1
|
Chenevert J, Robert MLV, Sallé J, Cacchia S, Lorca T, Castro A, McDougall A, Minc N, Castagnetti S, Dumont J, Lacroix B. Measuring Mitotic Spindle and Microtubule Dynamics in Marine Embryos and Non-model Organisms. Methods Mol Biol 2024; 2740:187-210. [PMID: 38393477 DOI: 10.1007/978-1-0716-3557-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
During eukaryotic cell division a microtubule-based structure, the mitotic spindle, aligns and segregates chromosomes between daughter cells. Understanding how this cellular structure is assembled and coordinated in space and in time requires measuring microtubule dynamics and visualizing spindle assembly with high temporal and spatial resolution. Visualization is often achieved by the introduction and the detection of molecular probes and fluorescence microscopy. Microtubules and mitotic spindles are highly conserved across eukaryotes; however, several technical limitations have restricted these investigations to only a few species. The ability to monitor microtubule and chromosome choreography in a wide range of species is fundamental to reveal conserved mechanisms or unravel unconventional strategies that certain forms of life have developed to ensure faithful partitioning of chromosomes during cell division. Here, we describe a technique based on injection of purified proteins that enables the visualization of microtubules and chromosomes with a high contrast in several divergent marine embryos. We also provide analysis methods and tools to extract microtubule dynamics and monitor spindle assembly. These techniques can be adapted to a wide variety of species in order to measure microtubule dynamics and spindle assembly kinetics when genetic tools are not available or in parallel to the development of such techniques in non-model organisms.
Collapse
Affiliation(s)
- Janet Chenevert
- Sorbonne Universités, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Villefranche-sur-mer, France
| | - Morgane L V Robert
- Université de Montpellier, Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, Montpellier Cedex 5, France
| | - Jérémy Sallé
- CNRS, Institut Jacques Monod, Université Paris Cité, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Sébastien Cacchia
- Université de Montpellier, Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, Montpellier Cedex 5, France
| | - Thierry Lorca
- Université de Montpellier, Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, Montpellier Cedex 5, France
| | - Anna Castro
- Université de Montpellier, Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, Montpellier Cedex 5, France
- Programme équipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Alex McDougall
- Sorbonne Universités, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Villefranche-sur-mer, France
| | - Nicolas Minc
- CNRS, Institut Jacques Monod, Université Paris Cité, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Stefania Castagnetti
- Sorbonne Universités, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Villefranche-sur-mer, France
| | - Julien Dumont
- CNRS, Institut Jacques Monod, Université Paris Cité, Paris, France
| | - Benjamin Lacroix
- Université de Montpellier, Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, Montpellier Cedex 5, France.
| |
Collapse
|
2
|
Leone M, Musa G, Engel FB. Cardiomyocyte binucleation is associated with aberrant mitotic microtubule distribution, mislocalization of RhoA and IQGAP3, as well as defective actomyosin ring anchorage and cleavage furrow ingression. Cardiovasc Res 2019. [PMID: 29522098 DOI: 10.1093/cvr/cvy056] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aims After birth mammalian cardiomyocytes initiate a last cell cycle which results in binucleation due to cytokinesis failure. Despite its importance for cardiac regenerative therapies, this process is poorly understood. Here, we aimed at a better understanding of the difference between cardiomyocyte proliferation and binucleation and providing a new tool to distinguish these two processes. Methods and results Monitoring of cell division by time-lapse imaging revealed that rat cardiomyocyte binucleation stems from a failure to properly ingress the cleavage furrow. Astral microtubule required for actomyosin ring anchorage and thus furrow ingression were not symmetrically distributed at the periphery of the equatorial region during anaphase in binucleating cardiomyocytes. Consequently, RhoA, the master regulator of actomyosin ring formation and constriction, non-muscle myosin IIB, a central component of the actomyosin ring, as well as IQGAP3 were abnormally localized during cytokinesis. In agreement with improper furrow ingression, binucleation in vitro and in vivo was associated with a failure of RhoA and IQGAP3 to localize to the stembody of the midbody. Conclusion Taken together, these results indicate that naturally occurring cytokinesis failure in primary cardiomyocytes is due to an aberrant mitotic microtubule apparatus resulting in inefficient anchorage of the actomyosin ring to the plasma cell membrane. Thus, cardiomyocyte binucleation and division can be discriminated by the analysis of RhoA as well as IQGAP3 localization.
Collapse
Affiliation(s)
- Marina Leone
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany.,Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 12, 91054 Erlangen, Germany
| | - Gentian Musa
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 12, 91054 Erlangen, Germany
| | - Felix Benedikt Engel
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany.,Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 12, 91054 Erlangen, Germany.,Muscle Research Center Erlangen
| |
Collapse
|
3
|
Bailey M, Conway L, Gramlich MW, Hawkins TL, Ross JL. Modern methods to interrogate microtubule dynamics. Integr Biol (Camb) 2013; 5:1324-33. [PMID: 24061278 DOI: 10.1039/c3ib40124c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microtubules are essential protein filaments required to organize and rearrange the interior of the cell. They must be stiff with mechanical integrity to support the structure of the cell. Yet, they must also be dynamic to enable rearrangements of the cell during cell division and development. This dynamic nature is inherent to microtubules and comes about through the hydrolysis of chemical energy stored in guanosine triphosphate (GTP). Dynamic instability has been studied with a number of microscopy techniques both in cells and in reconstituted systems. In this article, we review the techniques used to examine microtubule dynamic instability and highlight future avenues and still open questions about this vital and fascinating activity.
Collapse
Affiliation(s)
- Megan Bailey
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 01003, USA
| | | | | | | | | |
Collapse
|
4
|
Varga V, Leduc C, Bormuth V, Diez S, Howard J. Kinesin-8 Motors Act Cooperatively to Mediate Length-Dependent Microtubule Depolymerization. Cell 2009; 138:1174-83. [DOI: 10.1016/j.cell.2009.07.032] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 04/20/2009] [Accepted: 07/10/2009] [Indexed: 01/23/2023]
|
5
|
Flegr J. A possible role of intracellular isoelectric focusing in the evolution of eukaryotic cells and multicellular organisms. J Mol Evol 2009; 69:444-51. [PMID: 19688285 DOI: 10.1007/s00239-009-9269-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 07/16/2009] [Accepted: 07/28/2009] [Indexed: 11/30/2022]
Abstract
A new scenario of the origin of eukaryotic cell and multicellularity is presented. A concentric pH-gradient has been shown to exist in the cytosol of eukaryotic cells. The most probable source of such gradient is its self-formation in gradient of electric field between center and periphery of a cell. Theoretical analysis has shown that, for example, a cell of Saccharomyces cerevisiae has enough energy to continuously sustain such gradient of strength about 1.5 kV/cm, the value sufficient for effective isoelectric focusing of cytoplasmic proteins. Focusing of enzymes could highly increase the effectiveness of an otherwise diffusion-limited metabolism of large cells by concentrating enzymes into small and distinct parts of a cytoplasm. By taking away an important physical constraint to the volume of cytoplasm, the intracellular isoelectric focusing enabled evolution of cells 3-4 order of magnitude larger than typical prokaryotic cells. This opened the way for the origin of phagocytosis and lately for the development of different forms of endosymbiosis, some of them resulting in an endosymbiotic origin of mitochondria and plastids. The large volume of a cell-enabled separation of nuclear and cytoplasmic compartments which was a precondition for separation of transcription and translation processes and therefore also for the origin of various RNA-preprocessing mechanisms. The possibility to regulate gene expression by postprocessing RNA and to regulate metabolism by an electrophoretic translocation enzymes between different parts of cytoplasm by changing their isoelectric points opened the way for cell and tissue differentiation and therefore for the origin of complex multicellular organisms.
Collapse
Affiliation(s)
- Jaroslav Flegr
- Department of Philosophy and History of Science, Charles University, Vinicná 7, 128 44, Praha 2, Czech Republic.
| |
Collapse
|
6
|
Abstract
The ability to localize proteins of interest in live cells through imaging inherently fluorescent protein tags has provided an unprecedented level of information on cellular organization. However, there are numerous cases where fluorescent tags alter the localization and/or function of the proteins to which they are appended. Clathrin-mediated endocytosis from the plasma membrane is a physiologically important process evolutionarily conserved from yeast to humans. Some proteins that are associated with the machinery of clathrin-mediated endocytosis have been tagged with fluorescent proteins. However, it has not yet been possible to study this process through a protein marker that is specific to this step and still fully functional when linked to a fluorescent protein. In this study, we present the first demonstration that one of these proteins, in this case a green fluorescent protein (GFP) fusion to alpha-adaptin, a marker of the adaptor protein-2 complex, functionally complements knockdown of endogenous protein through small interfering RNA silencing. GFP-alpha-adaptin, as well as the techniques used to test the fusion protein, represents an important contribution to the cell biologist's toolbox, which will permit a greater understanding of vesicle trafficking in live cells.
Collapse
Affiliation(s)
- Joshua Z Rappoport
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|
7
|
Tamura A, Ozawa K, Ohya T, Tsuyama N, Eyring EM, Masujima T. Nanokinetics of drug molecule transport into a single cell. Nanomedicine (Lond) 2006; 1:345-50. [PMID: 17716164 DOI: 10.2217/17435889.1.3.345] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: To analyze drug transport at a single cell level, a mast cell line, RBL-2H3, was treated with cell-permeable fluorescent compounds, such as quinacrine, and was monitored by a fluorescence video microscope. Methods: Small areas in the video that corresponded to granules and part of the cytosol in a cell were chosen and the signal intensity in these areas was monitored sequentially. Results: The initial rate of quinacrine uptake through the cell membrane calculated from the fluorescent signal was correlated with quinacrine concentration, and it decreased at a lower temperature, showing that the transport was an energy-requiring process, such as active transport. The kinetics of the transport through the microgranular membrane did not depend on the temperature but the pH in the cytosol, therefore this process should be passive transport by pH gradient. Conclusion: These data indicate that the observation of video microscope-mediated drug transport using fluorescent dye is useful in kinetic analysis at the nanometer scale.
Collapse
Affiliation(s)
- Atsushi Tamura
- Analytical Molecular Medicine and Devices Laboratory, Graduate School of Medical Sciences, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Walss-Bass C, Kreisberg JI, Ludueña RF. Mechanism of localization of betaII-tubulin in the nuclei of cultured rat kidney mesangial cells. CELL MOTILITY AND THE CYTOSKELETON 2001; 49:208-17. [PMID: 11746665 DOI: 10.1002/cm.1034] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tubulin is an alphabeta heterodimer. Both the alpha and beta polypeptides exist as multiple isotypes. Although tubulin was generally thought to exist only in the cytoplasm, we have previously reported the presence of the betaII isotype of tubulin in the nuclei of cultured rat kidney mesangial cells, smooth-muscle-like cells that reside in the glomerular mesangium; nuclear betaII exists as an alphabetaII dimer, capable of binding to colchicine, but in non-microtubule form [Walss et al., 1999: Cell Motil. Cytoskeleton 42:274-284]. We have now investigated the nature of the process by which alphabetaII enters the nuclei of these cells. By micro-injecting fluorescently labeled alphabetaII into mesangial cells, we found that alphabetaII was present in the nuclei of cells only if they were allowed to go through mitosis. In contrast, there were no circumstances in which microinjected fluorescently labeled abetaII or alphabetaIV dimers entered the nuclei. These findings, together with the absence of any nuclear localization signal in alphabetaII, strongly favor the model that alphabetaII, rather than being transported into the intact nucleus, co-assembles with the nucleus at the end of mitosis. Our results also indicate that the nuclear localization mechanism is specific for alphabetaII. This result raises the possibility that alphabetaII may have a specific function that requires its presence in the nuclei of cultured rat kidney mesangial cells.
Collapse
Affiliation(s)
- C Walss-Bass
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | |
Collapse
|
9
|
Walss C, Kreisberg JI, Ludueña RF. Presence of the betaII isotype of tubulin in the nuclei of cultured mesangial cells from rat kidney. CELL MOTILITY AND THE CYTOSKELETON 2000; 42:274-84. [PMID: 10223634 DOI: 10.1002/(sici)1097-0169(1999)42:4<274::aid-cm2>3.0.co;2-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tubulin has generally been considered to be a cytosolic protein whose only function is to form microtubules. This assumption is supported by a great deal of evidence derived from immunohistochemical studies using antibodies directed against whole tubulin or its component polypeptides alpha- and beta-tubulin. We have re-examined the intracellular distribution of tubulin using monoclonal antibodies specific for the betaI, betaII, betaIII, and betaIV isotypes of beta-tubulin. Our test system is the cultured rat kidney mesangial cell. We have found that betaIII is absent from these cells and that beta1 and betaIV are present in microtubules throughout the cytosol. In contrast, betaII is present largely in the nuclei. Immunoblotting of purified nuclear extracts shows that the betaII-reactive antigen co-migrates with beta-tubulin. Extraction of the cytosol and chromatin suggests that betaII is concentrated in the nucleoli and also in a reticulated network in the rest of the nucleoplasm. An antibody to tyrosinated alpha-tubulin shows that alpha is also present in the nucleoli. Treatment of the cells with fluorescent colchicine shows an accumulation of colchicine in the nucleoli. Finally, fluorescently labeled alphabetaII-tubulin dimers, when microinjected into the cells, enter the nuclei and are concentrated in the nucleoli. These results suggest that the betaII isotype of tubulin is present as an alphabetaII dimer in the nuclei of cultured mesangial cells and suggest the possibility that different tubulin isotypes may have specific functions within the cell.
Collapse
Affiliation(s)
- C Walss
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284-7760, USA
| | | | | |
Collapse
|
10
|
Zaal KJ, Smith CL, Polishchuk RS, Altan N, Cole NB, Ellenberg J, Hirschberg K, Presley JF, Roberts TH, Siggia E, Phair RD, Lippincott-Schwartz J. Golgi membranes are absorbed into and reemerge from the ER during mitosis. Cell 1999; 99:589-601. [PMID: 10612395 DOI: 10.1016/s0092-8674(00)81548-2] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Quantitative imaging and photobleaching were used to measure ER/Golgi recycling of GFP-tagged Golgi proteins in interphase cells and to monitor the dissolution and reformation of the Golgi during mitosis. In interphase, recycling occurred every 1.5 hr, and blocking ER egress trapped cycling Golgi enzymes in the ER with loss of Golgi structure. In mitosis, when ER export stops, Golgi proteins redistributed into the ER as shown by quantitative imaging in vivo and immuno-EM. Comparison of the mobilities of Golgi proteins and lipids ruled out the persistence of a separate mitotic Golgi vesicle population and supported the idea that all Golgi components are absorbed into the ER. Moreover, reassembly of the Golgi complex after mitosis failed to occur when ER export was blocked. These results demonstrate that in mitosis the Golgi disperses and reforms through the intermediary of the ER, exploiting constitutive recycling pathways. They thus define a novel paradigm for Golgi genesis and inheritance.
Collapse
Affiliation(s)
- K J Zaal
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Istitutes of Health, Bethesda, Maryland 20892-5430, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Waterman-Storer CM. Microtubules and microscopes: how the development of light microscopic imaging technologies has contributed to discoveries about microtubule dynamics in living cells. Mol Biol Cell 1998; 9:3263-71. [PMID: 9843568 PMCID: PMC25623 DOI: 10.1091/mbc.9.12.3263] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/1998] [Accepted: 09/10/1998] [Indexed: 11/11/2022] Open
Affiliation(s)
- C M Waterman-Storer
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| |
Collapse
|
12
|
Paramio JM, Casanova ML, Alonso A, Jorcano JL. Keratin intermediate filament dynamics in cell heterokaryons reveals diverse behaviour of different keratins. J Cell Sci 1997; 110 ( Pt 9):1099-111. [PMID: 9175706 DOI: 10.1242/jcs.110.9.1099] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To study the dynamics of keratin intermediate filaments, we fused two different types of epithelial cells (PtK2 and BMGE+H) and studied how the keratins from the parental cells recombine and copolymerize to form the heterokaryon cytoskeleton. The behaviour of the keratins during this process was followed by immunofluorescence using specific antibodies. After fusion, the parental cytoskeletons undergo a depolymerization process most apparent in the region adjacent to the fusion area. The depolymerized subunits spread throughout the heterokaryon and copolymerize into a new hybrid cytoskeleton. The complete process is very rapid, occurring in 3–4 hours, thus demonstrating the highly dynamic nature of the keratin cytoskeleton. Although newly synthesised subunits contribute to the formation of the hybrid cytoskeleton, the process takes place with similar kinetics in the absence of protein synthesis, showing the dynamic nature of the keratins from pre-existing cytoskeletons. During this process, specific keratins behave differently. Keratins K8, K18, K5 and K10 are mobilised from the parental cytoskeletons and reassemble rapidly into the hybrid cytoskeleton (3–6 hours), whereas K14 requires a substantially longer period (9–24 hours). Thus, different keratins, even when they form part of the same heterodimeric/tetrameric complexes, as is the case for K5 and K14, exhibit different dynamics. This suggests that individual polypeptides or homopolymeric complexes rather than exclusively heterodimeric/ tetrameric subunits, as is currently thought, can also take part in keratin intermediate filament assembly and dynamics. Biochemical analysis performed in the absence of protein synthesis revealed greater amounts of K5 than of K14 in the soluble pool of BMGE+H cells. Crosslinking and immunoprecipitation experiments indicated an excess of monomeric K5, as well as of K5/K14 heterodimers and K5 homodimers in the soluble pool. These results are in agreement with the different dynamic behaviour of these keratins observed in immunofluorescence. On the contrary, the phosphorylation levels of K5 and K14 are similar in both the soluble pool and the polymerized fraction, suggesting that phosphorylation does not play an important role in the different dynamics displayed by these two proteins. In summary, our results demonstrate that, following fusion, the keratin intermediate filament network reshapes rather rapidly and that keratins are highly dynamic proteins, although this mobility depends on each particular polypeptide.
Collapse
Affiliation(s)
- J M Paramio
- Department of Cell and Molecular Biology, CIEMAT, Madrid, Spain.
| | | | | | | |
Collapse
|
13
|
Wheatley SP, Wang Y. Midzone microtubule bundles are continuously required for cytokinesis in cultured epithelial cells. J Cell Biol 1996; 135:981-9. [PMID: 8922381 PMCID: PMC2133397 DOI: 10.1083/jcb.135.4.981] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The current model of cytokinesis proposes that spindle poles and associated microtubules determine the cleavage plane, and, once the signal has been delivered to the cortex, the entire mitotic apparatus can be removed without affecting cell division. While supported by compelling data from Echinoderm embryos, recent observations suggest that the model may not be universally applicable. In this study, we have examined the relationship(s) among microtubules, chromosomes, and cleavage activity in living normal rat kidney (NRK) cells with multipolar mitotic figures. We found that cleavage activity correlated with the distribution of midzone microtubule bundles and Telophase Disc 60 protein (TD60) rather than the position of spindle poles. In addition, reduction of midzone microtubules near the cortex, by either nocodazole treatment or spontaneous reorganization in tripolar cells, caused inhibition or regression of furrowing. These results demonstrate that continuous interaction between midzone microtubule bundles and the cortex is required for successful cleavage in tissue culture cells.
Collapse
Affiliation(s)
- S P Wheatley
- Cell Biology Group, Worcester Foundation for Biomedical Research, Shrewsbury, Massachusetts 01545, USA
| | | |
Collapse
|
14
|
Affiliation(s)
- K A Suprenant
- Department of Physiology and Cell Biology, University of Kansas, Lawrence, Kansas 66045, USA
| | | |
Collapse
|
15
|
Miller RK, Vikstrom K, Goldman RD. Keratin incorporation into intermediate filament networks is a rapid process. J Cell Biol 1991; 113:843-55. [PMID: 1709167 PMCID: PMC2288995 DOI: 10.1083/jcb.113.4.843] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The properties of keratin-containing intermediate filament (IF) networks in vivo were studied following the microinjection of biotinylated keratin. Keratin-IFs were biotinylated, disassembled, and separated into type I and type II proteins by ion exchange chromatography. Recombination of these derivatized type I and type II keratins resulted in the formation of 10-nm diameter IF. The type I keratins were microinjected into epithelial cells and observed by immunofluorescence microscopy. Biotin-rich spots were found throughout the cytoplasm at 15-20 min after injection. Short biotinylated fibrous structures were seen at 30-45 min after injection, most of which colocalized with the endogenous bundles of IF (tono-filaments). By 1 1/2 to 2 h after microinjection, extensive biotinylated keratin IF-like networks were evident. These were highly coincident with the endogenous tonofilaments throughout the cell, including those at desmosomal junctions. These results suggest the existence of a relatively rapid subunit incorporation mechanism using numerous sites along the length of the endogenous tonofilament bundles. These observations support the idea that keratin-IFs are dynamic cytoskeletal elements.
Collapse
Affiliation(s)
- R K Miller
- Northwestern University Medical School, Department of Cell, Molecular, and Structural Biology, Chicago, Illinois 60611
| | | | | |
Collapse
|
16
|
Abstract
A model of intracellular electrical sorting of enzymes and organelles in the cytosol, based on isoelectric focusing, is proposed. The focusing is suggested to take place over a centrally symmetric pH gradient which in the cytosol of the yeast Saccharomyces cerevisiae is known to be 7.2-6.4. From published data on the energetic capacity and from the computed electric resistance of the S. cerevisiae cell, the maximum value of the electric field that can be maintained in the cytosol was estimated. The results showed that the strength of a centrally symmetric intracytosolic electric field could be as high as 90 mV/cm, which is sufficient to account for sorting of cytosolic proteins according to their isoelectric points. Although direct experimental evidence for intracellular isoelectric focusing is still missing, several phenomena of physiological importance can be understood on the assumption of its real existence.
Collapse
Affiliation(s)
- J Flegr
- Institute of Molecular Genetics, Czechoslovak Academy of Sciences, Prague
| |
Collapse
|
17
|
Abstract
Data that describe both the structure and the physiology of the mitotic spindle are reviewed. Some of the molecules that have been shown to play a role in mitosis are tabulated, and how mitosis might work is considered.
Collapse
Affiliation(s)
- J R McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309
| | | |
Collapse
|
18
|
Wadsworth P, Shelden E, Rupp G, Rieder CL. Biotin-tubulin incorporates into kinetochore fiber microtubules during early but not late anaphase. J Cell Biol 1989; 109:2257-65. [PMID: 2681228 PMCID: PMC2115857 DOI: 10.1083/jcb.109.5.2257] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The dynamic behavior of kinetochore fiber microtubules has been examined in PtK1 cells during anaphase of mitosis. Cells in anaphase were injected with biotin-tubulin and, at various intervals after injection, fixed for light or electron microscopic immunolocalization of biotin-tubulin-containing microtubules. When cells in early to mid anaphase were injected with biotin-tubulin and fixed 1-2 min later, fluorescence was observed throughout the spindle, including the region of the kinetochore fibers. Electron microscopy of early to mid anaphase cells, after processing with immunogold methods, revealed both labeled and unlabeled microtubules in the kinetochore fibers; some labeled microtubules contacted the kinetochores. When late anaphase cells were injected with biotin-tubulin, and fixed a few minutes later, little fluorescence was observed in the kinetochore fibers. Electron microscopy confirmed that kinetochore fibers in late anaphase cells were refractory to tubulin incorporation. The results of these experiments demonstrate that the kinetochore fiber incorporates new microtubules during early anaphase but that this incorporation ceases in mid to late anaphase. Thus, microtubule turnover within the kinetochore fiber does not abruptly cease at the onset of anaphase and anaphase kinetochore fiber microtubules are more dynamic than previously suspected.
Collapse
Affiliation(s)
- P Wadsworth
- Department of Zoology, University of Massachusetts, Amherst 01003
| | | | | | | |
Collapse
|
19
|
Abstract
We have synthesized three new fluorescent analogues of tubulin, using fluorescein or rhodamine groups attached to N-hydroxy-succinimidyl esters, and have partially characterized the properties of these analogues. We have also further characterized the tubulin derivatized with dichlorotriazinyl-aminofluorescein that has previously been used in this and other laboratories. Our results show that all four analogues assemble into microtubules which break up when exposed to light of the wavelengths that excite fluorescence. This sensitivity places severe constraints on the use of these analogues in studies of microtubule dynamics.
Collapse
Affiliation(s)
- G P Vigers
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309
| | | | | |
Collapse
|
20
|
Elinson RP, Rowning B. A transient array of parallel microtubules in frog eggs: potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis. Dev Biol 1988; 128:185-97. [PMID: 3289985 DOI: 10.1016/0012-1606(88)90281-3] [Citation(s) in RCA: 200] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The dorsoventral axis of the frog embryo is specified by a rotation of the egg cytoplasm relative to the cortex. When eggs undergoing the cortical/cytoplasmic rotation were examined by immunocytochemistry and electron microscopy, an extensive array of parallel microtubules was found covering the vegetal hemisphere of the egg. The microtubules were 1-3 microns deep from the plasma membrane and were aligned parallel to the direction of rotation. They formed at the start of rotation and disappeared at its completion. Colchicine and uv irradiation, inhibitors of the rotation, prevented the formation of the parallel microtubules. Based on these properties, we suggest that the parallel microtubules serve as tracks for the cortical/cytoplasmic rotation which specifies the dorsoventral axis of the embryo.
Collapse
Affiliation(s)
- R P Elinson
- Department of Zoology, University of Toronto, Canada
| | | |
Collapse
|
21
|
Jessus C, Cazenave C, Ozon R, Hélène C. Specific inhibition of endogenous beta-tubulin synthesis in Xenopus oocytes by anti-messenger oligodeoxynucleotides. Nucleic Acids Res 1988; 16:2225-33. [PMID: 3357774 PMCID: PMC338211 DOI: 10.1093/nar/16.5.2225] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
An oligodeoxynucleotide containing 27 nucleotides, complementary to a highly conserved sequence of beta-tubulin mRNAs, led to a nearly complete inhibition of beta-tubulin synthesis in Xenopus oocytes after microinjection. Inhibition persisted 24 hours post-injection and was specific for beta-tubulin as the synthesis of alpha-tubulin as well as that of other proteins from the oocyte was not affected. Complete inhibition of beta-tubulin synthesis did not prevent progesterone-induced meiotic maturation and formation of the chromosome spindle. This result indicates that the pool of endogenous tubulin already present in fully-grown oocytes is sufficient to allow normal meiotic maturation. This finding correlates with previous experiments showing that the turn-over of tubulin is very slow in the oocyte.
Collapse
Affiliation(s)
- C Jessus
- Laboratoire de Physiologie de la Reproduction, INRA CNRS UA 555, Université Pierre et Marie Curie, Paris, France
| | | | | | | |
Collapse
|
22
|
Sammak PJ, Borisy GG. Detection of single fluorescent microtubules and methods for determining their dynamics in living cells. CELL MOTILITY AND THE CYTOSKELETON 1988; 10:237-45. [PMID: 3052867 DOI: 10.1002/cm.970100128] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The ability to tag biological molecules fluorescently and to detect their distribution in living cells has promoted the study of cytoplasmic organization in general and microtubule dynamics in particular. The techniques that we have selected and developed allowed the determination of spatial and temporal changes of the microtubule network in living fibroblasts at the level of individual microtubules. We have employed two general approaches for determining pattern changes: direct video microscopy and photobleaching and subsequent observation. Direct observation of fluorescent microtubules by high-definition video microscopy provided good spatial resolution at several time points, but was limited to the less congested and thinner periphery of the cell. This approach was made possible by a relatively bright, photostable reporter, xrhodamine-tubulin, and showed that microtubules underwent rounds of assembly and disassembly from their ends. Bleaching and subsequent observation of lysed cells improved the signal to noise ratio by extracting soluble chromophore and permitted observations in congested areas, but was limited to a single time interval. This approach demonstrated that microtubule domains were replaced one by one and that turnover was most rapid at the cell periphery. Antibodies specific for nonbleached chromophore can be used to enhance the signal to noise ratio further or to extend spatial resolution by the use of immunoelectron microscopy. Direct video microscopy and photobleaching are two approaches to the study of dynamics that have complementary strengths and wide application to the biology of living cells.
Collapse
Affiliation(s)
- P J Sammak
- Laboratory of Molecular Biology, University of Wisconsin, Madison
| | | |
Collapse
|
23
|
Warn RM, Flegg L, Warn A. An investigation of microtubule organization and functions in living Drosophila embryos by injection of a fluorescently labeled antibody against tyrosinated alpha-tubulin. J Cell Biol 1987; 105:1721-30. [PMID: 3117804 PMCID: PMC2114672 DOI: 10.1083/jcb.105.4.1721] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Rhodamine-labeled monoclonal antibodies, which react with tyrosinated alpha-tubulin (clone YL 1/2; Kilmartin, J. V., B. Wright, and C. Milstein, 1982, J. Cell Biol., 93:576-582) and label microtubules in vivo (Wehland, J., M. C. Willingham, and I. Sandoval, 1983, J. Cell Biol., 97:1467-1475) were microinjected into syncytial stage Drosophila embryos. At 1 mg/ml antibody concentration, the microtubule arrays of the surface caps became labeled by YL 1/2 but normal development was found to continue. The results are compared with the data from fixed material particularly with regard to interphase microtubules, centrosome separation, and spindle and midbody formation. At 5 mg/ml antibody concentration the microtubules took up larger quantities of antibodies and clumped around the nuclei. Nuclei with clumped microtubules lost their position in the surface layer and moved into the interior. As a result, the F-actin cap meshwork associated with such nuclei either failed to form or subsided. It is concluded that microtubule activity is required to maintain the nuclei in the surface layer and organize the F-actin meshwork of the caps.
Collapse
Affiliation(s)
- R M Warn
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | | | | |
Collapse
|
24
|
Saxton WM, McIntosh JR. Interzone microtubule behavior in late anaphase and telophase spindles. J Biophys Biochem Cytol 1987; 105:875-86. [PMID: 3305523 PMCID: PMC2114759 DOI: 10.1083/jcb.105.2.875] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have studied microtubule behavior in late anaphase and telophase spindles of PtK1 cells, using fluoresceinated tubulin (DTAF-tubulin), microinjection, and laser microbeam photobleaching. We present the results of two novel tests which add to the evidence that DTAF-tubulin closely mimics the behavior of native tubulin in vivo. (a) Microinjected DTAF-tubulin was as effective as injected native tubulin in promoting division of taxol-dependent mitotic mutant cells that had been deprived of taxol. (b) Microinjected colchicine-DTAF-tubulin complex was similar to injected colchicine-native tubulin complex in causing depolymerization of spindles. Immediately after microinjection of DTAF-tubulin into wild-type cells during late anaphase or telophase, fluorescence incorporation by microtubules was seen in chromosomal half-spindles and just behind the chromosomes, but there was no fluorescence incorporation near the middle of the interzone. Over the next few minutes, tubulin fluorescence accumulated at the center of the interzone (the equator), becoming progressively more intense. In other experiments, cells were microinjected with DTAF-tubulin at prophase and allowed to equilibrate for 30 min. Cells that had progressed to late anaphase were then photobleached to reduce the fluorescence in the central portion of the interzone. Over a period of several minutes, the only substantial redistribution of fluorescence was the appearance of a bright area at the equator of the interzone. Both the site of fluorescence incorporation and the photobleaching data suggest that tubulin adds to the elongating spindle interzone near the equator where the plus ends of the interdigitated microtubules are located. In further experiments, several dark lines were photobleached perpendicular to the pole-to-pole axis of fluorescent anaphase-telophase spindles. Time-dependent changes in the spacings between the lines indicated that the two halves of the interzone lying on opposite sides of the spindle equator moved away from one another. This shows that the interdigitated microtubules, which make up most of the interzone, can undergo antiparallel sliding. Our data support a model for anaphase B in which plus end elongation of interdigitated microtubules and antiparallel sliding contribute to chromosome separation.
Collapse
|
25
|
Abstract
Clarification of the mechanism of microtubule dynamics requires an analysis of the microtubule pattern at two time points in the same cell with single fiber resolution. Single microtubule resolution was obtained by microinjection of haptenized tubulin (fluorescein-tubulin) and subsequent indirect immunofluorescence with an antifluorescein antibody. The two time points in a single cell were, first, the time of photobleaching fluorescein-tubulin, and second, the time of fixation. The pattern of fluorescence replacement in the bleached zone during this time interval revealed the relevant mechanisms. In fibroblasts, microtubule domains in the bleached zone are replaced microtubule by microtubule and not by mechanisms that affect all microtubules simultaneously. Of the models we consider, treadmilling and subunit exchange along the length do not account for this observation, but dynamic instability can since it suggests that growing and shrinking microtubules coexist. In addition, we show that the half-time for microtubule replacement is shortest at the leading edge. Dynamic instability accounts for this observation if in general microtubules do not catastrophically disassemble from the plus end, but instead have a significant probability of undergoing a transition to the growing phase before they depolymerize completely. This type of instability we call tempered rather than catastrophic because, through limited disassembly followed by regrowth, it will preferentially replace polymer domains at the ends of microtubules, thus accounting for the observation that the half-time of microtubule domain replacement is shorter with proximity to the leading edge.
Collapse
|
26
|
Paul EC, Roobol A, Foster KE, Gull K. Patterns of tubulin isotype synthesis and usage during mitotic spindle morphogenesis in Physarum. CELL MOTILITY AND THE CYTOSKELETON 1987; 7:272-81. [PMID: 3594580 DOI: 10.1002/cm.970070309] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tubulin synthesis in the naturally synchronous plasmodium of Physarum polycephalum is a markedly periodic event restricted to the late G2 period of the cell cycle. Mitosis in the plasmodium is intranuclear, and there are no cytoplasmic microtubules at any stage of the cell cycle. We have combined a biochemical investigation of the synthesis of the plasmodial tubulin isotypes and their participation in the mitotic spindle with a microscopic study (immunofluorescence) of the development of spindle microtubules throughout the cell cycle. We have shown that all four tubulin isotypes identified in the plasmodium (alpha 1, alpha 2, beta 1 and beta 2) are present in the mitotic spindle. The stoichiometry of isotype usage in the mitotic spindle generally reflects the overall abundance of isotypes in the plasmodium as a whole: beta 2 greater than alpha 1 greater than alpha 2 greater than beta 1. We have also shown that tubulins synthesized in the G2 period of one cell cycle can be incorporated into the spindles of the immediately ensuing mitosis and have sufficient biological longevity to allow participation in the mitotic divisions of future cell cycles. Thus, the phenomenon of periodic tubulin synthesis does not reflect a restricted use of tubulin to the cell cycle in which it was synthesized. The major polymerization of tubulin in the nucleus occurred less than 30 min before metaphase. A novel tubulin-containing structure was, however, present in the nucleus approximately 60 min before metaphase. Polymerized tubulin is rapidly removed from the nucleus following nucleokinesis.
Collapse
|
27
|
McIntosh JR, Saxton WM, Stemple DL, Leslie RJ, Welsh MJ. Dynamics of tubulin and calmodulin in the mammalian mitotic spindle. Ann N Y Acad Sci 1986; 466:566-79. [PMID: 3460432 DOI: 10.1111/j.1749-6632.1986.tb38433.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Abstract
Human monocytes, which contain few interphase microtubules (35.+/- 7.7), were used to study the dynamics of microtubule depolymerization. Steady-state microtubule assembly was abruptly blocked with either high concentrations of nocodazole (10 micrograms/ml) or exposure to cold temperature (3 degrees C). At various times after inhibition of assembly, cells were processed for anti-tubulin immunofluorescence microscopy. Stained cells were observed with an intensified video camera attached to the fluorescence microscope. A tracing of the entire length of each individual microtubule was made from the image on the television monitor by focusing up and down through the cell. The tracings were then digitized into a computer. All microtubules were seen to originate from the centrosome, with an average length in control cells of 7.1 +/- 2.7 microns (n = 957 microtubules). During depolymerization, the total microtubule polymer and the number of microtubules per cell decreased rapidly. In contrast, there was a slow decrease in the average length of the persisting microtubules. The half-time for both the loss of total microtubule polymer and microtubule number per cell was approximately 40 s for nocodazole-treated cells. The rate-limiting step in the depolymerization process was the rate of initiation of disassembly. Once initiated, depolymerization appeared catastrophic. Further kinetic analysis revealed two classes of microtubules: 70% of the microtubule population was very labile and initiated depolymerization at a rate approximately 23 times faster than a minor population of persistent microtubules. Cold treatment yielded qualitatively similar characteristics of depolymerization, but the initiation rates were slower. In both cases there was a significant asynchrony and heterogeneity in the initiation of depolymerization among the population of microtubules.
Collapse
|
29
|
Dabauvalle MC, Franke WW. Determination of the intracellular state of soluble macromolecules by gel filtration in vivo in the cytoplasm of amphibian oocytes. J Cell Biol 1986; 102:2006-14. [PMID: 3711142 PMCID: PMC2114267 DOI: 10.1083/jcb.102.6.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A method to examine the diffusible state and the sizes of major cytoplasmic proteins in a living cell is described. Small (40-300 microns) commercially available gel filtration beads of a broad range of Mr exclusion limits were microsurgically implanted into the cytoplasm of oocytes of the frog, Xenopus laevis, usually after metabolic labeling of oocyte proteins with [35S]methionine. After equilibration in vivo for several hours, the appearance of the implanted cells, notably the bead-cytoplasm boundary, was examined by light and electron microscopy of sections and found to be unaffected. After incubation the beads were isolated, briefly rinsed, and their protein contents examined by one- or two-dimensional gel electrophoresis. We show that diffusible proteins can be identified by their inclusion in the pores of the gel filtration beads used and that their approximate sizes can be estimated from the size exclusion values of the specific materials used. The application of this method to important cell biological questions is demonstrated by showing that several "karyophobic proteins," i.e., proteins of the cytosolic fraction which accumulate in the cytoplasm in vivo, are indeed diffusible in the living oocyte and appear with sizes similar to those determined in vitro. This indicates that the nucleo-cytoplasmic distribution of certain diffusible proteins is governed, in addition to size exclusion at nuclear pore complexes and karyophilic "signals," by other, as yet unknown forces. Some possible applications of this method of gel filtration in vivo are discussed.
Collapse
|
30
|
|
31
|
Pickett-Heaps JD, Tippit DH, Cohn SA, Spurck TP. Microtubule dynamics in the spindle. Theoretical aspects of assembly/disassembly reactions in vivo. J Theor Biol 1986; 118:153-69. [PMID: 3713209 DOI: 10.1016/s0022-5193(86)80131-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The mitotic spindle contains several classes of microtubules (MTs) whose lengths change independently during mitosis. Precise control over MT polymerization and depolymerization during spindle formation, anaphase chromosome movements, and spindle breakdown is necessary for successful cell division. This model proposes the site of addition and removal of MT subunits in each of four classes of spindle MTs at different stages of mitosis, and suggests how this addition and removal is controlled. We propose that spindle poles and kinetochores significantly alter the assembly-disassembly kinetics of associated MT ends. Control of MT length is further modulated by localized forces affecting assembly and disassembly kinetics of individual sets of MTs.
Collapse
|
32
|
Wadsworth P, Salmon ED. Preparation and characterization of fluorescent analogs of tubulin. Methods Enzymol 1986; 134:519-28. [PMID: 3821576 DOI: 10.1016/0076-6879(86)34117-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
Goode D, Sarma V. Incorporation and turnover of labeled exogenous tubulin in the mitotic spindles of Chaetopterus oocytes and HeLa cells. CELL MOTILITY AND THE CYTOSKELETON 1986; 6:114-21. [PMID: 3708703 DOI: 10.1002/cm.970060208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The incorporation of tubulin into mitotic spindles in situ was studied by incubating permeabilized mitotic cells in solutions containing [3H]GTP-labeled or dichlorotriazinylamino fluorescein (DTAF)-labeled tubulin. Metaphase HeLa cells or spindle-containing "minicells" from Chaetopterus oocytes were lysed in a microtubule-assembly buffer plus 0.5% Nonidet P-40, 1 mg/ml 120,000g supernatant mammalian brain tubulin, and [3H]GTP. After different periods of incubation, mitotic spindles were isolated in 2 M-glycerol-containing assembly buffer and separated from unbound counts by centrifugation through a 4 M-glycerol cushion; 3H counts per mg protein increase linearly for 8-12 min and then reach a plateau or steady state in both Chaetopterus oocytes and HeLa cells. Addition of 4 mM CaCl2 blocks or reverses incorporation. Little or no [3H]GTP is incorporated if exogenous tubulin or lysed cells are omitted from the assembly mixture. To measure the loss rate of [3H]GTP-tubulin from mitotic spindles, cells were incubated in tubulin plus [3H]GTP for 30 min, and a 20-fold excess of cold GTP (2 mM) was added. Samples were removed after incubation for different periods, and spindles were isolated as described above and counted for 3H content. [3H]GTP is lost from spindles at a rate of about 16%/min until a new steady state is reached in about 8 min. These results are consistent with an incorporation and turnover of [3H]GTP-tubulin in spindle microtubules of these lysed-cell models. The location of this newly incorporated tubulin in the spindle was investigated by incorporating fluorescent DTAF-tubulin into mitotic spindles of these lysed cell types.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
34
|
Harris PJ. Chapter 14 Cytology and Immunocytochemistry. Methods Cell Biol 1986. [DOI: 10.1016/s0091-679x(08)60352-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
35
|
Soltys BJ, Borisy GG. Polymerization of tubulin in vivo: direct evidence for assembly onto microtubule ends and from centrosomes. J Biophys Biochem Cytol 1985; 100:1682-9. [PMID: 3886672 PMCID: PMC2113852 DOI: 10.1083/jcb.100.5.1682] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Microtubule assembly in vivo was studied by hapten-mediated immunocytochemistry. Tubulin was derivatized with dichlorotriazinylaminofluorescein (DTAF) and microinjected into living, interphase mammalian cells. Sites of incorporation were determined at the level of individual microtubules by double-label immunofluorescence. The haptenized tubulin was localized by an anti-fluorescein antibody and a second antibody conjugated with fluorescein. Total microtubules were identified by anti-tubulin and a secondary antibody conjugated with rhodamine. Contrary to recent studies (Salmon, E. D., et al., 1984, J. Cell Biol., 99:2165-2174; Saxton, W. M., et al., 1984, J. Cell Biol., 99:2175-2186) which suggest that tubulin incorporates all along the length of microtubules in vivo, we found that microtubule assembly in interphase cells was in vivo, as in vitro, an end-mediated process. Microtubules that radiated out toward the cell periphery incorporated the DTAF-tubulin solely at their distal, that is, their plus ends. We also found that a proportion of the microtubules connected to the centrosomes incorporated the DTAF-tubulin along their entire length, which suggests that the centrosome can nucleate the formation of new microtubules.
Collapse
|
36
|
Hamaguchi Y, Toriyama M, Sakai H, Hiramoto Y. Distribution of fluorescently labeled tubulin injected into sand dollar eggs from fertilization through cleavage. J Cell Biol 1985; 100:1262-72. [PMID: 3920225 PMCID: PMC2113761 DOI: 10.1083/jcb.100.4.1262] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Porcine brain tubulin labeled with fluorescein isothiocyanate (FITC) was able to polymerize by itself and co-polymerize with tubulin purified from starfish sperm flagella. When we injected the FITC-labeled tubulin into unfertilized eggs of the sand dollar, Clypeaster japonicus, and the eggs were then fertilized, the labeled tubulin was incorporated into the sperm aster. When injected into fertilized eggs at streak stage, the tubulin was quickly incorporated into each central region of growing asters. It was clearly visualized that the labeled tubulin, upon reaching metaphase, accumulated in the mitotic apparatus and later disappeared over the cytoplasm during interphase. The accumulation of the fluorescence in the mitotic apparatus was observed repeatedly at successive cleavage. After lysis of the fertilized eggs with a microtubule-stabilizing solution, fluorescent fibrous structures around the nucleus and those of the sperm aster and the mitotic apparatus were preserved and coincided with the fibrous structures observed by polarization and differential interference microscopy. We found the FITC-labeled tubulin to be incorporated into the entire mitotic apparatus within 20-30 s when injected into the eggs at metaphase or anaphase. This rapid incorporation of the labeled tubulin into the mitotic apparatus suggests that the equilibrium between mitotic microtubules and tubulin is attained very rapidly in the living eggs. Axonemal tubulin purified from starfish sperm flagella and labeled with FITC was also incorporated into microtubular structures in the same fashion as the FITC-labeled brain tubulin. These results suggest that even FITC-labeled heterogeneous tubulins undergo spatial and stage-specific regulation of assembly-disassembly in the same manner as does sand dollar egg tubulin.
Collapse
|
37
|
|
38
|
Leslie RJ, Saxton WM, Mitchison TJ, Neighbors B, Salmon ED, McIntosh JR. Assembly properties of fluorescein-labeled tubulin in vitro before and after fluorescence bleaching. J Cell Biol 1984; 99:2146-56. [PMID: 6438113 PMCID: PMC2113541 DOI: 10.1083/jcb.99.6.2146] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Brain tubulin has been conjugated with dichlorotriazinyl-aminofluorescein (DTAF) to form a visualizable complex for the study of tubulin dynamics in living cells. By using several assays we confirm the finding of Keith et al. (Keith, C. H., J. R. Feramisco, and M. Shelanski, 1981, J. Cell Biol., 88:234-240) that DTAF-tubulin polymerizes like control tubulin in vitro. The fluorescein moiety of the complex is readily bleached by the 488-nm line from an argon ion laser. When irradiations are performed over short times (less than 1 s) and in the presence of 2 mM glutathione, a mixture of DTAF-tubulin and control protein (as occurs after microinjection of the fluorescent conjugate into living cells) will retain full polymerization activity. Slow bleaching (approximately 5 min) or bleaching without glutathione promotes formation of covalent cross-links between neighboring polypeptides and kills the polymerization activity of DTAF-tubulin, including some molecules that are neither cross-linked nor bleached. Even under conditions that damage DTAF-tubulin, however, DTAF-microtubules are not destroyed by bleaching. They will continue to elongate by addition of DTAF-tubulin subunits to their free ends, and they neither bind nor exchange subunits along their lateral surfaces. These results suggest that DTAF-tubulin is a suitable analog for tubulin, both in studies of protein incorporation and for investigations of fluorescence redistribution after photobleaching.
Collapse
|
39
|
Saxton WM, Stemple DL, Leslie RJ, Salmon ED, Zavortink M, McIntosh JR. Tubulin dynamics in cultured mammalian cells. J Cell Biol 1984; 99:2175-86. [PMID: 6501419 PMCID: PMC2113582 DOI: 10.1083/jcb.99.6.2175] [Citation(s) in RCA: 371] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Bovine neurotubulin has been labeled with dichlorotriazinyl-aminofluorescein (DTAF-tubulin) and microinjected into cultured mammalian cells strains PTK1 and BSC. The fibrous, fluorescence patterns that developed in the microinjected cells were almost indistinguishable from the pattern of microtubules seen in the same cells by indirect immunofluorescence. DTAF-tubulin participated in the formation of all visible, microtubule-related structures at all cell cycle stages for at least 48 h after injection. Treatments of injected cells with Nocodazole or Taxol showed that DTAF-tubulin closely mimicked the behavior of endogenous tubulin. The rate at which microtubules incorporated DTAF-tubulin depended on the cell-cycle stage of the injected cell. Mitotic microtubules became fluorescent within seconds while interphase microtubules required minutes. Studies using fluorescence redistribution after photobleaching confirmed this apparent difference in tubulin dynamics between mitotic and interphase cells. The temporal patterns of redistribution included a rapid phase (approximately 3 s) that we attribute to diffusion of free DTAF-tubulin and a second, slower phase that seems to represent the exchange of bleached DTAF-tubulin in microtubules with free, unbleached DTAF-tubulin. Mean half times of redistribution were 18-fold shorter in mitotic cells than they were in interphase cells.
Collapse
|
40
|
Salmon ED, Leslie RJ, Saxton WM, Karow ML, McIntosh JR. Spindle microtubule dynamics in sea urchin embryos: analysis using a fluorescein-labeled tubulin and measurements of fluorescence redistribution after laser photobleaching. J Cell Biol 1984; 99:2165-74. [PMID: 6501418 PMCID: PMC2113564 DOI: 10.1083/jcb.99.6.2165] [Citation(s) in RCA: 217] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The rate of exchange of tubulin that is incorporated into spindle microtubules with dimeric tubulin in the cytoplasm has been measured in sea urchin eggs by studying fluorescence redistribution after photobleaching (FRAP). Dichlorotriazinyl amino fluorescein (DTAF) has been used to label bovine brain tubulin. DTAF-tubulin has been injected into fertilized eggs of Lytechinus variegatus and allowed to equilibrate with the endogenous tubulin pool. Fluorescent spindles formed at the same time that spindles were seen in control eggs, and the injected embryos proceeded through many cycles of division on schedule, suggesting that DTAF-tubulin is a good analogue of tubulin in vivo. A microbeam of argon laser light has been used to bleach parts of the fluorescent spindles, and FRAP has been recorded with a sensitive video camera. Laser bleaching did not affect spindle structure, as seen with polarization optics, nor spindle function, as seen by rate of progress through mitosis, even when one spindle was bleached several times in a single cell cycle. Video image analysis has been used to measure the rate of FRAP and to obtain a low resolution view of the fluorescence redistribution process. The half-time for spindle FRAP is approximately 19 s, even when an entire half-spindle is bleached. Complete exchange of tubulin in nonkinetochore spindle and astral microtubules appeared to occur within 60-80 s at steady state. This rate is too fast to be explained by a simple microtubule end-dependent exchange of tubulin. Efficient microtubule treadmilling would be fast enough, but with current techniques we saw no evidence for movement of the bleached spot during recovery, which we would expect on the basis of Margolis and Wilson's model (Nature (Lond.)., 1981, 293:705)--fluorescence recovers uniformly. Microtubules may be depolymerizing and repolymerizing rapidly and asynchronously throughout the spindle and asters, but the FRAP data are most compatible with a rapid exchange of tubulin subunits all along the entire lengths of nonkinetochore spindle and astral microtubules.
Collapse
|
41
|
Wadsworth P, Sloboda RD. Interaction of bimane-labeled fluorescent tubulin with the isolated mitotic apparatus. CELL MOTILITY 1984; 4:183-96. [PMID: 6744385 DOI: 10.1002/cm.970040304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fluorescent derivatives of cellular proteins that retain their native characteristics have become useful probes to investigate the dynamics of specific cytoskeletal proteins. In the experiments reported here, a previously characterized fluorescent derivative of tubulin, bimane-tubulin [Wadsworth and Sloboda, 1982a], was used to investigate microtubule assembly in vitro. The results demonstrate that bimane-tubulin was competent to assemble onto a variety of organizing centers in vitro, including microtubule organizing centers (MTOCs) present in homogenates of sea urchin eggs, isolated mitotic apparatuses (MAs), and lysed mitotic cells. When homogenates of fertilized sea urchin eggs containing MTOCs were incubated with bimane-tubulin at 37 degrees C, discrete areas of linear fluorescence were observed. Only diffuse fluorescence was observed when calcium or colchicine was added to the homogenate or if the temperature was maintained at 0 degrees C. Negative-stain electron microscopy of the fluorescent arrays revealed morphologically normal microtubules radiating from electron dense regions. When mitotic spindles, isolated in glycerol containing buffers and therefore cold stable, were incubated with bimane-tubulin, linear fluorescence was observed emanating from the spindle poles but not from the region occupied by the kinetochores. MAs incubated with bimane-labeled bovine serum albumin or bimane-labeled microtubule-associated proteins showed only diffuse fluorescence. However, when mitotic cells which were hypotonically lysed in the absence of detergents or microtubule stabilizing solvents, were perfused with bimane-tubulin intense fluorescence was observed in the asters and throughout the spindle. Two experiments suggested that the fluorescence observed in the results outlined above was due to the assembly of normal microtubules from the fluorescent subunits. First, the observed fluorescence was sensitive to cold temperature, which is known to disassemble microtubules. Second, when the isolated, fluorescent MAs were examined by thin section electron microscopy, microtubules of normal diameter were seen. No aggregated material appeared associated with the walls of the microtubules, which might have been expected if the fluorescent protein was nonspecifically adsorbed to the microtubules. The results of these experiments demonstrate that isolated, stabilized MAs support the growth of new microtubules from the spindle poles while labile spindles, present in lysed cells, incorporate fluorescent tubulin throughout the spindle and asters.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|