1
|
Albisetti A, Wiese S, Schneider A, Niemann M. A component of the mitochondrial outer membrane proteome of T. brucei probably contains covalent bound fatty acids. Exp Parasitol 2015; 155:49-57. [PMID: 25982029 DOI: 10.1016/j.exppara.2015.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/30/2015] [Accepted: 05/11/2015] [Indexed: 11/24/2022]
Abstract
A subclass of eukaryotic proteins is subject to modification with fatty acids, the most common of which are palmitic and myristic acid. Protein acylation allows association with cellular membranes in the absence of transmembrane domains. Here we examine POMP39, a protein previously described to be present in the outer mitochondrial membrane proteome (POMP) of the protozoan parasite Trypanosoma brucei. POMP39 lacks canonical transmembrane domains, but is likely both myristoylated and palmitoylated on its N-terminus. Interestingly, the protein is also dually localized on the surface of the mitochondrion as well as in the flagellum of both insect-stage and the bloodstream form of the parasites. Upon abolishing of global protein acylation or mutation of the myristoylation site, POMP39 relocates to the cytosol. RNAi-mediated ablation of the protein neither causes a growth phenotype in insect-stage nor bloodstream form trypanosomes.
Collapse
Affiliation(s)
- Anna Albisetti
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, University of Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Moritz Niemann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland.
| |
Collapse
|
2
|
Belcourt MF, Hodnick WF, Rockwell S, Sartorelli AC. The intracellular location of NADH:cytochrome b5 reductase modulates the cytotoxicity of the mitomycins to Chinese hamster ovary cells. J Biol Chem 1998; 273:8875-81. [PMID: 9535868 DOI: 10.1074/jbc.273.15.8875] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NADH:cytochrome b5 reductase activates the mitomycins to alkylating intermediates in vitro. To investigate the intracellular role of this enzyme in mitomycin bioactivation, Chinese hamster ovary cell transfectants overexpressing rat NADH:cytochrome b5 reductase were generated. An NADH:cytochrome b5 reductase-transfected clone expressed 9-fold more enzyme than did parental cells; the levels of other mitomycin-activating oxidoreductases were unchanged. Although this enzyme activates the mitomycins in vitro, its overexpression in living cells caused decreases in sensitivity to mitomycin C in air and decreases in sensitivity to porfiromycin under both air and hypoxia. Mitomycin C cytotoxicity under hypoxia was similar to parental cells. Because NADH:cytochrome b5 reductase resides predominantly in the mitochondria of these cells, this enzyme may sequester these drugs in this compartment, thereby decreasing nuclear DNA alkylations and reducing cytotoxicity. A cytosolic form of NADH:cytochrome b5 reductase was generated. Transfectants expressing the cytosolic enzyme were restored to parental line sensitivity to both mitomycin C and porfiromycin in air with marked increases in drug sensitivity under hypoxia. The results implicate NADH:cytochrome b5 reductase in the differential bioactivation of the mitomycins and indicate that the subcellular site of drug activation can have complex effects on drug cytotoxicity.
Collapse
Affiliation(s)
- M F Belcourt
- Department of Pharmacology, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
3
|
Borgese N, Aggujaro D, Carrera P, Pietrini G, Bassetti M. A role for N-myristoylation in protein targeting: NADH-cytochrome b5 reductase requires myristic acid for association with outer mitochondrial but not ER membranes. J Biophys Biochem Cytol 1996; 135:1501-13. [PMID: 8978818 PMCID: PMC2133939 DOI: 10.1083/jcb.135.6.1501] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
N-myristoylation is a cotranslational modification involved in protein-protein interactions as well as in anchoring polypeptides to phospholipid bilayers; however, its role in targeting proteins to specific subcellular compartments has not been clearly defined. The mammalian myristoylated flavoenzyme NADH-cytochrome b5 reductase is integrated into ER and mitochondrial outer membranes via an anchor containing a stretch of 14 uncharged amino acids downstream to the NH2-terminal myristoylate glycine. Since previous studies suggested that the anchoring function could be adequately carried out by the 14 uncharged residues, we investigated a possible role for myristic acid in reductase targeting. The wild type (wt) and a nonmyristoylatable reductase mutant (gly2-->ala) were stably expressed in MDCK cells, and their localization was investigated by immunofluorescence, immuno-EM, and cell fractionation. By all three techniques, the wt protein localized to ER and mitochondria, while the nonmyristoylated mutant was found only on ER membranes. Pulse-chase experiments indicated that this altered steady state distribution was due to the mutant's inability to target to mitochondria, and not to its enhanced instability in that location. Both wt and mutant reductase were resistant to Na2CO3 extraction and partitioned into the detergent phase after treatment of a membrane fraction with Triton X-114, demonstrating that myristic acid is not required for tight anchoring of reductase to membranes. Our results indicate that myristoylated reductase localizes to ER and mitochondria by different mechanisms, and reveal a novel role for myristic acid in protein targeting.
Collapse
Affiliation(s)
- N Borgese
- Consiglio Nazionale delle Ricerche Cellular and Molecular Pharmacology Center, Department of Pharmacology, University of Milan, Italy.
| | | | | | | | | |
Collapse
|
4
|
Borgese N, D'Arrigo A, De Silvestris M, Pietrini G. NADH-cytochrome b5 reductase and cytochrome b5. The problem of posttranslational targeting to the endoplasmic reticulum. Subcell Biochem 1993; 21:313-41. [PMID: 8256272 DOI: 10.1007/978-1-4615-2912-5_14] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- N Borgese
- CNR Center for Cytopharmacology, University of Milan, Italy
| | | | | | | |
Collapse
|
5
|
Borgese N, Longhi R. Both the outer mitochondrial membrane and the microsomal forms of cytochrome b5 reductase contain covalently bound myristic acid. Quantitative analysis on the polyvinylidene difluoride-immobilized proteins. Biochem J 1990; 266:341-7. [PMID: 2317190 PMCID: PMC1131137 DOI: 10.1042/bj2660341] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
NADH-cytochrome b5 reductase is known to be located on two distinct membranes, i.e. endoplasmic reticulum and outer mitochondrial membranes. The endoplasmic-reticulum-associated form of the enzyme contains myristic acid in an amide linkage to its N-terminal glycine [Ozols, Carr & Strittmatter (1984) J. Biol. Chem. 259, 13349-13354]. To investigate whether the dual subcellular localization of the reductase corresponds to a difference in fatty acylation, the enzyme was purified from well-characterized rat liver microsomal and mitochondrial fractions and analysed by a new quantitative analytical procedure. The purified reductases were run on SDS/polyacrylamide gels and blotted on to polyvinylidene difluoride membranes. The reductase-containing bands were treated with hydroxylamine, and amide-linked fatty acids were then detached by acid hydrolysis. The detached fatty acids were extracted, derivatized and analysed as phenylacyl esters by reverse-phase h.p.l.c., and the protein content of the samples was determined by amino acid analysis of the acid hydrolysates. Myristic acid was found in both the microsomal and mitochondrial reductases in a molar ratio of 1:1 with protein. These results demonstrate for the first time the presence of a myristylated protein on outer mitochondrial membranes, and show that the microsomal and mitochondrial reductases are also identical in their fatty acylation.
Collapse
Affiliation(s)
- N Borgese
- C.N.R. Center of Cytopharmacology, Faculty of Pharmacy, University of Milan, Italy
| | | |
Collapse
|
6
|
Scheele GA, Kern HF. Cellular Compartmentation and Protein Processing in the Exocrine Pancreas. Compr Physiol 1989. [DOI: 10.1002/cphy.cp060324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Hashimoto S, Bruno B, Lew DP, Pozzan T, Volpe P, Meldolesi J. Immunocytochemistry of calciosomes in liver and pancreas. J Cell Biol 1988; 107:2523-31. [PMID: 2974458 PMCID: PMC2115637 DOI: 10.1083/jcb.107.6.2523] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Calciosomes are small cytoplasmic vacuoles identified in various nonmuscle cell types by their content of protein(s) similar to calsequestrin (CS), the Ca2+ storage protein of the muscle sarcoplasmic reticulum (SR). These entities have been interpreted as the "primitive" counterpart of the SR, and suggested to be the organelle target of inositol-1,4,5-triphosphate action (Volpe, P., K. H. Krause, S. Hashimoto, F. Zorzato, T. Pozzan, J. Meldolesi, and D. P. Lew. Proc. Natl. Acad. Sci. USA. 85:1091-1095). Immunoperoxidase and immunogold experiments carried out in both thick and ultrathin cryosections of rat hepatocytes and pancreatic acinar cells by using antimuscle CS antibodies revealed a specific labeling widely distributed in the entire cytoplasm, while nuclei were negative. Individual calciosomes appeared as small (105 nm) membrane-bound vacuoles intermingled with, and often apposed to ER cisternae and mitochondria. Other calciosomes were scattered in the Golgi area, in between zymogen granules and beneath the plasma membrane. The cumulative volume of the CS-positive organelles was measured to account for the 0.8 and 0.45% of the cytoplasm in liver and pancreas cells, respectively. The real total volume of the calciosome compartment is expected to be approximately twice as large. In hepatocytes, structures similar to CS-positive calciosomes were decorated by antibodies against the Ca2+ ATPase of muscle SR, while ER cisternae were not. By dual labeling, colocalization was revealed in 53.6% of the organelles, with 37.6% positive for the ATPase only. CS appeared preferentially confined to the content, and the Ca2+ ATPase to the contour of the organelle. The results suggested a partial segregation of the two antigens, reminiscent of their well-known segregation in muscle SR. Additional dual-label experiments demonstrated that hepatic calciosomes express neither two ER markers (cytochrome-P450 and NADH-cytochrome b5 reductase) nor the endolysosome marker, luminal acidity (revealed by 3-[2,4-dinitroanilino]-3'-amino-N-methyl dipropylamine). Calciosomes appear as unique cytological entities, ideally equipped to play a role in the rapid-scale control of the cytosolic-free Ca2+ in nonmuscle cells.
Collapse
Affiliation(s)
- S Hashimoto
- Consiglio Nazionale delle Ricerche Center of Cytopharmacology, University of Milano, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Pietrini G, Carrera P, Borgese N. Two transcripts encode rat cytochrome b5 reductase. Proc Natl Acad Sci U S A 1988; 85:7246-50. [PMID: 3174630 PMCID: PMC282162 DOI: 10.1073/pnas.85.19.7246] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A cDNA expression library in lambda gt11 was screened with affinity-purified polyclonal anti-rat cytochrome b5 reductase antibodies. One positive clone out of 450,000 clones was isolated and found to be incomplete. This clone was used to rescreen the library, and a second, overlapping clone that contained the entire coding sequence was isolated. RNA gel blots showed that the two overlapping clones contained approximately 90% of the reductase mRNA sequence. Sequencing data showed (i) that rat reductase has a 93% sequence similarity with bovine and human reductase and (ii) that reductase is not synthesized as a high molecular weight precursor. Results of Southern blot analysis were consistent with the hypothesis that a single gene codes for the soluble and membrane-bound (microsomal and mitochondrial) forms of the reductase, present in erythrocytes and liver, respectively. The cloned cDNA was used to study reductase transcripts in liver and reticulocytes. Two antisense RNA probes that together covered the entire coding region and part of the noncoding region of reductase mRNA were used in RNase A protection experiments. These probes detected only one transcript in liver, suggesting that endoplasmic reticulum and mitochondrial reductase are translated from the same mRNA. In contrast, two transcripts were detected in reticulocytes, one of which mismatched the liver probe approximately 30 nucleotides downstream from the initiation codon. Since the soluble and membrane form of the reductase are known to differ at the N terminus, we suggest that this second transcript encodes soluble reductase.
Collapse
Affiliation(s)
- G Pietrini
- Consiglio Nazionale delle Ricerche, Center for Cytopharmacology, University of Milan, Italy
| | | | | |
Collapse
|
9
|
Borgese N, Pietrini G, Gaetani S. Concentration of NADH-cytochrome b5 reductase in erythrocytes of normal and methemoglobinemic individuals measured with a quantitative radioimmunoblotting assay. J Clin Invest 1987; 80:1296-302. [PMID: 3680497 PMCID: PMC442383 DOI: 10.1172/jci113205] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The activity of NADH-cytochrome b5 reductase (NADH-methemoglobin reductase) is generally reduced in red cells of patients with recessive hereditary methemoglobinemia. To determine whether this lower activity is due to reduced concentration of an enzyme with normal catalytic properties or to reduced activity of an enzyme present at normal concentration, we measured erythrocyte reductase concentrations with a quantitative radioimmunoblotting method, using affinity-purified polyclonal antibodies against rat liver microsomal reductase as probe. In five patients with the "mild" form of recessive hereditary methemoglobinemia, in which the activity of erythrocyte reductase was 4-13% of controls, concentrations of the enzyme, measured as antigen, were also reduced to 7-20% of the control values. The concentration of membrane-bound reductase antigen, measured in the ghost fraction, was similarly reduced. Thus, in these patients, the reductase deficit is caused mainly by a reduction in NADH-cytochrome b5 reductase concentration, although altered catalytic properties of the enzyme may also contribute to the reduced enzyme activity.
Collapse
Affiliation(s)
- N Borgese
- Consiglio Nazionale delle Ricerche Center of Cytopharmacology, Milan, Italy
| | | | | |
Collapse
|
10
|
Rapoport TA. Protein translocation across and integration into membranes. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1986; 20:73-137. [PMID: 3007024 DOI: 10.3109/10409238609115901] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This review concentrates mainly on the translocation of proteins across the endoplasmic reticulum membrane and cytoplasmic membrane in bacteria. It will start with a short historical review and will pinpoint the crucial questions in the field. Special emphasis will be given to the present knowledge on the molecular details of the first steps, i.e., on the function of the signal recognition particle and its receptor. The knowledge on the signal peptidase and the ribosome receptor(s) will also be summarized. The various models for the translocation of proteins across and the integration of proteins into membranes will be critically discussed. In particular, the function of signal, stop-transfer, and insertion sequences will be dealt with and molecular differences discussed. The cotranslational mode of membrane transfer will be compared with the post-translational transport found for mitochondria and chloroplasts. This review will conclude with open questions and an outlook.
Collapse
|
11
|
Hortsch M, Meyer DI. Transfer of secretory proteins through the membrane of the endoplasmic reticulum. INTERNATIONAL REVIEW OF CYTOLOGY 1986; 102:215-42. [PMID: 3021646 DOI: 10.1016/s0074-7696(08)61276-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Etemadi AH. Functional and orientational features of protein molecules in reconstituted lipid membranes. ADVANCES IN LIPID RESEARCH 1985; 21:281-428. [PMID: 3161297 DOI: 10.1016/b978-0-12-024921-3.50014-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Chicheportiche Y, Vassalli P, Tartakoff AM. Characterization of cytoplasmically oriented Golgi proteins with a monoclonal antibody. J Cell Biol 1984; 99:2200-10. [PMID: 6438114 PMCID: PMC2113572 DOI: 10.1083/jcb.99.6.2200] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BALB/c mice were repeatedly immunized with a galactosyl transferase-rich microsomal fraction of rat myeloma cells. Spleen cells were subsequently fused with Sp2/0 mouse myeloma cells, the resulting hybridomas were cloned, and their secreted Ig was screened for reactivity with antigens belonging to the Golgi complex. One such monoclonal antibody, 6F4C5, gave especially intense immunofluorescent staining of the Golgi area of myeloma cells and fibroblasts. It recognized two proteins bands on immunoblots of gel-fractionated cell lysates: a major one with an estimated Mr of 54,000 and a minor one at 86,000. Both proteins were concentrated in microsomal fractions isolated at low ionic strength. They were hydrophilic judging from partitioning of a Triton X-114 cell lysate. Both were cytoplasmically oriented as demonstrated by protease and high KCl treatments of postmitochondrial supernatants and microsomal fractions. Neither was retained by columns of insolubilized wheat germ agglutinin or concanavalin A, which suggests that they are not glycoproteins. Their more detailed location in the Golgi complex was studied by immunoelectron microscopy, using a saponin permeabilization procedure and peroxidase-conjugated reagents. The observed staining was restricted to two or three cisternae in the medial part of the stack. Nevertheless, differential centrifugation experiments indicated that the two antigens may be recovered in distinct subcellular fractions: this may be related to the unexpected observation that rather low salt concentrations strip the antigens from microsomal fraction.
Collapse
|
14
|
Borregaard N, Tauber AI. Subcellular localization of the human neutrophil NADPH oxidase. b-Cytochrome and associated flavoprotein. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)43619-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Pereyra PM, Braun PE. Studies on subcellular fractions which are involved in myelin membrane assembly: isolation from developing mouse brain and characterization by enzyme markers, electron microscopy, and electrophoresis. J Neurochem 1983; 41:957-73. [PMID: 6194259 DOI: 10.1111/j.1471-4159.1983.tb09040.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An extensive scheme for the subcellular fractionation of myelinating mouse brain is presented. Several centrifugation procedures for the separation of membranes involved in myelinogenesis are critically appraised, and guidelines for selection of centrifugation conditions are given. Characteristics of subcellular fractions are presented in the form of electron micrographs; also presented are distribution of RNA and protein; electrophoretic profiles of membrane proteins, and verification of the myelin-specific basic proteins, proteolipid protein, and glycoprotein by the immuno-electroblot technique; and the distribution of eight marker enzyme activities. Myelin-related membranes were found to differ both qualitatively and quantitatively in their complement of myelin-specific proteins. These myelin-containing fractions appear to represent different stages of myelination that coexist in developing mouse brain. These results provide the fundamental methodologies and background information for kinetic radioisotope analysis of intracellular events in the assembly of myelin presented in a companion article.
Collapse
|
16
|
Elhammer A, Peterson E, Dallner G. Distribution and transport of apo- and holocytochrome b5 in the endoplasmic reticulum of rat liver. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 730:76-84. [PMID: 6830798 DOI: 10.1016/0005-2736(83)90319-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The transport and distribution of apo- and holocytochrome b5 was investigated with the aid of specific antibodies. The holoenzyme was found to be localized mainly in the rough and smooth endoplasmic reticulum and in the Golgi system but some precipitation could also be obtained in the outer mitochondrial membranes and in the peroxisomes. The apoenzyme, however, could only be detected in the endoplasmic reticulum-Golgi system, which also was shown to be the sole site for incorporation of the prosthetic heme moiety. Time-course studies revealed that the labeled enzyme appeared both as apoenzyme and as holoenzyme in the rough endoplasmic reticulum 10 min after in vivo injection of radioactive leucine and that further transport to the smooth endoplasmic reticulum occurred within 10 min. The subsequent transport to other organelles, however, required a somewhat longer time and peak radioactivity in outer mitochondrial membranes was not attained until after 40 min.
Collapse
|
17
|
|
18
|
|
19
|
Borgese N, Macconi D, Parola L, Pietrini G. Rat erythrocyte NADH-cytochrome b5 reductase. Quantitation and comparison between the membrane-bound and soluble forms using an antibody against the rat liver enzyme. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)33526-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
20
|
Whitnall MH, Grafstein B. Perikaryal routing of newly synthesized proteins in regenerating neurons: quantitative electron microscopic autoradiography. Brain Res 1982; 239:41-56. [PMID: 7093690 DOI: 10.1016/0006-8993(82)90832-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Intracellular transport of newly synthesized proteins through organelles in the perikarya of regenerating goldfish retinal ganglion cells was studied using electron microscopic autoradiography. Retinas were removed 14 or 30 days after optic tract cut or sham operation, pulse-labeled in [3H]proline-containing medium for 5 min, and then chase-incubated in medium containing unlabeled proline for various times up to 55 min before fixation. Fourteen days after axotomy, during rapid growth of the regenerating axons, the time course of change of relative grain density (% grains/% area) in the rough endoplasmic reticulum in regenerating cells was almost identical to that in control cells. However, the grain distribution analysis revealed an increased delivery of newly synthesized proteins to the Golgi apparatus, perikaryal plasma membrane and nucleus in regenerating cells. Thirty days after axotomy, during synaptogenesis, Golgi apparatus labeling in the regenerating cells became significantly higher than control, but the increase was delayed compared to the increase seen 14 days after axotomy. Labeling of the plasma membrane and nucleus did not rise above control in 30-day regenerating cells chase-incubated for up to 55 min. Thus the pattern of intracellular transport of newly synthesized proteins varies with the stage stage of axonal regeneration.
Collapse
|
21
|
Okada Y, Frey AB, Guenthner TM, Oesch F, Sabatini DD, Kreibich G. Studies on the biosynthesis of microsomal membrane proteins. Site of synthesis and mode of insertion of cytochrome b5, cytochrome b5 reductase, cytochrome P-450 reductase and epoxide hydrolase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 122:393-402. [PMID: 6800789 DOI: 10.1111/j.1432-1033.1982.tb05894.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
|
23
|
Hüttinger M, Pavelka M, Goldenberg H, Kramar R. Membranes of rat liver peroxisomes. HISTOCHEMISTRY 1981; 71:259-67. [PMID: 6263829 DOI: 10.1007/bf00507829] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Membranes of liver peroxisomes from rats fed with clofibrate were purified in a discontinuous gradient using a zonal rotor. The preparation consists of round or oval vesicles mostly devoid of nucleoids with a diameter ranging from 70-700 nm; open sheets are found very infrequently. Mitochondrial profiles as well as vesicles containing cytochemically demonstrable glucose 6-phosphatase are scarce; accordingly, glucose 6-phosphatase is nearly undetectable biochemically. Monoamine oxidase is absent in peroxisomal membranes. Cytochrome b5 is found in a concentration of 0.3 nmoles/mg protein, an order of magnitude comparable to the content of endoplasmic reticulum membranes. Reduction of this cytochrome with palmitoyl-CoA is possible only after recombination of the membranes with the soluble peroxisomal matrix fraction.
Collapse
|