1
|
Naito A, Kamakura S, Hayase J, Kohda A, Niiro H, Akashi K, Sumimoto H. The Protein Kinase aPKC as Well as the Small GTPases RhoA and Cdc42 Regulates Neutrophil Chemotaxis Partly by Recruiting the ROCK Kinase to the Leading Edge. Genes Cells 2025; 30:e70002. [PMID: 39906004 DOI: 10.1111/gtc.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/06/2025]
Abstract
The small GTPases RhoA and Cdc42 and their effector proteins play crucial roles in neutrophil chemotaxis. However, endogenous localization and regulation of these proteins have remained largely unknown. Here, we show, using a trichloroacetic acid fixation method, that endogenous RhoA and Cdc42 are preferentially accumulated at the F-actin-rich leading edge (pseudopod) during chemotaxis of human neutrophil-like PLB-985 cells in response to the chemoattractant C5a. Interestingly, the enrichment of RhoA is impaired by knockdown of Cdc42, indicating a positive regulation by Cdc42. Depletion of Cdc42 or RhoA each induces the formation of multiple pseudopods, confirming their significance in cell polarization with an organized actin network at the front. The Rho-associated kinase ROCK is also recruited to the leading edge during chemotaxis in a manner dependent on not only RhoA and Cdc42 but also aPKC, a Cdc42-interacting kinase that can also bind to ROCK. ROCK promotes phosphorylation of the myosin light chain at the front, possibly regulating pseudopod contractility. Knockdown of aPKC suppresses neutrophil chemotaxis by disturbing pseudopod orientation without forming multiple protrusions. An incorrectly oriented pseudopod is also observed in ROCK-depleted cells. Thus, aPKC, as well as RhoA and Cdc42, likely regulates neutrophil chemotaxis partly by recruiting ROCK to the leading edge for correct directionality.
Collapse
Affiliation(s)
- Atsushi Naito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Sachiko Kamakura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Junya Hayase
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Akira Kohda
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hiroaki Niiro
- Department of Medical Education, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
2
|
Driscoll MK, Welf ES, Weems A, Sapoznik E, Zhou F, Murali VS, García-Arcos JM, Roh-Johnson M, Piel M, Dean KM, Fiolka R, Danuser G. Proteolysis-free amoeboid migration of melanoma cells through crowded environments via bleb-driven worrying. Dev Cell 2024; 59:2414-2428.e8. [PMID: 38870943 PMCID: PMC11421976 DOI: 10.1016/j.devcel.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024]
Abstract
In crowded microenvironments, migrating cells must find or make a path. Amoeboid cells are thought to find a path by deforming their bodies to squeeze through tight spaces. Yet, some amoeboid cells seem to maintain a near-spherical morphology as they move. To examine how they do so, we visualized amoeboid human melanoma cells in dense environments and found that they carve tunnels via bleb-driven degradation of extracellular matrix components without the need for proteolytic degradation. Interactions between adhesions and collagen at the cell front induce a signaling cascade that promotes bleb enlargement via branched actin polymerization. Large blebs abrade collagen, creating feedback between extracellular matrix structure, cell morphology, and polarization that enables both path generation and persistent movement.
Collapse
Affiliation(s)
- Meghan K Driscoll
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Erik S Welf
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew Weems
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Etai Sapoznik
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Felix Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vasanth S Murali
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Minna Roh-Johnson
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT 84113, USA
| | - Matthieu Piel
- Institut Curie, UMR144, CNRS, PSL University, Paris, France
| | - Kevin M Dean
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reto Fiolka
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
3
|
Zhu K, Guo X, Chandrasekaran A, Miao X, Rangamani P, Zhao W, Miao Y. Membrane curvature catalyzes actin nucleation through nano-scale condensation of N-WASP-FBP17. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591054. [PMID: 38712166 PMCID: PMC11071460 DOI: 10.1101/2024.04.25.591054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Actin remodeling is spatiotemporally regulated by surface topographical cues on the membrane for signaling across diverse biological processes. Yet, the mechanism dynamic membrane curvature prompts quick actin cytoskeletal changes in signaling remain elusive. Leveraging the precision of nanolithography to control membrane curvature, we reconstructed catalytic reactions from the detection of nano-scale curvature by sensing molecules to the initiation of actin polymerization, which is challenging to study quantitatively in living cells. We show that this process occurs via topographical signal-triggered condensation and activation of the actin nucleation-promoting factor (NPF), Neuronal Wiskott-Aldrich Syndrome protein (N-WASP), which is orchestrated by curvature-sensing BAR-domain protein FBP17. Such N-WASP activation is fine-tuned by optimizing FBP17 to N-WASP stoichiometry over different curvature radii, allowing a curvature-guided macromolecular assembly pattern for polymerizing actin network locally. Our findings shed light on the intricate relationship between changes in curvature and actin remodeling via spatiotemporal regulation of NPF/BAR complex condensation.
Collapse
|
4
|
Sadhu RK, Luciano M, Xi W, Martinez-Torres C, Schröder M, Blum C, Tarantola M, Villa S, Penič S, Iglič A, Beta C, Steinbock O, Bodenschatz E, Ladoux B, Gabriele S, Gov NS. A minimal physical model for curvotaxis driven by curved protein complexes at the cell's leading edge. Proc Natl Acad Sci U S A 2024; 121:e2306818121. [PMID: 38489386 PMCID: PMC10963004 DOI: 10.1073/pnas.2306818121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/29/2024] [Indexed: 03/17/2024] Open
Abstract
Cells often migrate on curved surfaces inside the body, such as curved tissues, blood vessels, or highly curved protrusions of other cells. Recent in vitro experiments provide clear evidence that motile cells are affected by the curvature of the substrate on which they migrate, preferring certain curvatures to others, termed "curvotaxis." The origin and underlying mechanism that gives rise to this curvature sensitivity are not well understood. Here, we employ a "minimal cell" model which is composed of a vesicle that contains curved membrane protein complexes, that exert protrusive forces on the membrane (representing the pressure due to actin polymerization). This minimal-cell model gives rise to spontaneous emergence of a motile phenotype, driven by a lamellipodia-like leading edge. By systematically screening the behavior of this model on different types of curved substrates (sinusoidal, cylinder, and tube), we show that minimal ingredients and energy terms capture the experimental data. The model recovers the observed migration on the sinusoidal substrate, where cells move along the grooves (minima), while avoiding motion along the ridges. In addition, the model predicts the tendency of cells to migrate circumferentially on convex substrates and axially on concave ones. Both of these predictions are verified experimentally, on several cell types. Altogether, our results identify the minimization of membrane-substrate adhesion energy and binding energy between the membrane protein complexes as key players of curvotaxis in cell migration.
Collapse
Affiliation(s)
- Raj Kumar Sadhu
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Marine Luciano
- Department of Biochemistry, University of Geneva, Geneva4 CH-1211, Switzerland
- Mechanobiology & Biomaterials Group, Research Institute for Biosciences, Center of Innovation and Research in Materials and Polymers, University of Mons, MonsB-7000, Belgium
| | - Wang Xi
- Universite Paris Cite, CNRS, Institut Jacques Monod, ParisF-75013, France
| | | | - Marcel Schröder
- Department of Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen37077, Germany
| | - Christoph Blum
- Department of Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen37077, Germany
| | - Marco Tarantola
- Department of Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen37077, Germany
| | - Stefano Villa
- Department of Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen37077, Germany
| | - Samo Penič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana1000, Slovenia
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana1000, Slovenia
| | - Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Potsdam14476, Germany
- Nano Life Science Institute, Kanazawa University, Kanazawa920-1192, Japan
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL32306-4390
| | - Eberhard Bodenschatz
- Department of Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen37077, Germany
| | - Benoît Ladoux
- Universite Paris Cite, CNRS, Institut Jacques Monod, ParisF-75013, France
| | - Sylvain Gabriele
- Mechanobiology & Biomaterials Group, Research Institute for Biosciences, Center of Innovation and Research in Materials and Polymers, University of Mons, MonsB-7000, Belgium
| | - Nir S. Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|
5
|
Shao X, Dang Y, Zhang T, Bai N, Huang J, Guo M, Sun L, Li M, Sun X, Zhang X, Han F, Zhang N, Zhuang H, Li Y. LINC00869 Promotes Hepatocellular Carcinoma Metastasis via Protrusion Formation. Mol Cancer Res 2024; 22:282-294. [PMID: 37934195 DOI: 10.1158/1541-7786.mcr-23-0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/05/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Coordination of filament assembly and membrane remodeling is required for the directional migration of cancer cells. The Wiskott-Aldrich syndrome protein (WASP) recruits the actin-related protein (ARP) 2/3 complex to assemble branched actin networks. The goal of our study was to assess the potential regulatory role exerted by the novel long noncoding RNA (lncRNA) LINC00869 on hepatocellular carcinoma (HCC) cells. We used HCC cells to overexpress or knockdown LINC00869, analyzed patient data from publicly available databases and Cancer Hospital Affiliated with Zhengzhou University, and used a xenograft mouse model of HCC to study the molecular mechanism associated with LINC00869 expression. We found that high levels of LINC00869 expression were associated with poor prognosis in patients with HCC. Next, we detected an interaction between LINC00869 and both WASP and ARP2 in HCC cells, and observed a modulatory effect of LINC00869 on the phosphorylation of WASP at Y291 and the activity of cell division control protein 42 (CDC42). These modulatory roles were required for WASP/CDC42 activity on F-actin polymerization to enhance membrane protrusion formation and maintain persistent cell polarization. This, in turn, promoted the migration and invasion abilities of HCC cells. Finally, we confirmed the role of LINC00869in vivo, using the tumor xenograft mouse model; and identified a positive correlation between LINC00869 expression levels and the phosphorylation levels of WASP in HCC samples. Overall, our findings suggest a unique mechanism by which LINC00869 orchestrates membrane protrusion during migration and invasion of HCC cells. IMPLICATIONS LncRNA LINC00869 regulates the activity of CDC42-WASP pathway and positively affects protrusion formation in HCC cells, which expands the current understanding of lncRNA functions as well as gives a better understanding of carcinogenesis.
Collapse
Affiliation(s)
- Xiaowen Shao
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yamei Dang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tingting Zhang
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Nan Bai
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jianing Huang
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mengya Guo
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Li Sun
- Department of Gynaecology and Obstetrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Minghe Li
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiao Sun
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xinran Zhang
- Department of Pharmacy, Tianjin First Central Hospital, Tianjin, China
| | - Feng Han
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Ning Zhang
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
| | - Hao Zhuang
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yongmei Li
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Wang Z, Guo Y, Zhang Y, Wu L, Wang L, Lin Q, Wan B. An Intriguing Structural Modification in Neutrophil Migration Across Blood Vessels to Inflammatory Sites: Progress in the Core Mechanisms. Cell Biochem Biophys 2024; 82:67-75. [PMID: 37962751 DOI: 10.1007/s12013-023-01198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
The role and function of neutrophils are well known, but we still have incomplete understanding of the mechanisms by which neutrophils migrate from blood vessels to inflammatory sites. Neutrophil migration is a complex process that involves several distinct steps. To resist the blood flow and maintain their rolling, neutrophils employ tether and sling formation. They also polarize and form pseudopods and uropods, guided by hierarchical chemotactic agents that enable precise directional movement. Meanwhile, chemotactic agents secreted by neutrophils, such as CXCL1, CXCL8, LTB4, and C5a, can recruit more neutrophils and amplify their response. In the context of diapedesis neutrophils traverse the endothelial cells via two pathways: the transmigratory cup and the lateral border recycling department. These structures aid in overcoming the narrow pore size of the endothelial barrier, resulting in more efficient transmembrane migration. Interestingly, neutrophils exhibit a preference for the paracellular pathway over the transcellular pathway, likely due to the former's lower resistance. In this review, we will delve into the intricate process of neutrophil migration by focusing on critical structures that underpins this process.
Collapse
Affiliation(s)
- Zexu Wang
- Department of Respiratory and Critical Care Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Yufang Guo
- Department of Respiratory and Critical Care Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Yulei Zhang
- Department of Respiratory and Critical Care Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Liangquan Wu
- Department of Respiratory and Critical Care Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Qiuqi Lin
- Department of Respiratory and Critical Care Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China.
| |
Collapse
|
7
|
Kuhn J, Banerjee P, Haye A, Robinson DN, Iglesias PA, Devreotes PN. Complementary Cytoskeletal Feedback Loops Control Signal Transduction Excitability and Cell Polarity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580131. [PMID: 38405988 PMCID: PMC10888828 DOI: 10.1101/2024.02.13.580131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
To move through complex environments, cells must constantly integrate chemical and mechanical cues. Signaling networks, such as those comprising Ras and PI3K, transmit chemical cues to the cytoskeleton, but the cytoskeleton must also relay mechanical information back to those signaling systems. Using novel synthetic tools to acutely control specific elements of the cytoskeleton in Dictyostelium and neutrophils, we delineate feedback mechanisms that alter the signaling network and promote front- or back-states of the cell membrane and cortex. First, increasing branched actin assembly increases Ras/PI3K activation while reducing polymeric actin levels overall decreases activation. Second, reducing myosin II assembly immediately increases Ras/PI3K activation and sensitivity to chemotactic stimuli. Third, inhibiting branched actin alone increases cortical actin assembly and strongly blocks Ras/PI3K activation. This effect is mitigated by reducing filamentous actin levels and in cells lacking myosin II. Finally, increasing actin crosslinking with a controllable activator of cytoskeletal regulator RacE leads to a large decrease in Ras activation both globally and locally. Curiously, RacE activation can trigger cell spreading and protrusion with no detectable activation of branched actin nucleators. Taken together with legacy data that Ras/PI3K promotes branched actin assembly and myosin II disassembly, our results define front- and back-promoting positive feedback loops. We propose that these loops play a crucial role in establishing cell polarity and mediating signal integration by controlling the excitable state of the signal transduction networks in respective regions of the membrane and cortex. This interplay enables cells to navigate intricate topologies like tissues containing other cells, the extracellular matrix, and fluids.
Collapse
Affiliation(s)
- Jonathan Kuhn
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Parijat Banerjee
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD
| | - Andrew Haye
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD
| | | | - Pablo A. Iglesias
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD
| | - Peter N. Devreotes
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
8
|
Ledoux B, Zanin N, Yang J, Mercier V, Coster C, Dupont-Gillain C, Alsteens D, Morsomme P, Renard HF. Plasma membrane nanodeformations promote actin polymerization through CIP4/CDC42 recruitment and regulate type II IFN signaling. SCIENCE ADVANCES 2023; 9:eade1660. [PMID: 38091386 PMCID: PMC10848735 DOI: 10.1126/sciadv.ade1660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
In their environment, cells must cope with mechanical stresses constantly. Among these, nanoscale deformations of plasma membrane induced by substrate nanotopography are now largely accepted as a biophysical stimulus influencing cell behavior and function. However, the mechanotransduction cascades involved and their precise molecular effects on cellular physiology are still poorly understood. Here, using homemade fluorescent nanostructured cell culture surfaces, we explored the role of Bin/Amphiphysin/Rvs (BAR) domain proteins as mechanosensors of plasma membrane geometry. Our data reveal that distinct subsets of BAR proteins bind to plasma membrane deformations in a membrane curvature radius-dependent manner. Furthermore, we show that membrane curvature promotes the formation of dynamic actin structures mediated by the Rho GTPase CDC42, the F-BAR protein CIP4, and the presence of PI(4,5)P2. In addition, these actin-enriched nanodomains can serve as platforms to regulate receptor signaling as they appear to contain interferon-γ receptor (IFNγ-R) and to lead to the partial inhibition of IFNγ-induced JAK/STAT signaling.
Collapse
Affiliation(s)
- Benjamin Ledoux
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Croix du Sud 4-5 bte L7.07.14, Louvain-la-Neuve 1348, Belgium
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, NanoBiophysics lab, Croix du Sud 4-5 bte L7.07.07, Louvain-la-Neuve 1348, Belgium
- UNamur, Morph-Im platform, Rue de Bruxelles 61, Namur 5000, Belgium
| | - Natacha Zanin
- UNamur, NAmur Research Institute for LIfe Sciences, Unité de Recherche en Biologie Cellulaire animale, Rue de Bruxelles 61, Namur 5000, Belgium
| | - Jinsung Yang
- Gyeongsang National University, Department of Biochemistry, College of Medicine, Department of Convergence Medical Sciences, Institute of Medical Science, Jinju 52727, South Korea
| | - Vincent Mercier
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Charlotte Coster
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Croix du Sud 4-5 bte L7.07.14, Louvain-la-Neuve 1348, Belgium
| | - Christine Dupont-Gillain
- UCLouvain, Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter, Place Louis Pasteur 1 bte L4.01.10, Louvain-la-Neuve 1348, Belgium
| | - David Alsteens
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, NanoBiophysics lab, Croix du Sud 4-5 bte L7.07.07, Louvain-la-Neuve 1348, Belgium
| | - Pierre Morsomme
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Croix du Sud 4-5 bte L7.07.14, Louvain-la-Neuve 1348, Belgium
| | - Henri-François Renard
- UNamur, Morph-Im platform, Rue de Bruxelles 61, Namur 5000, Belgium
- UNamur, NAmur Research Institute for LIfe Sciences, Unité de Recherche en Biologie Cellulaire animale, Rue de Bruxelles 61, Namur 5000, Belgium
| |
Collapse
|
9
|
Monteiro P, Remy D, Lemerle E, Routet F, Macé AS, Guedj C, Ladoux B, Vassilopoulos S, Lamaze C, Chavrier P. A mechanosensitive caveolae-invadosome interplay drives matrix remodelling for cancer cell invasion. Nat Cell Biol 2023; 25:1787-1803. [PMID: 37903910 PMCID: PMC10709148 DOI: 10.1038/s41556-023-01272-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/22/2023] [Indexed: 11/01/2023]
Abstract
Invadosomes and caveolae are mechanosensitive structures that are implicated in metastasis. Here, we describe a unique juxtaposition of caveola clusters and matrix degradative invadosomes at contact sites between the plasma membrane of cancer cells and constricting fibrils both in 2D and 3D type I collagen matrix environments. Preferential association between caveolae and straight segments of the fibrils, and between invadosomes and bent segments of the fibrils, was observed along with matrix remodelling. Caveola recruitment precedes and is required for invadosome formation and activity. Reciprocally, invadosome disruption results in the accumulation of fibril-associated caveolae. Moreover, caveolae and the collagen receptor β1 integrin co-localize at contact sites with the fibrils, and integrins control caveola recruitment to fibrils. In turn, caveolae mediate the clearance of β1 integrin and collagen uptake in an invadosome-dependent and collagen-cleavage-dependent mechanism. Our data reveal a reciprocal interplay between caveolae and invadosomes that coordinates adhesion to and proteolytic remodelling of confining fibrils to support tumour cell dissemination.
Collapse
Affiliation(s)
- Pedro Monteiro
- Actin and Membrane Dynamics Laboratory, Institut Curie-Research Center, CNRS UMR144, PSL Research University, Paris, France.
- Membrane Mechanics and Dynamics of Intracellular Signalling Laboratory, Institut Curie-Research Center, CNRS UMR3666, INSERM U1143, PSL Research University, Paris, France.
| | - David Remy
- Actin and Membrane Dynamics Laboratory, Institut Curie-Research Center, CNRS UMR144, PSL Research University, Paris, France
| | - Eline Lemerle
- Institute of Myology, Sorbonne Université, INSERM UMRS 974, Paris, France
| | - Fiona Routet
- Actin and Membrane Dynamics Laboratory, Institut Curie-Research Center, CNRS UMR144, PSL Research University, Paris, France
| | - Anne-Sophie Macé
- Cell and Tissue Imaging Facility (PICT-IBiSA), Institut Curie, PSL Research University, Paris, France
| | - Chloé Guedj
- Cell and Tissue Imaging Facility (PICT-IBiSA), Institut Curie, PSL Research University, Paris, France
| | - Benoit Ladoux
- Institut Jacques Monod, Université de Paris, CNRS UMR 7592, Paris, France
| | | | - Christophe Lamaze
- Membrane Mechanics and Dynamics of Intracellular Signalling Laboratory, Institut Curie-Research Center, CNRS UMR3666, INSERM U1143, PSL Research University, Paris, France.
| | - Philippe Chavrier
- Actin and Membrane Dynamics Laboratory, Institut Curie-Research Center, CNRS UMR144, PSL Research University, Paris, France.
| |
Collapse
|
10
|
Le HA, Mayor R. Cell-matrix and cell-cell interaction mechanics in guiding migration. Biochem Soc Trans 2023; 51:1733-1745. [PMID: 37610008 PMCID: PMC10586762 DOI: 10.1042/bst20230211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
Physical properties of tissue are increasingly recognised as major regulatory cues affecting cell behaviours, particularly cell migration. While these properties of the extracellular matrix have been extensively discussed, the contribution from the cellular components that make up the tissue are still poorly appreciated. In this mini-review, we will discuss two major physical components: stiffness and topology with a stronger focus on cell-cell interactions and how these can impact cell migration.
Collapse
Affiliation(s)
- Hoang Anh Le
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
11
|
Guo X, Zhu K, Zhu X, Zhao W, Miao Y. Two-dimensional molecular condensation in cell signaling and mechanosensing. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1064-1074. [PMID: 37475548 PMCID: PMC10423693 DOI: 10.3724/abbs.2023132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/21/2023] [Indexed: 07/22/2023] Open
Abstract
Membraneless organelles (MLO) regulate diverse biological processes in a spatiotemporally controlled manner spanning from inside to outside of the cells. The plasma membrane (PM) at the cell surface serves as a central platform for forming multi-component signaling hubs that sense mechanical and chemical cues during physiological and pathological conditions. During signal transduction, the assembly and formation of membrane-bound MLO are dynamically tunable depending on the physicochemical properties of the surrounding environment and partitioning biomolecules. Biomechanical properties of MLO-associated membrane structures can control the microenvironment for biomolecular interactions and assembly. Lipid-protein complex interactions determine the catalytic region's assembly pattern and assembly rate and, thereby, the amplitude of activities. In this review, we will focus on how cell surface microenvironments, including membrane curvature, surface topology and tension, lipid-phase separation, and adhesion force, guide the assembly of PM-associated MLO for cell signal transductions.
Collapse
Affiliation(s)
- Xiangfu Guo
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological UniversitySingapore637457Singapore
| | - Kexin Zhu
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | - Xinlu Zhu
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | - Wenting Zhao
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological UniversitySingapore637457Singapore
- Institute for Digital Molecular Analytics and ScienceNanyang Technological UniversitySingapore636921Singapore
| | - Yansong Miao
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- Institute for Digital Molecular Analytics and ScienceNanyang Technological UniversitySingapore636921Singapore
| |
Collapse
|
12
|
Du R, Li L, Ji J, Fan Y. Receptor-Ligand Binding: Effect of Mechanical Factors. Int J Mol Sci 2023; 24:ijms24109062. [PMID: 37240408 DOI: 10.3390/ijms24109062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/20/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Gaining insight into the in situ receptor-ligand binding is pivotal for revealing the molecular mechanisms underlying the physiological and pathological processes and will contribute to drug discovery and biomedical application. An important issue involved is how the receptor-ligand binding responds to mechanical stimuli. This review aims to provide an overview of the current understanding of the effect of several representative mechanical factors, such as tension, shear stress, stretch, compression, and substrate stiffness on receptor-ligand binding, wherein the biomedical implications are focused. In addition, we highlight the importance of synergistic development of experimental and computational methods for fully understanding the in situ receptor-ligand binding, and further studies should focus on the coupling effects of these mechanical factors.
Collapse
Affiliation(s)
- Ruotian Du
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Ji
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
13
|
Mahlandt EK, Kreider-Letterman G, Chertkova AO, Garcia-Mata R, Goedhart J. Cell-based optimization and characterization of genetically encoded location-based biosensors for Cdc42 or Rac activity. J Cell Sci 2023; 136:jcs260802. [PMID: 37226883 PMCID: PMC10234108 DOI: 10.1242/jcs.260802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/13/2023] [Indexed: 05/26/2023] Open
Abstract
Rac (herein referring to the Rac family) and Cdc42 are Rho GTPases that regulate the formation of lamellipoda and filopodia, and are therefore crucial in processes such as cell migration. Relocation-based biosensors for Rac and Cdc42 have not been characterized well in terms of their specificity or affinity. In this study, we identify relocation sensor candidates for both Rac and Cdc42. We compared their (1) ability to bind the constitutively active Rho GTPases, (2) specificity for Rac and Cdc42, and (3) relocation efficiency in cell-based assays. Subsequently, the relocation efficiency was improved by a multi-domain approach. For Rac1, we found a sensor candidate with low relocation efficiency. For Cdc42, we found several sensors with sufficient relocation efficiency and specificity. These optimized sensors enable the wider application of Rho GTPase relocation sensors, which was showcased by the detection of local endogenous Cdc42 activity at assembling invadopodia. Moreover, we tested several fluorescent proteins and HaloTag for their influence on the recruitment efficiency of the Rho location sensor, to find optimal conditions for a multiplexing experiment. This characterization and optimization of relocation sensors will broaden their application and acceptance.
Collapse
Affiliation(s)
- Eike K. Mahlandt
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | | | - Anna O. Chertkova
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Hu Y, Becker ML, Willits RK. Quantification of cell migration: metrics selection to model application. Front Cell Dev Biol 2023; 11:1155882. [PMID: 37255596 PMCID: PMC10225508 DOI: 10.3389/fcell.2023.1155882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/05/2023] [Indexed: 06/01/2023] Open
Abstract
Cell migration plays an essential role in physiological and pathological states, such as immune response, tissue generation and tumor development. This phenomenon can occur spontaneously or it can be triggered by an external stimuli, including biochemical, mechanical, or electrical cues that induce or direct cells to migrate. The migratory response to these cues is foundational to several fields including neuroscience, cancer and regenerative medicine. Various platforms are available to qualitatively and quantitatively measure cell migration, making the measurements of cell motility straight-forward. Migratory behavior must be analyzed by multiple metrics and then models to connect the measurements to physiological meaning. This review will focus on describing and quantifying cell movement for individual cell migration.
Collapse
Affiliation(s)
- Yang Hu
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, United States
| | - Matthew L. Becker
- Departments of Chemistry, Mechanical Engineering and Materials Science, Biomedical Engineering and Orthopedic Surgery, Duke University, Durham, NC, United States
| | - Rebecca Kuntz Willits
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, United States
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, United States
| |
Collapse
|
15
|
Vieira RC, Pinho LG, Westerberg LS. Understanding immunoactinopathies: A decade of research on WAS gene defects. Pediatr Allergy Immunol 2023; 34:e13951. [PMID: 37102395 DOI: 10.1111/pai.13951] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/28/2023]
Abstract
Immunoactinopathies caused by mutations in actin-related proteins are a growing group of inborn errors of immunity (IEI). Immunoactinopathies are caused by a dysregulated actin cytoskeleton and affect hematopoietic cells especially because of their unique capacity to survey the body for invading pathogens and altered self, such as cancer cells. These cell motility and cell-to-cell interaction properties depend on the dynamic nature of the actin cytoskeleton. Wiskott-Aldrich syndrome (WAS) is the archetypical immunoactinopathy and the first described. WAS is caused by loss-of-function and gain-of-function mutations in the actin regulator WASp, uniquely expressed in hematopoietic cells. Mutations in WAS cause a profound disturbance of actin cytoskeleton regulation of hematopoietic cells. Studies during the last 10 years have shed light on the specific effects on different hematopoietic cells, revealing that they are not affected equally by mutations in the WAS gene. Moreover, the mechanistic understanding of how WASp controls nuclear and cytoplasmatic activities may help to find therapeutic alternatives according to the site of the mutation and clinical phenotypes. In this review, we summarize recent findings that have added to the complexity and increased our understanding of WAS-related diseases and immunoactinopathies.
Collapse
Affiliation(s)
- Rhaissa Calixto Vieira
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Lia Goncalves Pinho
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Hui J, Nakamura M, Dubrulle J, Parkhurst SM. Coordinated efforts of different actin filament populations are needed for optimal cell wound repair. Mol Biol Cell 2023; 34:ar15. [PMID: 36598808 PMCID: PMC10011732 DOI: 10.1091/mbc.e22-05-0155] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cells are subjected to a barrage of daily insults that often lead to their cortices being ripped open and requiring immediate repair. An important component of the cell's repair response is the formation of an actomyosin ring at the wound periphery to mediate its closure. Here we show that inhibition of myosin or the linear actin nucleation factors Diaphanous and/or dishevelled associated activator of morphogenesis results in a disrupted contractile apparatus and delayed wound closure. We also show that the branched actin nucleators WASp and SCAR function nonredundantly as scaffolds to assemble and maintain this contractile actomyosin cable. Removing branched actin leads to the formation of smaller circular actin-myosin structures at the cell cortex and to slow wound closure. Removing linear and branched actin simultaneously results in failed wound closure. Surprisingly, removal of branched actin and myosin results in the formation of parallel linear F-actin filaments that undergo a chiral swirling movement to close the wound, uncovering a new mechanism of cell wound closure. Taken together, we demonstrate the roles of different actin substructures that are required for optimal actomyosin ring formation and the extraordinary resilience of the cell to undergo wound repair when it is unable to form different subsets of these substructures.
Collapse
Affiliation(s)
- Justin Hui
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | | | - Julien Dubrulle
- Cellular Imaging Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| |
Collapse
|
17
|
Baldauf L, Frey F, Arribas Perez M, Idema T, Koenderink GH. Branched actin cortices reconstituted in vesicles sense membrane curvature. Biophys J 2023:S0006-3495(23)00124-8. [PMID: 36806830 DOI: 10.1016/j.bpj.2023.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
The actin cortex is a complex cytoskeletal machinery that drives and responds to changes in cell shape. It must generate or adapt to plasma membrane curvature to facilitate diverse functions such as cell division, migration, and phagocytosis. Due to the complex molecular makeup of the actin cortex, it remains unclear whether actin networks are inherently able to sense and generate membrane curvature, or whether they rely on their diverse binding partners to accomplish this. Here, we show that curvature sensing is an inherent capability of branched actin networks nucleated by Arp2/3 and VCA. We develop a robust method to encapsulate actin inside giant unilamellar vesicles (GUVs) and assemble an actin cortex at the inner surface of the GUV membrane. We show that actin forms a uniform and thin cortical layer when present at high concentration and distinct patches associated with negative membrane curvature at low concentration. Serendipitously, we find that the GUV production method also produces dumbbell-shaped GUVs, which we explain using mathematical modeling in terms of membrane hemifusion of nested GUVs. We find that branched actin networks preferentially assemble at the neck of the dumbbells, which possess a micrometer-range convex curvature comparable with the curvature of the actin patches found in spherical GUVs. Minimal branched actin networks can thus sense membrane curvature, which may help mammalian cells to robustly recruit actin to curved membranes to facilitate diverse cellular functions such as cytokinesis and migration.
Collapse
Affiliation(s)
- Lucia Baldauf
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Felix Frey
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Marcos Arribas Perez
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Timon Idema
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
18
|
Pineau J, Moreau H, Duménil AML, Pierobon P. Polarity in immune cells. Curr Top Dev Biol 2023; 154:197-222. [PMID: 37100518 DOI: 10.1016/bs.ctdb.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Immune cells are responsible for pathogen detection and elimination, as well as for signaling to other cells the presence of potential danger. In order to mount an efficient immune response, they need to move and search for a pathogen, interact with other cells, and diversify the population by asymmetric cell division. All these actions are regulated by cell polarity: cell polarity controls cell motility, which is crucial for scanning peripheral tissues to detect pathogens, and recruiting immune cells to sites of infection; immune cells, in particular lymphocytes, communicate with each other by a direct contact called immunological synapse, which entails a global polarization of the cell and plays a role in activating lymphocyte response; finally, immune cells divide asymmetrically from a precursor, generating a diversity of phenotypes and cell types among daughter cells, such as memory and effector cells. This review aims at providing an overview from both biology and physics perspectives of how cell polarity shapes the main immune cell functions.
Collapse
Affiliation(s)
- Judith Pineau
- Institut Curie, PSL Research University, INSERM U932, Paris, Cedex, France; Université Paris Cité, Paris, France
| | - Hélène Moreau
- Institut Curie, PSL Research University, INSERM U932, Paris, Cedex, France
| | | | - Paolo Pierobon
- Institut Curie, PSL Research University, INSERM U932, Paris, Cedex, France.
| |
Collapse
|
19
|
Cail RC, Drubin DG. Membrane curvature as a signal to ensure robustness of diverse cellular processes. Trends Cell Biol 2022; 33:427-441. [PMID: 36244874 DOI: 10.1016/j.tcb.2022.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022]
Abstract
An increasing corpus of research has demonstrated that membrane shape, generated either by the external environment of the cell or by intrinsic mechanisms such as cytokinesis and vesicle or organelle formation, is an important parameter in the control of diverse cellular processes. In this review we discuss recent findings that demonstrate how membrane curvature (from nanometer to micron length-scales) alters protein function. We describe an expanding toolkit for experimentally modulating membrane curvature to reveal effects on protein function, and discuss how membrane curvature - far from being a passive consequence of the physical environment and the internal protein activity of a cell - is an important signal that controls protein affinity and enzymatic activity to ensure robust forward progression of key processes within the cell.
Collapse
|
20
|
The Actin Cytoskeleton Responds to Inflammatory Cues and Alters Macrophage Activation. Cells 2022; 11:cells11111806. [PMID: 35681501 PMCID: PMC9180445 DOI: 10.3390/cells11111806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
Much remains to be learned about the molecular mechanisms underlying a class of human disorders called actinopathies. These genetic disorders are characterized by loss-of-function mutations in actin-associated proteins that affect immune cells, leading to human immunopathology. However, much remains to be learned about how cytoskeletal dysregulation promotes immunological dysfunction. The current study reveals that the macrophage actin cytoskeleton responds to LPS/IFNγ stimulation in a biphasic manner that involves cellular contraction followed by cellular spreading. Myosin II inhibition by blebbistatin blocks the initial contraction phase and lowers iNOS protein levels and nitric oxide secretion. Conversely, conditional deletion of Arp2/3 complex in macrophages attenuates spreading and increases nitric oxide secretion. However, iNOS transcription is not altered by loss of myosin II or Arp2/3 function, suggesting post-transcriptional regulation of iNOS by the cytoskeleton. Consistent with this idea, proteasome inhibition reverses the effects of blebbistatin and rescues iNOS protein levels. Arp2/3-deficient macrophages demonstrate two additional phenotypes: defective MHCII surface localization, and depressed secretion of the T cell chemokine CCL22. These data suggest that interplay between myosin II and Arp2/3 influences macrophage activity, and potentially impacts adaptive-innate immune coordination. Disrupting this balance could have detrimental impacts, particularly in the context of Arp2/3-associated actinopathies.
Collapse
|
21
|
Szafranska K, Neuman T, Baster Z, Rajfur Z, Szelest O, Holte C, Kubisiak A, Kus E, Wolfson DL, Chlopicki S, Ahluwalia BS, Lekka M, Szymonski M, McCourt P, Zapotoczny B. From fixed-dried to wet-fixed to live - comparative super-resolution microscopy of liver sinusoidal endothelial cell fenestrations. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:2253-2270. [PMID: 39678082 PMCID: PMC11636152 DOI: 10.1515/nanoph-2021-0818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/21/2022] [Accepted: 04/06/2022] [Indexed: 12/17/2024]
Abstract
Fenestrations in liver sinusoidal endothelial cells (LSEC) are transcellular nanopores of 50-350 nm diameter that facilitate bidirectional transport of solutes and macromolecules between the bloodstream and the parenchyma of the liver. Liver diseases, ageing, and various substances such as nicotine or ethanol can negatively influence LSECs fenestrations and lead to defenestration. Over the years, the diameter of fenestrations remained the main challenge for imaging of LSEC in vitro. Several microscopy, or rather nanoscopy, approaches have been used to quantify fenestrations in LSEC to assess the effect of drugs and, and toxins in different biological models. All techniques have their limitations, and measurements of the "true" size of fenestrations are hampered because of this. In this study, we approach the comparison of different types of microscopy in a correlative manner. We combine scanning electron microscopy (SEM) with optical nanoscopy methods such as structured illumination microscopy (SIM) or stimulated emission depletion (STED) microscopy. In addition, we combined atomic force microscopy (AFM) with SEM and STED, all to better understand the previously reported differences between the reports of fenestration dimensions. We conclude that sample dehydration alters fenestration diameters. Finally, we propose the combination of AFM with conventional microscopy that allows for easy super-resolution observation of the cell dynamics with additional chemical information that can be traced back for the whole experiment. Overall, by pairing the various types of imaging techniques that provide topological 2D/3D/label-free/chemical information we get a deeper insight into both limitations and strengths of each type microscopy when applied to fenestration analysis.
Collapse
Affiliation(s)
- Karolina Szafranska
- Department of Medical Biology, Vascular Biology Research Group, University of Tromsø (UiT), The Arctic University of Norway, Tromsø, Norway
| | - Tanja Neuman
- JPK BioAFM Business, Nano Surfaces and Metrology Division, Bruker Nano GmbH, Berlin, Germany
| | - Zbigniew Baster
- Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Krakow, Poland
| | - Zenon Rajfur
- Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Krakow, Poland
| | | | - Christopher Holte
- Department of Medical Biology, Vascular Biology Research Group, University of Tromsø (UiT), The Arctic University of Norway, Tromsø, Norway
| | - Agata Kubisiak
- Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Krakow, Poland
| | - Edyta Kus
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Deanna L. Wolfson
- Department of Physics and Technology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Balpreet S. Ahluwalia
- Department of Physics and Technology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Malgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Marek Szymonski
- Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Krakow, Poland
| | - Peter McCourt
- Department of Medical Biology, Vascular Biology Research Group, University of Tromsø (UiT), The Arctic University of Norway, Tromsø, Norway
| | - Bartlomiej Zapotoczny
- Department of Medical Biology, Vascular Biology Research Group, University of Tromsø (UiT), The Arctic University of Norway, Tromsø, Norway
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
22
|
Mihlan M, Glaser KM, Epple MW, Lämmermann T. Neutrophils: Amoeboid Migration and Swarming Dynamics in Tissues. Front Cell Dev Biol 2022; 10:871789. [PMID: 35478973 PMCID: PMC9038224 DOI: 10.3389/fcell.2022.871789] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/03/2022] [Indexed: 01/02/2023] Open
Abstract
Neutrophils are key cells of our innate immune response with essential roles for eliminating bacteria and fungi from tissues. They are also the prototype of an amoeboid migrating leukocyte. As one of the first blood-recruited immune cell types during inflammation and infection, these cells can invade almost any tissue compartment. Once in the tissue, neutrophils undergo rapid shape changes and migrate at speeds higher than most other immune cells. They move in a substrate-independent manner in interstitial spaces and do not follow predetermined tissue paths. Instead, neutrophil navigation is largely shaped by the chemokine and chemoattractant milieu around them. This highlights the decisive role of attractant-sensing G-protein coupled receptors (GPCRs) and downstream molecular pathways for controlling amoeboid neutrophil movement in tissues. A diverse repertoire of cell-surface expressed GPCRs makes neutrophils the perfect sentinel cell type to sense and detect danger-associated signals released from wounds, inflamed interstitium, dying cells, complement factors or directly from tissue-invading microbes. Moreover, neutrophils release attractants themselves, which allows communication and coordination between individual cells of a neutrophil population. GPCR-mediated positive feedback mechanisms were shown to underlie neutrophil swarming, a population response that amplifies the recruitment of amoeboid migrating neutrophils to sites of tissue injury and infection. Here we discuss recent findings and current concepts that counteract excessive neutrophil accumulation and swarm formation. In particular, we will focus on negative feedback control mechanisms that terminate neutrophil swarming to maintain the delicate balance between tissue surveillance, host protection and tissue destruction.
Collapse
Affiliation(s)
- Michael Mihlan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Katharina M. Glaser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Maximilian W. Epple
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
23
|
Rottner K, Stradal TE. WASP stings into matrix to lead immune cell migration. J Cell Biol 2022; 221:e202112087. [PMID: 35061007 PMCID: PMC8789199 DOI: 10.1083/jcb.202112087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
WASP is a remodeler of the actin cytoskeleton, but its mechanistic contribution to neutrophil migration is unclear. In this issue, Brunetti et al. (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202104046) show that WASP is recruited to substrate-induced membrane deformations near the cell front, where it induces Arp2/3 complex-mediated local actin assembly to direct migration.
Collapse
Affiliation(s)
- Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Theresia E.B. Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|