1
|
Liu L, Nguyen H, Das U, Ogunsola S, Yu J, Lei L, Kung M, Pejhan S, Rastegar M, Xie J. Epigenetic control of adaptive or homeostatic splicing during interval-training activities. Nucleic Acids Res 2024; 52:7211-7224. [PMID: 38661216 PMCID: PMC11229381 DOI: 10.1093/nar/gkae311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024] Open
Abstract
Interval-training activities induce adaptive cellular changes without altering their fundamental identity, but the precise underlying molecular mechanisms are not fully understood. In this study, we demonstrate that interval-training depolarization (ITD) of pituitary cells triggers distinct adaptive or homeostatic splicing responses of alternative exons. This occurs while preserving the steady-state expression of the Prolactin and other hormone genes. The nature of these splicing responses depends on the exon's DNA methylation status, the methyl-C-binding protein MeCP2 and its associated CA-rich motif-binding hnRNP L. Interestingly, the steady expression of the Prolactin gene is also reliant on MeCP2, whose disruption leads to exacerbated multi-exon aberrant splicing and overexpression of the hormone gene transcripts upon ITD, similar to the observed hyperprolactinemia or activity-dependent aberrant splicing in Rett Syndrome. Therefore, epigenetic control is crucial for both adaptive and homeostatic splicing and particularly the steady expression of the Prolactin hormone gene during ITD. Disruption in this regulation may have significant implications for the development of progressive diseases.
Collapse
Affiliation(s)
- Ling Liu
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hai Nguyen
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Urmi Das
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Samuel Ogunsola
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jiankun Yu
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Lei Lei
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Matthew Kung
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Shervin Pejhan
- Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mojgan Rastegar
- Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jiuyong Xie
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Cai L, Wu ZR, Cao L, Xu JD, Lu JL, Wang CD, Jin JH, Wu ZB, Su ZP. ACT001 inhibits pituitary tumor growth by inducing autophagic cell death via MEK4/MAPK pathway. Acta Pharmacol Sin 2022; 43:2386-2396. [PMID: 35082393 PMCID: PMC9433416 DOI: 10.1038/s41401-021-00856-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/27/2021] [Indexed: 02/04/2023]
Abstract
ACT001, derived from traditional herbal medicine, is a novel compound with effective anticancer activity in clinical trials. However, little is known regarding its role in pituitary adenomas. Here, we demonstrated that ACT001 suppressed cell proliferation and induced cell death of pituitary tumor cells in vitro and in vivo. ACT001 was also effective in suppressing the growth of different subtypes of human pituitary adenomas. The cytotoxic mechanism ACT001 employed was mainly related to autophagic cell death (ACD), indicated by autophagosome formation and LC3-II accumulation. In addition, ACT001-mediated inhibitory effect decreased when either ATG7 was downregulated or cells were cotreated with autophagy inhibitor 3-methyladenine (3-MA). RNA-seq analysis showed that mitogen-activated protein kinase (MAPK) pathway was a putative target of ACT001. Specifically, ACT001 treatment promoted the phosphorylation of JNK and P38 by binding to mitogen-activated protein kinase kinase 4 (MEK4). Our study indicated that ACT001-induced ACD of pituitary tumor cells via activating JNK and P38 phosphorylation by binding with MEK4, and it might be a novel and effective anticancer drug for pituitary adenomas.
Collapse
Affiliation(s)
- Lin Cai
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ze-Rui Wu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lei Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Jia-Dong Xu
- Department of Cardio‑Thoracic Surgery, Zhoushan Hospital, Zhoushan, 316021, China
| | - Jiang-Long Lu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Cheng-de Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jing-Hao Jin
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhe-Bao Wu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhi-Peng Su
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
3
|
Impheng H, Lemmers C, Bouasse M, Legros C, Pakaprot N, Guérineau NC, Lory P, Monteil A. The sodium leak channel NALCN regulates cell excitability of pituitary endocrine cells. FASEB J 2021; 35:e21400. [PMID: 33793981 DOI: 10.1096/fj.202000841rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 11/11/2022]
Abstract
Anterior pituitary endocrine cells that release hormones such as growth hormone and prolactin are excitable and fire action potentials. In these cells, several studies previously showed that extracellular sodium (Na+ ) removal resulted in a negative shift of the resting membrane potential (RMP) and a subsequent inhibition of the spontaneous firing of action potentials, suggesting the contribution of a Na+ background conductance. Here, we show that the Na+ leak channel NALCN conducts a Ca2+ - Gd3+ -sensitive and TTX-resistant Na+ background conductance in the GH3 cell line, a cell model of pituitary endocrine cells. NALCN knockdown hyperpolarized the RMP, altered GH3 cell electrical properties and inhibited prolactin secretion. Conversely, the overexpression of NALCN depolarized the RMP, also reshaping the electrical properties of GH3 cells. Overall, our results indicate that NALCN is functional in GH3 cells and involved in endocrine cell excitability as well as in hormone secretion. Indeed, the GH3 cell line suitably models native pituitary cells that display a similar Na+ background conductance and appears as a proper cellular model to study the role of NALCN in cellular excitability.
Collapse
Affiliation(s)
- Hathaichanok Impheng
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Céline Lemmers
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France.,PVM, BCM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Malik Bouasse
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Christian Legros
- MITOVASC Institute, UMR CNRS 6015 - UMR INSERM U1083, Université d'Angers, Angers, France
| | - Narawut Pakaprot
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nathalie C Guérineau
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Philippe Lory
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Arnaud Monteil
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics', Montpellier, France.,PVM, BCM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
4
|
Gualtieri A, Kyprianou N, Gregory LC, Vignola ML, Nicholson JG, Tan R, Inoue SI, Scagliotti V, Casado P, Blackburn J, Abollo-Jimenez F, Marinelli E, Besser REJ, Högler W, Karen Temple I, Davies JH, Gagunashvili A, Robinson ICAF, Camper SA, Davis SW, Cutillas PR, Gevers EF, Aoki Y, Dattani MT, Gaston-Massuet C. Activating mutations in BRAF disrupt the hypothalamo-pituitary axis leading to hypopituitarism in mice and humans. Nat Commun 2021; 12:2028. [PMID: 33795686 PMCID: PMC8016902 DOI: 10.1038/s41467-021-21712-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 01/12/2021] [Indexed: 02/01/2023] Open
Abstract
Germline mutations in BRAF and other components of the MAPK pathway are associated with the congenital syndromes collectively known as RASopathies. Here, we report the association of Septo-Optic Dysplasia (SOD) including hypopituitarism and Cardio-Facio-Cutaneous (CFC) syndrome in patients harbouring mutations in BRAF. Phosphoproteomic analyses demonstrate that these genetic variants are gain-of-function mutations leading to activation of the MAPK pathway. Activation of the MAPK pathway by conditional expression of the BrafV600E/+ allele, or the knock-in BrafQ241R/+ allele (corresponding to the most frequent human CFC-causing mutation, BRAF p.Q257R), leads to abnormal cell lineage determination and terminal differentiation of hormone-producing cells, causing hypopituitarism. Expression of the BrafV600E/+ allele in embryonic pituitary progenitors leads to an increased expression of cell cycle inhibitors, cell growth arrest and apoptosis, but not tumour formation. Our findings show a critical role of BRAF in hypothalamo-pituitary-axis development both in mouse and human and implicate mutations found in RASopathies as a cause of endocrine deficiencies in humans.
Collapse
Affiliation(s)
- Angelica Gualtieri
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nikolina Kyprianou
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Louise C Gregory
- Genetics and Genomic Medicine Research and Teaching Department, UCL, Great Ormond Street Institute of Child Health, London, UK
| | - Maria Lillina Vignola
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - James G Nicholson
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rachael Tan
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Shin-Ichi Inoue
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | - Valeria Scagliotti
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Pedro Casado
- Integrative Cell Signalling and Proteomics, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - James Blackburn
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fernando Abollo-Jimenez
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Eugenia Marinelli
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rachael E J Besser
- Genetics and Genomic Medicine Research and Teaching Department, UCL, Great Ormond Street Institute of Child Health, London, UK
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - I Karen Temple
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Justin H Davies
- Child Health Directorate, University of Southampton, Southampton, UK
- Human Development and Health, Faculty of Medicine University of Southampton and Wessex Clinical Genetics Service, Southampton, UK
| | - Andrey Gagunashvili
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, Children NHS Foundation Trust and UCL, London, UK
| | | | - Sally A Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Pedro R Cutillas
- Integrative Cell Signalling and Proteomics, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Evelien F Gevers
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | - Mehul T Dattani
- Genetics and Genomic Medicine Research and Teaching Department, UCL, Great Ormond Street Institute of Child Health, London, UK
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
5
|
Abstract
PURPOSE Pituitary tumor is the common primary brain tumor in humans. For further studying the pathogenesis and new therapeutic targets of pituitary adenoma, cell lines and primary cells are necessary tools. Different from primary cells that have short survival time and hormone secretion maintenance time, cell lines would be endowed with immortal characteristics under the help of gene modification. This review is to explore whether these cell lines still have similar pathophysiological changes in pituitary adenoma cells and methods to prolong the lifespan of pituitary adenoma primary cells. RESULTS In the cell lines summarized in the review, HP75, PDFS, HPA and GX were derived from human pituitary adenomas. It was found that the cell lines commonly used in articles published between January 2014 and July 2019 were GH3, AtT20, MMQ, GH4C1, HP75 and TtT/GF. Besides, it was glad that many methods had been used to prolong the lifespan and maintain characteristics of pituitary adenoma primary cells. CONCLUSION The paper reviews most of pituitary adenoma cell lines that have been successfully established since 1968 and the relevant situation of primary culture of pituitary adenoma cells. Obviously, it requires us to make more efforts to obtain human pituitary adenoma cell lines and prolong the lifespan of pituitary adenoma primary cells with maintaining their morphology and ability to secret hormones.
Collapse
Affiliation(s)
- Ziyan Zhu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Weiwei Cui
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dimin Zhu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Nailin Gao
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yonghong Zhu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Brigante G, Riccetti L, Lazzaretti C, Rofrano L, Sperduti S, Potì F, Diazzi C, Prodam F, Guaraldi G, Lania AG, Rochira V, Casarini L. Abacavir, nevirapine, and ritonavir modulate intracellular calcium levels without affecting GHRH-mediated growth hormone secretion in somatotropic cells in vitro. Mol Cell Endocrinol 2019; 482:37-44. [PMID: 30543878 DOI: 10.1016/j.mce.2018.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/15/2018] [Accepted: 12/10/2018] [Indexed: 11/17/2022]
Abstract
Growth Hormone (GH) deficiency is frequent in HIV-infected patients treated with antiretroviral therapy. We treated GH3 cells with antiretrovirals (nevirapine, ritonavir or abacavir sulfate; 100 pM-1 mM range), after transfection with human growth hormone releasing hormone (GHRH) receptor cDNA. Cells viability, intracellular cAMP, phosphorylation of CREB and calcium increase, GH production and secretion were evaluated both in basal condition and after GHRH, using MTT, bioluminescence resonance energy transfer, western blotting and ELISA. Antiretroviral treatment did not affect GHRH 50% effective dose (EC50) calculated for 30-min intracellular cAMP increase (Mann-Whitney's U test; p ≥ 0.05; n = 4) nor 15-min CREB phosphorylation. The kinetics of GHRH-mediated, rapid intracellular calcium increase was perturbed by pre-incubation with drugs, while GHRH failed to induce the ion increase in ritonavir pre-treated cells (ANOVA; p < 0.05; n = 3). Antiretrovirals did not impact 24-h intracellular and extracellular GH levels (ANOVA; p ≥ 0.05; n = 3). We demonstrated the association between antiretrovirals and intracellular calcium increase, without consequences on somatotrope cells viability and GH synthesis. Overall, these results suggest that antiretrovirals may not directly impact on GH axis in HIV-infected patients.
Collapse
Affiliation(s)
- Giulia Brigante
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Laura Riccetti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Rofrano
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Samantha Sperduti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Potì
- Department of Medicine and Surgery - Unit of Neurosciences, University of Parma, Parma, Italy
| | - Chiara Diazzi
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Flavia Prodam
- Unit of Paediatrics, Endocrinology, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Giovanni Guaraldi
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea G Lania
- Endocrine Unit, IRCCS Humanitas Clinical Institute, Rozzano, Humanitas University, Rozzano, Italy
| | - Vincenzo Rochira
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy.
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
7
|
Camilletti MA, Abeledo-Machado A, Ferraris J, Pérez PA, Faraoni EY, Pisera D, Gutierrez S, Díaz-Torga G. Role of GPER in the anterior pituitary gland focusing on lactotroph function. J Endocrinol 2019; 240:99-110. [PMID: 30400046 DOI: 10.1530/joe-18-0402] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/19/2018] [Indexed: 12/22/2022]
Abstract
Ovarian steroids control a variety of physiological functions. They exert actions through classical nuclear steroid receptors, but rapid non-genomic actions through specific membrane steroid receptors have been also described. In this study, we demonstrate that the G-protein-coupled estrogen receptor (GPER) is expressed in the rat pituitary gland and, at a high level, in the lactotroph population. Our results revealed that ~40% of the anterior pituitary cells are GPER positive and ~35% of the lactotrophs are GPER positive. By immunocytochemical and immuno-electron-microscopy studies, we demonstrated that GPER is localized in the plasmatic membrane but is also associated to the endoplasmic reticulum in rat lactotrophs. Moreover, we found that local Gper expression is regulated negatively by 17β-estradiol (E2) and progesterone (P4) and fluctuates during the estrus cycle, being minimal in proestrus. Interestingly, lack of ovarian steroids after an ovariectomy (OVX) significantly increased pituitary GPER expression specifically in the three morphologically different subtypes of lactotrophs. We found a rapid estradiol stimulatory effect on PRL secretion mediated by GPER, both in vitro and ex vivo, using a GPER agonist G1, and this effect was prevented by the GPER antagonist G36, demonstrating a novel role for this receptor. Then, the increased pituitary GPER expression after OVX could lead to alterations in the pituitary function as all three lactotroph subtypes are target of GPER ligand and could be involved in the PRL secretion mediated by GPER. Therefore, it should be taken into consideration in the response of the gland to an eventual hormone replacement therapy.
Collapse
Affiliation(s)
- María Andrea Camilletti
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Alejandra Abeledo-Machado
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Jimena Ferraris
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Pablo A Pérez
- Centro de Microscopia Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Medicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Erika Y Faraoni
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Daniel Pisera
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Silvina Gutierrez
- Centro de Microscopia Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Medicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Graciela Díaz-Torga
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
8
|
Camilletti MA, Ferraris J, Abeledo-Machado A, Converse A, Faraoni EY, Pisera D, Gutierrez S, Thomas P, Díaz-Torga G. Participation of membrane progesterone receptor α in the inhibitory effect of progesterone on prolactin secretion. J Neuroendocrinol 2018; 30:e12614. [PMID: 29869822 DOI: 10.1111/jne.12614] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/28/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022]
Abstract
The membrane progesterone receptors (mPRα, mPRβ, mPRγ, mPRδ and mPRε) are known to mediate rapid nongenomic progesterone functions in different cell types. However, the functions of these receptors in the pituitary have not been reported to date. In the present study, we show that the expression of mPRα was the highest among the mPRs in the rat anterior pituitary gland. Immunostaining of mPRα was detected in somatotrophs, gonadotrophs and lactotrophs. Interestingly, 63% of mPRα-positive cells within the pituitary were lactotrophs, suggesting that mPRα is involved in controlling prolactin (PRL) secretion in the pituitary. To test this hypothesis, rat pituitaries were incubated (1 hour) with either progesterone (P4) or the mPRα-specific agonist Org OD 02-0. PRL secretion was then measured by radioimmunoassay. The results of this experiment revealed that both P4 and Org OD 02-0 decreased PRL secretion. Moreover, the results from the GH3 cell line (CCL-82.1) showed that P4 and Org OD 02-0 inhibited PRL release, although the nuclear PR agonist R5020 was ineffective. Our investigation of the cellular mechanisms behind mPRα activity indicated that both P4 and Org OD 02-0 decreased cAMP accumulation, whereas R5020 was ineffective. In addition, the Org OD 02-0-effect on PRL release was blocked by pretreatment with pertussis toxin, an inhibitor of Go/Gi proteins. Because transforming growth factor (TGF)β1 is a potent inhibitor of PRL secretion in lactotrophs, we lastly evaluated whether TGFβ1 was activated by progesterone and whether this effect was mediated by mPRα. Our results showed that P4 and Org OD 02-0, but not R5020, increased active TGFβ1 levels. This effect was not observed when cells were transfected with mPRα-small interfering RNA. Taken together, these data provide new evidence suggesting that mPRα mediates the progesterone inhibitory effect on PRL secretion through both decreases in cAMP levels and activation of TGFβ1 in the lactotroph population.
Collapse
Affiliation(s)
- M A Camilletti
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - J Ferraris
- Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Buenos Aires, Argentina
| | - A Abeledo-Machado
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - A Converse
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, USA
| | - E Y Faraoni
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - D Pisera
- Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Buenos Aires, Argentina
| | - S Gutierrez
- Facultad de Ciencias Medicas, Centro de Microscopia Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - P Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, USA
| | - G Díaz-Torga
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| |
Collapse
|
9
|
Multilevel Differential Control of Hormone Gene Expression Programs by hnRNP L and LL in Pituitary Cells. Mol Cell Biol 2018; 38:MCB.00651-17. [PMID: 29610151 PMCID: PMC5974433 DOI: 10.1128/mcb.00651-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/22/2018] [Indexed: 12/20/2022] Open
Abstract
The pituitary-derived somatolactotrophe GH3 cells secrete both growth hormone (GH) and prolactin (PRL). We have found that the hnRNP L and L-like (LL) paralogs differentially regulate alternative splicing of genes in these cells. Here, we show that hnRNP L is essential for PRL only, but LL is essential for both PRL and GH production. Transcriptome-wide RNA sequencing (RNA-Seq) analysis indicates that they differentially control groups of hormone or hormone-related genes involved in hormone production/regulation at total transcript and alternative exon levels. Interestingly, hnRNP L also specifically binds and prevents the aberrant usage of a nonconserved CA-rich intron piece of Prl pre-mRNA transcripts, and many others involved in endocrine functions, to prevent mostly cryptic last exons and mRNA truncation. Essential for the full hnRNP L effect on specific exons is a proline-rich region that emerged during evolution in vertebrate hnRNP L only but not LL. Together, our data demonstrate that the hnRNP L and its paralog, LL, differentially control hormone gene expression programs at multiple levels, and hnRNP L in particular is critical for protecting the transcriptome from aberrant usage of intronic sequences. The multilevel differential control by hnRNPs likely tailors the transcriptome to help refine and safeguard the different gene expression programs for different hormones.
Collapse
|
10
|
Wei Y, Zhou X, Ren L, Wang C, Li Y. The prolactin‐release inhibitor paeoniflorin suppresses proliferation and induces apoptosis in prolactinoma cells via the mitochondria‐dependent pathway. J Cell Biochem 2018; 119:5704-5714. [DOI: 10.1002/jcb.26752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/25/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Yuanyi Wei
- Department of PharmacyNanfang HospitalSouthern Medical UniversityGuangzhouP.R. China
| | - Xia Zhou
- Department of PharmacyNanfang HospitalSouthern Medical UniversityGuangzhouP.R. China
| | - Liying Ren
- Department of PharmacyNanfang HospitalSouthern Medical UniversityGuangzhouP.R. China
| | - Chunxia Wang
- Department of PharmacyNanfang HospitalSouthern Medical UniversityGuangzhouP.R. China
- Guangdong Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouP.R. China
| | - Yuhao Li
- Endocrinology and Metabolism GroupSydney Institute of Health Sciences/Sydney Institute of Traditional Chinese MedicineNew South WalesAustralia
| |
Collapse
|
11
|
Fukuda T, Tanaka T, Hamaguchi Y, Kawanami T, Nomiyama T, Yanase T. Augmented Growth Hormone Secretion and Stat3 Phosphorylation in an Aryl Hydrocarbon Receptor Interacting Protein (AIP)-Disrupted Somatotroph Cell Line. PLoS One 2016; 11:e0164131. [PMID: 27706259 PMCID: PMC5051713 DOI: 10.1371/journal.pone.0164131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/29/2016] [Indexed: 12/22/2022] Open
Abstract
Aryl hydrocarbon receptor interacting protein (AIP) is thought to be a tumor suppressor gene, as indicated by a mutational analysis of pituitary somatotroph adenomas. However, the physiological significance of AIP inactivation in somatotroph cells remains unclear. Using CRISPR/Cas9, we identified a GH3 cell clone (termed GH3-FTY) in which Aip was genetically disrupted, and subsequently investigated its character with respect to growth hormone (Gh) synthesis and proliferation. Compared with GH3, GH3-FTY cells showed remarkably increased Gh production and a slight increase in cell proliferation. Gh-induced Stat3 phosphorylation is known to be a mechanism of Gh oversecretion in GH3. Interestingly, phosphorylated-Stat3 expression in GH3-FTY cells was increased more compared with GH3 cells, suggesting a stronger drive for this mechanism in GH3-FTY. The phenotypes of GH3-FTY concerning Gh overproduction, cell proliferation, and increased Stat3 phosphorylation were significantly reversed by the exogenous expression of Aip. GH3-FTY cells were less sensitive to somatostatin than GH3 cells in the suppression of cell proliferation, which might be associated with the reduced expression of somatostatin receptor type 2. GH3-FTY xenografts in BALB/c nude mice (GH3-FTY mice) formed more mitotic somatotroph tumors than GH3 xenografts (GH3 mice), as also evidenced by increased Ki67 scores. GH3-FTY mice were also much larger and had significantly higher plasma Gh levels than GH3 mice. Furthermore, GH3-FTY mice showed relative insulin resistance compared with GH3 mice. In conclusion, we established a somatotroph cell line, GH3-FTY, which possessed prominent Gh secretion and mitotic features associated with the disruption of Aip.
Collapse
Affiliation(s)
- Takashi Fukuda
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Tomoko Tanaka
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Department of Bioregulatory Science of Life-related Diseases, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yuriko Hamaguchi
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Takako Kawanami
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Takashi Nomiyama
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Department of Bioregulatory Science of Life-related Diseases, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Toshihiko Yanase
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Department of Bioregulatory Science of Life-related Diseases, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
12
|
Lemini M, Ruiz-Herrera X, Ledesma-Colunga MG, Díaz-Lezama N, De los Ríos EA, López-Barrera F, Méndez I, Martínez de la Escalera G, Macotela Y, Clapp C. Prolactin anterior pituitary expression and circulating levels are reduced in obese and diabetic rats: role of TGF-β and TNF-α. Am J Physiol Regul Integr Comp Physiol 2015; 308:R792-9. [PMID: 25715833 DOI: 10.1152/ajpregu.00327.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 02/17/2015] [Indexed: 02/08/2023]
Abstract
The levels of the hormone prolactin (PRL) are reduced in the circulation of patients with Type 2 diabetes and in obese children, and lower systemic PRL levels correlate with an increased prevalence of diabetes and a higher risk of metabolic syndrome. The secretion of anterior pituitary (AP) PRL in metabolic diseases may be influenced by the interplay between transforming growth factor β (TGF-β) and tumor necrosis factor α (TNF-α), which inhibit and can stimulate AP PRL synthesis, respectively, and are known contributors to insulin resistance and metabolic complications. Here, we show that TGF-β and TNF-α antagonize the effect of each other on the expression and release of PRL by the GH4C1 lactotrope cell line. The levels of AP mRNA and circulating PRL decrease in high-fat diet-induced obese rats in parallel with increased and reduced AP levels of TGF-β and TNF-α mRNA, respectively. Likewise, AP expression and circulating levels of PRL are reduced in streptozotocin-induced diabetic rats and are associated with higher AP expression and protein levels of TGF-β and TNF-α. The opposing effects of the two cytokines on cultured AP cells, together with their altered expression in the AP of obese and diabetic rats suggest they are linked to the reduced PRL production and secretion characteristics of metabolic diseases.
Collapse
Affiliation(s)
- María Lemini
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Xarubet Ruiz-Herrera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - María G. Ledesma-Colunga
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Nundehui Díaz-Lezama
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Ericka A. De los Ríos
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Fernando López-Barrera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Isabel Méndez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | | | - Yazmín Macotela
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| |
Collapse
|
13
|
Handlechner AG, Hermann A, Fuchs R, Weiger TM. Acetaldehyde-ethanol interactions on calcium-activated potassium (BK) channels in pituitary tumor (GH3) cells. Front Behav Neurosci 2013; 7:58. [PMID: 23785316 PMCID: PMC3682133 DOI: 10.3389/fnbeh.2013.00058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/17/2013] [Indexed: 01/09/2023] Open
Abstract
Background: In the central nervous system ethanol (EtOH) is metabolized to acetaldehyde (ACA) primarily by the oxidative enzyme catalase. Evidence suggests that ACA is responsible for at least some of the effects on the brain that have been attributed to EtOH. Various types of ion channels which are involved in electrical signaling are targets of EtOH like maxi calcium-activated potassium (BK) channels. BK channels exhibit various functions like action potential repolarization, blood pressure regulation, hormone secretion, or transmitter release. In most neuronal and neuroendocrine preparations at physiological intracellular calcium levels, EtOH increases BK channel activity. The simultaneous presence of ACA and EtOH reflects the physiological situation after drinking and may result in synergistic as well as antagonistic actions compared to a single application of either drug. The action of ACA on electrical activity has yet not been fully established. Methods: GH3 pituitary tumor cells were used for outside-out and inside-out patch-clamp recordings of BK activity in excised patches. Unitary current amplitude, open probability and channel mean open time of BK channels were measured. Results: Extracellular EtOH raised BK channel activity. In the presence of intracellular ACA this increment of BK activity was suppressed in a dose- as well as calcium-dependent manner. Mean channel open time was significantly reduced by internal ACA, whereas BK channel amplitudes were not affected. The EtOH counteracting effect of ACA was found to depend on succession of application. EtOH was prevented from activating BK channels by pre-exposure of membrane patches to ACA. In contrast BK activation by a hypotonic solution was not affected by internal ACA. Conclusions: Our data suggest an inhibitory impact of ACA on BK activation by EtOH. ACA appears to interact specifically with EtOH at BK channels since intracellular ACA had no effect when BK channels were activated by hypotonicity.
Collapse
Affiliation(s)
- Astrid G Handlechner
- Division of Cellular and Molecular Neurobiology, Department of Cell Biology, University of Salzburg Salzburg, Austria
| | | | | | | |
Collapse
|
14
|
Ptasinska-Wnuk D, Mucha SA, Lawnicka H, Fryczak J, Kunert-Radek J, Pawlikowski M, Stepien H. The effects of angiotensin peptides and angiotensin receptor antagonists on the cell growth and angiogenic activity of GH3 lactosomatotroph cells in vitro. Endocrine 2012; 42:88-96. [PMID: 22442002 DOI: 10.1007/s12020-012-9659-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/08/2012] [Indexed: 01/02/2023]
Abstract
The local renin-angiotensin system (RAS) is present in the pituitary gland, and inhibitory effects of angiotensins on the lactosomatotroph (GH3) cell growth have been revealed. The aim of this study was to examine the influence of various angiotensin peptides and angiotensin AT1, AT2, and AT4 receptors antagonists on the cell proliferation, viability, and VEGF secretion in pituitary lactosomatotroph GH3 cell culture in order to identify receptors involved in antiproliferative effects of angiotensins on GH3 tumor cells. Cell viability and proliferation using Mosmann method and BrdU incorporation during DNA synthesis, and VEGF secretion using ELISA assay were estimated. The inhibitory effects of ang II, ang IV, and ang 5-8 on the cell viability and BrdU incorporation in GH3 culture were not abolished by AT1, AT2, and AT4 receptors antagonists. Ang II, as well as ang III and ang IV at lower concentrations stimulated the secretion of VEGF in GH3 cell culture. The secretion of VEGF was inhibited by ang III and ang IV at higher concentrations. AT1 and AT2 receptors antagonists prevented the proangiogenic effects of ang II. Ang II, ang IV, and ang 5-8 decrease the cell number and proliferation in GH3 cell culture independently of the AT1, AT2, and AT4 receptors. These peptides affect also secretion of VEGF in culture examined. Both the AT1 and AT2 receptors appear to mediate the proangiogenic effects of ang II.
Collapse
Affiliation(s)
- Dorota Ptasinska-Wnuk
- Department of Endocrinology, The County Hospital of Kutno, 52 Kosciuszki Street, 99-300, Kutno, Poland
| | | | | | | | | | | | | |
Collapse
|
15
|
Wang C, Hu ZQ, Chu M, Wang Z, Zhang WG, Wang LZ, Li CG, Wang JS. Resveratrol inhibited GH3 cell growth and decreased prolactin level via estrogen receptors. Clin Neurol Neurosurg 2012; 114:241-8. [DOI: 10.1016/j.clineuro.2011.10.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 10/20/2011] [Accepted: 10/21/2011] [Indexed: 12/19/2022]
|
16
|
Kim GL, Wang X, Chalmers JA, Thompson DR, Dhillon SS, Koletar MM, Belsham DD. Generation of immortal cell lines from the adult pituitary: role of cAMP on differentiation of SOX2-expressing progenitor cells to mature gonadotropes. PLoS One 2011; 6:e27799. [PMID: 22132145 PMCID: PMC3221660 DOI: 10.1371/journal.pone.0027799] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 10/25/2011] [Indexed: 11/21/2022] Open
Abstract
The pituitary is a complex endocrine tissue composed of a number of unique cell types distinguished by the expression and secretion of specific hormones, which in turn control critical components of overall physiology. The basic function of these cells is understood; however, the molecular events involved in their hormonal regulation are not yet fully defined. While previously established cell lines have provided much insight into these regulatory mechanisms, the availability of representative cell lines from each cell lineage is limited, and currently none are derived from adult pituitary. We have therefore used retroviral transfer of SV40 T-antigen to mass immortalize primary pituitary cell culture from an adult mouse. We have generated 19 mixed cell cultures that contain cells from pituitary cell lineages, as determined by RT-PCR analysis and immunocytochemistry for specific hormones. Some lines expressed markers associated with multipotent adult progenitor cells or transit-amplifying cells, including SOX2, nestin, S100, and SOX9. The progenitor lines were exposed to an adenylate cyclase activator, forskolin, over 7 days and were induced to differentiate to a more mature gonadotrope cell, expressing significant levels of α-subunit, LHβ, and FSHβ mRNAs. Additionally, clonal populations of differentiated gonadotropes were exposed to 30 nM gonadotropin-releasing hormone and responded appropriately with a significant increase in α-subunit and LHβ transcription. Further, exposure of the lines to a pulse paradigm of GnRH, in combination with 17β-estradiol and dexamethasone, significantly increased GnRH receptor mRNA levels. This array of adult-derived pituitary cell models will be valuable for both studies of progenitor cell characteristics and modulation, and the molecular analysis of individual pituitary cell lineages.
Collapse
Affiliation(s)
- Ginah L. Kim
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Xiaomei Wang
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | - David R. Thompson
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Sandeep S. Dhillon
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Denise D. Belsham
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Cellular and Molecular Biology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
17
|
Janssens K, Boussemaere M, Wagner S, Kopka K, Denef C. Beta1-adrenoceptors in rat anterior pituitary may be constitutively active. Inverse agonism of CGP 20712A on basal 3',5'-cyclic adenosine 5'-monophosphate levels. Endocrinology 2008; 149:2391-402. [PMID: 18202135 DOI: 10.1210/en.2007-1397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Catecholamines directly stimulate GH, ACTH, and prolactin secretion from rat anterior pituitary through the beta(2)-adrenoceptor (AR). We recently showed that gonadotrophs express the beta(1)-AR and that glucocorticoids drastically increase its mRNA expression level. The present investigation explores whether beta(1)-ARs are functionally coupled to adenylate cyclase. In anterior pituitary cell aggregates, the highly selective beta(1)-AR antagonists CGP 20712A and ICI 89,406-8a attenuated isoproterenol-stimulated cAMP accumulation, but no agonist action of norepinephrine could be detected. Remarkably, CGP 20712A inhibited basal cAMP levels by its own for at least 50%, an action that tended to be more effective in dexamethasone-supplemented medium. The latter effect was abolished by the beta-AR antagonist carvedilol, but not by other beta-AR antagonists. Pretreatment with pertussis toxin abolished the action of CGP 20712A on basal cAMP. CGP 20712A also attenuated isoproterenol-induced cAMP accumulation in the gonadotroph cell lines alphaT3-1 and LbetaT2, but not in the somatotroph precursor cell line GHFT and the folliculo-stellate cell line TtT/GF. However, in LbetaT2 cells CGP 20712A did not inhibit basal cAMP levels by its own. The present data suggest that beta(1)-AR in the anterior pituitary is positively coupled to adenylyl cyclase but is constitutively active in a pertussis toxin-sensitive manner. CGP 20712A may act as an inverse agonist with approximately 50% negative intrinsic activity, suggesting that the beta(1)-AR significantly contributes to basal adenylate cyclase activity in the pituitary.
Collapse
Affiliation(s)
- Kristel Janssens
- Laboratory of Cell Pharmacology, University of Leuven, Medical School, Campus Gasthuisberg (O & N), B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
18
|
Ooi GT, Tawadros N, Escalona RM. Pituitary cell lines and their endocrine applications. Mol Cell Endocrinol 2004; 228:1-21. [PMID: 15541569 DOI: 10.1016/j.mce.2004.07.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 07/15/2004] [Indexed: 10/26/2022]
Abstract
The pituitary gland is an important component of the endocrine system, and together with the hypothalamus, exerts considerable influence over the functions of other endocrine glands. The hypothalamus either positively or negatively regulates hormonal productions in the pituitary through its release of various trophic hormones which act on specific cell types in the pituitary to secrete a variety of pituitary hormones that are important for growth and development, metabolism, reproductive and nervous system functions. The pituitary is divided into three sections-the anterior lobe which constitute the majority of the pituitary mass and is composed primarily of five hormone-producing cell types (thyrotropes, lactotropes, corticotropes, somatotropes and gonadotropes) each secreting thyrotropin, prolactin, ACTH, growth hormone and gonadotropins (FSH and LH) respectively. There is also a sixth cell type in the anterior lobe-the non-endocrine, agranular, folliculostellate cells. The intermediate lobe produces melanocyte-stimulating hormone and endorphins, whereas the posterior lobe secretes anti-diuretic hormone (vasopressin) and oxytocin. Representative cell lines of all the six cell types of the anterior pituitary have been established and have provided valuable information on genealogy of the various cell lineages, endocrine feedback control of hormone synthesis and secretions, intrapituitary interactions between the various cell types, as well as the role of specific transcription factors that determine each differentiated cell phenotype. In this review, we will discuss the morphology and function of the cell types that make up the anterior pituitary, and the characteristics of the various functional anterior pituitary cell systems that have been established to be representative of each anterior pituitary cell lineage.
Collapse
Affiliation(s)
- Guck T Ooi
- Prince Henry's Institute of Medical Research, Monash Medical Centre, Block E, Level 4, 246 Clayton Road, Clayton, Victoria 3168, Australia.
| | | | | |
Collapse
|
19
|
Mohammad HP, Seachrist DD, Quirk CC, Nilson JH. Reexpression of p8 contributes to tumorigenic properties of pituitary cells and appears in a subset of prolactinomas in transgenic mice that hypersecrete luteinizing hormone. Mol Endocrinol 2004; 18:2583-93. [PMID: 15243129 DOI: 10.1210/me.2004-0163] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Targeted overexpression of LH in transgenic mice causes hyperproliferation of Pit-1-positive pituitary cells and development of functional adenomas. To characterize gene expression changes associated with pituitary tumorigenesis, we performed microarray studies using Affymetrix GeneChips comparing expression profiles from pituitary tumors in LH-overexpressing mice to wild-type control pituitaries. We identified a number of candidate genes with altered expression in pituitary tumors. One of these, p8 (candidate of metastasis-1), encodes a native high-mobility group-like transcription factor previously shown to be necessary for ras-mediated transformation of mouse embryonic fibroblasts and also implicated in breast cancer progression. Herein, we show that expression of p8, normally quiescent in adult pituitary, localizes to tumor foci containing lactotropes, suggesting a linkage with their transformation. To further establish the functional significance of p8 in pituitary tumorigenesis, we constructed several clonal cell lines with reduced expression of p8 from a parent GH3 somatolactotrope cell line. These clonal derivates, along with the parent cell line, were tested for tumorigenicity by injection into athymic mice. When compared with wild-type GH3 with higher levels of p8, GH3 cells with reduced expression of p8 displayed attenuated tumor development or failed to develop tumors at all. Similar results were obtained with gonadotrope-derived cell lines that displayed reduced expression of p8. Together, these data suggest that maintenance of the transformed phenotype of pituitary GH3 cells requires expression of p8 and that it may play a similar role when reexpressed in a subset of lactotropes that form prolactinomas in vivo.
Collapse
Affiliation(s)
- Helai P Mohammad
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
20
|
Cosío G, Jeziorski MC, López-Barrera F, De La Escalera GM, Clapp C. Hypoxia inhibits expression of prolactin and secretion of cathepsin-D by the GH4C1 pituitary adenoma cell line. J Transl Med 2003; 83:1627-36. [PMID: 14615416 DOI: 10.1097/01.lab.0000098429.59348.36] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diminished oxygen concentration within growing tumors may stimulate neovascularization by inducing both up-regulation of angiogenic factors and down-regulation of antiangiogenic agents. A potentially important molecule in the growth of pituitary adenomas is prolactin (PRL), which can be cleaved by cathepsin-D to yield a 16-kDa form (16K-PRL) with potent antiangiogenic effects. We examined the expression of PRL in cultured GH4C1 pituitary adenoma cells after exposure to hypoxia (0.1% oxygen) for periods of 12 to 36 hours. In contrast to increased expression of the angiogenic factor vascular endothelial growth factor in hypoxic cells, PRL mRNA and levels of intracellular and secreted PRL were significantly reduced under hypoxia. The reduction was not attributable to a general suppression of either transcription or protein synthesis. Although 16K-PRL was not evident in conditioned medium at physiologic pH, lowering the pH to mimic the acidic tumor microenvironment resulted in generation of 16K-PRL, which was sharply reduced in medium drawn from hypoxic cells. Production of 16K-PRL was blocked by the cathepsin-D inhibitor pepstatin-A, and the reduced 16K-PRL formation in hypoxic-conditioned medium correlated with a decrease in secretion of cathepsin-D and its precursor, procathepsin-D. Thus, hypoxia acts upon GH4C1 cells to increase vascular endothelial growth factor expression, decrease PRL synthesis, and suppress conversion of PRL to 16K-PRL via inhibition of cathepsin-D proteolysis. These mechanisms may act in concert to stimulate angiogenesis in prolactinomas.
Collapse
Affiliation(s)
- Gabriela Cosío
- Neurobiology Institute, National Autonomous University of Mexico, Campus UNAM-Juriquilla, Queretaro, Qro, Mexico
| | | | | | | | | |
Collapse
|
21
|
Gamel-Didelon K, Kunz L, Fohr KJ, Gratzl M, Mayerhofer A. Molecular and physiological evidence for functional gamma-aminobutyric acid (GABA)-C receptors in growth hormone-secreting cells. J Biol Chem 2003; 278:20192-5. [PMID: 12660236 DOI: 10.1074/jbc.m301729200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neurotransmitter gamma-aminobutyric acid (GABA), released by hypothalamic neurons as well as by growth hormone- (GH) and adrenocorticotropin-producing cells, is a regulator of pituitary endocrine functions. Different classes of GABA receptors may be involved. In this study, we report that GH cells, isolated by laser microdissection from rat pituitary slices, possess the GABA-C receptor subunit rho2. We also demonstrate that in the GH adenoma cell line, GH3, GABA-C receptor subunits are not only expressed but also form functional channels. GABA-induced Cl- currents were recorded using the whole cell patch clamp technique; these currents were insensitive to bicuculline (a GABA-A antagonist) but could be induced by the GABA-C agonist cis-4-aminocrotonic acid. In contrast to typical GABA-C mediated currents in neurons, they quickly desensitized. Ca2+i recordings were also performed on GH3 cells. The application of either GABA or cis-4-aminocrotonic acid led to Ca2+ transients of similar amplitude, indicating that the activation of GABA-C receptors in GH3 cells may cause membrane depolarization, opening of voltage-gated Ca2+ channels, and a subsequent Ca2+ influx. Our results point at a role for GABA in pituitary GH cells and disclose an additional pathway to the one known via GABA-B receptors.
Collapse
|
22
|
Avila G, Monjaraz E, Espinosa JL, Cota G. Downregulation of voltage-gated sodium channels by dexamethasone in clonal rat pituitary cells. Neurosci Lett 2003; 339:21-4. [PMID: 12618291 DOI: 10.1016/s0304-3940(02)01460-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The effect of chronic dexamethasone (DEX) treatment (4-5 days) on Na(+) channel expression was examined in a clonal strain of rat pituitary cells secreting growth hormone (GH) and prolactin (GH3 cells). Using whole-cell patch clamp recording, we found that DEX (1 microM) induces an 80% decrease in Na(+) current density. No concomitant changes in current kinetics or voltage dependence of Na(+) channel function were detected. Instead, the decrease in current density was accompanied by a similar reduction in maximal Na(+) conductance, suggesting the loss of Na(+) channels from the plasma membrane. Accordingly, saxitoxin binding assays carried out on intact cells showed that the average number of Na(+) channels per cell is markedly decreased by DEX. Thus, this glucocorticoid inhibits the cell surface expression of Na(+) channels when chronically applied to GH3 cells.
Collapse
Affiliation(s)
- Guillermo Avila
- Department of Biochemistry, Cinvestav-IPN, AP 14-740, DF 07000, Mexico City, Mexico
| | | | | | | |
Collapse
|
23
|
Borski RJ, Hyde GN, Fruchtman S. Signal transduction mechanisms mediating rapid, nongenomic effects of cortisol on prolactin release. Steroids 2002; 67:539-48. [PMID: 11960633 DOI: 10.1016/s0039-128x(01)00197-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
While the mechanisms governing genomically mediated glucocorticoid actions are becoming increasingly understood, relatively little is known with regard to the cell signaling pathways that transduce rapid glucocorticoid actions. Studies of the cultured tilapia rostral pars distalis (RPD), a naturally segregated region of the fish pituitary gland that contains a 95-99% pure population of prolactin (PRL) cells and is easily dissected and maintained in a completely defined, serum-free media, indicate that physiological concentrations of cortisol rapidly inhibit PRL release. The attenuative action of cortisol on PRL release occurs within 10-20 min, is insensitive to the protein synthesis inhibitor, cycloheximide, and mimicked by its membrane impermeable analog, cortisol-21 hemisuccinate-conjugated bovine serum albumin (BSA). Cortisol and somatostatin, a peptide known to work through membrane receptors to inhibit PRL release, rapidly and reversibly reduces intracellular free Ca(2+) (Ca(i)(2+)), and inhibits 45Ca(2+) influx and BAYK-8644 induced PRL release. Preliminary investigations show cortisol, but not somatostatin, suppresses phospholipase C (PLC) activity in PRL cell membrane preparations. In addition, cortisol and somatostatin reduce intracellular cAMP and membrane adenylyl cyclase activity. These findings indicate that the acute inhibitory effects of cortisol on PRL release occur through a nongenomic mechanism involving interactions with the plasma membrane and inhibition of both the Ca(2+) and cAMP signal transduction pathways. Cortisol may reduce Ca(i)(2+) by inhibiting influx through L-type voltage-gated channels and possibly release through a PLC/inositol triphosphate sensitive intracellular Ca(2+) pool. In addition, it is also likely the steroid inhibits adenylyl cyclase activity in events leading to reduced cAMP production and the subsequent release of PRL.
Collapse
Affiliation(s)
- Russell J Borski
- Department of Zoology, North Carolina State University, Raleigh, NC, USA.
| | | | | |
Collapse
|
24
|
Brunet N, Gourdji D, Tixier-Vidal A, Pradelles P, Morgat J, Fromageot P. Chemical evidence for associated TRF with subcellular fractions after incubation of intact rat prolactin cells (GH3) with 3
H-labelled TRF. FEBS Lett 2001. [DOI: 10.1016/0014-5793(74)80096-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Oguchi A, Aida T, Koda A, Shioda S, Nakajo S, Kobayashi T, Tanaka S, Yamamoto K, Kikuyama S. Cosecretion of prolactin and growth hormone by dispersed pituitary cells of the adult bullfrog, Rana catesbeiana. Gen Comp Endocrinol 2001; 122:10-6. [PMID: 11352548 DOI: 10.1006/gcen.2001.7611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The coexistence of prolactin (PRL) and growth hormone (GH) was previously demonstrated in newly hatched bullfrog (Rana catesbeiana) tadpoles, whereas in adult bullfrogs, there were no cells containing both PRL and GH. However, a cell blot assay with enzymatically dispersed adult pituitary cells demonstrated the existence of cells secreting both PRL and GH. The number of cells secreting both PRL and GH was reduced by a protein synthesis inhibitor, cycloheximide, but not by an RNA synthesis inhibitor, actinomycin D. In situ hybridization and immunostaining of intact pituitary glands revealed the existence of GH mRNA in some of the PRL-immunoreactive cells and of PRL mRNA in some of the GH-immunoreactive cells. We propose that dispersion of the pituitary cells triggered the translation of GH mRNA in the PRL cells and/or of PRL mRNA in the GH cells.
Collapse
Affiliation(s)
- A Oguchi
- Department of Biology, School of Education, Waseda University, Nishiwaseda 1-6-1, Shinjuku-ku, Tokyo, 169-8050, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Meoni C, Bertuzzi F, Pontiroli AE, Falqui L, Monaco L, Soria M, Arcelloni C, Paroni R, Foglieni C, Polastri L, Galbiati F, Folli F, Davalli AM. Development and characterization of pituitary GH3 cell clones stably transfected with a human proinsulin cDNA. Cell Transplant 2000; 9:829-40. [PMID: 11202569 DOI: 10.1177/096368970000900609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Successful beta-cell replacement therapy in insulin-dependent (type I) diabetes is hindered by the scarcity of human donor tissue and by the recurrence of autoimmune destruction of transplanted beta cells. Availability of non-beta cells, capable of releasing insulin and escaping autoimmune recognition, would therefore be important for diabetes cell therapy. We developed rat pituitary GH3 cells stably transfected with a furin-cleavable human proinsulin cDNA linked to the rat PRL promoter. Two clones (InsGH3/clone 1 and 7) were characterized in vitro with regard to basal and stimulated insulin release and proinsulin transgene expression. Mature insulin secretion was obtained in both clones, accounting for about 40% of total released (pro)insulin-like products. Immunocytochemistry of InsGH3 cells showed a cytoplasmic granular insulin staining that colocalized with secretogranin II (SGII) immunoreactivity. InsGH3 cells/clone 7 contained and released in vitro significantly more insulin than clone 1. Secretagogue-stimulated insulin secretion was observed in both InsGH3 clones either under static or dynamic conditions, indicating that insulin was targeted also to the regulated secretory pathway. Proinsulin mRNA levels were elevated in InsGH3 cells, being significantly higher than in betaTC3 cells. Moreover, proinsulin gene expression increased in response to various stimuli, thereby showing the regulation of the transfected gene at the transcriptional level. In conclusion, these data point to InsGH3 cells as a potential beta-cell surrogate even though additional engineering is required to instruct them to release insulin in response to physiologic stimulations.
Collapse
Affiliation(s)
- C Meoni
- Cattedra di Clinica Medica, Università Vita-Salute, H San Raffaele, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Long Z, Lee JA, Okamoto T, Nimura N, Imai K, Homma H. d-Aspartate in a prolactin-secreting clonal strain of rat pituitary tumor cells (GH(3)). Biochem Biophys Res Commun 2000; 276:1143-7. [PMID: 11027602 DOI: 10.1006/bbrc.2000.3573] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
d-Aspartate (d-Asp) is found in prolactin (PRL)-containing cells of the rat anterior pituitary gland [Lee et al., Brain Res. 838, 193-199, 1999]. In order to determine whether d-Asp is actually produced by the anterior pituitary gland and whether it plays a physiological role in PRL function, a PRL-secreting clonal strain of rat pituitary tumor cells (GH(3)) was employed in this study. HPLC analysis and immunocytochemical staining detected the presence and synthesis of d-Asp in the cytoplasm of these cells. In addition, thyrotropin-releasing hormone-stimulated PRL secretion was increased in a dose-dependent fashion by d-Asp from these cells. These results suggest that the anterior pituitary gland synthesizes d-Asp and that d-Asp acts as a messenger in this gland.
Collapse
Affiliation(s)
- Z Long
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Gregory MA, Xiao Q, Cornwall GA, Lutterbach B, Hann SR. B-Myc is preferentially expressed in hormonally-controlled tissues and inhibits cellular proliferation. Oncogene 2000; 19:4886-95. [PMID: 11039906 DOI: 10.1038/sj.onc.1203851] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The myc family of genes plays an important role in several cellular processes including proliferation, apoptosis, differentiation, and transformation. B-myc, a relatively new and largely unstudied member of the myc family, encodes a protein that is highly homologous to the N-terminal transcriptional regulatory domain of c-Myc. Here, we show that high level B-myc expression is restricted to specific mouse tissues, primarily hormonally-controlled tissues, with the highest level of expression in the epididymis. We also report the identification of the endogenous B-Myc protein from mouse tissues. Like other Myc family proteins, B-Myc is a short-lived nuclear protein which is phosphorylated on residues Ser-60 and Ser-68. Rapid proteolysis of B-Myc occurs via the ubiquitin-proteasome pathway. Finally, we found that overexpression of B-Myc significantly slows the growth of Rat la fibroblasts and COS cells suggesting B-Myc functions as an inhibitor of cellular proliferation.
Collapse
Affiliation(s)
- M A Gregory
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2175, USA
| | | | | | | | | |
Collapse
|
29
|
Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev 2000; 80:1523-631. [PMID: 11015620 DOI: 10.1152/physrev.2000.80.4.1523] [Citation(s) in RCA: 1542] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prolactin is a protein hormone of the anterior pituitary gland that was originally named for its ability to promote lactation in response to the suckling stimulus of hungry young mammals. We now know that prolactin is not as simple as originally described. Indeed, chemically, prolactin appears in a multiplicity of posttranslational forms ranging from size variants to chemical modifications such as phosphorylation or glycosylation. It is not only synthesized in the pituitary gland, as originally described, but also within the central nervous system, the immune system, the uterus and its associated tissues of conception, and even the mammary gland itself. Moreover, its biological actions are not limited solely to reproduction because it has been shown to control a variety of behaviors and even play a role in homeostasis. Prolactin-releasing stimuli not only include the nursing stimulus, but light, audition, olfaction, and stress can serve a stimulatory role. Finally, although it is well known that dopamine of hypothalamic origin provides inhibitory control over the secretion of prolactin, other factors within the brain, pituitary gland, and peripheral organs have been shown to inhibit or stimulate prolactin secretion as well. It is the purpose of this review to provide a comprehensive survey of our current understanding of prolactin's function and its regulation and to expose some of the controversies still existing.
Collapse
Affiliation(s)
- M E Freeman
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4340, USA.
| | | | | | | |
Collapse
|
30
|
Sirbasku DA, Moreno-Cuevas JE. Estrogen mitogenic action. ii. negative regulation of the steroid hormone-responsive growth of cell lines derived from human and rodent target tissue tumors and conceptual implications. In Vitro Cell Dev Biol Anim 2000; 36:428-46. [PMID: 11039494 DOI: 10.1290/1071-2690(2000)036<0428:emainr>2.0.co;2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In an accompanying report (Moreno-Cuevas, J. E.; Sirbasku, D. A., In Vitro Cell. Dev. Biol.; 2000), we demonstrated 80-fold estrogen mitogenic effects with MTW9/PL2 rat mammary tumor cells in cultures supplemented with charcoal-dextran-treated serum. All sera tested contained an estrogen reversible inhibitor(s). The purpose of this report is to extend those observations to additional sex steroid-responsive human and rodent cell lines. Every line tested showed a biphasic response to hormone-depleted serum. Concentrations of < or = 10% (v/v) promoted substantive growth. At higher concentrations, serum was progressively inhibitory. With estrogen receptor-positive (ER+) human breast cancer cells, rat pituitary tumor cells, and Syrian hamster kidney tumor cells, 50% (v/v) serum caused significant inhibition, which was reversed by very low physiologic concentrations of estrogens. This same pattern was observed with the steroid hormone-responsive LNCaP human prostatic carcinoma cells. Because steroid hormone mitogenic effects are now easily demonstrable using our new methods, the identification of positive results has nullified our original endocrine estromedin hypothesis. We also evaluated autocrine/paracrine growth factor models of estrogen-responsive growth. We asked if insulin-like growth factors I and II, insulin, transforming growth factor alpha, or epidermal growth factor substituted for the positive effects of estrogens. Growth factors did not reverse the serum-caused inhibition. We asked also if transforming growth factor beta (TGFP) substituted for the serum-borne inhibitor. TGFbeta did not substitute. Altogether, our results are most consistent with the concept of a unique serum-borne inhibitor as has been proposed in the estrocolyone model. However, the aspect of the estrocolyone model related to steroid hormone mechanism of action requires more evaluation. The effects of sex steroids at picomolar concentrations may reflect mediation via inhibitor "activated" intracellular signaling pathways.
Collapse
Affiliation(s)
- D A Sirbasku
- The University of Texas-Houston Health Science Center, 77225-0036, USA.
| | | |
Collapse
|
31
|
Abstract
The reported estrogenic action of phenol red and/or its lipophilic contaminants has led to the widespread use of indicator-free culture medium to conduct endocrine studies in vitro. Because we have recently developed methods to measure large-magnitude estrogen effects in the tissue culture medium containing phenol red, we concluded that the indicator issue required further evaluation. To do this, we selected nine estrogen receptor positive (ER+) cell lines representing four target tissues and three species. We investigated phenol red using five different experimental protocols. First, 17beta-estradiol (E2) responsive growth of all nine ER+ cells lines was compared in the medium with and without the indicator. Second, using representative lines we asked if phenol red was mitogenic in the indicator-free medium. The dose-response effects of phenol red were compared directly to those of E2. Third, we asked if tamoxifen-inhibited growth equally in phenol red-containing and indicator-free medium. This study was based on a report indicating that antiestrogen effects should be seen only in phenol red-containing medium. Fourth, we asked if phenol red displaced the binding of 3H-E2 using ERK intact human breast cancer cells. Fifth, we compared E2 and phenol red as inducers of the progesterone receptor using a human breast cancer cell line. All the experiments presented in this report support the conclusion that the concentration of phenol red contaminants in a standard culture medium available today is not sufficient to cause estrogenic effects. In brief, our studies indicate that the real issue of how to demonstrate estrogenic effects in culture resides elsewhere than phenol red. We have found that the demonstration of sex steroid hormone-mitogenic effects in culture depends upon conditions that maximize the effects of a serum-borne inhibitor(s). When the effects of the inhibitor are optimized, the presence or absence of phenol red makes no everyday difference to the demonstration of estrogen mitogenic effects with several target cell types from diverse species.
Collapse
Affiliation(s)
- J E Moreno-Cuevas
- The University of Texas-Houston Health Science Center, 77225-0036, USA
| | | |
Collapse
|
32
|
Spady TJ, McComb RD, Shull JD. Estrogen action in the regulation of cell proliferation, cell survival, and tumorigenesis in the rat anterior pituitary gland. Endocrine 1999; 11:217-33. [PMID: 10786818 DOI: 10.1385/endo:11:3:217] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/1999] [Accepted: 08/23/1999] [Indexed: 11/11/2022]
Abstract
Estrogens act as important regulators of cell proliferation, cell survival, and differentiation in a variety of organ systems and tissues and have been implicated in the etiology of a variety of malignant cancers and benign tumors. The anterior pituitary gland of the rat provides an excellent model for the study of estrogen action in the regulation of cell proliferation and survival. Estrogens stimulate proliferation of the prolactin (PRL)-producing lactotroph and enhance lactotroph survival. Through these actions on lactotroph proliferation and survival, estrogens induce or contribute to the development of PRL-producing pituitary tumors in several rat strains. Data from our laboratory and others indicate that estrogen-induced pituitary growth is rat strain specific and segregates as a quantitative genetic trait in crosses between different rat strains. The purpose of this review is to summarize current knowledge pertaining to estrogen action in the regulation of cell proliferation, cell survival, and tumorigenesis in the anterior pituitary gland of the rat species, Rattus norvegicus, and to illustrate the advantages of the rat pituitary gland as a model for elucidating the mechanisms through which estrogens regulate these processes.
Collapse
Affiliation(s)
- T J Spady
- Eppley Institute for Research in Cancer, Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha 68198-6805, USA
| | | | | |
Collapse
|
33
|
Niiori-Onishi A, Iwasaki Y, Mutsuga N, Oiso Y, Inoue K, Saito H. Molecular mechanisms of the negative effect of insulin-like growth factor-I on growth hormone gene expression in MtT/S somatotroph cells. Endocrinology 1999; 140:344-9. [PMID: 9886844 DOI: 10.1210/endo.140.1.6405] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although insulin-like growth factor-I (IGF-I) is shown to have a suppressive effect on GH gene expression at the pituitary level, its molecular mechanism has not yet been clarified. To study the issue, we established a new in vitro system using MtT/S, a recently established rat somatotroph tumor cell line that retains the basic characteristics of somatotroph function. Plasmids containing the GH 5' promoter (approximately 1.75 kb or shorter)-luciferase fusion gene were transfected stably or transiently into the cells, and the effect of IGF-I on the GH promoter activity was estimated by a luciferase assay. The results showed that IGF-I inhibited GH promotor activity (more than 50% suppression) in a time- and dose-related manner. IGF-I also inhibited GH secretion. A study using deletion mutants of the GH promoter revealed that the negative effect was maintained in the shortest construct (-80 to +6), suggesting that IGF-I-related factor is acting at the region very close to the minimal promoter. Interestingly, the negative effect was completely eliminated by a PI3 kinase inhibitor wortmannin (1 microM), whereas a MAP kinase inhibitor PD98059 (20 microM) or S6 kinase inhibitor rapamycin (10 nM) did not influence the effect. Our results suggest that IGF-I suppresses GH gene expression at the transcriptional level and that the PI3 kinase-mediated signaling pathway plays a major role in the negative effect of IGF-I. We believe that our system using MtT/S cells is an excellent experimental model system for studying the cellular and molecular mechanisms of the transcriptional regulation of GH in vitro.
Collapse
Affiliation(s)
- A Niiori-Onishi
- First Department of Internal Medicine, Nagoya University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Rökaeus A, Jiang K, Spyrou G, Waschek JA. Transcriptional control of the galanin gene. Tissue-specific expression and induction by NGF, protein kinase C, and estrogen. Ann N Y Acad Sci 1998; 863:1-13. [PMID: 9928155 DOI: 10.1111/j.1749-6632.1998.tb10679.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Galanin is a neuropeptide widely expressed in the central and peripheral nervous system where it acts as a neurotransmitter/neuromodulator and possibly an immunoregulator and growth factor. Galanin gene expression is highly regulated during development and by certain hormones and injury situations. We have examined transcriptional control mechanisms for this gene using chimeric bovine galanin/luciferase reporter genes. These were analyzed in cultured cells and in transgenic mice. The studies reveal that enhancer and silencer sequences are involved in conferring cell- and tissue-specific expression, and that specific elements close to the promoter are responsible for nerve growth factor and protein kinase C induction. So far, the studies have not revealed sequences on the bovine gene that mediate the action of estrogen.
Collapse
Affiliation(s)
- A Rökaeus
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
35
|
Lee SY, Ahn BT, Baik SH, Lee BL. Tamoxifen inhibits GH3 cell growth in culture via enhancement of apoptosis. Neurosurgery 1998; 43:116-23. [PMID: 9657197 DOI: 10.1097/00006123-199807000-00076] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To investigate the antitumor effects of tamoxifen on pituitary tumor GH3 cells, which lack receptors for dopamine. METHODS GH3 cells were treated with tamoxifen (10(-7) mol/L), bromocriptine (10(-8) mol/L), or a combination of tamoxifen and bromocriptine in serum-free media. The cell number, bromodeoxyuridine (BrdU) labeling ratio, and apoptotic ratio were assessed. Prolactin (PRL) expression was examined using immunocytochemistry and Western blot analysis. RESULTS After tamoxifen treatment for 4 days, the cell number decreased to 53.0% of that of untreated control cells. The percentage of PRL-immunoreactive GH3 cells decreased to 2.9%, versus 8.6% of untreated control cells, which was compatible with the results of Western blot analysis for PRL. Apoptosis increased to approximately three times that of untreated control cells at Day 2 of treatment, whereas no significant change was shown in BrdU incorporation. These effects by tamoxifen were not observed in the simultaneous treatment with 17beta-estradiol. Bromocriptine did not change the cell number, BrdU incorporation, the apoptotic ratio, or the percentage of PRL-positive cells, and it was also shown that tamoxifen did not change the sensitivity of GH3 cells to bromocriptine treatment. CONCLUSION Tamoxifen, an antiestrogen, exerts its antitumor effect on GH3 cells in two ways: by suppression of cell growth and by causing a decrease in PRL. Apoptosis seems to contribute to the inhibition of GH3 cell growth.
Collapse
Affiliation(s)
- S Y Lee
- Department of Anatomy, Seoul National University College of Medicine, Korea
| | | | | | | |
Collapse
|
36
|
Yoshinaga N, Murayama T, Nomura Y. Death by a dopaminergic neurotoxin, 1-methyl-4-phenylpyridinium ion (MPP+) and protection by EGF in GH3 cells. Brain Res 1998; 794:137-42. [PMID: 9630575 DOI: 10.1016/s0006-8993(98)00225-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study we investigated the uptake and effect of a dopaminergic neurotoxin, 1-methyl-4-phenylpyridinium ion (MPP+) on a clonal strain, GH3 cells, established from rat anterior pituitary. Although the level was very low compared with that in PC12 cells, a clonal rat pheochromocytoma cell line, there was a detectable amount of tyrosine hydroxylase protein in GH3 cells. The levels of monoamines including dopamine in GH3 cells were also very low compared with those in PC12 cells. [3H]MPP+ was incorporated to GH3 cells in a concentration-dependent manner and the uptake was inhibited by nomifensine, an inhibitor of dopamine transporter. Addition of 200 microM MPP+ stimulated the leakage of lactate dehydrogenase (LDH) after a lag of 24 h. Pretreatment with 50 ng/ml of epidermal growth factor (EGF), but not nerve growth factor (NGF) or brain-derived neurotrophic factor (BDNF), protected against MPP+-induced cell death. These findings show that: (1) MPP+ uptake to GH3 cells was via an effective dopamine transport system and causes delayed cell death, and (2) EGF protects against MPP+-induced cell death. A possible role for GH3 cells as dopaminergic neurons is discussed.
Collapse
Affiliation(s)
- N Yoshinaga
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaidō University, Sapporo 060, Japan
| | | | | |
Collapse
|
37
|
Abstract
Steroid hormones influence the electrical activity of many neurons and effectors by regulating the transcription of their ion channels and neurotransmitter receptors, or by modulating the activity of their channels and receptors through second messenger-coupled membrane receptors, or both. In this article, four cell types with known functions and distinct electrical activities are focused on to illustrate how different steroids act synergistically with, or in opposition to, each other to modulate specific electrical phenomena such as spontaneous regular firing (GH3 cells, a pituitary cell line), action potential duration (electric organ cells), and intrinsic excitability and sensitivity to neurotransmitters (GnRH and opioidergic neurons).These examples illustrate how steroids might influence electrical activity in neurons involved in more complex central circuits.
Collapse
Affiliation(s)
- H H Zakon
- Dept of Zoology, Patterson Laboratory, University of Texas, Austin 78712, USA
| |
Collapse
|
38
|
Abstract
Cells in the anterior pituitary originate from a common pluripotent precursor whose phenotypic development is determined by intrapituitary transcription factors as well as by hypothalamic and peripheral signals. A rapidly growing body of evidence revealed that essential to the differentiation and proliferation of pituitary cells are an array of growth factors that are produced within the pituitary and act mainly through autocrine mechanisms. Growth factors are polypeptides that are released in carefully measured amounts by some cells to regulate cell growth and differentiation by activating specific tyrosine kinase receptors in the plasma membrane of target cells. Both overproduction of mitogenic growth factors and loss of factors inhibiting cell proliferation result in uncontrolled cell growth and tumor development. There is now increasing evidence that disruption of the calibrated signalling network activated by pituitary growth factors plays a central role in pituitary tumorigenesis. This paper is focussed on the role of nerve growth factor (NGF) in pituitary physiology and pathology. In particular, we propose that NGF plays a dual role in the gland: a local one as a stimulator of differentiation and proliferation of lactotrope cells during pituitary development and a systemic one as a neurohormone which is cosecreted with prolactin into the bloodstream. Furthermore, we discuss the evidence that NGF is an autocrine differentiation factor for prolactin-secreting cells. Escape from NGF control appears to be one of the mechanisms involved in the development and progression of prolactinomas. Along the same line, exposure of prolactinomas refractory to dopaminergic therapy to exogenous NGF results in their differentiation into lactotrope-like cells reexpressing the D2 receptor protein. This observation may open the way to a sequential therapy with NGF and bromocriptine for patients refractory to the conventional therapy.
Collapse
Affiliation(s)
- C Missale
- Department of Biomedical Sciences and Biotechnology, University of Brescia, Italy
| | | |
Collapse
|
39
|
Takamori S, Itonori S, Nakamura K, Suzuki M, Suzuki A, Inagaki F, Shiota K, Ogawa T. Ganglioside composition of GH3 cells: enhancement of fucoganglioside expression by estradiol, epidermal growth factor and insulin. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1401:304-14. [PMID: 9540820 DOI: 10.1016/s0167-4889(97)00139-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The GH3 cell line, a bipotential cell line secreting both prolactin (PRL) and growth hormone (GH), is a useful model for investigating GH/PRL cell lineage differentiation and anterior pituitary adenoma formation. In this study, we investigated the ganglioside composition of GH3 cells and identified two fucogangliosides as the major gangliosides expressed by these cells. Analyses by DEAE-Sephadex A-25 and thin-layer chromatography (TLC) revealed that the GH3 cells contained two major gangliosides, designated FG1 and FG2, respectively. Their structures were identified by fast atom bombardment mass spectrometry and proton nuclear magnetic resonance spectrometry: FG1 is IV2FUc alpha,II3NeuAc-GgOse4Cer and FG2 is IV2FUc alpha,IV3Gal alpha,II3NeuAc-GgOse4Cer. Expression of these fucogangliosides was enhanced by chronic treatment with 17 beta-estradiol (1 nM), epidermal growth factor (10 nM) and insulin (300 nM), which induced differentiation of GH3 cells to normal PRL-secreting cells. Interestingly, immunocytochemistry and flow cytometry revealed that the increased expression of these gangliosides reflected a quantitative change inside the cells but not on the cell surface. These results suggest that the intracellular distribution of fucogangliosides is closely related to the differentiation of GH3 cells.
Collapse
Affiliation(s)
- S Takamori
- Department of Veterinary Medical Sciences/Animal Resource Sciences, University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Poncelet AC, Levavi-Sivan B, Muller M, Yaron Z, Martial JA, Belayew A. The tilapia prolactin I gene: evolutionary conservation of the regulatory elements directing pituitary-specific expression. DNA Cell Biol 1996; 15:679-92. [PMID: 8769570 DOI: 10.1089/dna.1996.15.679] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To study the elements involved in the pituitary specific transcriptional regulation of the tilapia prolactin I gene (tiPRL I), we have cloned and entirely sequenced a 3.4-kb genomic fragment immediately upstream from the first exon. In footprinting experiments, three tilapia sequences are protected from DNase I digestion by rat pituitary extracts (base pair coordinates -643 to -593, -160 to -111, and -73 to -46). Computer analysis of the nucleotide sequence reveals significant homology to mammalian binding sites for Pit-1, a transcription factor that is known to mediate pituitary-specific expression of the PRL genes in mammals. The tiPRL I 5'-flanking sequences can direct transient expression of a linked luciferase reporter gene in transfected rat pituitary cell lines and tilapia pituitary primary cell cultures. Transient expression experiments with 5'-deletion mutants reveal three regulatory regions. Two have a stimulatory effect on transcription and one an inhibitory effect. Electrophoretic mobility-shift assays (EMSA) demonstrate that the rat Pit-1 factor specifically binds to tilapia DNA sequences. Several such tilapia Pit-1 binding sites mediate activation of a linked heterologous promoter in transfected rat and tilapia pituitary cells. As evidenced by EMSA, a Pit-1-like protein is present in tilapia pituitary extracts. All these data point to a high conservation of the molecular mechanisms involved in pituitary-specific expression of the PRL genes in vertebrates.
Collapse
Affiliation(s)
- A C Poncelet
- Laboratoire de Biologie Moléculaire et de Génie Génétique, Université de Liége, Sart-Tilman, Belgium
| | | | | | | | | | | |
Collapse
|
41
|
Fomina AF, Levitan ES, Takimoto K. Dexamethasone rapidly increases calcium channel subunit messenger RNA expression and high voltage-activated calcium current in clonal pituitary cells. Neuroscience 1996; 72:857-62. [PMID: 9157331 DOI: 10.1016/0306-4522(95)00580-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glucocorticoid hormones increase voltage-gated Ca(2)+ current density in clonal pituitary cells. To test whether these steroids might stimulate expression of Ca(2)+ channel genes, messenger RNase protection assays were used to measure alpha IC and alpha ID RNAs that encode pore-forming subunits of L-type Ca2+ channels. We show here that dexamethasone rapidly increases alpha IC messenger RNA expression without affecting alpha ID messenger RNA level. This up-regulation of channel messenger RNA is also produced by natural glucocorticoids and is blocked by the glucocorticoid antagonist Ru48386. The up-regulation of the channel subunit messenger RNA expression is associated with an increase in high voltage-activated Ca(2)+ current density. Thus, glucocorticoids may produce a long-term effect on Ca(2)+ homeostasis in clonal pituitary cells by differentially regulating expression of Ca(2)+ channel subunit genes.
Collapse
Affiliation(s)
- A F Fomina
- Department of Pharmacology, University of Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
42
|
Abstract
Prolactin (PRL) is synthesized in pituitary cells called mammotrophs (PRL cells). Ample evidence demonstrates that the PRL cell population consists of structurally and functionally heterogeneous PRL cells. Multiple variants of PRL molecules are found in various species. Prolactin cells may be divided into various subtypes in the rat and mouse. Secretory activities differ among the PRL cell population. These heterogeneities may reflect various phases of the maturation process of PRL cells, or the integrated outcome of various functional differences in PRL cells. To clarify the significance of heterogeneities among PRL cells, we present updated reports on the differentiation, proliferation, and development of PRL cells, and discuss factors responsible for the functional differences in PRL cell population. The age-related alteration in PRL secretion in the rat is summarized, because it is one of the most important aspects of the developmental changes in PRL cells. A mammosomatotroph, which secretes growth hormone and PRL, is found in various species. Prolactin cells and somatotrophs are derived from the same lineage. The possible relationship among PRL cells, somatotrophs, and mammosomatotrophs is discussed.
Collapse
Affiliation(s)
- S Takahashi
- Department of Biology, Faculty of Science, Okayama University, Japan
| |
Collapse
|
43
|
Lin JH, Wang HY, Fong JC, Pan JT, Wang FF. Correlation between prolactin secretion and Gs protein expression during sustained cholera-toxin stimulation. Biochem J 1993; 296 ( Pt 2):335-40. [PMID: 8257421 PMCID: PMC1137699 DOI: 10.1042/bj2960335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have studied the chronic effect of cholera toxin (CTX) on prolactin synthesis and secretion in GH3 pituitary-tumour cells. Time-course analysis showed that prolactin secretion increased with time of CTX exposure, reached a peak at 3 h, and decreased thereafter. Prolactin synthesis was also shown to be stimulated by CTX. The basic and forskolin-stimulated cyclic AMP levels of the CTX-treated cells followed a biphasic time response similar to that of prolactin secretion. Exposure of cells to CTX for more than 3 h abolished the subsequent CTX-catalysed ADP-ribosylation in vitro. Moreover, a significant decrease in the pertussis-toxin-catalysed ADP-ribosylation was found after cells were exposed to CTX for longer than 6 h. Western-blot analysis indicated that the amount of Gs alpha (alpha-subunit of Gs) protein increased within 3 h, followed by a gradual decrease to 50% of the control level at 24 h. The accumulation of Gs alpha mRNA increased within 6 h of CTX exposure, and decreased thereafter to 40% of the basal level at 48 h. Our findings that prolonged treatment of CTX induced similar patterns of time responses in Gs alpha protein expression, cyclic AMP production and prolactin secretion indicate that CTX-induced changes in Gs alpha protein levels may be responsible for the cellular response leading to prolactin secretion.
Collapse
Affiliation(s)
- J H Lin
- Institute of Biochemistry, National Yang-Ming Medical College, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
44
|
Yarwood N, Gurr J, Sheppard M, Franklyn J. Estradiol modulates thyroid hormone regulation of the human glycoprotein hormone alpha subunit gene. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80637-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Fomina AF, Kostyuk PG, Sedova MB. Glucocorticoid modulation of calcium currents in growth hormone 3 cells. Neuroscience 1993; 55:721-5. [PMID: 8413934 DOI: 10.1016/0306-4522(93)90437-k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Clonal malignant pituitary growth hormone 3 cells were used for the analysis of the influence of hydrocortisone and dexamethasone on voltage-gated calcium currents and hormone secretion. The whole-cell patch-clamp technique was used. The presence of low-threshold inactivating and high-threshold persisting components in the total calcium current was shown; they could be separated at less negative holding potential level. Some increase in current densities of both components was observed as early as 30 min after treatment with 10(-6) mol/l glucocorticoids. The increase was maximal for both types of currents after 2 h of incubation; however, the high-threshold component was affected much more strongly (current density increased by more than four-fold) than the low-threshold one (current density increased by about a three-fold). Potentiation of currents was blocked by actinomycine D (10(-4) M), suggesting that protein synthesis was required. A substantial increase in growth hormone secretion (measured by radioimmunoassay method) was observed in the same cells after 2 h of incubation with hydrocortisone, while the secretion of prolactin remained even slightly depressed.
Collapse
Affiliation(s)
- A F Fomina
- Bogomoletz Institute of Physiology, Ukrainian Academy of Sciences
| | | | | |
Collapse
|
46
|
Kuwahara T, Nagase H, Takamiya M, Yoshizaki H, Kudoh T, Nakano A, Arisawa M. Activation of CCK-B receptors elevates cytosolic Ca2+ levels in a pituitary cell line. Peptides 1993; 14:801-5. [PMID: 8234029 DOI: 10.1016/0196-9781(93)90117-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cytosolic Ca2+ levels ([Ca2+]i) in GH3 cells, a rat anterior pituitary tumor cell line, were monitored with fura-2 by fluorescence measurements. Cholecystokinin octapeptide (CCK-8) produced a transient elevation of [Ca2+]i. The elevation of [Ca2+]i by CCK-8 was inhibited by L-365,260, but not by devazepide. It was still observed when extracellular Ca2+ was eliminated, indicating that CCK-8 mobilizes Ca2+ from intracellular storage sites after interaction with CCK-B receptors. Cholecystokinin octapeptide increased the turnover of phosphatidylinositol, but it did not affect cyclic AMP levels. A possible involvement of phosphatidylinositol breakdown and calcium mobilization in the transduction system of CCK-B receptors in GH3 cells is suggested.
Collapse
Affiliation(s)
- T Kuwahara
- Department of Pharmaceutical Screening, Nippon Roche Research Center, Kamakura, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Lew D, Brady H, Klausing K, Yaginuma K, Theill LE, Stauber C, Karin M, Mellon PL. GHF-1-promoter-targeted immortalization of a somatotropic progenitor cell results in dwarfism in transgenic mice. Genes Dev 1993; 7:683-93. [PMID: 8096199 DOI: 10.1101/gad.7.4.683] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During pituitary development, the homeo domain protein GHF-1 is required for generation of somatotropes and lactotropes and for growth hormone (GH) and prolactin (PRL) gene expression. GHF-1 mRNA is detectable several days before the emergence of GH- or PRL-expressing cells, suggesting the existence of a somatotropic progenitor cell in which GHF-1 transcription is first activated. We have immortalized this cell type by using the GHF-1 regulatory region to target SV40 T-antigen (Tag) tumorigenesis in transgenic mice. The GHF-Tag transgene caused developmental entrapment of somatotropic progenitor cells that express GHF-1 but not GH or PRL, resulting in dwarfism. Immortalized cell lines derived from a transgenic pituitary tumor maintain the characteristics of the somato/lactotropic progenitor in that they express GHF-1 mRNA and protein yet fail to activate GH or PRL transcription. Using these cells, we identified an enhancer that activates GHF-1 transcription at this early stage of development yet is inactive in cells representing later developmental stages of the somatotropic lineage or in other cell types. These experiments not only demonstrate the potential for immortalization of developmental progenitor cells using the regulatory regions from cell type-specific transcription factor genes but illustrate the power of such model systems in the study of developmental control.
Collapse
Affiliation(s)
- D Lew
- Department of Reproductive Medicine, University of California, San Diego, School of Medicine, La Jolla 92093
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kamijo K, Sato M, Saito T, Yabana T, Yachi A, Fujii N, Minase T. Bromocriptine-induced reversible lysosomal change and reduction of prolactin and growth hormone messenger RNA in cultured GH 3 cell lines. Endocr Pathol 1993; 4:28-33. [PMID: 32370438 DOI: 10.1007/bf02914486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We examined the effects of bromocriptine on the ultrastructure and on the levelsof messenger RNA (mRNA) of prolactin and growth hormone (GH) in a cultured GH3 cell line. Prolactin and GH concentrations measured by radioimmunoassay in the incubation medium as well as the cell number of the GH3 cells were significantly decreased by treatment with 10-4M bromocriptine for 24 hours. Electron microscopy of bromocriptine-treated GH3 cells demonstrated accumulation of cytoplasmic vacuoles containing cytoplasmic components including secretory granules (crinophagy) which were positive for acid phosphatase staining. The remarkable morphological changes in GH3 cells, induced by treatment with 10-4M bromocriptine for 24 hours, disappeared 48 hours after substitution with bromocriptine-free medium. An immunoelectron-microscopic study demonstrated gold particles binding with antiprolactin antibodies not only In the cytoplasm but also inside vacuoles of GH3 cells after incubation with bromocriptine for 24 hours. Treatment with 10-4M bromocriptine for 24 hours caused the reduction both of mRNAs of prolactin measured by dot-blot hybridization and the Northern-blotting method and of GH measured by the Northern-blotting method. In conclusion, bromocriptine induces a reversible lysosomal change and could inhibit gene transcription of prolactin and GH in GH3 cells.Endocr Pathol 4:28-33, 1993.
Collapse
Affiliation(s)
- Keiichi Kamijo
- Department of Internal Medicine, Muroran City General Hospital, Japan
- Department of Internal Medicine, Sapporo Medical College, Japan
| | - Miyako Sato
- Department of Internal Medicine, Sapporo Medical College, Japan
| | - Teizo Saito
- Department of Internal Medicine, Sapporo Medical College, Japan
| | - Tsuyoshi Yabana
- Department of Internal Medicine, Sapporo Medical College, Japan
| | - Akira Yachi
- Department of Internal Medicine, Sapporo Medical College, Japan
| | - Nobuyuki Fujii
- Department of Microbiology, Sapporo Medical College, Japan
| | - Takashi Minase
- Department of Clinical Laboratory, NTT Sapporo Hospital, Japan
| |
Collapse
|
49
|
Florio T, Pan M, Newman B, Hershberger R, Civelli O, Stork P. Dopaminergic inhibition of DNA synthesis in pituitary tumor cells is associated with phosphotyrosine phosphatase activity. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35744-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
50
|
Sirbasku DA, Pakala R, Sato H, Eby JE. Thyroid hormone and apotransferrin regulation of growth hormone secretion by GH1 rat pituitary tumor cells in iron restricted serum-free defined medium. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1992; 28A:67-71. [PMID: 1730572 DOI: 10.1007/bf02631081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Growth hormone (GH) production by GH1 rat pituitary tumor cells in iron restricted serum-free defined medium requires apotransferrin (apoTf) and triiodothyronine (T3). As measured by radioimmunoassay, apoTf plus T3 induced GH levels 2 to 4-fold above controls. Deletion of either apoTf or T3 arrested GH secretion. ApoTf/T3 defined medium regulated GH production as effectively as whole serum. Because glucocorticoids enhance GH secretion in serum containing cultures, the effects of dexamethasone were evaluated in apoTf/T3 defined medium. The steroid hormone showed no enhancing effects unless the cells were exposed to serum prior to incubation in apoTf/T3 defined medium. Even under these conditions, the response to dexamethasone remained T3 dependent. These observations indicate that a yet to be characterized serum factor(s), other than apoTf, regulates the response to the steroid hormone. This is the first report of thyroid hormone regulation of GH secretion by rat pituitary tumor cells under completely serum-free chemically defined conditions.
Collapse
Affiliation(s)
- D A Sirbasku
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston 77225
| | | | | | | |
Collapse
|