1
|
Reinhard J, Starke L, Klose C, Haberkant P, Hammarén H, Stein F, Klein O, Berhorst C, Stumpf H, Sáenz JP, Hub J, Schuldiner M, Ernst R. MemPrep, a new technology for isolating organellar membranes provides fingerprints of lipid bilayer stress. EMBO J 2024; 43:1653-1685. [PMID: 38491296 PMCID: PMC11021466 DOI: 10.1038/s44318-024-00063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
Biological membranes have a stunning ability to adapt their composition in response to physiological stress and metabolic challenges. Little is known how such perturbations affect individual organelles in eukaryotic cells. Pioneering work has provided insights into the subcellular distribution of lipids in the yeast Saccharomyces cerevisiae, but the composition of the endoplasmic reticulum (ER) membrane, which also crucially regulates lipid metabolism and the unfolded protein response, remains insufficiently characterized. Here, we describe a method for purifying organelle membranes from yeast, MemPrep. We demonstrate the purity of our ER membrane preparations by proteomics, and document the general utility of MemPrep by isolating vacuolar membranes. Quantitative lipidomics establishes the lipid composition of the ER and the vacuolar membrane. Our findings provide a baseline for studying membrane protein biogenesis and have important implications for understanding the role of lipids in regulating the unfolded protein response (UPR). The combined preparative and analytical MemPrep approach uncovers dynamic remodeling of ER membranes in stressed cells and establishes distinct molecular fingerprints of lipid bilayer stress.
Collapse
Affiliation(s)
- John Reinhard
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - Leonhard Starke
- Saarland University, Theoretical Physics and Center for Biophysics, Saarbrücken, Germany
| | | | - Per Haberkant
- EMBL Heidelberg, Proteomics Core Facility, Heidelberg, Germany
| | | | - Frank Stein
- EMBL Heidelberg, Proteomics Core Facility, Heidelberg, Germany
| | - Ofir Klein
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Charlotte Berhorst
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - Heike Stumpf
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - James P Sáenz
- Technische Universität Dresden, B CUBE, Dresden, Germany
| | - Jochen Hub
- Saarland University, Theoretical Physics and Center for Biophysics, Saarbrücken, Germany
| | - Maya Schuldiner
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Robert Ernst
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany.
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany.
| |
Collapse
|
2
|
Levental KR, Malmberg E, Symons JL, Fan YY, Chapkin RS, Ernst R, Levental I. Lipidomic and biophysical homeostasis of mammalian membranes counteracts dietary lipid perturbations to maintain cellular fitness. Nat Commun 2020; 11:1339. [PMID: 32165635 PMCID: PMC7067841 DOI: 10.1038/s41467-020-15203-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 02/21/2020] [Indexed: 11/29/2022] Open
Abstract
Proper membrane physiology requires maintenance of biophysical properties, which must be buffered from external perturbations. While homeostatic adaptation of membrane fluidity to temperature variation is a ubiquitous feature of ectothermic organisms, such responsive membrane adaptation to external inputs has not been directly observed in mammals. Here, we report that challenging mammalian membranes by dietary lipids leads to robust lipidomic remodeling to preserve membrane physical properties. Specifically, exogenous polyunsaturated fatty acids are rapidly incorporated into membrane lipids, inducing a reduction in membrane packing. These effects are rapidly compensated both in culture and in vivo by lipidome-wide remodeling, most notably upregulation of saturated lipids and cholesterol, resulting in recovery of membrane packing and permeability. Abrogation of this response results in cytotoxicity when membrane homeostasis is challenged by dietary lipids. These results reveal an essential mammalian mechanism for membrane homeostasis wherein lipidome remodeling in response to dietary lipid inputs preserves functional membrane phenotypes. Proper membrane physiology requires maintenance of a narrow range of physicochemical properties, which must be buffered from external perturbations. Here, authors report lipidomic remodeling to preserve membrane physical properties upon exogenous polyunsaturated fatty acids exposure.
Collapse
Affiliation(s)
- Kandice R Levental
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Eric Malmberg
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jessica L Symons
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yang-Yi Fan
- Program in Integrative Nutrition & Complex Diseases and Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition & Complex Diseases and Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Robert Ernst
- Department of Medical Biochemistry & Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany
| | - Ilya Levental
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
3
|
Ernst R, Ballweg S, Levental I. Cellular mechanisms of physicochemical membrane homeostasis. Curr Opin Cell Biol 2018; 53:44-51. [PMID: 29787971 DOI: 10.1016/j.ceb.2018.04.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/19/2018] [Accepted: 04/29/2018] [Indexed: 12/11/2022]
Abstract
Biological membranes are vital, active contributors to cell function. In addition to specific interactions of individual lipid molecules and lateral organization produced by membrane domains, the bulk physicochemical properties of biological membranes broadly regulate protein structure and function. Therefore, these properties must be homeostatically maintained within a narrow range that is compatible with cellular physiology. Although such adaptiveness has been known for decades, recent observations have dramatically expanded its scope by showing the breadth of membrane properties that must be maintained, and revealing the remarkable diversity of biological membranes, both within and between cell types. Cells have developed a broad palette of sense-and-respond machineries to mediate physicochemical membrane homeostasis, and the molecular mechanisms of these are being discovered through combinations of cell biology, biophysical approaches, and computational modeling.
Collapse
Affiliation(s)
- Robert Ernst
- Department of Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany.
| | - Stephanie Ballweg
- Department of Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
4
|
Dorninger F, Brodde A, Braverman NE, Moser AB, Just WW, Forss-Petter S, Brügger B, Berger J. Homeostasis of phospholipids - The level of phosphatidylethanolamine tightly adapts to changes in ethanolamine plasmalogens. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:117-28. [PMID: 25463479 PMCID: PMC4331674 DOI: 10.1016/j.bbalip.2014.11.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/04/2014] [Accepted: 11/10/2014] [Indexed: 01/19/2023]
Abstract
Ethanolamine plasmalogens constitute a group of ether glycerophospholipids that, due to their unique biophysical and biochemical properties, are essential components of mammalian cellular membranes. Their importance is emphasized by the consequences of defects in plasmalogen biosynthesis, which in humans cause the fatal disease rhizomelic chondrodysplasia punctata (RCDP). In the present lipidomic study, we used fibroblasts derived from RCDP patients, as well as brain tissue from plasmalogen-deficient mice, to examine the compensatory mechanisms of lipid homeostasis in response to plasmalogen deficiency. Our results show that phosphatidylethanolamine (PE), a diacyl glycerophospholipid, which like ethanolamine plasmalogens carries the head group ethanolamine, is the main player in the adaptation to plasmalogen insufficiency. PE levels were tightly adjusted to the amount of ethanolamine plasmalogens so that their combined levels were kept constant. Similarly, the total amount of polyunsaturated fatty acids (PUFAs) in ethanolamine phospholipids was maintained upon plasmalogen deficiency. However, we found an increased incorporation of arachidonic acid at the expense of docosahexaenoic acid in the PE fraction of plasmalogen-deficient tissues. These data show that under conditions of reduced plasmalogen levels, the amount of total ethanolamine phospholipids is precisely maintained by a rise in PE. At the same time, a shift in the ratio between ω-6 and ω-3 PUFAs occurs, which might have unfavorable, long-term biological consequences. Therefore, our findings are not only of interest for RCDP but may have more widespread implications also for other disease conditions, as for example Alzheimer's disease, that have been associated with a decline in plasmalogens. PE accurately compensates for the lack of plasmalogens in vitro and in vivo. PE levels decrease to adapt to excess of ethanolamine plasmalogens (PlsEtn). Plasmalogen deficiency favors incorporation of arachidonic acid into PE. Docosahexaenoic acid in ethanolamine phospholipids decreases upon PlsEtn depletion.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| | - Alexander Brodde
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| | - Nancy E Braverman
- Department of Human Genetics and Pediatrics, McGill University-Montreal Children's Hospital, 4060 Ste-Catherine West, PT-406.2, Montreal, QC H3Z 2Z3, Canada.
| | - Ann B Moser
- Peroxisomal Diseases Laboratory, The Hugo W Moser Research Institute, The Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD 21205, USA.
| | - Wilhelm W Just
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| | - Britta Brügger
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| |
Collapse
|
5
|
|
6
|
Structural organization of plasma membrane lipids isolated from cells cultured as a monolayer and in tissue-like conditions. J Colloid Interface Sci 2011; 359:202-9. [PMID: 21507411 DOI: 10.1016/j.jcis.2011.03.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/28/2011] [Accepted: 03/29/2011] [Indexed: 11/20/2022]
Abstract
Complementary biophysical approaches were used to study the structural organization of plasma membrane lipids obtained from fibroblasts cultured as two-dimensional (2D) monolayer and in tissue-like three-dimensional (3D) conditions. Fluorescence microscopy experiments demonstrated different domain patterns for 2D and 3D plasma membrane lipid extracts. ESR demonstrated that 3D lipid extract is characterized with lower order parameter than 2D in the deep hydrophobic core of the lipid bilayer. Higher cholesterol and sphingomyelin content in 3D extract, known to increase the order in the glycerophospholipid matrix, was not able to compensate higher fatty acid polyunsaturation of the phospholipids. The interfacial region of the bilayer was probed by the fluorescent probe Laurdan. A higher general polarization value for 3D extract was measured. It is assigned to the increased content of sphingomyelin, cholesterol, phosphatidylethanolamine and phosphatidylserine in the 3D membranes. These results demonstrate that cells cultured under different conditions exhibit compositional heterogeneity of the constituent lipids which determine different structural organization of the membranes.
Collapse
|
7
|
Wangerek LA, Dahl HH, Senden TJ, Carlin JB, Jans DA, Dunstan DE, Ioannou PA, Williamson R, Forrest SM. Atomic force microscopy imaging of DNA-cationic liposome complexes optimised for gene transfection into neuronal cells. J Gene Med 2001; 3:72-81. [PMID: 11269338 DOI: 10.1002/1521-2254(200101/02)3:1<72::aid-jgm157>3.0.co;2-m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cationic liposomes represent an important gene delivery system due to their low immunogenicity, but are relatively inefficient, with optimisation of DNA-liposome complexes (lipoplexes) for transfection necessary for each cell type of interest. There have been few studies examining optimisation in neuronal cell types or determining how the structure of lipoplexes affects transfection efficiency. METHODS Four commercially available cationic liposome formulations were used to optimise transfection efficiency in neuronal cells. The DNA to liposome ratio and the amount of DNA used in transfections were varied. Transfection efficiency was determined by the percentage of cells positive for the micro-galactosidase reporter gene product. The structure of lipoplexes was studied using atomic force microscopy. Lipoplexes were characterised further using dynamic light scattering to determine size and fluorescence techniques to show DNA compaction. RESULTS Optimal transfection conditions were found to differ between immortalised cell lines and primary cells. High transfection efficiencies in immortalised cell lines were achieved predominantly with multivalent cationic liposomes while primary neuronal cells showed optimal transfection efficiency with monovalent cationic liposomes. The structure of lipoplexes was observed with atomic force microscopy and showed globular complexes for multivalent cationic liposomes, while monovalent liposomes gave less compact structures. In support of this finding, high levels of DNA compaction with multivalent liposomes were observed using fluorescence quenching measurements for all DNA to liposome ratios tested. One monovalent liposome showed increasing levels of compaction with increasing liposome amount. Dynamic light scattering showed little change in complex size when the different lipoplexes were studied. CONCLUSIONS Optimisation of transfection efficiency was different for cell lines and primary neurons. Immortalised cells showed optimal transfection with multivalent liposomes while primary neurons showed optimal transfection with monovalent liposomes. The charge ratio of the monovalent liposome was below one, suggesting a different mechanism of lipoplex binding and uptake in primary neurons. The structure of lipoplexes, as
Collapse
Affiliation(s)
- L A Wangerek
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Thewke D, Kramer M, Sinensky MS. Transcriptional homeostatic control of membrane lipid composition. Biochem Biophys Res Commun 2000; 273:1-4. [PMID: 10873553 DOI: 10.1006/bbrc.2000.2826] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Plasma membranes have a structural property, commonly referred to as membrane fluidity, that is compositionally regulated. The two main features of plasma membrane lipid composition that determine membrane fluidity are the ratio of cholesterol to phospholipids and the ratio of saturated to unsaturated fatty acids that are incorporated into the phospholipids. These ratios are determined, at least in part, by regulation of membrane lipid biosynthesis-particularly that of cholesterol and oleate. It now appears that cholesterol and oleate biosynthesis are feedback regulated by a common transcriptional mechanism which is governed by the maturation of the SREBP transcription factors. In this article, we briefly review our current understanding of transcriptional regulation of plasma membrane lipid biosynthesis by sterols and oleate. We also discuss studies related to the mechanism by which the physical state of membrane lipids signals the transcriptional regulatory machinery to control the rates of synthesis of these structural components of the lipid bilayer.
Collapse
Affiliation(s)
- D Thewke
- Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, Johnson City, Tennessee 37614-0581, USA
| | | | | |
Collapse
|
9
|
Hannan LA, Edidin M. Traffic, polarity, and detergent solubility of a glycosylphosphatidylinositol-anchored protein after LDL-deprivation of MDCK cells. J Biophys Biochem Cytol 1996; 133:1265-76. [PMID: 8682863 PMCID: PMC2120894 DOI: 10.1083/jcb.133.6.1265] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Glycosylphosphatidylinositol-anchored proteins, GPI-proteins, are selectively delivered to the apical surfaces of many types of morphologically polarized epithelial cells. It has been proposed that the unit for targeting GPI-proteins to the apical surface is a membrane lipid domain. This sorting domain or molecular cluster has been equated to detergent (Triton X-100)-insoluble membrane fractions that are enriched in enriched in GPI-proteins, glycosphingolipids, and cholesterol. To determine the role of cholesterol in the formation of sorting domains and to examine its importance in the intracellular traffic and membrane polarity of GPI-proteins, we studied the behavior of a model GPI-protein, gD1-DAF, in MDCK cells cultured for 3 or 14 d without their principal source of cholesterol, serum LDL. LDL deprivation affects the intracellular traffic of gD1-DAF. Surface expression of gD1-DAF is reduced in LDL-deprived cells; this reduction is most marked after 3 d of LDL deprivation. We also find a great reduction in the fraction of gD1-DAF that is detergent-insoluble in these cells and a change in its membrane milieu defined by susceptibility to cleavage with PI-specific phospholipase C. Despite these changes, the surface polarity of gD1-DAF is no different in LDL-deprived cells than in control cells.
Collapse
Affiliation(s)
- L A Hannan
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
10
|
Peuchant E, Motta C, Salles C, Clerc M. A compensatory mechanism improving red cell membrane fluidity in hemodialysed patients. Clin Chim Acta 1990; 190:57-66. [PMID: 2208739 DOI: 10.1016/0009-8981(90)90280-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A fluorescence polarization technique with 1,6-diphenyl 1,3,5-hexatriene as a fluorescent probe was used to determine the fluidity of red cell membranes from hemodialysed patients before and after dialysis. After dialysis, there was a decrease in fluidity and activation energy values revealed a significantly changed distribution. The membrane lipid composition showed a significant increase in cholesterol after dialysis (p less than 0.001) and a significant reduction in saturated fatty acids (p less than 0.01) with an increase in unsaturated fatty acids (p less than 0.05). A compensatory mechanism could be suggested involving a reduction of saturated fatty acids in response to the increase in the cholesterol/phospholipid ratio. This could lead to an optimization of membrane fluidity.
Collapse
Affiliation(s)
- E Peuchant
- Laboratoire de Biochimie Médicale A, Université de Bordeaux II, Clermont-Ferrand, France
| | | | | | | |
Collapse
|
11
|
Garcia Zevallos M, Farkas T. Manipulation of plasma membrane physical state affects desaturase activity in rat lymphocytes. Arch Biochem Biophys 1989; 271:546-52. [PMID: 2786374 DOI: 10.1016/0003-9861(89)90306-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Thymocytes, obtained from young rats, were incubated in the presence of either diheptadecanoylphosphatidylcholine or dioleylphosphatidylcholine vesicles and desaturation of either [1-14C]stearic acid or [1-14C]linoleic acid was followed in the endoplasmic reticulum. Incubation with diheptadecanoylphosphatidylcholine resulted in an accumulation of heptadecanoic acid in the plasma membrane, but not in the endoplasmic reticulum and mitochondria, and an increase in membrane ordering as assessed by diphenylhexatriene fluorescence polarization. A shift to higher temperature of the phase separation in the plasma membrane was also observed. Both delta 9 and delta 6 desaturase activities were enhanced in these cells, with delta 6 responding more intensly. Accumulation of oleic acid in the plasma membrane could not be observed when the cells were incubated in the presence of dioleylphosphatidylcholine vesicles, but all the membranes separated, including the microsomes, became more fluid. This can be attributed to removal of cholesterol by the vesicles. Fluidization of plasma membrane and endoplasmic reticulum depressed the conversion of stearate to oleate and linoleate to gamma-linolenate. It is concluded that there is an exchange of information between the plasma membrane and the endoplasmic reticulum in order to maintain the proper fluidity relationships and that this occurs without transfer of lipids from the former to the latter.
Collapse
|
12
|
Bode DC, Molinoff PB. Effects of chronic exposure to ethanol on the physical and functional properties of the plasma membrane of S49 lymphoma cells. Biochemistry 1988; 27:5700-7. [PMID: 2846048 DOI: 10.1021/bi00415a046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The effects of chronic exposure to ethanol on the physical and functional properties of the plasma membrane were examined with cultured S49 lymphoma cells. The beta-adrenergic receptor-coupled adenylate cyclase system was used as a probe of the functional properties of the plasma membrane. Steady-state fluorescence anisotropy of diphenylhexatriene and the lipid composition of the plasma membrane were used as probes of the physical properties of the membrane. Cells were grown under conditions such that the concentration of ethanol in the growth medium remained stable and oxidation of ethanol to acetaldehyde was not detected. Chronic exposure of S49 cells to 50 mM ethanol or growth of cells at elevated temperature resulted in a decrease in adenylate cyclase activity. There were no changes in the density of receptors or in the affinity of beta-adrenergic receptors for agonists or antagonists following chronic exposure to ethanol. The fluorescence anisotropy of diphenylhexatriene was lower in plasma membranes prepared from cells that had been treated with 50 mM ethanol than in membranes prepared from control cells. However, this change was not associated with changes in the fatty acid composition or the cholesterol to phospholipid ratio of the plasma membrane. There was a small but statistically significant decrease in the amount of phosphatidylserine and an increase in the amount of phosphatidylethanolamine. These changes cannot account for the decrease in anisotropy. In contrast to the effect of ethanol, a decrease in adenylate cyclase activity following growth of S49 cells at 40 degrees C was not associated with a change in anisotropy.
Collapse
Affiliation(s)
- D C Bode
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia 19104-6084
| | | |
Collapse
|
13
|
Leonard S, Sinensky M. Somatic cell genetics and the study of cholesterol metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 947:101-12. [PMID: 3278736 DOI: 10.1016/0304-4157(88)90021-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The regulation of cholesterol biosynthesis by extracellular cholesterol occurs both in whole animal tissue and in permanent somatic cell lines in culture. Permanent mammalian cells lines, under optimized growth conditions, are easily manipulated both biochemically and genetically. The Chinese hamster ovary cell line (CHO-K1) is the most widely used cell line for genetic studies. CHO-K1 is a pseudo-diploid mammalian cell exhibiting a short doubling time and a relatively high plating efficiency. Somatic cell mutants can be generated through mutagenesis and also by drug adaptation. Following mutagenesis, auxotrophs may be isolated either by selection or by screening. Most selection procedures for mutants of cholesterol metabolism must be done in serum depleted of cholesterol which requires the endogenous biosynthetic pathway to be intact. Mutants failing to produce cholesterol do not replicate their DNA and exhibit reduced concentrations of cholesterol in their membranes. BUdR and polyene antibiotics have both been used to select against the wild-type cells which incorporate these compounds and are killed, allowing the survival of the mutant cells. Both mevalonate and cholesterol auxotrophs have been isolated with the BUdR technique and have proven useful for elucidation of the early steps in cholesterol biosynthesis, particularly for the ratelimiting enzyme HMG-CoA reductase. Somatic cell fusion of a mutant and wild-type cell followed by chromosomal segregation, routinely used to map human genes, has also been used to map the human gene for HMG-CoA synthase. Such hybrids also provide valuable information on the dominance or recessivity of a specific lesion. DNA-mediated gene transfer into somatic cell mutants allows the selection of DNA sequences which complement the mutation, and is also useful for analysis of regions of regulatory significance. Mutants, resistant to the regulatory effects of oxygenated sterols, can be isolated following mutagenesis. Mutants of this type vary the lipid content of their membranes in response to cholesterol concentration in the medium. All such mutants tested exhibit a pleiotropic regulatory effect on more than one enzyme in the cholesterol biosynthetic pathway. Adaptation to drugs such as compactin and mevinolin, which inhibit HMG-CoA reductase, have been used to produce mutants which overexpress enzymes in the pathway. These amplified cells are useful sources of specific mRNAs for construction of cDNA libraries and gene isolation. Structure-function relationships of membrane sterols can be studied in cholesterol auxotrophs where changes in acyl-chain ordering can be manipulated by exogenous sterols in the medium.
Collapse
Affiliation(s)
- S Leonard
- Eleanor Roosevelt Institute for Cancer Research, Denver, CO 80206
| | | |
Collapse
|
14
|
Somers SD, Yuli I, Snyderman R, Adams DO. Altered cell-averaged microviscosity of murine peritoneal macrophages undergoing activation in vivo or in vitro. Cell Immunol 1987; 104:232-44. [PMID: 3545500 DOI: 10.1016/0008-8749(87)90026-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The cell-averaged microviscosity of intact murine peritoneal mononuclear phagocytes in various stages of activation was assessed by quantifying fluorescent depolarization of 1,6-diphenyl-1,3,5-hexatriene. Macrophages activated in vivo with Mycobacterium bovis, strain BCG, were significantly more fluid than resident peritoneal macrophages, responsive macrophages elicited with thioglycollate broth, proteose peptone broth, or fetal bovine serum, or primed macrophages elicited with pyran copolymer, MVE-2. Specifically, the cell-averaged microviscosity decreased from a mean of 3.47 +/- .07 eta 25 degrees C (poise) (range of 3.32 to 3.67 p) to 2.62 eta 25 degrees C. Exposure of responsive macrophages in vitro to bacterial endotoxin plus hybridoma supernatants containing macrophage-activating factor or purified recombinant interferon gamma resulted in decreased microviscosity; the largest effect was seen after 24 hr. Macrophages primed in vivo with MVE-2 and treated in vitro with endotoxin also developed decreased microviscosity. Similar changes in microviscosity were observed in a plasma membrane-enriched fraction isolated from macrophages activated in vitro with interferon gamma and endotoxin, thus suggesting that the cell-averaged measurements reflected changes in membrane viscosity. The optimum concentration of MAF-inducing decreased overall microviscosity was identical to that for inducing tumoricidal capacity. Taken together, the data indicate activation of lytic capacity in murine macrophages is closely associated with decreased cell-averaged microviscosity and that this change reflects, at least in part, decreased microviscosity of the plasma membrane of these cells.
Collapse
|
15
|
Abstract
Recent studies concerning cholesterol, its behavior and its roles in cell growth provide important new clues to the role of this fascinating molecule in normal and pathological states.
Collapse
|
16
|
Abstract
To assess the relation between the physical order of a membrane and its sensitivity to ethanol, we enriched biomembranes with cholesterol, both in vivo and in vitro. Japanese quail of the SEA line (selectively bred for susceptibility to experimental atherosclerosis) were treated for 9 to 16 weeks with a diet that contained 2% cholesterol. This regimen increased the cholesterol content of serum and erythrocytes. The cholesterol content of brain synaptosomal plasma membranes (SPM) was unaffected by the high cholesterol diet. In other experiments, isolated mouse synaptosomal plasma membranes were incubated with cholesterol/phospholipid (C/P) vesicles; different amounts of cholesterol were transferred according to the sterol content of the donor vesicles. Membrane order was determined in both types of membranes by a sensitive electron paramagnetic resonance (EPR) technique. The order parameter with 5- and 12-doxylstearic acid increased along with the cholesterol content. As expected, ethanol disordered membranes (decreased the order parameter) in a concentration-related manner. The slope of the concentration response curve was less steep in high cholesterol than low cholesterol membranes, indicating that cholesterol enrichment partially blocks the membrane action of ethanol in both types of membranes.
Collapse
|
17
|
Masuda A, Tomita K, Kuwano M. Chinese hamster cell mutants with defective endocytosis of low-density lipoprotein contain altered fatty acid composition in the membrane. Biochem Biophys Res Commun 1984; 122:627-34. [PMID: 6466332 DOI: 10.1016/s0006-291x(84)80079-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chinese hamster V79 cell mutants resistant to compactin (ML236B), a specific inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, are defective in endocytosis of low-density lipoprotein (1). Two resistant clones, MF-2 and MF-3, differ in lipid composition from the parental V79 strain. In both the total cells and membrane fraction, the ratio of palmitoleic acid (16:1)/palmitic acid (16:0) is 0.4-0.5 in MF-2 and 1.7-1.8 in MF-3 while that in V79 is 0.2-0.3. By contrast, a hybrid clone between V79 and MF-3 shows a ratio of palmitoleic acid to palmitic acid very similar to that of V79. The synthesis of palmitoleic acid from acetate in the resistant clone is higher than in V79.
Collapse
|
18
|
Simmonds AC, Rooney EK, Lee AG. Interactions of cholesterol hemisuccinate with phospholipids and (Ca2+-Mg2+)-ATPase. Biochemistry 1984; 23:1432-41. [PMID: 6144324 DOI: 10.1021/bi00302a015] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cholesterol hemisuccinate has been shown to equilibrate readily with liposomes and with the (Ca2+-Mg2+)-ATPase from sarcoplasmic reticulum and has been used to modify the sterol content of these membranes. Cholesterol hemisuccinate incorporates into dioleoylphosphatidylcholine (DOPC) up to a molar ratio of 3:1 sterol to DOPC. Effects on lipid order as detected by electron spin resonance and fluorescence polarization are comparable to those of cholesterol. Binding constants have been determined, and the uncharged form of the sterol binds more strongly than the anionic form. Binding to DOPC and to the lipid component of the ATPase system is comparable. From use of the fluorescence quenching properties of 1,2-bis(9,10- dibromooleoyl )phosphatidylcholine and dibromocholesterol hemisuccinate, two classes of binding sites on the ATPase have been deduced. At the lipid/protein interface, the binding constant for cholesterol hemisuccinate is considerably less than that for DOPC. At the second set of sites ( nonannular sites), binding occurs with Kd = 0.55 in molar ratio units. The effect of cholesterol hemisuccinate on the activity of the ATPase depends on the phospholipid present in the system: ATPase reconstituted with DOPC is inhibited whereas ATPase reconstituted with dimyristoleoylphosphatidylcholine is activated. We conclude that changes in membrane fluidity are not important in determining ATPase activity in these systems.
Collapse
|
19
|
|
20
|
Abstract
Various nystatin-resistant mutants defective in S-adenosylmethionine: delta 24-sterol-C-methyltransferase (EC 2.1.1.41) were shown to possess alleles of the same gene, erg6. The genetic map location of erg6 was shown to be close to trp1 on chromosome 4. Despite the single locus for erg6, S-adenosylmethionine: delta 24-sterol-C-methyltransferase enzyme activity was found in three separate fractions: mitochondria, microsomes, and the "floating lipid layer." The amount of activity in each fraction could be manipulated by assay conditions. The lipids and lipid synthesis of mutants of Saccharomyces cerevisiae defective in the delta 24-sterol-C-methyltransferase were compared with a C5(6) desaturase mutant and parental wild types. No ergosterol (C28 sterol) could be detected in whole-cell sterol extracts of the erg6 mutants, the limits of detection being less than 10(-11) mol of ergosterol per 10(8) cells. The distribution of accumulated sterols by these mutants varied with growth phase and between free and esterified fractions. The steryl ester concentrations of the mutants were eight times higher than those of the wild type from exponential growth samples. However, the concentration of the ester accumulated by the mutants was not as great in stationary-phase cells. Whereas the head group phospholipid composition was the same between parental and mutant strains, strain-dependent changes in fatty acids were observed, most notably a 40% increase in the oleic acid content of phosphatidylethanolamine of one erg6 mutant, JR5.
Collapse
|
21
|
Shinitzky M. Membrane fluidity in malignancy. Adversative and recuperative. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 738:251-61. [PMID: 6097299 DOI: 10.1016/0304-419x(83)90007-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Houslay MD, Gordon LM. The Activity of Adenylate Cyclase Is Regulated by the Nature of Its Lipid Environment. ACTA ACUST UNITED AC 1983. [DOI: 10.1016/s0070-2161(08)60531-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
23
|
|
24
|
Hershkowitz M, Heron D, Samuel D, Shinitzky M. The modulation of protein phosphorylation and receptor binding in synaptic membranes by changes in lipid fluidity: implications for ageing. PROGRESS IN BRAIN RESEARCH 1982; 56:419-34. [PMID: 6298878 DOI: 10.1016/s0079-6123(08)63788-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
Sinensky M, Kleiner J. The effect of reagents that increase membrane fluidity on the activity of 3-hydroxyl-3-methyl glutaryl coenzyme A reductase in the CHO-K1 cell. J Cell Physiol 1981; 108:309-16. [PMID: 7197282 DOI: 10.1002/jcp.1041080304] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The compounds cetyl trimethyl ammonium bromide (CTAB) and ethanol both decrease the order parameter of a spin probe embedded in cholesterol-lecithin liposomes, but CTAB produces lowering of the order parameter comparable to that produced by ethanol at a 10,000-fold lower concentration. Treatment of CHO-K1 cells with CTAB or ethanol at concentrations that produce comparable increases of membrane fluidity produce to 2- to 3-fold increase of microsomal membrane cholesterol to phospholipid ratio and a 2- to 3-fold increase of the activity of the rate-limiting enzyme of cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Cells treated with CTAB or ethanol show a progressively decreasing capacity to accumulate alpha-aminoisobutyric acid with increasing drug treatment, but cells pre-treated with CTAB are relatively resistant to the effects of CTAB on alpha-aminoisobutyrate transport. The increase in HMG-CoA reductase by CTAB or ethanol is not observed when these compounds are added directly to cell extracts but, rather, is only observed after 8 hours or exposure of intact cells to these drugs. Actinomycin D and cycloheximide treatment prevent the increase in enzyme activity, and the increase is also blocked in a regulatory mutant of the CHO-K1 cell with permanently repressed HMG-CoA reductase activity. These data are consistent with a homeoviscous adaptation mechanism in the CHO-K1 cell, in which increased activity of HMG-CoA reductase, through a process requiring RNA and protein synthesis, compensates for conditions that increase membrane fluidity by increased cellular cholesterol biosynthesis and cholesterol to phospholipid ratio.
Collapse
|
26
|
Heron D, Israeli M, Hershkowitz M, Samuel D, Shinitzky M. Lipid-induced modulation of opiate receptors in mouse brain membranes. Eur J Pharmacol 1981; 72:361-4. [PMID: 6268424 DOI: 10.1016/0014-2999(81)90576-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The binding of [3H] D-Ala-enkephalinamide (DAEA) to crude mitochondrial fractions (P2M) from mouse forebrain was determined after modulation of membrane lipid microviscosity. Lipid fluidization of P2M membranes, following treatment with egg lecithin, resulted in a 50% loss of specific binding of DAEA. Increasing the P2M lipid microviscosity, by incorporation of cholesteryl hemisuccinate (CHS), increased the accessibility of the opiate receptors up to a peak level of 170% which decreased sharply upon further increase in lipid microviscosity. The processes resulting from lipid rigidification may have important implications for aging and for drug addiction.
Collapse
|
27
|
Holloway CT, Garfield SA. Effect of diabetes and insulin replacement on the lipid properties of hepatic smooth endoplasmic reticulum. Lipids 1981; 16:525-32. [PMID: 6268923 DOI: 10.1007/bf02535051] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This study is a characterization of the lipid properties of the smooth and rough endoplasmic reticulum (SER, RER) of liver from streptozotocin-induced diabetic rats. A significant decrease in membrane microviscosity was observed in the SER but not the RER of diabetic rats when compared to that of normal controls. This decrease in SER membrane microviscosity correlated with a decrease in cholesterol/phospholipid ratio of these membranes that could be accounted for solely by a change in the membrane cholesterol content. Changes in phospholipid fatty acyl chain composition were also observed in the SER membranes but these changes were small when compared to the large change in cholesterol content observed. Insulin treatment for only one day did not significantly alter the microviscosity of the SER but after 2, 4 and 6 days of treatment both membrane microviscosity and membrane cholesterol content were restored to values similar to those for normal animals. No significant changes in the RER lipid composition were observed. It is well known that increases in glucose-6-Pase (G-6-Pase) activity of liver ER membranes are associated with diabetic onset. An increase in the specific activity of G-6-Pase was observed in both SER and RER membrane preparations, although the observed increase in the SER membrane is higher. The changes in the G-6-Pase activity of the SER membranes were correlated with the alterations in the microviscosity and lipid composition of these membranes. It is postulated that lipid properties of the SER membranes may contribute to the regulation of G-6-Pase activity in that membrane.
Collapse
|
28
|
Ingraham LM, Burns CP, Boxer LA, Baehner RL, Haak RA. Fluidity properties and liquid composition of erythrocyte membranes in Chediak-Higashi syndrome. J Cell Biol 1981; 89:510-6. [PMID: 7251663 PMCID: PMC2111801 DOI: 10.1083/jcb.89.3.510] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We have earlier shown through electron spin resonance (ESR) studies of leukocytes that membranes of cells from both Chediak-Higashi syndrome (CHS) mice and humans have abnormally high fluidity. We have extended our studied to erythrocytes. Erythrocytes were labeled with the nitroxide-substituted analogue of stearic acid, 2-(3-carboxypropyl)-4,4-dimethyl-2-tridecyl-3-oxazolidinyloxyl, and ESR spectra were obtained. Order parameter, S, at 23 degrees C, was 0.661 and 0.653 for erythrocytes of normal and CHS mice (P less than 0.001). S was 0.684 for normal human erythrocytes and 0.675 (P less than 0.001) for CHS erythrocytes at 25 degrees C. Because S varies inversely to fluidity, these results indicate that CHS erythrocytes tend to have higher fluidity than normal. In vitro treatment of both mice and human CHS erythrocytes with 10 mM ascorbate returned their membrane fluidity to normal. We prepared erythrocyte ghosts and extracted them with CHCl3:CH3OH (2:1). Gas-liquid chromatography analysis showed a greater number of unsaturated fatty acids for CHS. The average number of double bonds detected in fatty acids for mice on a standard diet was 1.77 for normal and 2.02 for CHS (P less than 0.04); comparison of human erythrocytes from one normal control and one CHS patient showed a similar trend. Our results suggest that an increased proportion of unsaturated fatty acids may contribute to increased fluidity of CHS erythrocytes. Our observation that both leukocytes and erythrocytes of CHS have abnormal fluidity indicates that CHS pathophysiology may relate to a general membrane disorder.
Collapse
|
29
|
|
30
|
Quinn PJ. The fluidity of cell membranes and its regulation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1981; 38:1-104. [PMID: 7025092 DOI: 10.1016/0079-6107(81)90011-0] [Citation(s) in RCA: 237] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|