therapy, Guangzhou, 510730 China
| | - Xiuyun He
- Beijing Key Laboratory of Organ Transplantation and Immunology Regulation, The Eighth Medical Centre, Chinese PLA General Hospital, Beijing, 100091 China
| | - Junli Li
- Beijing Key Laboratory of Organ Transplantation and Immunology Regulation, The Eighth Medical Centre, Chinese PLA General Hospital, Beijing, 100091 China
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing, 102629 China
| |
Collapse
|
3
|
Vakrakou AG, Kourepini E, Skordos I, Nieto N, Panoutsakopoulou V, Paschalidis N. Osteopontin Regulates Treg Cell Stability and Function with Implications for Anti-Tumor Immunity and Autoimmunity. Cancers (Basel) 2024; 16:2952. [PMID: 39272810 PMCID: PMC11393878 DOI: 10.3390/cancers16172952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Foxp3-expressing regulatory T (Treg) cells represent the most highly immunosuppressive cell in the tumor microenvironment (TME) that halts effective anti-tumor immunity. Osteopontin (Opn), an extracellular matrix (ECM) glycophosphoprotein, plays key roles in many types of immune-related diseases and is associated with cancer aggressiveness when expressed by tumor cells. However, its role in Foxp3Treg heterogeneity, function, and stability in the TME is poorly defined. We generated mice with a Foxp3-specific deletion of Opn and assessed the ability of Opn-deficient Tregs to suppress inflammation. As these mice aged, they developed a scurfy-like syndrome characterized by aberrant and excessive activation of effector T cells. We evaluated and further confirmed the reduced suppressive capacity of Opn-deficient Tregs in an in vivo suppression assay of colitis. We also found that mice with Opn-deficient Foxp3+ Tregs have enhanced anti-tumor immunity and reduced tumor burden, associated with an unstable Treg phenotype, paralleled by reduced Foxp3 expression in tumor-infiltrating lymphocytes. Finally, we observed reduced Foxp3 and Helios expression in Opn-deficient Tregs compared to wild-type controls after in vitro activation. Our findings indicate that targeting Opn in Tregs reveals vigorous and effective ways of promoting Treg instability and dysfunction in the TME, facilitating anti-tumor immunity.
Collapse
Affiliation(s)
- Aigli G Vakrakou
- Laboratory of Neuroimmunology, First Department of Neurology, Aeginition Hospital, National and Kapodistrian, University of Athens, 21 Papadiamantopoulou, Ilisia, 11528 Athens, Greece
| | - Evangelia Kourepini
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Efessiou Street, 11527 Athens, Greece
| | - Ioannis Skordos
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Efessiou Street, 11527 Athens, Greece
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Vily Panoutsakopoulou
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Efessiou Street, 11527 Athens, Greece
| | - Nikolaos Paschalidis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Efessiou Street, 11527 Athens, Greece
| |
Collapse
|
4
|
Qin X, Zhu L, Zhong Y, Wang Y, Luo X, Li J, Yan F, Wu G, Qiu J, Wang G, Qu K, Zhang K, Wu W. Universal cell membrane camouflaged nano-prodrugs with right-side-out orientation adapting for positive pathological vascular remodeling in atherosclerosis. Chem Sci 2024; 15:7524-7544. [PMID: 38784734 PMCID: PMC11110172 DOI: 10.1039/d4sc00761a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/27/2024] [Indexed: 05/25/2024] Open
Abstract
A right-side-out orientated self-assembly of cell membrane-camouflaged nanotherapeutics is crucial for ensuring their biological functionality inherited from the source cells. In this study, a universal and spontaneous right-side-out coupling-driven ROS-responsive nanotherapeutic approach, based on the intrinsic affinity between phosphatidylserine (PS) on the inner leaflet and PS-targeted peptide modified nanoparticles, has been developed to target foam cells in atherosclerotic plaques. Considering the increased osteopontin (OPN) secretion from foam cells in plaques, a bioengineered cell membrane (OEM) with an overexpression of integrin α9β1 is integrated with ROS-cleavable prodrugs, OEM-coated ETBNPs (OEM-ETBNPs), to enhance targeted drug delivery and on-demand drug release in the local lesion of atherosclerosis. Both in vitro and in vivo experimental results confirm that OEM-ETBNPs are able to inhibit cellular lipid uptake and simultaneously promote intracellular lipid efflux, regulating the positive cellular phenotypic conversion. This finding offers a versatile platform for the biomedical applications of universal cell membrane camouflaging biomimetic nanotechnology.
Collapse
Affiliation(s)
- Xian Qin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University Chongqing 400030 China
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Endocrine and Metabolic Diseases Chongqing 404000 China
- School of Medicine, Chongqing University Chongqing 404010 China
| | - Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University Chongqing 400030 China
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University Chongqing 400030 China
| | - Yi Wang
- College of Basic Medical Sciences, Chongqing Medical University Chongqing 400016 China
| | - Xiaoshan Luo
- Guizhou Information Engineering University Bijie 551700 China
| | - Jiawei Li
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Endocrine and Metabolic Diseases Chongqing 404000 China
- School of Medicine, Chongqing University Chongqing 404010 China
| | - Fei Yan
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Endocrine and Metabolic Diseases Chongqing 404000 China
| | - Guicheng Wu
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Endocrine and Metabolic Diseases Chongqing 404000 China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University Chongqing 400030 China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University Chongqing 400030 China
- JinFeng Laboratory Chongqing 401329 China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University Chongqing 400030 China
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Endocrine and Metabolic Diseases Chongqing 404000 China
- School of Medicine, Chongqing University Chongqing 404010 China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University Chongqing 400030 China
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Endocrine and Metabolic Diseases Chongqing 404000 China
- School of Medicine, Chongqing University Chongqing 404010 China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University Chongqing 400030 China
- JinFeng Laboratory Chongqing 401329 China
| |
Collapse
|
5
|
Kritikaki E, Terzis G, Soundararajan M, Vogiatzis I, Simoes DC. Expression of intramuscular extracellular matrix proteins in vastus lateralis muscle fibres between atrophic and non-atrophic COPD. ERJ Open Res 2024; 10:00857-2023. [PMID: 38803416 PMCID: PMC11129643 DOI: 10.1183/23120541.00857-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/02/2024] [Indexed: 05/29/2024] Open
Abstract
Background Extracellular matrix (ECM) proteins are the major constituents of the muscle cell micro-environment, imparting instructive signalling, steering cell behaviour and controlling muscle regeneration. ECM remodelling is among the most affected signalling pathways in COPD and aged muscle. As a fraction of COPD patients present muscle atrophy, we questioned whether ECM composition would be altered in patients with peripheral muscle wasting (atrophic COPD) compared to those without muscle wasting (non-atrophic COPD). Methods A set of ECM molecules with known impact on myogenesis were quantified in vastus lateralis muscle biopsies from 29 COPD patients (forced expiratory volume in 1 s 55±12% predicted) using ELISA and real-time PCR. COPD patients were grouped to atrophic or non-atrophic based on fat-free mass index (<17 or ≥17 kg·m-2). Results Atrophic COPD patients presented a lower average vastus lateralis muscle fibre cross-sectional area (3872±258 μm2) compared to non-atrophic COPD (4509±198 μm2). Gene expression of ECM molecules was found significantly lower in atrophic COPD compared to non-atrophic COPD for collagen type I alpha 1 chain (COL1A1), fibronectin (FN1), tenascin C (TNC) and biglycan (BGN). In terms of protein levels, there were no significant differences between the two COPD cohorts for any of the ECM molecules tested. Conclusions Although atrophic COPD presented decreased contractile muscle tissue, the differences in ECM mRNA expression between atrophic and non-atrophic COPD were not translated at the protein level, potentially indicating an accumulation of long-lived ECM proteins and dysregulated proteostasis, as is typically observed during deconditioning and ageing.
Collapse
Affiliation(s)
- Efpraxia Kritikaki
- Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle upon Tyne, UK
| | - Gerasimos Terzis
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Meera Soundararajan
- Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle upon Tyne, UK
| | - Ioannis Vogiatzis
- Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle upon Tyne, UK
| | - Davina C.M. Simoes
- Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle upon Tyne, UK
| |
Collapse
|
6
|
Yao J, Sterling K, Wang Z, Zhang Y, Song W. The role of inflammasomes in human diseases and their potential as therapeutic targets. Signal Transduct Target Ther 2024; 9:10. [PMID: 38177104 PMCID: PMC10766654 DOI: 10.1038/s41392-023-01687-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 09/18/2023] [Accepted: 10/13/2023] [Indexed: 01/06/2024] Open
Abstract
Inflammasomes are large protein complexes that play a major role in sensing inflammatory signals and triggering the innate immune response. Each inflammasome complex has three major components: an upstream sensor molecule that is connected to a downstream effector protein such as caspase-1 through the adapter protein ASC. Inflammasome formation typically occurs in response to infectious agents or cellular damage. The active inflammasome then triggers caspase-1 activation, followed by the secretion of pro-inflammatory cytokines and pyroptotic cell death. Aberrant inflammasome activation and activity contribute to the development of diabetes, cancer, and several cardiovascular and neurodegenerative disorders. As a result, recent research has increasingly focused on investigating the mechanisms that regulate inflammasome assembly and activation, as well as the potential of targeting inflammasomes to treat various diseases. Multiple clinical trials are currently underway to evaluate the therapeutic potential of several distinct inflammasome-targeting therapies. Therefore, understanding how different inflammasomes contribute to disease pathology may have significant implications for developing novel therapeutic strategies. In this article, we provide a summary of the biological and pathological roles of inflammasomes in health and disease. We also highlight key evidence that suggests targeting inflammasomes could be a novel strategy for developing new disease-modifying therapies that may be effective in several conditions.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Zhejiang Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and The Affiliated Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|