1
|
Semmelink MFW, Steen A, Veenhoff LM. Measuring and Interpreting Nuclear Transport in Neurodegenerative Disease-The Example of C9orf72 ALS. Int J Mol Sci 2021; 22:9217. [PMID: 34502125 PMCID: PMC8431710 DOI: 10.3390/ijms22179217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022] Open
Abstract
Transport from and into the nucleus is essential to all eukaryotic life and occurs through the nuclear pore complex (NPC). There are a multitude of data supporting a role for nuclear transport in neurodegenerative diseases, but actual transport assays in disease models have provided diverse outcomes. In this review, we summarize how nuclear transport works, which transport assays are available, and what matters complicate the interpretation of their results. Taking a specific type of ALS caused by mutations in C9orf72 as an example, we illustrate these complications, and discuss how the current data do not firmly answer whether the kinetics of nucleocytoplasmic transport are altered. Answering this open question has far-reaching implications, because a positive answer would imply that widespread mislocalization of proteins occurs, far beyond the reported mislocalization of transport reporters, and specific proteins such as FUS, or TDP43, and thus presents a challenge for future research.
Collapse
Affiliation(s)
| | | | - Liesbeth M. Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (M.F.W.S.); (A.S.)
| |
Collapse
|
2
|
Kirschner M. What makes the cell cycle tick? a celebration of the awesome power of biochemistry and the frog egg. Mol Biol Cell 2020; 31:2874-2878. [PMID: 33320710 PMCID: PMC7927191 DOI: 10.1091/mbc.e20-10-0626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cell cycle, a 19th century discovery of cytologists, only achieved a satisfactory biochemical explanation in the last 20 years of the 20th century. This personal retrospective focuses on how biochemical studies of the frog egg helped identify the cyclin-based mitotic oscillator and how this approach quickly merged with genetic studies in yeast to establish the basic mechanism of the eukaryotic cell division cycle. The key feature that made this a cyclic process was regulated protein degradation, mediated by ubiquitin, catalyzed by a massive enzyme machine, called the Anaphase Promoting Complex.
Collapse
Affiliation(s)
- Marc Kirschner
- Harvard Medical School, Systems Biology Department, Boston, MA 02115
| |
Collapse
|
3
|
Injected cells provide a valuable complement to cell-free systems for analysis of gene expression. Exp Cell Res 2020; 396:112296. [PMID: 32980293 DOI: 10.1016/j.yexcr.2020.112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/03/2020] [Accepted: 09/17/2020] [Indexed: 11/22/2022]
Abstract
The aim of this short review is to comment on the advantages of injecting purified molecules into a normal living cell as a complement to the constitution of a cell-free system for analyzing the function of cell components. We emphasize here that the major difference is that, by injection, most components of a cell are maintained at their normal concentration, which is difficult, even if at all possible, to achieve in a cell-free system. We exemplify the benefits of a cell injection system by the efficiency and long duration of DNA transcription by RNA polymerase II, as used by most genes, and by the widespread success of injecting purified messenger RNA for protein synthesis. The most recent work using cell injection also gives a new understanding of a long lasting transcription factor residence on its DNA or chromatin not shown by other procedures. Lastly, we re-visit an old idea that transcription factors that guide cell fate may be stably bound to DNA or chromatin, except at S-phase or mitosis in the cell cycle, when they can undergo exchange with equivalent molecules in the cell.
Collapse
|
4
|
Dong Q, Xing X, Han Y, Wei X, Zhang S. De Novo Organelle Biogenesis in the Cyanobacterium TDX16 Released from the Green Alga <i>Haematococcus pluvialis</i>. Cell 2020. [DOI: 10.4236/cellbio.2020.91003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Bisht J, LeValley P, Noren B, McBride R, Kharkar P, Kloxin A, Gatlin J, Oakey J. Light-inducible activation of cell cycle progression in Xenopus egg extracts under microfluidic confinement. LAB ON A CHIP 2019; 19:3499-3511. [PMID: 31544194 PMCID: PMC7819639 DOI: 10.1039/c9lc00569b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cell-free Xenopus egg extract is a widely used and biochemically tractable model system that allows recapitulation and elucidation of fundamental cellular processes. Recently, the introduction of microfluidic extract manipulation has enabled compartmentalization of bulk extract and a newfound ability to study organelles on length scales that recapitulate key features of cellular morphology. While the microfluidic confinement of extracts has produced a compelling platform for the in vitro study of cell processes at physiologically-relevant length scales, it also imposes experimental limitations by restricting dynamic control over extract properties. Here, we introduce photodegradable polyethylene glycol (PEG) hydrogels as a vehicle to passively and selectively manipulate extract composition through the release of proteins encapsulated within the hydrogel matrix. Photopatterned PEG hydrogels, passive to both extract and encapsulated proteins, serve as protein depots within microfluidic channels, which are subsequently flooded with extract. Illumination by ultraviolet light (UV) degrades the hydrogel structures and releases encapsulated protein. We show that an engineered fluorescent protein with a nuclear localization signal (GST-GFP-NLS) retains its ability to localize within nearby nuclei following UV-induced release from hydrogel structures. When diffusion is considered, the kinetics of nuclear accumulation are similar to those in experiments utilizing conventional, bulk fluid handling. Similarly, the release of recombinant cyclin B Δ90, a mutant form of the master cell cycle regulator cyclin B which lacks the canonical destruction box, was able to induce the expected cell cycle transition from interphase to mitosis. This transition was confirmed by the observation of nuclear envelope breakdown (NEBD), a phenomenological hallmark of mitosis, and the induction of mitosis-specific biochemical markers. This approach to extract manipulation presents a versatile and customizable route to regulating the spatial and temporal dynamics of cellular events in microfluidically confined cell-free extracts.
Collapse
Affiliation(s)
- Jitender Bisht
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
- Cell Organization and Division Group, Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
| | - Paige LeValley
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
- Cell Organization and Division Group, Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716
| | - Benjamin Noren
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
- Cell Organization and Division Group, Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
| | - Ralph McBride
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
| | - Prathamesh Kharkar
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716
| | - April Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716
| | - Jesse Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
- Cell Organization and Division Group, Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
| | - John Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
- Cell Organization and Division Group, Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
6
|
Wang S, Romano FB, Rapoport TA. Endoplasmic Reticulum Network Formation with Xenopus Egg Extracts. Cold Spring Harb Protoc 2019; 2019:pdb.prot097204. [PMID: 29475993 DOI: 10.1101/pdb.prot097204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The endoplasmic reticulum (ER) consists of morphologically distinct domains, including a polygonal network of tubules that is connected by three-way junctions. This network is found in all eukaryotic cells. Extracts from Xenopus laevis eggs contain stockpiles of components that allow the assembly of an ER network in vitro. Here we provide protocols for assembly of ER networks in extracts that are arrested at different stages of the cell cycle. Unfertilized Xenopus laevis eggs contain a cytostatic factor (CSF) that keeps them in the metaphase stage of the cell cycle. Disruption of the eggs by low-speed centrifugation releases calcium and the eggs cycle into interphase. This state can then be maintained by the addition of cycloheximide, which prevents the synthesis of cyclin B. CSF extracts can be also prepared in the presence of a calcium chelator, thus keeping the extract in metaphase. In this protocol, we outline procedures for the assembly of an ER network using either interphase- or metaphase-arrested Xenopus egg extracts. The network assembled is strikingly similar to the network observed in tissue culture cells. The extract allows easy biochemical manipulation, permitting the effects of purified proteins or small molecules, or the depletion of cytosolic components to be tested.
Collapse
Affiliation(s)
- Songyu Wang
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Fabian B Romano
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
7
|
Hazel JW, Gatlin JC. Isolation and Demembranation of Xenopus Sperm Nuclei. Cold Spring Harb Protoc 2018; 2018:pdb.prot099044. [PMID: 29438000 DOI: 10.1101/pdb.prot099044] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The inherent experimental advantages of intact amphibian eggs have been exploited for several decades to advance our understanding of fundamental developmental processes and the cell cycle. Characterization of these processes at the molecular level has been greatly advanced by the use of cell-free extracts, which permit the development of biochemically tractable approaches. Demembranated Xenopus laevis sperm nuclei have been used with cell-free extracts to recapitulate cell cycle progression and to control the cell cycle state of the egg extract. This system has become an invaluable and widely used tool for studies of cell cycle regulation and many downstream events. Here, we describe a protocol, derived in part from other published protocols and modified over time, for the preparation of Xenopus sperm nuclei that can be used in a variety of in vitro assays.
Collapse
Affiliation(s)
- James W Hazel
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| | - Jesse C Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| |
Collapse
|
8
|
Bermudez JG, Chen H, Einstein LC, Good MC. Probing the biology of cell boundary conditions through confinement of Xenopus cell-free cytoplasmic extracts. Genesis 2017; 55. [PMID: 28132422 DOI: 10.1002/dvg.23013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 11/11/2022]
Abstract
Cell-free cytoplasmic extracts prepared from Xenopus eggs and embryos have for decades provided a biochemical system with which to interrogate complex cell biological processes in vitro. Recently, the application of microfabrication and microfluidic strategies in biology has narrowed the gap between in vitro and in vivo studies by enabling formation of cell-size compartments containing functional cytoplasm. These approaches provide numerous advantages over traditional biochemical experiments performed in a test tube. Most notably, the cell-free cytoplasm is confined using a two- or three-dimensional boundary, which mimics the natural configuration of a cell. This strategy enables characterization of the spatial organization of a cell, and the role that boundaries play in regulating intracellular assembly and function. In this review, we describe the marriage of Xenopus cell-free cytoplasm and confinement technologies to generate synthetic cell-like systems, the recent biological insights they have enabled, and the promise they hold for future scientific discovery.
Collapse
Affiliation(s)
- Jessica G Bermudez
- Department of Bioengineering, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104
| | - Hui Chen
- Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104
| | - Lily C Einstein
- Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104
| | - Matthew C Good
- Department of Bioengineering, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104.,Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104
| |
Collapse
|
9
|
Gillespie PJ, Neusiedler J, Creavin K, Chadha GS, Blow JJ. Cell Cycle Synchronization in Xenopus Egg Extracts. Methods Mol Biol 2016; 1342:101-47. [PMID: 26254920 DOI: 10.1007/978-1-4939-2957-3_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many important discoveries in cell cycle research have been made using cell-free extracts prepared from the eggs of the South African clawed frog Xenopus laevis. These extracts efficiently support the key nuclear functions of the eukaryotic cell cycle in vitro under apparently the same controls that exist in vivo. The Xenopus cell-free system is therefore uniquely suited to the study of the mechanisms, dynamics and integration of cell cycle regulated processes at a biochemical level. Here, we describe methods currently in use in our laboratory for the preparation of Xenopus egg extracts and demembranated sperm nuclei. We detail how these extracts can be used to study the key transitions of the eukaryotic cell cycle and describe conditions under which these transitions can be manipulated by addition of drugs that either retard or advance passage. In addition, we describe in detail essential techniques that provide a practical starting point for investigating the function of proteins involved in the operation of the eukaryotic cell cycle.
Collapse
Affiliation(s)
- Peter J Gillespie
- Centre for Gene Regulation & Expression, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | | | | | | | | |
Collapse
|
10
|
Hara Y, Merten CA. Dynein-Based Accumulation of Membranes Regulates Nuclear Expansion in Xenopus laevis Egg Extracts. Dev Cell 2015; 33:562-75. [PMID: 26004509 DOI: 10.1016/j.devcel.2015.04.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/02/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
Abstract
Nuclear size changes dynamically during development and has long been observed to correlate with the space surrounding the nucleus, as well as with the volume of the cell. Here we combine an in vitro cell-free system of Xenopus laevis egg extract with microfluidic devices to systematically analyze the effect of spatial constraints. The speed of nuclear expansion depended on the available space surrounding the nucleus up to a threshold volume in the nanoliter range, herein referred to as the nuclear domain. Under spatial constraints smaller than this nuclear domain, the size of microtubule-occupied space surrounding the nucleus turned out to be limiting for the accumulation of membranes around the nucleus via the motor protein dynein, therefore determining the speed of nuclear expansion. This mechanism explains how spatial information surrounding the nucleus, such as the positioning of the nucleus inside the cell, can control nuclear expansion.
Collapse
Affiliation(s)
- Yuki Hara
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.
| | - Christoph A Merten
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.
| |
Collapse
|
11
|
Broadus MR, Yew PR, Hann SR, Lee E. Small-molecule high-throughput screening utilizing Xenopus egg extract. Methods Mol Biol 2015; 1263:63-73. [PMID: 25618336 DOI: 10.1007/978-1-4939-2269-7_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Screens for small-molecule modulators of biological pathways typically utilize cultured cell lines, purified proteins, or, recently, model organisms (e.g., zebrafish, Drosophila, C. elegans). Herein, we describe a method for using Xenopus laevis egg extract, a biologically active and highly tractable cell-free system that recapitulates a legion of complex chemical reactions found in intact cells. Specifically, we focus on the use of a luciferase-based fusion system to identify small-molecule modulators that affect protein turnover.
Collapse
Affiliation(s)
- Matthew R Broadus
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 465 21st Avenue South, U-4213A Learned Lab/MRBIII, Nashville, TN, 37232-8240, USA
| | | | | | | |
Collapse
|
12
|
Bernis C, Forbes DJ. Analysis of nuclear reconstitution, nuclear envelope assembly, and nuclear pore assembly using Xenopus in vitro assays. Methods Cell Biol 2014; 122:165-91. [PMID: 24857730 DOI: 10.1016/b978-0-12-417160-2.00008-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The large and complex eukaryotic nucleus is the arbiter of DNA replication, RNA transcription, splicing, and ribosome assembly. With the advent of in vitro nuclear reconstitution extracts derived from Xenopus eggs in the 1980s, it became possible to assemble multiple nuclei in vitro around added DNA or chromatin substrates. Such reconstituted nuclei contain a nuclear lamina, double nuclear membranes, nuclear pores, and are competent for DNA replication and nuclear import. In vitro nuclear reconstitution has allowed the assembly of "wild-type" and "biochemically mutant" nuclei in which the impact of individual components can be assessed. Here, we describe protocols for preparation of the nuclear reconstitution extract, nuclear reconstitution in vitro, assessment of nuclear membrane integrity, and a more specialized assay for nuclear pore assembly into preformed pore-free nuclear intermediates.
Collapse
Affiliation(s)
- Cyril Bernis
- Cell and Developmental Biology, University of California, San Diego, California, USA
| | - Douglass J Forbes
- Cell and Developmental Biology, University of California, San Diego, California, USA
| |
Collapse
|
13
|
The permeability of reconstituted nuclear pores provides direct evidence for the selective phase model. Cell 2012; 150:738-51. [PMID: 22901806 DOI: 10.1016/j.cell.2012.07.019] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/05/2012] [Accepted: 06/05/2012] [Indexed: 11/20/2022]
Abstract
Nuclear pore complexes (NPCs) maintain a permeability barrier between the nucleus and the cytoplasm through FG-repeat-containing nucleoporins (Nups). We previously proposed a "selective phase model" in which the FG repeats interact with one another to form a sieve-like barrier that can be locally disrupted by the binding of nuclear transport receptors (NTRs), but not by inert macromolecules, allowing selective passage of NTRs and associated cargo. Here, we provide direct evidence for this model in a physiological context. By using NPCs reconstituted from Xenopus laevis egg extracts, we show that Nup98 is essential for maintaining the permeability barrier. Specifically, the multivalent cohesion between FG repeats is required, including cohesive FG repeats close to the anchorage point to the NPC scaffold. Our data exclude alternative models that are based solely on an interaction between the FG repeats and NTRs and indicate that the barrier is formed by a sieve-like FG hydrogel.
Collapse
|
14
|
Screening for small molecule inhibitors of embryonic pathways: sometimes you gotta crack a few eggs. Bioorg Med Chem 2011; 20:1869-77. [PMID: 22261025 DOI: 10.1016/j.bmc.2011.12.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/07/2011] [Accepted: 12/20/2011] [Indexed: 12/17/2022]
Abstract
Extract prepared from Xenopus eggs represents a cell-free system that has been shown to recapitulate a multitude of cellular processes, including cell cycle regulation, DNA replication/repair, and cytoskeletal dynamics. In addition, this system has been used to successfully reconstitute the Wnt pathway. Xenopus egg extract, which can be biochemically manipulated, offers an ideal medium in which small molecule screening can be performed in near native milieu. Thus, the use of Xenopus egg extract for small molecule screening represents an ideal bridge between targeted and phenotypic screening approaches. This review focuses on the use of this system for small molecules modulators of major signal transduction pathways (Notch, Hedgehog, and Wnt) that are critical for the development of the early Xenopus embryo. We describe the properties of Xenopus egg extract and our own high throughput screen for small molecules that modulate the Wnt pathway using this cell-free system. We propose that Xenopus egg extract could similarly be adapted for screening for modulators of the Notch and Hedgehog pathways.
Collapse
|
15
|
Symens N, Walczak R, Demeester J, Mattaj I, De Smedt SC, Remaut K. Nuclear inclusion of nontargeted and chromatin-targeted polystyrene beads and plasmid DNA containing nanoparticles. Mol Pharm 2011; 8:1757-66. [PMID: 21859089 DOI: 10.1021/mp200120v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nuclear membrane is one of the major cellular barriers in the delivery of plasmid DNA (pDNA). Cell division has a positive influence on the expression efficiency since, at the end of mitosis, pDNA or pDNA containing complexes near the chromatin are probably included by a random process in the nuclei of the daughter cells. However, very little is known about the nuclear inclusion of nanoparticles during cell division. Using the Xenopus nuclear envelope reassembly (XNER) assay, we found that the nuclear enclosure of nanoparticles was dependent on size (with 100 and 200 nm particles being better included than the 500 nm ones) and charge (with positively charged particles being better included than negatively charged or polyethyleneglycolated (PEGylated) ones) of the beads. Also, coupling chromatin-targeting peptides to the polystyrene beads or pDNA complexes improved their inclusion by 2- to 3-fold. Upon microinjection in living HeLa cells, however, nanoparticles were never observed in the nuclei of cells postdivision but accumulated in a specific perinuclear region, which was identified as the lysosomal compartment. This indicates that nanoparticles can end up in the lysosomes even when they were not delivered through endocytosis. To elucidate if the chromatin binding peptides also have potential in living cells, this additional barrier first has to be tackled, since it prevents free particles from being present near the chromatin at the moment of cell division.
Collapse
Affiliation(s)
- Nathalie Symens
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
16
|
Marteil G, Richard-Parpaillon L, Kubiak JZ. Role of oocyte quality in meiotic maturation and embryonic development. Reprod Biol 2010; 9:203-24. [PMID: 19997475 DOI: 10.1016/s1642-431x(12)60027-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The quality of oocytes plays a key role in a proper embryo development. In humans, oocytes of poor quality may be the cause of women infertility and an important obstacle in successful in vitro fertilization (IVF). The competence of oocytes depends on numerous processes taking place during the whole oogenesis, but its final steps such as oocyte maturation, seem to be of key importance. In this paper, we overview factors involved in the development of a fully functional female gamete with Xenopus laevis as a major experimental model. Modern approaches, e.g. proteomic analysis, enable the identification of novel proteins involved in oocyte development. EP45, called also Seryp or pNiXa, which belongs to the serpin (serine protease inhibitors) super-family is one of such recently analyzed proteins. This protein seems to be involved in the stimulation of meiotic maturation and embryo development. EP45 is potentially a key factor in correct oocyte development and determining the quality of oocytes.
Collapse
Affiliation(s)
- Gaëlle Marteil
- CNRS-UMR 6061, University of Rennes 1, IFR 140 GFAS, Rennes, France
| | | | | |
Collapse
|
17
|
Rafikova ER, Melikov K, Ramos C, Dye L, Chernomordik LV. Transmembrane protein-free membranes fuse into xenopus nuclear envelope and promote assembly of functional pores. J Biol Chem 2009; 284:29847-59. [PMID: 19696024 PMCID: PMC2785615 DOI: 10.1074/jbc.m109.044453] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/17/2009] [Indexed: 11/06/2022] Open
Abstract
Post-mitotic reassembly of nuclear envelope (NE) and the endoplasmic reticulum (ER) has been reconstituted in a cell-free system based on interphase Xenopus egg extract. To evaluate the relative contributions of cytosolic and transmembrane proteins in NE and ER assembly, we replaced a part of native membrane vesicles with ones either functionally impaired by trypsin or N-ethylmaleimide treatments or with protein-free liposomes. Although neither impaired membrane vesicles nor liposomes formed ER and nuclear membrane, they both supported assembly reactions by fusing with native membrane vesicles. At membrane concentrations insufficient to generate full-sized functional nuclei, addition of liposomes and their fusion with membrane vesicles resulted in an extensive expansion of NE, further chromatin decondensation, restoration of the functionality, and spatial distribution of the nuclear pore complexes (NPCs), and, absent newly delivered transmembrane proteins, an increase in NPC numbers. This rescue of the nuclear assembly by liposomes was inhibited by wheat germ agglutinin and thus required active nuclear transport, similarly to the assembly of full-sized functional NE with membrane vesicles. Mechanism of fusion between liposomes and between liposomes and membrane vesicles was investigated using lipid mixing assay. This fusion required interphase cytosol and, like fusion between native membrane vesicles, was inhibited by guanosine 5'-3-O-(thio)triphosphate, soluble N-ethylmaleimide-sensitive factor attachment protein, and N-ethylmaleimide. Our findings suggest that interphase cytosol contains proteins that mediate the fusion stage of ER and NE reassembly, emphasize an unexpected tolerance of nucleus assembly to changes in concentrations of transmembrane proteins, and reveal the existence of a feedback mechanism that couples NE expansion with NPC assembly.
Collapse
Affiliation(s)
- Elvira R. Rafikova
- From the Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892-1855
| | - Kamran Melikov
- From the Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892-1855
| | - Corinne Ramos
- the Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0347, and
| | - Louis Dye
- the Microscopy and Imaging Core, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892-1855
| | - Leonid V. Chernomordik
- From the Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892-1855
| |
Collapse
|
18
|
Lau CK, Delmar VA, Chan RC, Phung Q, Bernis C, Fichtman B, Rasala BA, Forbes DJ. Transportin regulates major mitotic assembly events: from spindle to nuclear pore assembly. Mol Biol Cell 2009; 20:4043-58. [PMID: 19641022 DOI: 10.1091/mbc.e09-02-0152] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mitosis in higher eukaryotes is marked by the sequential assembly of two massive structures: the mitotic spindle and the nucleus. Nuclear assembly itself requires the precise formation of both nuclear membranes and nuclear pore complexes. Previously, importin alpha/beta and RanGTP were shown to act as dueling regulators to ensure that these assembly processes occur only in the vicinity of the mitotic chromosomes. We now find that the distantly related karyopherin, transportin, negatively regulates nuclear envelope fusion and nuclear pore assembly in Xenopus egg extracts. We show that transportin-and importin beta-initiate their regulation as early as the first known step of nuclear pore assembly: recruitment of the critical pore-targeting nucleoporin ELYS/MEL-28 to chromatin. Indeed, each karyopherin can interact directly with ELYS. We further define the nucleoporin subunit targets for transportin and importin beta and find them to be largely the same: ELYS, the Nup107/160 complex, Nup53, and the FG nucleoporins. Equally importantly, we find that transportin negatively regulates mitotic spindle assembly. These negative regulatory events are counteracted by RanGTP. We conclude that the interplay of the two negative regulators, transportin and importin beta, along with the positive regulator RanGTP, allows precise choreography of multiple cell cycle assembly events.
Collapse
Affiliation(s)
- Corine K Lau
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0347, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Mudrak O, Chandra R, Jones E, Godfrey E, Zalensky A. Reorganisation of human sperm nuclear architecture during formation of pronuclei in a model system. Reprod Fertil Dev 2009; 21:665-71. [DOI: 10.1071/rd08269] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 03/20/2009] [Indexed: 01/27/2023] Open
Abstract
By fertilisation, two terminally differentiated cells, namely the egg and spermatozoon, are combined to create a totipotent zygote. During this process, the inactive sperm nucleus is transformed into a functional male pronucleus. Recent studies demonstrate that human sperm chromatin has an elaborate multilevel organisation, but almost nothing is known about how sperm chromosomes are transformed during fertilisation. Because of ethical reasons and technical complications, experimentation with human embryos is generally unworkable and adequate model systems are necessary to study the formation of male pronuclei. Here, we analyse remodelling of human sperm chromatin and chromosome architecture in Xenopus egg extracts using immunofluorescent localisation of protamines and centromere protein A, as well as fluorescence in situ hybridisation localisation of major α-satellite DNA and whole chromosome territory (CT). We demonstrate noticeable relocalisation of centromeres and remodelling of CT during the decondensation–recondensation cycle, mimicking cellular events that occur in the paternal genome in vivo during fertilisation.
Collapse
|
20
|
Delmar VA, Chan RC, Forbes DJ. Xenopus importin beta validates human importin beta as a cell cycle negative regulator. BMC Cell Biol 2008; 9:14. [PMID: 18366719 PMCID: PMC2324082 DOI: 10.1186/1471-2121-9-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 03/22/2008] [Indexed: 11/12/2022] Open
Abstract
Background Human importin beta has been used in all Xenopus laevis in vitro nuclear assembly and spindle assembly studies. This disconnect between species raised the question for us as to whether importin beta was an authentic negative regulator of cell cycle events, or a dominant negative regulator due to a difference between the human and Xenopus importin beta sequences. No Xenopus importin beta gene was yet identified at the time of those studies. Thus, we first cloned, identified, and tested the Xenopus importin beta gene to address this important mechanistic difference. If human importin beta is an authentic negative regulator then we would expect human and Xenopus importin beta to have identical negative regulatory effects on nuclear membrane fusion and pore assembly. If human importin beta acts instead as a dominant negative mutant inhibitor, we should then see no inhibitory effect when we added the Xenopus homologue. Results We found that Xenopus importin beta acts identically to its human counterpart. It negatively regulates both nuclear membrane fusion and pore assembly. Human importin beta inhibition was previously found to be reversible by Ran for mitotic spindle assembly and nuclear membrane fusion, but not nuclear pore assembly. During the present study, we observed that this differing reversibility varied depending on the presence or absence of a tag on importin beta. Indeed, when untagged importin beta, either human or Xenopus, was used, inhibition of nuclear pore assembly proved to be Ran-reversible. Conclusion We conclude that importin beta, human or Xenopus, is an authentic negative regulator of nuclear assembly and, presumably, spindle assembly. A difference in the Ran sensitivity between tagged and untagged importin beta in pore assembly gives us mechanistic insight into nuclear pore formation.
Collapse
Affiliation(s)
- Valerie A Delmar
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, University of California - San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, USA.
| | | | | |
Collapse
|
21
|
Philpott A, Yew PR. The Xenopus cell cycle: an overview. Mol Biotechnol 2008; 39:9-19. [PMID: 18266114 DOI: 10.1007/s12033-008-9033-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 12/28/2007] [Indexed: 01/03/2023]
Abstract
Oocytes, eggs and embryos from the frog Xenopus laevis have been an important model system for studying cell-cycle regulation for several decades. First, progression through meiosis in the oocyte has been extensively investigated. Oocyte maturation has been shown to involve complex networks of signal transduction pathways, culminating in the cyclic activation and inactivation of Maturation Promoting Factor (MPF), composed of cyclin B and cdc2. After fertilisation, the early embryo undergoes rapid simplified cell cycles which have been recapitulated in cell-free extracts of Xenopus eggs. Experimental manipulation of these extracts has given a wealth of biochemical information about the cell cycle, particularly concerning DNA replication and mitosis. Finally, cells of older embryos adopt a more somatic-type cell cycle and have been used to study the balance between cell cycle and differentiation during development.
Collapse
Affiliation(s)
- Anna Philpott
- Department of Oncology, Hutchison/MRC Research Centre, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, England.
| | | |
Collapse
|
22
|
Collas P, Taranger CK. Epigenetic reprogramming of nuclei using cell extracts. ACTA ACUST UNITED AC 2007; 2:309-17. [PMID: 17848718 DOI: 10.1007/bf02698058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/28/2022]
Abstract
Recent evidence indicates that nuclear and cytoplasmic extracts from undifferentiated cells can reprogram gene expression and promote pluripotency in otherwise more developmentally restricted cell types. Notably, extracts of embryonal carcinoma cells or embryonic stem cells have been shown to elicit a shift in the transcriptional program of target cells to upregulate embryonic stem cell genes, downregulate somatic cell-specific markers, and epigenetically modify histones. Reprogrammed kidney epithelial cells acquire a potential for differentiation toward ectodermal and mesodermal lineages. Cell extract-mediated nuclear reprogramming may constitute an attractive alternative to reprogramming somatic cells by cell fusion or nuclear transfer. This review highlights recent observations leading to the concept that extracts derived from pluripotent cells contain regulatory components capable of reprogramming somatic nuclear function. Limitations of current extract-based reprogramming approaches are also addressed.
Collapse
Affiliation(s)
- Philippe Collas
- Institute of Basic Medical Sciences, Department of Biochemistry, University of Oslo, Blindern, Oslo 0317, Norway.
| | | |
Collapse
|
23
|
Kiseleva E, Morozova KN, Voeltz GK, Allen TD, Goldberg MW. Reticulon 4a/NogoA locates to regions of high membrane curvature and may have a role in nuclear envelope growth. J Struct Biol 2007; 160:224-35. [PMID: 17889556 PMCID: PMC2048824 DOI: 10.1016/j.jsb.2007.08.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 08/10/2007] [Accepted: 08/13/2007] [Indexed: 11/27/2022]
Abstract
Reticulon 4a (Rtn4a) is a membrane protein that shapes tubules of the endoplasmic reticulum (ER). The ER is attached to the nuclear envelope (NE) during interphase and has a role in post mitotic/meiotic NE reassembly. We speculated that Rtn4a has a role in NE dynamics. Using immuno-electron microscopy we found that Rtn4a is located at junctions between membranes in the cytoplasm, and between cytoplasmic membranes and the outer nuclear membrane in growing Xenopus oocyte nuclei. We found that during NE assembly in Xenopus egg extracts, Rtn4a localises to the edges of membranes that are flattening onto the chromatin. These results demonstrate that Rtn4a locates to regions of high membrane curvature in the ER and the assembling NE. Previously it was shown that incubation of egg extracts with antibodies against Rtn4a caused ER to form into large vesicles instead of tubules. To test whether Rtn4a contributes to NE assembly, we added the same Rtn4a antibody to nuclear assembly reactions. Chromatin was enclosed by membranes containing nuclear pore complexes, but nuclei did not grow. Instead large sacs of ER membranes attached to, but did not integrate into the NE. It is possible therefore that Rtn4a may have a role in NE assembly.
Collapse
Affiliation(s)
- Elena Kiseleva
- Laboratory of Morphology and Function of Cell Structure, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, 630090, Russia
| | - Ksenia N. Morozova
- Laboratory of Morphology and Function of Cell Structure, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, 630090, Russia
| | - Gia K. Voeltz
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Terrence D. Allen
- Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - Martin W. Goldberg
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK
- Corresponding author. Fax: +44 0 191 334 1201.
| |
Collapse
|
24
|
Baur T, Ramadan K, Schlundt A, Kartenbeck J, Meyer HH. NSF- and SNARE-mediated membrane fusion is required for nuclear envelope formation and completion of nuclear pore complex assembly in Xenopus laevis egg extracts. J Cell Sci 2007; 120:2895-903. [PMID: 17666429 DOI: 10.1242/jcs.010181] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite the progress in understanding nuclear envelope (NE) reformation after mitosis, it has remained unclear what drives the required membrane fusion and how exactly this is coordinated with nuclear pore complex (NPC) assembly. Here, we show that, like other intracellular fusion reactions, NE fusion in Xenopus laevis egg extracts is mediated by SNARE proteins that require activation by NSF. Antibodies against Xenopus NSF, depletion of NSF or the dominant-negative NSF(E329Q) variant specifically inhibited NE formation. Staging experiments further revealed that NSF was required until sealing of the envelope was completed. Moreover, excess exogenous alpha-SNAP that blocks SNARE function prevented membrane fusion and caused accumulation of non-flattened vesicles on the chromatin surface. Under these conditions, the nucleoporins Nup107 and gp210 were fully recruited, whereas assembly of FxFG-repeat-containing nucleoporins was blocked. Together, we define NSF- and SNARE-mediated membrane fusion events as essential steps during NE formation downstream of Nup107 recruitment, and upstream of membrane flattening and completion of NPC assembly.
Collapse
Affiliation(s)
- Tina Baur
- Institute of Biochemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Abstract
Nucleocytoplasmic exchange of proteins and RNAs is mediated by receptors that usher their cargo through the nuclear pores. Peptide localization signals on each cargo determine the receptors with which it will interact. Those interactions are normally regulated by the small GTPase Ran. Hydrolysis of GTP provides the chemical energy required to create a bona fide thermodynamic pump that selectively and directionally accumulates its substrates across the nuclear envelope. A common perception is that cargo delivery is irreversible, e.g., a protein imported to the nucleus does not return to the cytoplasm except perhaps via a specific export receptor. Quantitative measurements using cell-free nuclei reconstituted in Xenopus egg extract show that nuclear accumulation follows first-order kinetics and reaches steady state at a level that follows a Michaelis-Menten function of the cytoplasmic cargo concentration. This saturation suggests that receptor-mediated translocation across the nuclear pore occurs bidirectionally. The reversibility of accumulation was demonstrated directly by exchange of the cytosolic medium and by fluorescence recovery after photobleaching. Based on our results, we offer a simple biophysical model that predicts the observed behavior. A far-reaching consequence is that the nuclear localization signal dictates the fate of a protein population rather than that of the individual molecules that bear it, which remain free to shuttle back and forth. This implies an open communication between the nucleus and cytoplasm and a ubiquitous mechanism for signaling in both directions.
Collapse
Affiliation(s)
- Ronen Benjamine Kopito
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael Elbaum
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
26
|
Ribbeck K, Raemaekers T, Carmeliet G, Mattaj IW. A role for NuSAP in linking microtubules to mitotic chromosomes. Curr Biol 2007; 17:230-6. [PMID: 17276916 DOI: 10.1016/j.cub.2006.11.050] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 11/12/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
The spindle apparatus is a microtubule (MT)-based machinery that attaches to and segregates the chromosomes during mitosis and meiosis. Self-organization of the spindle around chromatin involves the assembly of MTs, their attachment to the chromosomes, and their organization into a bipolar array. One regulator of spindle self-organization is RanGTP. RanGTP is generated at chromatin and activates a set of soluble, Ran-regulated spindle factors such as TPX2, NuMA, and NuSAP . How the spindle factors direct and attach MTs to the chromosomes are key open questions. Nucleolar and Spindle-Associated Protein (NuSAP) was recently identified as an essential MT-stabilizing and bundling protein that is enriched at the central part of the spindle . Here, we show by biochemical reconstitution that NuSAP efficiently adsorbs to isolated chromatin and DNA and that it can directly produce and retain high concentrations of MTs in the immediate vicinity of chromatin or DNA. Moreover, our data reveal that NuSAP-chromatin interaction is subject to Ran regulation and can be suppressed by Importin alpha (Impalpha) and Imp7. We propose that the presence of MT binding agents such as NuSAP, which can be directly immobilized on chromatin, are critical for targeting MT production to vertebrate chromosomes during spindle self-organization.
Collapse
Affiliation(s)
- Katharina Ribbeck
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
| | | | | | | |
Collapse
|
27
|
Zybina EV, Zybina TG. Modifications of nuclear envelope during differentiation and depolyploidization of rat trophoblast cells. Micron 2007; 39:593-606. [PMID: 17627829 DOI: 10.1016/j.micron.2007.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 05/23/2007] [Accepted: 05/24/2007] [Indexed: 01/05/2023]
Abstract
An increased activity of membranes of the nuclear envelope (NE) was observed electron microscopically in the trophoblast cells of the rat placenta. The activity of the membranes was manifested as formation of various NE derivatives, such as the annulate lamellae (AL), the intranuclear tubules, and the concentric membranous structures. At the period of terminal differentiation of the secondary giant trophoblast cells (SGTC) the NE derivatives play active role in subdivision of the initial highly polyploid nuclei into the numerous low-ploidy fragments. (3)H-thymidine labeling showed that attenuation of the DNA replication precedes the nuclear fragmentation. In the course of the nuclear fragmentation the narrow deep NE invaginations subdivide the nucleus into the separate lobes that subsequently are detached from the initial nucleus. By the beginning of the fragmentation, the accumulated membranous structures, i.e. the intranuclear AL, tubules, clusters of pore complexes, etc., seem to be the source of the reserve material that is necessary for formation of the great amount of the NE membranes of the newly formed nuclear fragments. Thus, the intranuclear membranous structures that seem to increase the active surface of the growing endopolyploid nucleus at the earlier stage of differentiation then take part in genome isolation that results in formation of a multinucleate cell with diploid and low-polyploid nuclei. The outer NE membrane of the initial nucleus plays an active role in compartmentalization of cytoplasmic areas around the nuclear fragments within the giant polykaryocyte. Apart from the membranous structures the bundles of intermediate filaments (IF) located in the cytoplasm perinuclear zones seem to participate in the nuclear fragmentation. These processes are likely to provide formation of the giant polykaryocytes incapable for further proliferation.
Collapse
Affiliation(s)
- Eugenia V Zybina
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | | |
Collapse
|
28
|
Cotter L, Allen TD, Kiseleva E, Goldberg MW. Nuclear membrane disassembly and rupture. J Mol Biol 2007; 369:683-95. [PMID: 17467734 DOI: 10.1016/j.jmb.2007.03.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 03/15/2007] [Accepted: 03/19/2007] [Indexed: 12/18/2022]
Abstract
The nuclear envelope consists of two membranes traversed by nuclear pore complexes. The outer membrane is continuous with the endoplasmic reticulum. At mitosis nuclear pore complexes are dismantled and membranes disperse. The mechanism of dispersal is controversial: one view is that membranes feed into the endoplasmic reticulum, another is that they vesiculate. Using Xenopus egg extracts, nuclei have been assembled and then induced to breakdown by addition of metaphase extract. Field emission scanning electron microscopy was used to study disassembly. Strikingly, endoplasmic reticulum-like membrane tubules form from the nuclear surface after the addition of metaphase extracts, but vesicles were also observed. Microtubule inhibitors slowed but did not prevent membrane removal, whereas Brefeldin A, which inhibits vesicle formation, stops membrane disassembly, suggesting that vesiculation is necessary. Structures that looked like coated buds were observed and buds were labelled for beta-COP. We show that nuclear pore complexes are dismantled and the pore closed prior to membrane rupturing, suggesting that rupturing is an active process rather than a result of enlargement of nuclear pores.
Collapse
Affiliation(s)
- Laura Cotter
- Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, UK
| | | | | | | |
Collapse
|
29
|
Lau CK, Delmar VA, Forbes DJ. Topology of yeast Ndc1p: predictions for the human NDC1/NET3 homologue. ACTA ACUST UNITED AC 2006; 288:681-94. [PMID: 16779818 PMCID: PMC3049984 DOI: 10.1002/ar.a.20335] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The nuclear pore complex is the predominant structure in the nuclear envelope that spans the double nuclear membranes of all eukaryotes. Yeasts have one additional organelle that is also embedded in the nuclear envelope: the spindle pole body, which functions as the microtubule organizing center. The only protein known to localize to and be important in the assembly of both of these yeast structures is the integral membrane protein, Ndc1p. However, no homologues of Ndc1p had been characterized in metazoa. Here, we identify and analyze NDC1 homologues that are conserved throughout evolution. We show that the overall topology of these homologues is conserved. Each contains six transmembrane segments in its N-terminal half and has a large soluble C-terminal half of approximately 300 amino acids. Charge distribution analysis infers that the N- and C-termini are exposed to the cytoplasm. Limited proteolysis of yeast Ndc1p in cellular membranes confirms the orientation of its C-terminus. Although it is not known whether vertebrate NDC1 protein localizes to nuclear pores like its yeast counterpart, the human homologue contains three FG repeats in the C-terminus, a feature of many nuclear pore proteins. Moreover, a small region containing mutations that affect assembly of the nuclear pore in yeast is highly conserved throughout evolution. Lastly, we bring together data from another study to demonstrate that the human homologue of NDC1 is the known inner nuclear membrane protein, NET3.
Collapse
Affiliation(s)
- Corine K. Lau
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, University of California-San Diego, La Jolla, CA, 92093-0347
| | - Valerie A. Delmar
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, University of California-San Diego, La Jolla, CA, 92093-0347
| | - Douglass J. Forbes
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, University of California-San Diego, La Jolla, CA, 92093-0347
- Corresponding author Phone: (858) 534-3398, Fax: (858) 534-0555, E-mail:
| |
Collapse
|
30
|
Ribbeck K, Groen AC, Santarella R, Bohnsack MT, Raemaekers T, Köcher T, Gentzel M, Görlich D, Wilm M, Carmeliet G, Mitchison TJ, Ellenberg J, Hoenger A, Mattaj IW. NuSAP, a mitotic RanGTP target that stabilizes and cross-links microtubules. Mol Biol Cell 2006; 17:2646-60. [PMID: 16571672 PMCID: PMC1474800 DOI: 10.1091/mbc.e05-12-1178] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nucleolar and spindle-associated protein (NuSAP) was recently identified as a microtubule- and chromatin-binding protein in vertebrates that is nuclear during interphase. Small interfering RNA-mediated depletion of NuSAP resulted in aberrant spindle formation, missegregation of chromosomes, and ultimately blocked cell proliferation. We show here that NuSAP is enriched on chromatin-proximal microtubules at meiotic spindles in Xenopus oocytes. When added at higher than physiological levels to Xenopus egg extract, NuSAP induces extensive bundling of spindle microtubules and causes bundled microtubules within spindle-like structures to become longer. In vitro reconstitution experiments reveal two direct effects of NuSAP on microtubules: first, it can efficiently stabilize microtubules against depolymerization, and second, it can cross-link large numbers of microtubules into aster-like structures, thick fibers, and networks. With defined components we show that the activity of NuSAP is differentially regulated by Importin (Imp) alpha, Impbeta, and Imp7. While Impalpha and Imp7 appear to block the microtubule-stabilizing activity of NuSAP, Impbeta specifically suppresses aspects of the cross-linking activity of NuSAP. We propose that to achieve full NuSAP functionality at the spindle, all three importins must be dissociated by RanGTP. Once activated, NuSAP may aid to maintain spindle integrity by stabilizing and cross-linking microtubules around chromatin.
Collapse
|
31
|
Chan RC, Forbes DI. In vitro study of nuclear assembly and nuclear import using Xenopus egg extracts. Methods Mol Biol 2006; 322:289-300. [PMID: 16739731 DOI: 10.1007/978-1-59745-000-3_20] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Nuclear import is a critical process for the cell: molecules are selectively permitted into the nuclear interior where the sheltered genome resides. The process of nuclear import can be biochemically studied in vitro using nuclei reconstituted from Xenopus egg extract components and Xenopus sperm chromatin. This in vitro system allows for the visualization of nuclear import by monitoring the accumulation of fluorescent nuclear import substrates in the reconstituted nuclei. A powerful aspect of the system is that "biochemically mutant" nuclei can be readily generated, either by immunodepletion of proteins from or addition of proteins to the reaction. This ability allows ascertainment of the role of specific proteins in nuclear import.
Collapse
Affiliation(s)
- Rene C Chan
- Division of Biological Sciences, University of California, San Diego, USA
| | | |
Collapse
|
32
|
Bengtsson L, Wilson KL. Barrier-to-autointegration factor phosphorylation on Ser-4 regulates emerin binding to lamin A in vitro and emerin localization in vivo. Mol Biol Cell 2005; 17:1154-63. [PMID: 16371512 PMCID: PMC1382305 DOI: 10.1091/mbc.e05-04-0356] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Barrier-to-autointegration factor (BAF) is a conserved 10-kDa chromatin protein essential in proliferating cells. BAF dimers bind double-stranded DNA, histone H3, histone H1.1, lamin A, and transcription regulators, plus emerin and other LEM-domain nuclear proteins. Two-dimensional gel analysis showed that endogenous human and Xenopus BAF are posttranslationally modified by phosphorylation and potentially other modifications and that they are hyperphosphorylated during mitosis. The invariant Ser-4 residue on BAF is a major site of phosphorylation during both interphase and mitosis. In HeLa cells that overexpressed the phosphomimetic BAF missense mutant S4E, but not S4A, emerin mislocalized from the nuclear envelope, suggesting Ser-4-nonphosphorylated BAF normally promotes emerin localization at the nuclear envelope. Supporting this model, wild-type BAF but not mutant S4E enhanced emerin binding to lamin A in vitro. Thus, Ser-4-unphosphorylated BAF has a positive role in localizing emerin; this role may be disease relevant because loss or mislocalization of emerin causes Emery-Dreifuss muscular dystrophy. Our findings further suggest Ser-4 phosphorylation inhibits BAF binding to emerin and lamin A, and thereby weakens emerin-lamin interactions during both mitosis and interphase.
Collapse
Affiliation(s)
- Luiza Bengtsson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| | | |
Collapse
|
33
|
Powell K. Frog egg extracts can do a cell's work. J Biophys Biochem Cytol 2005. [PMCID: PMC2258053 DOI: 10.1083/jcb1714fta2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
34
|
Shumaker DK, Lopez-Soler RI, Adam SA, Herrmann H, Moir RD, Spann TP, Goldman RD. Functions and dysfunctions of the nuclear lamin Ig-fold domain in nuclear assembly, growth, and Emery-Dreifuss muscular dystrophy. Proc Natl Acad Sci U S A 2005; 102:15494-9. [PMID: 16227433 PMCID: PMC1255737 DOI: 10.1073/pnas.0507612102] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2005] [Indexed: 12/11/2022] Open
Abstract
The non-alpha-helical C terminus of Xenopus lamin B3 (LB3T) inhibits the polymerization of lamin B3 in vitro and prevents the assembly of nuclei in Xenopus egg interphase extracts. To more precisely define the functions of LB3T in nuclear assembly, we have expressed subdomains of LB3T and determined their effects on nuclear assembly in Xenopus extracts. The results demonstrate that the Ig-fold motif (LB3T-Ig) is sufficient to inhibit lamin polymerization in vitro. Addition of the LB3T-Ig to egg extracts before the introduction of chromatin prevents chromatin decondensation and the assembly of the lamina, membranes, and pore complexes comprising the nuclear envelope. When added to assembled nuclei, LB3T-Ig prevents the further incorporation of lamin B3 into the endogenous lamina and blocks nuclear growth. The introduction of a point mutation in LB3T-Ig (R454W; LB3T-IgRW), known to cause Emery-Dreifuss muscular dystrophy when present in lamin A, does not inhibit lamin polymerization, chromatin decondensation, or nuclear assembly and growth. These results shed light on the specific alterations in lamin functions attributable to a known muscular dystrophy mutation and provide an experimental framework for revealing the effects of other mutations causing a wide range of laminopathies.
Collapse
Affiliation(s)
- Dale K Shumaker
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Barona T, Byrne RD, Pettitt TR, Wakelam MJO, Larijani B, Poccia DL. Diacylglycerol induces fusion of nuclear envelope membrane precursor vesicles. J Biol Chem 2005; 280:41171-7. [PMID: 16216883 DOI: 10.1074/jbc.m412863200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Purified membrane vesicles isolated from sea urchin eggs form nuclear envelopes around sperm nuclei following GTP hydrolysis in the presence of cytosol. A low density subfraction of these vesicles (MV1), highly enriched in phosphatidylinositol (PtdIns), is required for nuclear envelope formation. Membrane fusion of MV1 with a second fraction that contributes most of the nuclear envelope can be initiated without GTP by an exogenous bacterial PtdIns-specific phospholipase C (PI-PLC) which hydrolyzes PtdIns to form diacylglycerides and inositol 1-phosphate. This PI-PLC hydrolyzes a subset of sea urchin membrane vesicle PtdIns into diglycerides enriched in long chain, polyunsaturated species as revealed by a novel liquid chromatography-mass spectrometry analysis. Large unilammelar vesicles (LUVs) enriched in PtdIns can substitute for MV1 in PI-PLC induced nuclear envelope formation. Moreover, MV1 prehydrolyzed with PI-PLC and washed to remove inositols leads to spontaneous nuclear envelope formation with MV2 without further PI-PLC treatment. LUVs enriched in diacylglycerol mimic prehydrolyzed MV1. These results indicate that production of membrane-destabilizing diglycerides in membranes enriched in PtdIns may facilitate membrane fusion in a natural membrane system and suggest that MV1, which binds only to two places on the sperm nucleus, may initiate fusion locally.
Collapse
Affiliation(s)
- Teresa Barona
- Biology Department, Amherst College, Amherst, Massachusetts 01002, USA
| | | | | | | | | | | |
Collapse
|
36
|
Roig J, Groen A, Caldwell J, Avruch J. Active Nercc1 protein kinase concentrates at centrosomes early in mitosis and is necessary for proper spindle assembly. Mol Biol Cell 2005; 16:4827-40. [PMID: 16079175 PMCID: PMC1237086 DOI: 10.1091/mbc.e05-04-0315] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The Nercc1 protein kinase autoactivates in vitro and is activated in vivo during mitosis. Autoactivation in vitro requires phosphorylation of the activation loop at threonine 210. Mitotic activation of Nercc1 in mammalian cells is accompanied by Thr210 phosphorylation and involves a small fraction of total Nercc1. Mammalian Nercc1 coimmunoprecipitates gamma-tubulin and the activated Nercc1 polypeptides localize to the centrosomes and spindle poles during early mitosis, suggesting that active Nercc has important functions at the microtubular organizing center during cell division. To test this hypothesis, we characterized the Xenopus Nercc1 orthologue (XNercc). XNercc endogenous to meiotic egg extracts coprecipitates a multiprotein complex that contains gamma-tubulin and several components of the gamma-tubulin ring complex and localizes to the poles of spindles formed in vitro. Reciprocally, immunoprecipitates of the gamma-tubulin ring complex polypeptide Xgrip109 contain XNercc. Immunodepletion of XNercc from egg extracts results in delayed spindle assembly, fewer bipolar spindles, and the appearance of aberrant microtubule structures, aberrations corrected by addition of purified recombinant XNercc. XNercc immunodepletion also slows aster assembly induced by Ran-GTP, producing Ran-asters of abnormal size and morphology. Thus, Nercc1 contributes to both the centrosomal and the chromatin/Ran pathways that collaborate in the organization of a bipolar spindle.
Collapse
Affiliation(s)
- Joan Roig
- Department of Molecular Biology and Medical Services, Massachusetts General Hospital Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
37
|
Byrne R, Barona T, Garnier M, Koster G, Katan M, Poccia D, Larijani B. Nuclear envelope assembly is promoted by phosphoinositide-specific phospholipase C with selective recruitment of phosphatidylinositol-enriched membranes. Biochem J 2005; 387:393-400. [PMID: 15554872 PMCID: PMC1134967 DOI: 10.1042/bj20040947] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 11/10/2004] [Accepted: 11/19/2004] [Indexed: 11/17/2022]
Abstract
Nuclear envelope (NE) formation in a cell-free egg extract proceeds by precursor membrane vesicle binding to chromatin in an ATP-dependent manner, followed by a GTP-induced NE assembly step. The requirement for GTP in the latter step of this process can be mimicked by addition of bacterial PI-PLC [phosphoinositide (PtdIns)-specific phospholipase C]. The NE assembly process is here dissected in relation to the requirement for endogenous phosphoinositide metabolism, employing recombinant eukaryotic PI-PLC, inhibitors and direct phospholipid analysis using ESI-MS (electrospray ionization mass spectrometry). PtdIns (phosphatidylinositol) species analysis by ESI-MS indicates that the chromatin-bound NE precursor vesicles are enriched for specific PtdIns species. Moreover, during GTP-induced precursor vesicle fusion, the membrane vesicles become partially depleted of the PtdIns 18:0/20:4 species. These data indicate that eukaryotic PI-PLC can support NE formation, and the sensitivity to exogenous recombinant PtdIns-5-phosphatases shows that the endogenous PLC hydrolyses a 5-phosphorylated species. It is shown further that the downstream target of this DAG (diacylglycerol) pathway does not involve PKC (protein kinase C) catalytic function, but is mimicked by phorbol esters, indicating a possible engagement of one of the non-PKC phorbol ester receptors. The results show that ESI-MS can be used as a sensitive means to measure the lipid composition of biological membranes and their changes during, for example, membrane fusogenic events. We have exploited this and the intervention studies to illustrate a pivotal role for PI-PLC and its product DAG in the formation of NEs.
Collapse
Key Words
- diacylglycerol
- electrospray ionization mass spectrometry
- membrane fusion
- nuclear envelope
- phosphatidylinositol
- phosphoinositide-specific phospholipase c
- atp-gs, atp-generating system
- bapta, bis-(o-aminophenoxy)ethane-n,n,n′,n′-tetra-acetic acid
- dag, 1,2-diacylglycerol
- dioc6, 3,3′-dihexyloxacarbocyanine iodide
- ptdcho, phosphatidylcholine
- dmpc, dimyristoyl-ptdcho
- ptdins, phosphatidylinositol
- dppi, dipalmitoyl-ptdins
- er, endoplasmic reticulum
- esi-ms, electrospray ionization mass spectrometry
- gap, gtpase-activating protein
- gtp[s], guanosine 5′-[γ-thio]triphosphate
- lb, lysis buffer
- mv, membrane vesicle
- ne, nuclear envelope
- pi-plc, phosphoinositide-specific phospholipase c
- pkc, protein kinase c
- snare, soluble n-ethylmaleimide-sensitive fusion protein attachment protein receptor
- sxn, nuclei preparation buffer
- syn1-5ptase, synaptojanin 1 phosphatase
- tn, tris/nacl buffer
Collapse
Affiliation(s)
- Richard D. Byrne
- *Cell Biophysics Laboratory, London Research Institute (LRI), Cancer Research UK (CR-UK), 44, Lincoln's Inn Fields, London, WC2A 3PX, U.K
| | - Teresa M. Barona
- †Department of Biology, Amherst College, Amherst, MA 01002, U.S.A
| | - Marie Garnier
- *Cell Biophysics Laboratory, London Research Institute (LRI), Cancer Research UK (CR-UK), 44, Lincoln's Inn Fields, London, WC2A 3PX, U.K
| | - Grielof Koster
- ‡Infection, Inflammation and Repair Division, University of Southampton, Southampton, SO16 6YD, U.K
| | - Matilda Katan
- §Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, Institute of Cancer Research (ICR), Fulham Rd, London, SW3 6JB, U.K
| | - Dominic L. Poccia
- †Department of Biology, Amherst College, Amherst, MA 01002, U.S.A
- ∥UIBD, Universidade Lusófona, Campo Grande 376, 1749–1024, Lisbon, Portugal
| | - Banafshé Larijani
- *Cell Biophysics Laboratory, London Research Institute (LRI), Cancer Research UK (CR-UK), 44, Lincoln's Inn Fields, London, WC2A 3PX, U.K
| |
Collapse
|
38
|
Groen AC, Cameron LA, Coughlin M, Miyamoto DT, Mitchison TJ, Ohi R. XRHAMM functions in ran-dependent microtubule nucleation and pole formation during anastral spindle assembly. Curr Biol 2005; 14:1801-11. [PMID: 15498487 DOI: 10.1016/j.cub.2004.10.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2004] [Revised: 08/25/2004] [Accepted: 09/09/2004] [Indexed: 11/15/2022]
Abstract
BACKGROUND The regulated assembly of microtubules is essential for bipolar spindle formation. Depending on cell type, microtubules nucleate through two different pathways: centrosome-driven or chromatin-driven. The chromatin-driven pathway dominates in cells lacking centrosomes. RESULTS Human RHAMM (receptor for hyaluronic-acid-mediated motility) was originally implicated in hyaluronic-acid-induced motility but has since been shown to associate with centrosomes and play a role in astral spindle pole integrity in mitotic systems. We have identified the Xenopus ortholog of human RHAMM as a microtubule-associated protein that plays a role in focusing spindle poles and is essential for efficient microtubule nucleation during spindle assembly without centrosomes. XRHAMM associates both with gamma-TuRC, a complex required for microtubule nucleation and with TPX2, a protein required for microtubule nucleation and spindle pole organization. CONCLUSIONS XRHAMM facilitates Ran-dependent, chromatin-driven nucleation in a process that may require coordinate activation of TPX2 and gamma-TuRC.
Collapse
Affiliation(s)
- Aaron C Groen
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Importin beta, once thought to be exclusively a nuclear transport receptor, is emerging as a global regulator of diverse cellular functions. Importin beta acts positively in multiple interphase roles: in nuclear import, as a chaperone for highly charged nuclear proteins, and as a potential motor adaptor for movement along microtubules. In contrast, importin beta plays a negative regulatory role in mitotic spindle assembly, centrosome dynamics, nuclear membrane formation, and nuclear pore assembly. In most of these, importin beta is counteracted by its regulator, Ran-GTP. In light of this, the recent discovery of Ran's involvement in spindle checkpoint control suggested a potential new arena for importin beta action, although it is also possible that one of importin beta's relatives, the karyopherin family of proteins, manages this checkpoint. Lastly, importin beta plays a role in transducing damage signals from the axons of injured neurons back to the cell body.
Collapse
Affiliation(s)
- Amnon Harel
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, University of California, San Diego, 9500 Gilman Drive, Room 2124A, Pacific Hall, La Jolla, CA 92093, USA
| | | |
Collapse
|
40
|
Harel A, Chan RC, Lachish-Zalait A, Zimmerman E, Elbaum M, Forbes DJ. Importin beta negatively regulates nuclear membrane fusion and nuclear pore complex assembly. Mol Biol Cell 2003; 14:4387-96. [PMID: 14551248 PMCID: PMC266759 DOI: 10.1091/mbc.e03-05-0275] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Assembly of a eukaryotic nucleus involves three distinct events: membrane recruitment, fusion to form a double nuclear membrane, and nuclear pore complex (NPC) assembly. We report that importin beta negatively regulates two of these events, membrane fusion and NPC assembly. When excess importin beta is added to a full Xenopus nuclear reconstitution reaction, vesicles are recruited to chromatin but their fusion is blocked. The importin beta down-regulation of membrane fusion is Ran-GTP reversible. Indeed, excess RanGTP (RanQ69L) alone stimulates excessive membrane fusion, leading to intranuclear membrane tubules and cytoplasmic annulate lamellae-like structures. We propose that a precise balance of importin beta to Ran is required to create a correct double nuclear membrane and simultaneously to repress undesirable fusion events. Interestingly, truncated importin beta 45-462 allows membrane fusion but produces nuclei lacking any NPCs. This reveals distinct importin beta-regulation of NPC assembly. Excess full-length importin beta and beta 45-462 act similarly when added to prefused nuclear intermediates, i.e., both block NPC assembly. The importin beta NPC block, which maps downstream of GTPgammaS and BAPTA-sensitive steps in NPC assembly, is reversible by cytosol. Remarkably, it is not reversible by 25 microM RanGTP, a concentration that easily reverses fusion inhibition. This report, using a full reconstitution system and natural chromatin substrates, significantly expands the repertoire of importin beta. Its roles now encompass negative regulation of two of the major events of nuclear assembly: membrane fusion and NPC assembly.
Collapse
Affiliation(s)
- Amnon Harel
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, University of California, San Diego, La Jolla, California 92093-0347, USA
| | | | | | | | | | | |
Collapse
|
41
|
Detivaud L, Pascreau G, Karaiskou A, Osborne HB, Kubiak JZ. Regulation of EDEN-dependent deadenylation of Aurora A/Eg2-derived mRNA via phosphorylation and dephosphorylation in Xenopus laevis egg extracts. J Cell Sci 2003; 116:2697-705. [PMID: 12746489 DOI: 10.1242/jcs.00477] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deadenylation is an intimate part of the post-transcriptional regulation of maternal mRNAs in embryos. EDEN-BP is so far the only known member of a complex regulating the deadenylation of maternal mRNA in Xenopus laevis embryos in a manner that is dependent on the 3'-untranslated region called EDEN (embryo deadenylation element). In this report, we show that calcium activation of cell-free extracts triggers EDEN binding protein (EDEN-BP) dephosphorylation and concomitant deadenylation of a chimeric RNA bearing Aurora A/Eg2 EDEN sequence. Deadenylation of mRNA deprived of EDEN sequence (default deadenylation) does not change with egg activation. Kinase and phosphatase inhibitors downregulate EDEN-dependent deadenylation but they do not substantially influence default deadenylation. Using indestructible Delta90 cyclin B to revert interphase extracts to the M-phase, we show that modulation of EDEN-dependent deadenylation is independent of M-phase promoting factor (MPF) activity. These results suggest that the increase in EDEN-dependent deadenylation following egg activation is achieved, at least partially, via dephosphorylation and/or phosphorylation of regulatory proteins, including EDEN-BP dephosphorylation. This regulation proceeds in a manner independent from MPF inactivation.
Collapse
Affiliation(s)
- Lenaick Detivaud
- UMR 6061 CNRS, University of Rennes 1, Faculty of Medicine, 2 Ave. Prof. Léon Bernard, CS 34317, 35043 Rennes Cedex, France
| | | | | | | | | |
Collapse
|
42
|
Drummond SP, Wilson KL. Interference with the cytoplasmic tail of gp210 disrupts "close apposition" of nuclear membranes and blocks nuclear pore dilation. J Cell Biol 2002; 158:53-62. [PMID: 12093788 PMCID: PMC2173024 DOI: 10.1083/jcb.200108145] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2001] [Revised: 05/16/2002] [Accepted: 05/20/2002] [Indexed: 12/12/2022] Open
Abstract
We tested the hypothesis that gp210, an integral membrane protein of nuclear pore complexes (NPCs), mediates nuclear pore formation. Gp210 has a large lumenal domain and small COOH-terminal tail exposed to the cytoplasm. We studied the exposed tail. We added recombinant tail polypeptides to Xenopus nuclear assembly extracts, or inhibited endogenous gp210 tails using anti-tail antibodies. Both strategies had no effect on the formation of fused flattened nuclear membranes, but blocked NPC assembly and nuclear growth. Inhibited nuclei accumulated gp210 and some nucleoporin p62, but failed to incorporate nup214/CAN, nup153, or nup98 and were defective for nuclear import of lamin B3. Scanning and transmission EM revealed a lack of "closely apposed" inner and outer membranes, and the accumulation of novel arrested structures including "mini-pores." We conclude that gp210 has early roles in nuclear pore formation, and that pore dilation is mediated by gp210 and its tail-binding partner(s). We propose that membrane fusion and pore dilation are coupled, acting as a mechanism to control nuclear pore size.
Collapse
Affiliation(s)
- Sheona P Drummond
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
43
|
Hetzer M, Gruss OJ, Mattaj IW. The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly. Nat Cell Biol 2002; 4:E177-84. [PMID: 12105431 DOI: 10.1038/ncb0702-e177] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The small GTPase Ran is a key regulator of nucleocytoplasmic transport during interphase. The asymmetric distribution of the GTP-bound form of Ran across the nuclear envelope--that is, large quantities in the nucleus compared with small quantities in the cytoplasm--determines the directionality of many nuclear transport processes. Recent findings that Ran also functions in spindle formation and nuclear envelope assembly during mitosis suggest that Ran has a general role in chromatin-centred processes. Ran functions in these events as a signal for chromosome position.
Collapse
Affiliation(s)
- Martin Hetzer
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | |
Collapse
|
44
|
Prieto C, Saperas N, Arnan C, Hills MH, Wang X, Chiva M, Aligué R, Subirana JA, Ausió J. Nucleoplasmin interaction with protamines. Involvement of the polyglutamic tract. Biochemistry 2002; 41:7802-10. [PMID: 12056912 DOI: 10.1021/bi020120e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Different recombinant forms of nucleoplasmin including truncations at the carboxyl-terminal end of the molecule (r-NP121, r-NP142) have been expressed and purified. All of them were found to oligomerize, forming pentameric complexes which, according to their hydrodynamic properties, can be modeled by oblate ellipsoids of constant width. In this model, the highly charged carboxyl ends appear to be arranged around a pentameric core along the plane defined by the major axes of the ellipsoid. Importantly, all the recombinant forms appear to be able to decondense protamine-containing sperm nuclei. However, although the stoichiometry with which protamines bind to these forms appears to be constant (2.5 mol of protamine/mol of nucleoplasmin pentamer), the efficiency with which they remove protamines from the sperm DNA decreases in the following order: o-NP > r-NP142 > or = r-NP >> r-NP121. Therefore, the main polyglutamic tract of nucleoplasmin (which is absent in r-NP121), while enhancing the efficiency of protamine removal, is not indispensable for sperm chromatin decondensation in the biological model we have used.
Collapse
Affiliation(s)
- Cèlia Prieto
- Departament d'Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Iwabuchi M, Ohsumi K, Yamamoto TM, Kishimoto T. Coordinated regulation of M phase exit and S phase entry by the Cdc2 activity level in the early embryonic cell cycle. Dev Biol 2002; 243:34-43. [PMID: 11846475 DOI: 10.1006/dbio.2001.0562] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the early embryonic cell cycle, exit from M phase is immediately followed by entry into S phase without an intervening gap phase. To understand the regulatory mechanisms for the cell cycle transition from M to S phase, we examined dependence on Cdc2 inactivation of cell-cycle events occurring during the M-S transition period, using Xenopus egg extracts in which the extent of Cdc2 inactivation at M phase exit was quantitatively controlled. The result demonstrated that MCM binding to and the initiation of DNA replication of nuclear chromatin occurred depending on the decrease of Cdc2 activity to critical levels. Similarly, we found that Cdc2 inhibitory phosphorylation and cyclin B degradation were turned on and off, respectively, depending on the decrease in Cdc2 activity. However, their sensitivity to Cdc2 activity was different, with the turning-on of Cdc2 inhibitory phosphorylation occurring at higher Cdc2 activity levels than the turning-off of cyclin B degradation. This means that, when cyclin B degradation ceases at M phase exit, Cdc2 inhibitory phosphorylation is necessarily activated. In the presence of constitutive synthesis of cyclin B, this condition favors the occurrence of the Cdc2 inactivation period after M phase exit, thereby ensuring progression through S phase. Thus, M phase exit and S phase entry are coordinately regulated by the Cdc2 activity level in the early embryonic cell cycle.
Collapse
Affiliation(s)
- Mari Iwabuchi
- CREST Research Project, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta 4259, Midoriku, Yokohama, 226-8501, Japan
| | | | | | | |
Collapse
|
46
|
Yu J, Wolfner MF. The Drosophila nuclear lamina protein YA binds to DNA and histone H2B with four domains. Mol Biol Cell 2002; 13:558-69. [PMID: 11854412 PMCID: PMC65649 DOI: 10.1091/mbc.01-07-0336] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dramatic changes occur in nuclear organization and function during the critical developmental transition from meiosis to mitosis. The Drosophila nuclear lamina protein YA binds to chromatin and is uniquely required for this transition. In this study, we dissected YA's binding to chromatin. We found that YA can bind to chromatin directly and specifically. It binds to DNA but not RNA, with a preference for double-stranded DNA (linear or supercoiled) over single-stranded DNA. It also binds to histone H2B. YA's binding to DNA and histone H2B is mediated by four domains distributed along the length of the YA molecule. A model for YA function at the end of Drosophila female meiosis is proposed.
Collapse
Affiliation(s)
- Jing Yu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | |
Collapse
|
47
|
Masui Y. From oocyte maturation to the in vitro cell cycle: the history of discoveries of Maturation-Promoting Factor (MPF) and Cytostatic Factor (CSF). Differentiation 2001; 69:1-17. [PMID: 11776390 DOI: 10.1046/j.1432-0436.2001.690101.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This article briefly reviews the classical cell cycle studies using oocytes and zygotes of mainly amphibians in the past century. The discussions are focused on the investigations into the cytoplasmic factors that regulate meiosis during oocyte maturation and the initiation of mitosis during fertilisation, which were carried out in the author's lab between 1967 and 1987. This chronicle traces the development of the problems and the direction in which their solutions were attempted in the course of these investigations. The author tries to answer the following questions: why he decided to study oocyte maturation, how he discovered progesterone as a maturation-inducing hormone, how he discovered and characterised the cytoplasmic regulators of the cell cycle, Maturation-Promoting Factor (MPF) and Cyto-Static Factor (CSF), and how he invented the method of observing cell cycle processes in a cytoplasmic extract in vitro.
Collapse
Affiliation(s)
- Y Masui
- Department of Zoology, University of Toronto, Ontario, Canada.
| |
Collapse
|
48
|
Lu P, Ren M, Zhai ZH. Nuclear reconstitution of plant (Orychophragmus violaceus) demembranated sperm in cell-free extracts from animal (Xenopus laevis) eggs. J Struct Biol 2001; 136:89-95. [PMID: 11886209 DOI: 10.1006/jsbi.2001.4425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell-free extracts from animal Xenopus laevis egg could induce chromatin decondensation and pronuclear formation from demembranated plant (Orychophragmus violaceus) sperm. When incubated with Xenopus egg extracts, the demembranated sperm began to swell and then gradually decondensed. The assembly of the nuclear envelope in the reconstituted nuclei was visualized by means of electron microscopy and fluorescence microscopy. Membrane vesicles fused to form the double envelope around the periphery of the decondensed chromatin. The morphology of the newly formed nuclei, with a double membrane, was similar to that of nuclei after fertilization. The electron micrograph of the whole-mount prepared nuclear matrix--lamina showed the reconstituted nucleus to be filled with a dense network.
Collapse
Affiliation(s)
- P Lu
- Department of Cell Biology and Genetics, School of Life Sciences, Peking University, Beijing 100871, China.
| | | | | |
Collapse
|
49
|
Kiseleva E, Rutherford S, Cotter LM, Allen TD, Goldberg MW. Steps of nuclear pore complex disassembly and reassembly during mitosis in earlyDrosophilaembryos. J Cell Sci 2001; 114:3607-18. [PMID: 11707513 DOI: 10.1242/jcs.114.20.3607] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms of nuclear pore complex (NPC) assembly and disassembly during mitosis in vivo are not well defined. To address this and to identify the steps of the NPC disassembly and assembly, we investigated Drosophila embryo nuclear structure at the syncytial stage of early development using field emission scanning electron microscopy (FESEM), a high resolution surface imaging technique, and transmission electron microscopy. Nuclear division in syncytial embryos is characterized by semi-closed mitosis, during which the nuclear membranes are ruptured only at the polar regions and are arranged into an inner double membrane surrounded by an additional ‘spindle envelope’. FESEM analysis of the steps of this process as viewed on the surface of the dividing nucleus confirm our previous in vitro model for the assembly of the NPCs via a series of structural intermediates, showing for the first time a temporal progression from one intermediate to the next. Nascent NPCs initially appear to form at the site of fusion between the mitotic nuclear envelope and the overlying spindle membrane. A model for NPC disassembly is offered that starts with the release of the central transporter and the removal of the cytoplasmic ring subunits before the star ring.
Collapse
Affiliation(s)
- E Kiseleva
- CRC Department of Structural Cell Biology, Paterson Institute for Cancer Research, Christie Hospital, Wilmslow Road, Manchester, M20 9BX, UK
| | | | | | | | | |
Collapse
|
50
|
Lu P, Zhai ZH. Nuclear assembly of demembranated Xenopus sperm in plant cell-free extracts from Nicotiana ovules. Exp Cell Res 2001; 270:96-101. [PMID: 11597131 DOI: 10.1006/excr.2001.5296] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cell-free preparation derived from Nicotiana tabaccum ovules induced chromatin decondensation and pronuclear formation from demembranated Xenopus laevis sperm nuclei. Fluorescent microscope and phase-contrast microscope visualization of assembly intermediates indicated that 95.6% of X. leavis sperm changed their tadpole-like shape to circular shape or elliptical shape after over 1.5 h of incubation. Transmission electron microscope visualization showed that nuclear membrane was assembled around the periphery of the dispersed chromatin. Nuclear envelope of most reassembled nuclei was composed of a double membrane inlaid with a little single membrane. Nucleosome assembly was verified by means of micrococcal nuclease digestion. After 2 to 5 h of incubation, digestion of the product of nuclear assembly with micrococcal nuclease produced at least six nucleosome fragments of about 250 bp each.
Collapse
Affiliation(s)
- P Lu
- School of Life Sciences, Peking University, Beijing, 100871, China.
| | | |
Collapse
|