1
|
Casotti MC, Meira DD, Zetum ASS, Campanharo CV, da Silva DRC, Giacinti GM, da Silva IM, Moura JAD, Barbosa KRM, Altoé LSC, Mauricio LSR, Góes LSBDB, Alves LNR, Linhares SSG, Ventorim VDP, Guaitolini YM, dos Santos EDVW, Errera FIV, Groisman S, de Carvalho EF, de Paula F, de Sousa MVP, Fechine PBA, Louro ID. Integrating frontiers: a holistic, quantum and evolutionary approach to conquering cancer through systems biology and multidisciplinary synergy. Front Oncol 2024; 14:1419599. [PMID: 39224803 PMCID: PMC11367711 DOI: 10.3389/fonc.2024.1419599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer therapy is facing increasingly significant challenges, marked by a wide range of techniques and research efforts centered around somatic mutations, precision oncology, and the vast amount of big data. Despite this abundance of information, the quest to cure cancer often seems more elusive, with the "war on cancer" yet to deliver a definitive victory. A particularly pressing issue is the development of tumor treatment resistance, highlighting the urgent need for innovative approaches. Evolutionary, Quantum Biology and System Biology offer a promising framework for advancing experimental cancer research. By integrating theoretical studies, translational methods, and flexible multidisciplinary clinical research, there's potential to enhance current treatment strategies and improve outcomes for cancer patients. Establishing stronger links between evolutionary, quantum, entropy and chaos principles and oncology could lead to more effective treatments that leverage an understanding of the tumor's evolutionary dynamics, paving the way for novel methods to control and mitigate cancer. Achieving these objectives necessitates a commitment to multidisciplinary and interprofessional collaboration at the heart of both research and clinical endeavors in oncology. This entails dismantling silos between disciplines, encouraging open communication and data sharing, and integrating diverse viewpoints and expertise from the outset of research projects. Being receptive to new scientific discoveries and responsive to how patients react to treatments is also crucial. Such strategies are key to keeping the field of oncology at the forefront of effective cancer management, ensuring patients receive the most personalized and effective care. Ultimately, this approach aims to push the boundaries of cancer understanding, treating it as a manageable chronic condition, aiming to extend life expectancy and enhance patient quality of life.
Collapse
Affiliation(s)
- Matheus Correia Casotti
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Débora Dummer Meira
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | | | | | | | - Giulia Maria Giacinti
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Iris Moreira da Silva
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - João Augusto Diniz Moura
- Laboratório de Oncologia Clínica e Experimental, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Karen Ruth Michio Barbosa
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Lorena Souza Castro Altoé
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | | | | | - Lyvia Neves Rebello Alves
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | | | - Vinícius do Prado Ventorim
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Yasmin Moreto Guaitolini
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | | | | | - Sonia Groisman
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Elizeu Fagundes de Carvalho
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Flavia de Paula
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | | | - Pierre Basílio Almeida Fechine
- Group of Chemistry of Advanced Materials (GQMat), Department of Analytical Chemistry and Physical-Chemistry, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Iuri Drumond Louro
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| |
Collapse
|
2
|
MicroRNAs Patterns as Potential Tools for Diagnostic and Prognostic Follow-Up in Cancer Survivorship. Cells 2021; 10:cells10082069. [PMID: 34440837 PMCID: PMC8394126 DOI: 10.3390/cells10082069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Advances in screening methods and pharmacological treatments are increasing the life expectancy of cancer patients. During recent decades, the community of long-term disease-free cancer survivors (LCS) has grown exponentially, raising the issues related to cancer follow-up. Cancer relapse and other cancer-related diseases, as well as lifestyle, influence cancer survival. Recently, the regulatory role of microRNAs (miRNAs) in gene expression and their involvement in human diseases, including cancer, has been identified. Extracellular circulating miRNAs (ECmiRNAs) have been found in biological fluids and specific ECmiRNAs have been associated with cancer development and progression or with a therapy response. Here, we focus on the pivotal role of ECmiRNAs as biomarkers in cancer diagnosis and prognosis. Then, we discuss the relevance of ECmiRNAs expression in cancer survivors for the identification of specific ECmiRNAs profiles as potential tools to assess cancer outcome and to control LCS follow-up.
Collapse
|
3
|
Bi K, Chen T, He Z, Gao Z, Zhao Y, Fu Y, Cheng J, Xie J, Jiang D. Proto-oncogenes in a eukaryotic unicellular organism play essential roles in plasmodial growth in host cells. BMC Genomics 2018; 19:881. [PMID: 30522435 PMCID: PMC6282348 DOI: 10.1186/s12864-018-5307-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/23/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The eukaryotic unicellular protist Plasmodiophora brassicae is an endocellular parasite of cruciferous plants. In host cortical cells, this protist develops a unicellular structure that is termed the plasmodium. The plasmodium is actually a multinucleated cell, which subsequently splits and forms resting spores. The mechanism for the growth of this endocellular parasite in host cell is unclear. RESULTS Here, combining de novo genome sequence and transcriptome analysis of strain ZJ-1, we identified top five significant enriched KEGG pathways of differentially expressed genes (DEGs), namely translation, cell growth and death, cell communication, cell motility and cancers. We detected 171 proto-oncogenes from the genome of P. brassicae that were implicated in cancer-related pathways, of which 46 were differential expression genes. Three predicted proto-oncogenes (Pb-Raf1, Pb-Raf2, and Pb-MYB), which showed homology to the human proto-oncogenes Raf and MYB, were specifically activated during the plasmodial growth in host cortical cells, demonstrating their involvement in the multinucleate development stage of the unicellular protist organism. Gene networks involved in the tumorigenic-related signaling transduction pathways and the activation of 12 core genes were identified. Inhibition of phosphoinositol-3-kinase relieved the clubroot symptom and significantly suppressed the development process of plasmodia. CONCLUSIONS Proto-oncogene-related regulatory mechanisms play an important role in the plasmodial growth of P. brassicae.
Collapse
Affiliation(s)
- Kai Bi
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Tao Chen
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Zhangchao He
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Zhixiao Gao
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Ying Zhao
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Yanping Fu
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Jiasen Cheng
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Jiatao Xie
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Daohong Jiang
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.
| |
Collapse
|
4
|
Odes EJ, Delezene LK, Randolph-Quinney PS, Smilg JS, Augustine TN, Jakata K, Berger LR. A case of benign osteogenic tumour in Homo naledi: Evidence for peripheral osteoma in the U.W. 101-1142 mandible. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2018; 21:47-55. [PMID: 29778414 DOI: 10.1016/j.ijpp.2017.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 06/08/2023]
Abstract
The reported incidence of neoplasia in the extinct hominin record is rare. We describe here the first palaeopathological analysis of an osteogenic lesion in the extinct hominin Homo naledi from Dinaledi Cave (Rising Star), South Africa. The lesion presented as an irregular bony growth, found on the right lingual surface of the body of the adult mandible U.W. 101-1142. The growth was macroscopically evaluated and internally imaged using micro-focus x-ray computed tomography (μCT). A detailed description and differential diagnosis were undertaken using gross and micromorphology, and we conclude that the most probable diagnosis is peripheral osteoma - a benign osteogenic neoplasia. These tumours are cryptic in clinical expression, though they may present localised discomfort and swelling. It has been suggested that muscle traction may play a role in the development and expression of these tumours. The impact of this lesion on the individual affected is unknown. This study adds to the growing corpus of palaeopathological data from the South African fossil record, which suggests that the incidence of neoplastic disease in deep prehistory was more prevalent than traditionally accepted. The study also highlights the utility of micro-computed tomography in assisting accurate diagnoses of ancient pathologies.
Collapse
Affiliation(s)
- Edward J Odes
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand Medical School, Parktown, Johannesburg, 2193, South Africa; Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa.
| | - Lucas K Delezene
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa; Department of Anthropology, University of Arkansas, Fayetteville, United States
| | - Patrick S Randolph-Quinney
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand Medical School, Parktown, Johannesburg, 2193, South Africa; Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa; School of Forensic and Applied Sciences, University of Central Lancashire, Preston, PR1 2HE, UK.
| | - Jacqueline S Smilg
- School of Radiation Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Radiology, Charlotte Maxeke Academic Hospital, Johannesburg, South Africa
| | - Tanya N Augustine
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand Medical School, Parktown, Johannesburg, 2193, South Africa
| | - Kudakwashe Jakata
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Lee R Berger
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
5
|
Odes EJ, Randolph-Quinney PS, Steyn M, Throckmorton Z, Smilg JS, Zipfel B, Augustine TN, de Beer F, Hoffman JW, Franklin RD, Berger LR. Earliest hominin cancer: 1.7-million-year-old osteosarcoma from Swartkrans Cave, South Africa. S AFR J SCI 2016. [DOI: 10.17159/sajs.2016/20150471] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract The reported incidence of neoplasia in the extinct human lineage is rare, with only a few confirmed cases of Middle or Later Pleistocene dates reported. It has generally been assumed that pre-modern incidence of neoplastic disease of any kind is rare and limited to benign conditions, but new fossil evidence suggests otherwise. We here present the earliest identifiable case of malignant neoplastic disease from an early human ancestor dated to 1.8–1.6 million years old. The diagnosis has been made possible only by advances in 3D imaging methods as diagnostic aids. We present a case report based on re-analysis of a hominin metatarsal specimen (SK 7923) from the cave site of Swartkrans in the Cradle of Humankind, South Africa. The expression of malignant osteosarcoma in the Swartkrans specimen indicates that whilst the upsurge in malignancy incidence is correlated with modern lifestyles, there is no reason to suspect that primary bone tumours would have been any less frequent in ancient specimens. Such tumours are not related to lifestyle and often occur in younger individuals. As such, malignancy has a considerable antiquity in the fossil record, as evidenced by this specimen.
Collapse
|
6
|
Abstract
Metastasis-associated gene or metastasis tumor antigen 1 (MTA1) is a new member of cancer progression-related gene family. It was first identified in rat mammary adenocarcinoma and later recognized as an important constituent of nucleosomal remodeling complex (NuRD), displaying dual regulatory functions as a co-repressor and co-activator for a large number of genes. Chromatin remodelers are ATP-dependent multi-protein chromatin modifying machines. These complexes alter the nucleosome positioning regulating the accessibility of genomic DNA to various transcription factors and thus modulate eukaryotic gene transcription. Since its identification two decades ago, MTA1 has been reported to be overexpressed in many cancers. Moreover, its overexpression has also been correlated with transformation and tumor progression. Furthermore, MTA1 has been shown to modulate the response of several tumor suppressor genes like p53 and oncogenes like c-myc. Taken together, current literature suggests that MTA proteins, especially MTA1, act as a master co-regulatory molecule involved in the carcinogenesis and progression of various malignant tumors. The primary focus of this review is to provide an overview of the MTA proteins with special emphasis on its role in cancer and use as a marker for cancer progression and potential target for therapy.
Collapse
Affiliation(s)
- Ekjot Kaur
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | | | | |
Collapse
|
7
|
Abstract
The genes of cellular cooperation that evolved with multicellularity about a billion years ago are the same genes that malfunction to cause cancer. We hypothesize that cancer is an atavistic condition that occurs when genetic or epigenetic malfunction unlocks an ancient 'toolkit' of pre-existing adaptations, re-establishing the dominance of an earlier layer of genes that controlled loose-knit colonies of only partially differentiated cells, similar to tumors. The existence of such a toolkit implies that the progress of the neoplasm in the host organism differs distinctively from normal Darwinian evolution. Comparative genomics and the phylogeny of basal metazoans, opisthokonta and basal multicellular eukaryotes should help identify the relevant genes and yield the order in which they evolved. This order will be a rough guide to the reverse order in which cancer develops, as mutations disrupt the genes of cellular cooperation. Our proposal is consistent with current understanding of cancer and explains the paradoxical rapidity with which cancer acquires a suite of mutually-supportive complex abilities. Finally we make several predictions and suggest ways to test this model.
Collapse
Affiliation(s)
- P C W Davies
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ 85287, USA.
| | | |
Collapse
|
8
|
Abstract
The genes of cellular cooperation that evolved with multicellularity about a billion years ago are the same genes that malfunction to cause cancer. We hypothesize that cancer is an atavistic condition that occurs when genetic or epigenetic malfunction unlocks an ancient 'toolkit' of pre-existing adaptations, re-establishing the dominance of an earlier layer of genes that controlled loose-knit colonies of only partially differentiated cells, similar to tumors. The existence of such a toolkit implies that the progress of the neoplasm in the host organism differs distinctively from normal Darwinian evolution. Comparative genomics and the phylogeny of basal metazoans, opisthokonta and basal multicellular eukaryotes should help identify the relevant genes and yield the order in which they evolved. This order will be a rough guide to the reverse order in which cancer develops, as mutations disrupt the genes of cellular cooperation. Our proposal is consistent with current understanding of cancer and explains the paradoxical rapidity with which cancer acquires a suite of mutually-supportive complex abilities. Finally we make several predictions and suggest ways to test this model.
Collapse
Affiliation(s)
- P C W Davies
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ 85287, USA.
| | | |
Collapse
|
9
|
Aktories K, Frevert J. ADP-ribosylation of a 21-24 kDa eukaryotic protein(s) by C3, a novel botulinum ADP-ribosyltransferase, is regulated by guanine nucleotide. Biochem J 1987; 247:363-8. [PMID: 3122724 PMCID: PMC1148417 DOI: 10.1042/bj2470363] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Besides botulinum C2 toxin, Clostridium botulinum type C produces another ADP-ribosyltransferase, which we termed 'C3'. ADP-ribosyltransferase C3 has a molecular mass of 25 kDa and modifies 21-24 kDa protein(s) in platelet and brain membranes. C3 was about 1000 times more potent than botulinum C1 toxin in ADP-ribosylation of membrane proteins. C3-catalysed ADP-ribosylation of the 21-24 kDa protein(s) was decreased by stable guanosine triphosphates, with the potency order GTP[S] much greater than p[NH]ppG greater than p[CH2]ppG. GTP[S] inhibited the ADP-ribosylation caused by C3 by maximally 70-80%, with half-maximal and maximal effects occurring at 0.3 and 10 microM-GTP[S] respectively. The concomitant addition of GTP decreased the inhibitory effect of GTP[S]. GTP[S]-induced inhibition of ADP-ribosylation was resistant to washing of pretreated platelet membranes. The data suggest that the novel botulinum ADP-ribosyltransferase C3 modifies eukaryotic 21-24 kDa guanine nucleotide-binding protein(s).
Collapse
Affiliation(s)
- K Aktories
- Rudolf-Buchheim-Institut für Pharmakologie der Universität Giessen, Federal Republic of Germany
| | | |
Collapse
|
10
|
Bhargava PM, Chandani SA. The role of cell membrane in the regulation of cell division and malignant transformation. J Biosci 1985. [DOI: 10.1007/bf02703986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Eanes RZ. Effects of fructose on human fibroblast metabolism: the application of DNA measurements as a basis for interpretation. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1985; 21:328-32. [PMID: 4019358 DOI: 10.1007/bf02691580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A fluorometric procedure for measuring DNA was used to study growth and metabolic responses of eight cell strains of human foreskin fibroblasts. In preliminary studies this procedure gave more precise specific activity changes in N-acetyl-beta-D-glucosaminidase (NAG) than did a protein activity basis, when changes in this enzyme's specific activity were investigated as a function of experimental cell manipulation. When fibroblast growth in eight cell strains was compared in 134 mM D-fructose vs. 13.4 mM glucose-supplemented minimum essential media, a significant increase in cellular DNA (50%) and protein (45%) occurred over an 11-d period. No significant differences in media pH change, lactate production, or carbohydrate uptake occurred on a DNA basis when cell metabolism was compared over the last 24 h of culture in the two media. Cells grown in fructose-containing media tended to show a reduction in NAG specific activity when compared with those grown in glucose-containing media.
Collapse
|
12
|
Bernard BA, Robinson SM, Vandaele S, Mansbridge JN, Darmon M. Abnormal maturation pathway of keratinocytes in psoriatic skin. Br J Dermatol 1985; 112:647-53. [PMID: 3890921 DOI: 10.1111/j.1365-2133.1985.tb02332.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We compared the maturation pathway of normal and psoriatic epidermis using three different markers: (1) Involucrin, which is normally detected in the stratum granulosum in normal skin, was detected in all but the basal layer of involved psoriatic skin; (2) an antigen, recognized by the murine monoclonal antibody psi 3, was present in all but the basal layer of involved psoriatic skin but was absent from uninvolved and normal skin; (3) fibronectin, which normally localizes in the dermis and the epidermal-dermal junction, was also detected intra- and extracellularly in the psoriatic epidermis. These results indicate that the alterations in keratinocyte maturation found in psoriasis do not arise from a truncation of the normal maturation pathway but rather reflect the onset of an abnormal pathway of differentiation characterized by the expression of psi 3 antigen and fibronectin and the premature appearance of involucrin.
Collapse
|
13
|
Abstract
A small class of normal cellular genes has the potential to transform cells malignantly. These cellular oncogenes have been identified by their similarity to the transforming genes of oncogenic RNA viruses (retroviruses), and by their ability, under certain circumstances, to transform cells into which they have been transferred. Cellular oncogenes are not normally tumorigenic and, indeed, appear to be critically involved in normal cellular processes, possibly at the level of growth regulation. However, it appears that a number of mechanisms exist whereby these oncogenes can become malignantly activated, leading to uncontrolled cellular proliferation. The evidence implicating cellular oncogenes in human malignant disease is reviewed.
Collapse
|
14
|
Abstract
This review will concern itself with the application of cytogenetic findings in neoplastic diseases. This application can be divided into two general categories: practical and theoretical. The practical applications reside in utilizing karyotypic changes, particularly in leukemias and lymphomas, not only for diagnostic purposes but also for predicting response to therapy and prognosis. This is especially evident in the various acute nonlymphocytic leukemias and in most of the acute lymphoblastic leukemias. Thus, a definite correlation exists between the cytogenetic findings and the various clinical, laboratory, and cytologic parameters of most of the leukemias. Undoubtedly, these leukemias will ultimately be classified and defined more in terms of their cytogenetic aspects than any other. Though the application in lymphoma is not at the same level as that in leukemia, developments in that field certainly indicate a similar utilization of the cytogenetic findings in these diseases. The presence or absence of a Ph1 chromosome in a chronic myelocytic leukemia has been utilized widely, not only in the diagnosis but also in the predictability of response; the cytogenetic findings have also been utilized in predicting the blastic phase of disease. The list of specific chromosome changes in various solid tumors is of a lesser number, but significant developments indicate that the applicability of chromosome changes in these diseases will, also, be established in the near future. The application of chromosome findings to theoretical aspects of malignancy has assumed an important place recently in the demonstration that so-called oncogenes (or proto-oncogenes) are located or associated with areas of human chromosomes in which breaks and translocations are involved. Thus, it appears that chromosome changes in human malignancy, once their specificity is established, are important parameters in the clinical and theoretical aspects of the disease. A discussion will also be given on primary vs. secondary chromosome changes and their significance in the biology and behavior of the malignancy.
Collapse
|