1
|
Khedraki R, Noguchi H, Baldwin WM. Balancing the View of C1q in Transplantation: Consideration of the Beneficial and Detrimental Aspects. Front Immunol 2022; 13:873479. [PMID: 35401517 PMCID: PMC8988182 DOI: 10.3389/fimmu.2022.873479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Raneem Khedraki
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Hirotsugu Noguchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - William M. Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| |
Collapse
|
2
|
Abstract
Tumorigenesis has long been linked to the evasion of the immune system and the uncontrolled proliferation of transformed cells. The complement system, a major arm of innate immunity, is a key factor in the progression of cancer because many of its components have critical regulatory roles in the tumor microenvironment. For example, complement anaphylatoxins directly and indirectly inhibit antitumor T-cell responses in primary and metastatic sites, enhance proliferation of tumor cells, and promote metastasis and tumor angiogenesis. Many recent studies have provided evidence that cancer is able to hijack the immunoregulatory components of the complement system which fundamentally are tasked with protecting the body against abnormal cells and pathogens. Indeed, recent evidence shows that many types of cancer use C1q receptors (C1qRs) to promote tumor growth and progression. More importantly, most cancer cells express both C1q and its major receptors (gC1qR and cC1qR) on their surface which are essential for cell proliferation and survival. In this review, we discuss the ability of cancer to control and manipulate the complement system in the tumor microenvironment and identify possible therapeutic targets, including C1q and gC1qR.
Collapse
Affiliation(s)
- Danyaal Ain
- The Department of Medicine, Stony Brook University, 100 Nicholls Road, Stony Brook, NY 11794-8161, USA
| | - Talha Shaikh
- The Department of Medicine, Stony Brook University, 100 Nicholls Road, Stony Brook, NY 11794-8161, USA
| | - Samantha Manimala
- The Department of Medicine, Stony Brook University, 100 Nicholls Road, Stony Brook, NY 11794-8161, USA
| | - Berhane Ghebrehiwet
- The Department of Medicine, Stony Brook University, 100 Nicholls Road, Stony Brook, NY 11794-8161, USA
| |
Collapse
|
3
|
Baldwin WM, Valujskikh A, Fairchild RL. C1q as a potential tolerogenic therapeutic in transplantation. Am J Transplant 2021; 21:3519-3523. [PMID: 34058061 PMCID: PMC8564585 DOI: 10.1111/ajt.16705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 01/25/2023]
Abstract
In 1963, Lepow and colleagues resolved C1, the first component of the classical pathway, into three components, which they named C1q, C1r, and C1s. All three of these components were demonstrated to be involved in causing hemolysis in vitro. For over 30 years after that seminal discovery, the primary function attributed to C1q was as part of the C1 complex that initiated the classical pathway of the complement cascade. Then, a series of papers reported that isolated C1q could bind to apoptotic cells and facilitate their clearance by macrophages. Since then, rheumatologists have recognized that C1q is an important pattern recognition receptor (PRR) that diverts autoantigen containing extracellular vesicles from immune recognition. This critical function of C1q as a regulator of immune recognition has been largely overlooked in transplantation. Now that extracellular vesicles released from transplants have been identified as a major agent of immune recognition, it is logical to consider the potential impact of C1q on modulating the delivery of allogeneic extracellular vesicles to antigen presenting cells. This concept has clinical implications in the possible use of C1q or a derivative as a biological therapeutic to down-modulate immune responses to transplants.
Collapse
Affiliation(s)
- William M Baldwin
- Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Anna Valujskikh
- Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Robert L Fairchild
- Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Holden SS, Grandi FC, Aboubakr O, Higashikubo B, Cho FS, Chang AH, Forero AO, Morningstar AR, Mathur V, Kuhn LJ, Suri P, Sankaranarayanan S, Andrews-Zwilling Y, Tenner AJ, Luthi A, Aronica E, Ryan Corces M, Yednock T, Paz JT. Complement factor C1q mediates sleep spindle loss and epileptic spikes after mild brain injury. Science 2021; 373:eabj2685. [PMID: 34516796 PMCID: PMC8750918 DOI: 10.1126/science.abj2685] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although traumatic brain injury (TBI) acutely disrupts the cortex, most TBI-related disabilities reflect secondary injuries that accrue over time. The thalamus is a likely site of secondary damage because of its reciprocal connections with the cortex. Using a mouse model of mild TBI (mTBI), we found a chronic increase in C1q expression specifically in the corticothalamic system. Increased C1q expression colocalized with neuron loss and chronic inflammation and correlated with disruption in sleep spindles and emergence of epileptic activities. Blocking C1q counteracted these outcomes, suggesting that C1q is a disease modifier in mTBI. Single-nucleus RNA sequencing demonstrated that microglia are a source of thalamic C1q. The corticothalamic circuit could thus be a new target for treating TBI-related disabilities.
Collapse
Affiliation(s)
- Stephanie S Holden
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco CA 94158, USA
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco CA 94158, USA
| | - Fiorella C Grandi
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco CA 94158, USA
| | - Oumaima Aboubakr
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco CA 94158, USA
| | - Bryan Higashikubo
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco CA 94158, USA
| | - Frances S Cho
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco CA 94158, USA
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco CA 94158, USA
| | - Andrew H Chang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco CA 94158, USA
| | | | - Allison R. Morningstar
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco CA 94158, USA
| | - Vidhu Mathur
- Annexon Biosciences, South San Francisco CA 94080, USA
| | - Logan J Kuhn
- Annexon Biosciences, South San Francisco CA 94080, USA
| | - Poojan Suri
- Annexon Biosciences, South San Francisco CA 94080, USA
| | | | | | - Andrea J. Tenner
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Anita Luthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Eleonora Aronica
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - M. Ryan Corces
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco CA 94158, USA
| | - Ted Yednock
- Annexon Biosciences, South San Francisco CA 94080, USA
| | - Jeanne T Paz
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco CA 94158, USA
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco CA 94158, USA
- The Kavli Institute for Fundamental Neuroscience, and The Weill Institute for Neurosciences, University of California San Francisco, San Francisco CA 94158, USA
| |
Collapse
|
5
|
Garred P, Tenner AJ, Mollnes TE. Therapeutic Targeting of the Complement System: From Rare Diseases to Pandemics. Pharmacol Rev 2021; 73:792-827. [PMID: 33687995 PMCID: PMC7956994 DOI: 10.1124/pharmrev.120.000072] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The complement system was discovered at the end of the 19th century as a heat-labile plasma component that "complemented" the antibodies in killing microbes, hence the name "complement." Complement is also part of the innate immune system, protecting the host by recognition of pathogen-associated molecular patterns. However, complement is multifunctional far beyond infectious defense. It contributes to organ development, such as sculpting neuron synapses, promoting tissue regeneration and repair, and rapidly engaging and synergizing with a number of processes, including hemostasis leading to thromboinflammation. Complement is a double-edged sword. Although it usually protects the host, it may cause tissue damage when dysregulated or overactivated, such as in the systemic inflammatory reaction seen in trauma and sepsis and severe coronavirus disease 2019 (COVID-19). Damage-associated molecular patterns generated during ischemia-reperfusion injuries (myocardial infarction, stroke, and transplant dysfunction) and in chronic neurologic and rheumatic disease activate complement, thereby increasing damaging inflammation. Despite the long list of diseases with potential for ameliorating complement modulation, only a few rare diseases are approved for clinical treatment targeting complement. Those currently being efficiently treated include paroxysmal nocturnal hemoglobinuria, atypical hemolytic-uremic syndrome, myasthenia gravis, and neuromyelitis optica spectrum disorders. Rare diseases, unfortunately, preclude robust clinical trials. The increasing evidence for complement as a pathogenetic driver in many more common diseases suggests an opportunity for future complement therapy, which, however, requires robust clinical trials; one ongoing example is COVID-19 disease. The current review aims to discuss complement in disease pathogenesis and discuss future pharmacological strategies to treat these diseases with complement-targeted therapies. SIGNIFICANCE STATEMENT: The complement system is the host's defense friend by protecting it from invading pathogens, promoting tissue repair, and maintaining homeostasis. Complement is a double-edged sword, since when dysregulated or overactivated it becomes the host's enemy, leading to tissue damage, organ failure, and, in worst case, death. A number of acute and chronic diseases are candidates for pharmacological treatment to avoid complement-dependent damage, ranging from the well established treatment for rare diseases to possible future treatment of large patient groups like the pandemic coronavirus disease 2019.
Collapse
Affiliation(s)
- Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (P.G.); Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, California (A.J.T.); and Research Laboratory, Nordland Hospital, Bodø, Norway, Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway (T.E.M.); Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.); and Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway (T.E.M.)
| | - Andrea J Tenner
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (P.G.); Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, California (A.J.T.); and Research Laboratory, Nordland Hospital, Bodø, Norway, Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway (T.E.M.); Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.); and Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway (T.E.M.)
| | - Tom E Mollnes
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (P.G.); Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, California (A.J.T.); and Research Laboratory, Nordland Hospital, Bodø, Norway, Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway (T.E.M.); Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.); and Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway (T.E.M.)
| |
Collapse
|
6
|
Xiong X, Li C, Zheng Z, Du X. Novel globular C1q domain-containing protein (PmC1qDC-1) participates in shell formation and responses to pathogen-associated molecular patterns stimulation in Pinctada fucata martensii. Sci Rep 2021; 11:1105. [PMID: 33441832 PMCID: PMC7806589 DOI: 10.1038/s41598-020-80295-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
The C1q protein, which contains the globular C1q (gC1q) domain, is involved in the innate immune response, and is found abundantly in the shell, and it participates in the shell formation. In this study, a novel gC1q domain-containing gene was identified from Pinctada fucata martensii (P. f. martensii) and designated as PmC1qDC-1. The full-length sequence of PmC1qDC-1 was 902 bp with a 534 bp open reading frame (ORF), encoding a polypeptide of 177 amino acids. Quantitative real-time PCR (qRT-PCR) result showed that PmC1qDC-1 was widely expressed in all tested tissues, including shell formation-associated tissue and immune-related tissue. PmC1qDC-1 expression was significantly high in the blastula and gastrula and especially among the juvenile stage, which is the most important stage of dissoconch shell formation. PmC1qDC-1 expression was located in the outer epithelial cells of mantle pallial and mantle edge and irregular crystal tablets were observed in the nacre upon knockdown of PmC1qDC-1 expression at mantle pallial. Moreover, the recombined protein PmC1qDC-1 increased the rate of calcium carbonate precipitation. Besides, PmC1qDC-1 expression was significantly up-regulated in the mantle pallial at 6 h and was significantly up-regulated in the mantle edge at 12 h and 24 h after shell notching. The expression level of PmC1qDC-1 in mantle edge was significantly up-regulated at 48 h after LPS stimulation and was significantly up-regulated at 12 h, 24 h and 48 h after poly I:C stimulation. Moreover, PmC1qDC-1 expression was significantly up-regulated in hemocytes at 6 h after lipopolysaccharide (LPS) and poly I:C challenge. These findings suggest that PmC1qDC-1 plays a crucial role both in the shell formation and the innate immune response in pearl oysters, providing new clues for understanding the shell formation and defense mechanism in mollusk.
Collapse
Affiliation(s)
- Xinwei Xiong
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chuyi Li
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhe Zheng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China.
- Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China.
- Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China.
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, 524088, China.
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China.
- Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China.
- Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China.
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, 524088, China.
| |
Collapse
|
7
|
Hosszu KK, Valentino A, Peerschke EI, Ghebrehiwet B. SLE: Novel Postulates for Therapeutic Options. Front Immunol 2020; 11:583853. [PMID: 33117397 PMCID: PMC7575694 DOI: 10.3389/fimmu.2020.583853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
Genetic deficiency in C1q is a strong susceptibility factor for systemic lupus erythematosus (SLE). There are two major hypotheses that potentially explain the role of C1q in SLE. The first postulates that C1q deficiency abrogates apoptotic cell clearance, leading to persistently high loads of potentially immunogenic self-antigens that trigger autoimmune responses. While C1q undoubtedly plays an important role in apoptotic clearance, an essential biological process such as removal of self- waste is so critical for host survival that multiple ligand-receptor combinations do fortunately exist to ensure that proper disposal of apoptotic debris is accomplished even in the absence of C1q. The second hypothesis is based on the observation that locally synthesized C1q plays a critical role in regulating the earliest stages of monocyte to dendritic cell (DC) differentiation and function. Indeed, circulating C1q has been shown to keep monocytes in a pre-dendritic state by silencing key molecular players and ensuring that unwarranted DC-driven immune responses do not occur. Monocytes are also able to display macromolecular C1 on their surface, representing a novel mechanism for the recognition of circulating "danger." Translation of this danger signal in turn, provides the requisite "license" to trigger a differentiation pathway that leads to adaptive immune response. Based on this evidence, the second hypothesis proposes that deficiency in C1q dysregulates monocyte-to-DC differentiation and causes inefficient or defective maintenance of self-tolerance. The fact that C1q receptors (cC1qR and gC1qR) are also expressed on the surface of both monocytes and DCs, suggests that C1q/C1qR may regulate DC differentiation and function through specific cell-signaling pathways. While their primary ligand is C1q, C1qRs can also independently recognize a vast array of plasma proteins as well as pathogen-associated molecular ligands, indicating that these molecules may collaborate in antigen recognition and processing, and thus regulate DC-differentiation. This review will therefore focus on the role of C1q and C1qRs in SLE and explore the gC1qR/C1q axis as a potential target for therapy.
Collapse
Affiliation(s)
- Kinga K Hosszu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Alisa Valentino
- Department of Lab Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ellinor I Peerschke
- Department of Lab Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Berhane Ghebrehiwet
- The Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
8
|
Wong SM, Jackson MD, Akerley BJ. Suppression of Alternative Lipooligosaccharide Glycosyltransferase Activity by UDP-Galactose Epimerase Enhances Murine Lung Infection and Evasion of Serum IgM. Front Cell Infect Microbiol 2019; 9:160. [PMID: 31157175 PMCID: PMC6530457 DOI: 10.3389/fcimb.2019.00160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/29/2019] [Indexed: 01/17/2023] Open
Abstract
In pathogens that produce lipooligosaccharide (LOS), sugar residues within the surface-exposed LOS outer core mediate interactions with components of the host immune system, promoting bacterial infection. Many LOS structures are controlled by phase variation mediated by random slipped-strand base mispairing, which can reversibly switch gene expression on or off. Phase variation diversifies the LOS, however its adaptive role is not well-understood. Nontypeable Haemophilus influenzae (NTHi) is an important pathogen that causes a range of illnesses in the upper and lower respiratory tract. In NTHi a phase variable galactosyltransferase encoded by lic2A initiates galactose chain extension of the LOS outer core. The donor substrate for Lic2A, UDP-galactose, is generated from UDP-glucose by UDP-galactose epimerase encoded by galE. Our previous fitness profiling of H. influenzae mutants in a murine lung model showed that the galE mutant had a severe survival defect, while the lic2A mutant's defect was modest, leading us to postulate that unidentified factors act as suppressors of potential defects in a lic2A mutant. Herein we conducted a genome-wide genetic interaction screen to identify genes epistatic on lic2A for survival in the murine lung. An unexpected finding was that galE mutants exhibited restored virulence properties in a lic2A mutant background. We identified an alternative antibody epitope generated by Lic2A in the galE mutant that increased sensitivity to classical complement mediated killing in human serum. Deletion of lic2A or restoration of UDP-galactose synthesis alleviated the galE mutant's virulence defects. These studies indicate that when deprived of its galactosyl substrate, Lic2A acquires an alternative activity leading to increased recognition of NTHi by IgM and decreased survival in the lung model. Biofilm formation was increased by deletion of galE and by increased availability of UDP-GlcNAc precursors that can compete with UDP-galactose production. NTHi's ability to reversibly inactivate lic2A by phase-variation may influence survival in niches of infection in which UDP-Galactose levels are limiting.
Collapse
Affiliation(s)
- Sandy M Wong
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Mary Darby Jackson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Brian J Akerley
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
9
|
Reid KBM. Complement Component C1q: Historical Perspective of a Functionally Versatile, and Structurally Unusual, Serum Protein. Front Immunol 2018; 9:764. [PMID: 29692784 PMCID: PMC5902488 DOI: 10.3389/fimmu.2018.00764] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/27/2018] [Indexed: 12/28/2022] Open
Abstract
Complement component C1q plays an important recognition role in adaptive, and innate, immunity through its ability to interact, via its six globular head regions, with both immunoglobulin and non-immunoglobulin activators of the complement system, and also in the clearance of cell debris, and by playing a role in regulation of cellular events by interacting with a wide range of cell surface molecules. The presence of collagen-like triple-helical structures within C1q appears crucial to the presentation, and multivalent binding, of the globular heads of C1q to targets, and also to its association with the proenzyme complex of C1r2–C1s2, to yield the C1 complex. The possible role that movement of these collagen-like structures may play in the activation of the C1 complex is a controversial area, with there still being no definitive answer as to how the first C1r proenzyme molecule becomes activated within the C1 complex, thus allowing it to activate proenzyme C1s, and initiate and the consequent cascade of events in the activation of the classical pathway of complement. The globular heads of C1q are similar to domains found within the tumor necrosis factor (TNF) superfamily of proteins, and have been shown to bind to a very wide range of ligands. In addition to its well-defined roles in infection and immunity, a variety of other functions associated with C1q include possible roles, in the development of problems in the central nervous system, which occur with aging, and perhaps in the regulation of tumor growth.
Collapse
Affiliation(s)
- Kenneth B M Reid
- Green Templeton College, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Thielens NM, Tedesco F, Bohlson SS, Gaboriaud C, Tenner AJ. C1q: A fresh look upon an old molecule. Mol Immunol 2017; 89:73-83. [PMID: 28601358 DOI: 10.1016/j.molimm.2017.05.025] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/27/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022]
Abstract
Originally discovered as part of C1, the initiation component of the classical complement pathway, it is now appreciated that C1q regulates a variety of cellular processes independent of complement activation. C1q is a complex glycoprotein assembled from 18 polypeptide chains, with a C-terminal globular head region that mediates recognition of diverse molecular structures, and an N-terminal collagen-like tail that mediates immune effector mechanisms. C1q mediates a variety of immunoregulatory functions considered important in the prevention of autoimmunity such as the enhancement of phagocytosis, regulation of cytokine production by antigen presenting cells, and subsequent alteration in T-lymphocyte maturation. Furthermore, recent advances indicate additional roles for C1q in diverse physiologic and pathologic processes including pregnancy, tissue repair, and cancer. Finally, C1q is emerging as a critical component of neuronal network refinement and homeostatic regulation within the central nervous system. This review summarizes the classical functions of C1q and reviews novel discoveries within the field.
Collapse
Affiliation(s)
| | - Francesco Tedesco
- Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Auxologico Italiano, Milan, Italy
| | | | | | | |
Collapse
|
11
|
Lu J, Kishore U. C1 Complex: An Adaptable Proteolytic Module for Complement and Non-Complement Functions. Front Immunol 2017; 8:592. [PMID: 28596769 PMCID: PMC5442170 DOI: 10.3389/fimmu.2017.00592] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/04/2017] [Indexed: 12/12/2022] Open
Abstract
Complement C1 is the defining component of the classical pathway. Within the C1qC1r2C1s2 complex, C1q functions as a molecular scaffold for C1r2C1s2 and C1q binding to its ligands activates these two serine proteases. The classic C1q ligands are antigen-bound antibodies and activated C1s cleaves C4 and C2 to initiate the complement cascade. Recent studies suggest broad C1 functions beyond the complement system. C1q binds to the Frizzled receptors to activate C1s, which cleaves lipoprotein receptor-related protein 6 to trigger aging-associated Wnt receptor signaling. C1q binds to apoptotic cells and the activated C1 proteases cleave nuclear antigens. C1s also cleaves MHC class I molecule and potentially numerous other proteins. The diversity of C1q ligands and C1 protease substrates renders C1 complex versatile and modular so that it can adapt to multiple molecular and cellular processes besides the complement system.
Collapse
Affiliation(s)
- Jinhua Lu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, Singapore
| | - Uday Kishore
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
12
|
Sim R, Schwaeble W, Fujita T. Complement research in the 18th–21st centuries: Progress comes with new technology. Immunobiology 2016; 221:1037-45. [DOI: 10.1016/j.imbio.2016.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/09/2016] [Accepted: 06/11/2016] [Indexed: 01/01/2023]
|
13
|
Cai Y, Teo BHD, Yeo JG, Lu J. C1q protein binds to the apoptotic nucleolus and causes C1 protease degradation of nucleolar proteins. J Biol Chem 2015; 290:22570-80. [PMID: 26231209 PMCID: PMC4566231 DOI: 10.1074/jbc.m115.670661] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/23/2015] [Indexed: 12/29/2022] Open
Abstract
In infection, complement C1q recognizes pathogen-congregated antibodies and elicits complement activation. Among endogenous ligands, C1q binds to DNA and apoptotic cells, but whether C1q binds to nuclear DNA in apoptotic cells remains to be investigated. With UV irradiation-induced apoptosis, C1q initially bound to peripheral cellular regions in early apoptotic cells. By 6 h, binding concentrated in the nuclei to the nucleolus but not the chromatins. When nucleoli were isolated from non-apoptotic cells, C1q also bound to these structures. In vivo, C1q exists as the C1 complex (C1qC1r2C1s2), and C1q binding to ligands activates the C1r/C1s proteases. Incubation of nucleoli with C1 caused degradation of the nucleolar proteins nucleolin and nucleophosmin 1. This was inhibited by the C1 inhibitor. The nucleoli are abundant with autoantigens. C1q binding and C1r/C1s degradation of nucleolar antigens during cell apoptosis potentially reduces autoimmunity. These findings help us to understand why genetic C1q and C1r/C1s deficiencies cause systemic lupus erythematosus.
Collapse
Affiliation(s)
- Yitian Cai
- From the Department of Microbiology, Yong Loo Lin School of Medicine and Immunology Program, National University of Singapore, Singapore 117597
| | - Boon Heng Dennis Teo
- From the Department of Microbiology, Yong Loo Lin School of Medicine and Immunology Program, National University of Singapore, Singapore 117597
| | - Joo Guan Yeo
- From the Department of Microbiology, Yong Loo Lin School of Medicine and Immunology Program, National University of Singapore, Singapore 117597
| | - Jinhua Lu
- From the Department of Microbiology, Yong Loo Lin School of Medicine and Immunology Program, National University of Singapore, Singapore 117597
| |
Collapse
|
14
|
Bose N, Chan ASH, Guerrero F, Maristany CM, Qiu X, Walsh RM, Ertelt KE, Jonas AB, Gorden KB, Dudney CM, Wurst LR, Danielson ME, Elmasry N, Magee AS, Patchen ML, Vasilakos JP. Binding of Soluble Yeast β-Glucan to Human Neutrophils and Monocytes is Complement-Dependent. Front Immunol 2013; 4:230. [PMID: 23964276 PMCID: PMC3740326 DOI: 10.3389/fimmu.2013.00230] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/22/2013] [Indexed: 01/24/2023] Open
Abstract
The immunomodulatory properties of yeast β-1,3/1,6 glucans are mediated through their ability to be recognized by human innate immune cells. While several studies have investigated binding of opsonized and unopsonized particulate β-glucans to human immune cells mainly via complement receptor 3 (CR3) or Dectin-1, few have focused on understanding the binding characteristics of soluble β-glucans. Using a well-characterized, pharmaceutical-grade, soluble yeast β-glucan, this study evaluated and characterized the binding of soluble β-glucan to human neutrophils and monocytes. The results demonstrated that soluble β-glucan bound to both human neutrophils and monocytes in a concentration-dependent and receptor-specific manner. Antibodies blocking the CD11b and CD18 chains of CR3 significantly inhibited binding to both cell types, establishing CR3 as the key receptor recognizing the soluble β-glucan in these cells. Binding of soluble β-glucan to human neutrophils and monocytes required serum and was also dependent on incubation time and temperature, strongly suggesting that binding was complement-mediated. Indeed, binding was reduced in heat-inactivated serum, or in serum treated with methylamine or in serum reacted with the C3-specific inhibitor compstatin. Opsonization of soluble β-glucan was demonstrated by detection of iC3b, the complement opsonin on β-glucan-bound cells, as well as by the direct binding of iC3b to β-glucan in the absence of cells. Binding of β-glucan to cells was partially inhibited by blockade of the alternative pathway of complement, suggesting that the C3 activation amplification step mediated by this pathway also contributed to binding.
Collapse
|
15
|
Yang CG, Wang XL, Zhang B, Sun B, Liu SS, Chen SL. Screening and analysis of PoAkirin1 and two related genes in response to immunological stimulants in the Japanese flounder (Paralichthys olivaceus). BMC Mol Biol 2013; 14:10. [PMID: 23651673 PMCID: PMC3700861 DOI: 10.1186/1471-2199-14-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/22/2013] [Indexed: 01/17/2023] Open
Abstract
A member of the NF-κB signaling pathway, PoAkirin1, was cloned from a full-length cDNA library of Japanese flounder (Paralichthys olivaceus). The full-length cDNA comprises a 5′UTR of 202 bp, an open reading frame of 564 bp encoding a 187-amino-acid polypeptide and a 521-bp 3′UTR with a poly (A) tail. The putative protein has a predicted molecular mass of 21 kDa and an isoelectric point (pI) of 9.22. Amino acid sequence alignments showed that PoAkirin1 was 99% identical to the Scophthalmus maximus Akirin protein (ADK27484). Yeast two-hybrid assays identified two proteins that interact with PoAkirin1: PoHEPN and PoC1q. The cDNA sequences of PoHEPN and PoC1q are 672 bp and 528 bp, respectively. Real-time quantitative reverse-transcriptase polymerase chain reaction analysis showed that bacteria could induce the expressions of PoAkirin1, PoHEPN and PoC1q. However, the responses of PoHEPN and PoC1q to the bacterial challenge were slower than that of PoAkirin1. To further study the function of PoAkirin1, recombinant PoAkirin1 and PoHEPN were expressed in Escherichia coli and would be used to verify the PoAkirin1-PoHEPN binding activity. These results identified two proteins that potentially interact with PoAkirin1 and that bacteria could induce their expression.
Collapse
|
16
|
Hosszu KK, Valentino A, Ji Y, Matkovic M, Pednekar L, Rehage N, Tumma N, Peerschke EIB, Ghebrehiwet B. Cell surface expression and function of the macromolecular c1 complex on the surface of human monocytes. Front Immunol 2012; 3:38. [PMID: 22566921 PMCID: PMC3342062 DOI: 10.3389/fimmu.2012.00038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/16/2012] [Indexed: 11/13/2022] Open
Abstract
The synthesis of the subunits of the C1 complex (C1q, C1s, C1r), and its regulator C1 inhibitor (C1-Inh) by human monocytes has been previously established. However, surface expression of these molecules by monocytes has not been shown. Using flow cytometry and antigen-capture enzyme-linked immunosorbent assay, we show here for the first time that, in addition to C1q, peripheral blood monocytes, and the monocyte-derived U937 cells express C1s and C1r, as well as Factor B and C1-Inh on their surface. C1s and C1r immunoprecipitated with C1q, suggesting that at least some of the C1q on these cells is part of the C1 complex. Furthermore, the C1 complex on U937 cells was able to trigger complement activation via the classical pathway. The presence of C1-Inh may ensure that an unwarranted autoactivation of the C1 complex does not take place. Since C1-Inh closely monitors the activation of the C1 complex in a sterile or infectious inflammatory environment, further elucidation of the role of C1 complex is crucial to dissect its function in monocyte, dendritic cell, and T cell activities, and its implications in host defense and tolerance.
Collapse
Affiliation(s)
- Kinga K Hosszu
- The Department of Medicine, Stony Brook University Stony Brook, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jin Y, Manabe T. Analysis of PEG-fractionated high-molecular-mass proteins in human plasma by non-denaturing micro 2-DE and MALDI-MS PMF. Electrophoresis 2009; 30:3613-21. [DOI: 10.1002/elps.200900191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Wallis R, Mitchell DA, Schmid R, Schwaeble WJ, Keeble AH. Paths reunited: Initiation of the classical and lectin pathways of complement activation. Immunobiology 2009; 215:1-11. [PMID: 19783065 PMCID: PMC2824237 DOI: 10.1016/j.imbio.2009.08.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 08/22/2009] [Indexed: 12/16/2022]
Abstract
Understanding the structural organisation and mode of action of the initiating complex of the classical pathway of complement activation (C1) has been a central goal in complement biology since its isolation almost 50 years ago. Nevertheless, knowledge is still incomplete, especially with regard to the interactions between its subcomponents C1q, C1r and C1s that trigger activation upon binding to a microbial target. Recent studies have provided new insights into these interactions, and have revealed unexpected parallels with initiating complexes of the lectin pathway of complement: MBL-MASP and ficolin-MASP. Here, we develop and expand these concepts and delineate their implications towards the key aspects of complement activation via the classical and lectin pathways.
Collapse
Affiliation(s)
- Russell Wallis
- Department of Infection, Immunity and Inflammation, University of Leicester, UK.
| | | | | | | | | |
Collapse
|
19
|
Laurell AB. An activator of C'ls to C'l esterase in the macroglobulin fraction of human sera. ACTA PATHOLOGICA ET MICROBIOLOGICA SCANDINAVICA 2009; 77:291-8. [PMID: 4985023 DOI: 10.1111/j.1699-0463.1969.tb04234.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
|
21
|
Svehag SE, Bloth B. The ultrastructure of human C1q. ACTA PATHOLOGICA ET MICROBIOLOGICA SCANDINAVICA. SECTION B: MICROBIOLOGY AND IMMUNOLOGY 2009; 78:260-2. [PMID: 5275083 DOI: 10.1111/j.1699-0463.1970.tb04299.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Gál P, Dobó J, Závodszky P, Sim RBM. Early complement proteases: C1r, C1s and MASPs. A structural insight into activation and functions. Mol Immunol 2009; 46:2745-52. [PMID: 19477526 DOI: 10.1016/j.molimm.2009.04.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
Abstract
C1r, C1s and the mannose-binding lectin-associated serine proteases (MASPs) are responsible for the initiation of the classical- and lectin pathway activation of the complement system. These enzymes do not act alone, but form supramolecular complexes with pattern recognition molecules such as C1q, MBL, and ficolins. They share the same domain organization but have different substrate specificities and fulfill different physiological functions. In the recent years the rapid progress of structural biology facilitated the understanding of the molecular mechanism of complement activation at atomic level. In this review we summarize our current knowledge about the structure and function of the early complement proteases, delineate the latest models of the multimolecular complexes and present the functional consequences inferred from the structural studies. We also discuss some open questions and debated issues that need to be resolved in the future.
Collapse
Affiliation(s)
- Péter Gál
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | |
Collapse
|
23
|
Osther K, Dybkjaer E. Complement components on the surface of normal human lymphocytes. SCANDINAVIAN JOURNAL OF HAEMATOLOGY 2009; 13:24-32. [PMID: 4606372 DOI: 10.1111/j.1600-0609.1974.tb00231.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Gewurz H, Clark DS, Finstad J, Kelly WD, Varco RL, Good RA, Gabrielsen AE. ROLE OF THE COMPLEMENT SYSTEM IN GRAFT REJECTIONS IN EXPERIMENTAL ANIMALS AND MAN*. Ann N Y Acad Sci 2006. [DOI: 10.1111/j.1749-6632.1966.tb12887.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Abstract
The scientific career and research contributions of Hans J. Müller-Eberhard to the field of complement research are presented in historical context, and interpreted with regard to the state of the field and the research technologies available when the contributions were made.
Collapse
Affiliation(s)
- Neil R Cooper
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
26
|
Tas SW, Klickstein LB, Barbashov SF, Nicholson-Weller A. C1q and C4b Bind Simultaneously to CR1 and Additively Support Erythrocyte Adhesion. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.9.5056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Previously, we showed that soluble C1q bound specifically to CR1 on transfected cells. If the CR1-C1q interaction were to participate in immune complex clearance, then this interaction should support E adhesion. Using a tip plate adhesion assay, we found that immobilized C1q mediated adhesion of human E. E binding to C1q was specifically inhibited by polyclonal anti-CR1 Fab fragments. Intact C1 was not efficient as an adherence ligand until it was treated with EDTA or the C1 inhibitor to remove the C1r2C1s2 complex from C1, leaving C1q. Titration of C1q alone, C4b alone, and C1q + C4b indicated that the two complement ligands were additive in their ability to support CR1-mediated adhesion of E. Analysis of binding to immobilized CR1 using a BIAcore instrument documented that C1q, C4b, and C3b binding were independent events. Additionally, C1q-dependent binding of immune complexes and heat-aggregated IgG to E was documented. These experiments confirm that the immune adherence receptor in humans, CR1, is the single receptor for all of the opsonic ligands of complement, provide evidence for a single C1q binding site on LHR-D of CR1, and suggest that C1q may participate in immune clearance.
Collapse
Affiliation(s)
- Sander W. Tas
- *Department of Medicine, Harvard Medical School and Charles A. Dana Research Institute, Harvard-Thorndike Laboratory, Division of Infectious Disease, Beth Israel Deaconess Medical Center, Boston, MA 02215; and
| | - Lloyd B. Klickstein
- †Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 000000
| | - Sergei F. Barbashov
- *Department of Medicine, Harvard Medical School and Charles A. Dana Research Institute, Harvard-Thorndike Laboratory, Division of Infectious Disease, Beth Israel Deaconess Medical Center, Boston, MA 02215; and
| | - Anne Nicholson-Weller
- *Department of Medicine, Harvard Medical School and Charles A. Dana Research Institute, Harvard-Thorndike Laboratory, Division of Infectious Disease, Beth Israel Deaconess Medical Center, Boston, MA 02215; and
| |
Collapse
|
27
|
Hiepe F, Pfüller B, Wolbart K, Bruns A, Leinenbach HP, Hepper M, Schössler W, Otto V. C1q: a multifunctional ligand for a new immunoadsorption treatment. THERAPEUTIC APHERESIS : OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR APHERESIS AND THE JAPANESE SOCIETY FOR APHERESIS 1999; 3:246-51. [PMID: 10427623 DOI: 10.1111/j.1091-6660.1999.t01-2-.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
C1q is a highly conserved protein with multiple functions involved in innate and adaptive immunity. It plays an important role in the activation of the classical pathway of the complement system to mediate the scavenging of infectious agents, apoptotic products, and immune complexes by the mononuclear phagocyte system (MPS). Exhibiting this function, C1q is able to bind various molecules (complexed IgG, IgM, fibrinogen, fibronectin, lipopolysaccharides, DNA, C-reactive protein [CRP], and viral proteins). Moreover, the collagen-like region of C1q is a target of autoantibodies. Immune complexes and anti-C1q autoantibodies are known to be involved in the pathogenesis of autoimmune diseases. Therefore, C1q is a promising candidate to extract waste material from the circulation. Following the development of the C1q immunoadsorbent, 8 patients with systemic lupus erythematosus (SLE) were treated in a first clinical trial. These preliminary results indicate that C1q immunoadsorption is a safe, compatible, and effective treatment for these patients.
Collapse
Affiliation(s)
- F Hiepe
- Department of Internal Medicine (Rheumatology and Clinical Immunology), University Hospital Charité, Humboldt-University, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Klickstein LB, Barbashov SF, Liu T, Jack RM, Nicholson-Weller A. Complement receptor type 1 (CR1, CD35) is a receptor for C1q. Immunity 1997; 7:345-55. [PMID: 9324355 DOI: 10.1016/s1074-7613(00)80356-8] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Molecular definition of the cellular receptor for the collagen domain of C1q has been elusive. We now report that C1q binds specifically to human CR1 (CD35), the leukocyte C3b/C4b receptor, and the receptor on erythrocytes for opsonized immune complexes. Biotinylated or radioiodinated C1q (*C1q) bound specifically to transfected K562 cells expressing cell surface CR1 and to immobilized recombinant soluble CR1 (rsCR1). *C1q binding to rsCR1 was completely inhibited by unlabeled C1q and the collagen domain of C1q and was partially inhibited by C3b dimers. Kinetic analysis in physiologic saline of the interaction of unlabeled C1q with immobilized rsCR1 using surface plasmon resonance yielded an apparent equilibrium dissociation constant (K[eq2]) of 3.9 nM. Thus, CR1 is a cellular C1q receptor that recognizes all three complement opsonins, namely, C1q, C3b, and C4b.
Collapse
Affiliation(s)
- L B Klickstein
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Tuberculosis is the leading cause of death due to an infectious organism, killing an estimated 3 million people annually. Mycobacterium tuberculosis, the causative agent of tuberculosis, and other pathogenic mycobacteria require entry into host macrophages to initiate infection. An invasion mechanism was defined that was shared among pathogenic mycobacteria including M. tuberculosis, M. leprae, and M. avium but not by nonpathogenic mycobacteria or nonmycobacterial intramacrophage pathogens. This pathway required the association of the complement cleavage product C2a with mycobacteria resulting in the formation of a C3 convertase. The mycobacteria-associated C2a cleaved C3, resulting in C3b opsonization of the mycobacteria and recognition by macrophages.
Collapse
Affiliation(s)
- J S Schorey
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
30
|
PONDMAN KW, PEETOOM F. THE SIGNIFICANCE OF THE ANTIGEN-ANTIBODY COMPLEMENT REACTION. IV. THE TRANSFORMATION OF BETA-1-C-GLOBULIN INTO BETA-1-A-GLOBULIN. ACTA ACUST UNITED AC 1996; 1:65-90. [PMID: 14249322 DOI: 10.1016/0019-2791(64)90073-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
MORSE JH, CHRISTIAN CL. IMMUNOLOGICAL STUDIES OF THE 11S PROTEIN COMPONENT OF THE HUMAN COMPLEMENT SYSTEM. ACTA ACUST UNITED AC 1996; 119:195-209. [PMID: 14164478 PMCID: PMC2137837 DOI: 10.1084/jem.119.2.195] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rabbit anticryoprotein and anticomplement antisera recognized a heat-labile antigen in normal human serum. This antigen best fitted the previously described US protein because of its presence in fresh human serum, euglobulin, and purified 11S preparations and its absence in heated serum, R11S, and pseudoglobulin preparations. The 11S hemolytic activity correlated well with the presence of this heat-labile antigen in the 11S region in sucrose density gradient ultracentrifugation and in the gamma globulin region on zone electrophoresis. It could be identified as a single component in the gamma globulin region in immunoelectrophoresis. The intermediate complex EAC'11S was lysed by R11S reagents and agglutinated by these antisera. The antisera also agglutinated a human complement-binding Rh-positive cell system if the 11S protein had been previously bound.
Collapse
|
32
|
YACHNIN S, RUTHENBERG JM. PH OPTIMA IN IMMUNE HEMOLYSIS: A COMPARISON BETWEEN GUINEA PIG AND HUMAN COMPLEMENT. J Clin Invest 1996; 44:149-58. [PMID: 14254250 PMCID: PMC442027 DOI: 10.1172/jci105121] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
33
|
DONALDSON VH, ROSEN FS. ACTION OF COMPLEMENT IN HEREDITARY ANGIONEUROTIC EDEMA: THE ROLE OF C'1-ESTERASE. J Clin Invest 1996; 43:2204-13. [PMID: 14223932 PMCID: PMC442008 DOI: 10.1172/jci105094] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
34
|
RATNOFF OD, LEPOW IH. COMPLEMENT AS A MEDIATOR OF INFLAMMATION. ENHANCEMENT OF VASCULAR PERMEABILITY BY PURIFIED HUMAN C'1 ESTERASE. ACTA ACUST UNITED AC 1996; 118:681-98. [PMID: 14087615 PMCID: PMC2137679 DOI: 10.1084/jem.118.5.681] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Purified preparations of the esterase derived from the first component of complement (C'1 esterase) increased vascular permeability in guinea pig skin, an effect inhibited by triprolidine, an antihistaminic agent, but not by soy bean trypsin inhibitor. The permeability-increasing and esterolytic properties of C'1 esterase were inhibited in parallel by the serum inhibitor of C'1 esterase, diisopropylphosphofluoridate and extremes of temperature and pH. Moreover, the permeability-increasing and esterolytic properties evolved in parallel when C'1 esterase was generated from its subcomponents. How C'1 esterase induces changes in vascular permeability remains unexplained, although the possibility that its action is mediated through a histamine-like agent is attractive.
Collapse
|
35
|
YACHNIN S, ROSENBLUM D. BIOLOGIC PROPERTIES OF POLYNUCLEOTIDES. IV. STUDIES ON THE MECHANISM OF COMPLEMENT INHIBITION BY POLYINOSINIC ACID TOGETHER WITH OBSERVATIONS ON THE IN VIVO EFFECT OF POLYINOSINIC ACID ON COMPLEMENT ACTIVITY. J Clin Invest 1996; 43:1175-84. [PMID: 14171794 PMCID: PMC289598 DOI: 10.1172/jci105001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
36
|
YACHNIN S. THE HEMOLYSIS OF RED CELLS FROM PATIENTS WITH PAROXYSMAL NOCTURNAL HEMOGLOBINURIA BY PARTIALLY PURIFIED SUB-COMPONENTS OF THE THIRD COMPLEMENT COMPONENT. J Clin Invest 1996; 44:1534-46. [PMID: 14332166 PMCID: PMC292635 DOI: 10.1172/jci105260] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
37
|
MUELLER-EBERHARD HJ, LEPOW IH. C'1 ESTERASE EFFECT ON ACTIVITY AND PHYSICOCHEMICAL PROPERTIES OF THE FOURTH COMPONENT OF COMPLEMENT. ACTA ACUST UNITED AC 1996; 121:819-33. [PMID: 14280442 PMCID: PMC2137997 DOI: 10.1084/jem.121.5.819] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Highly purified C'1 esterase of human serum is capable of inactivating isolated fourth component of human complement (β1E-globulin). Inactivation is accompanied by changes in electrophoretic and ultracentrifugal properties of β1E-globulin. If non-sensitized sheep erythrocytes are present during the action of C'1 esterase on β1E-globulin, a complex is formed consisting of cells and cytolytically active fourth component (EC'4). Thus, inactivation of β1E-globulin by C'1 esterase appears to be preceded by a state of activation enabling β1E-molecules to combine with cell membrane receptors. Acceptor groups appear to be present also in 7S γ-globulin and in β1E-globulin itself, since C'1 esterase can induce the formation of β-β and of β1E-7S γ-globulin complexes.
Collapse
|
38
|
NAFF GB, PENSKY J, LEPOW IH. THE MACROMOLECULAR NATURE OF THE FIRST COMPONENT OF HUMAN COMPLEMENT. ACTA ACUST UNITED AC 1996; 119:593-613. [PMID: 14151101 PMCID: PMC2137846 DOI: 10.1084/jem.119.4.593] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Kinetic and ultracentrifugal experiments demonstrated that the previously described subcomponents of human C'1, designated C'1q, C'1r, and C'1s, interacted with each other in liquid phase to form a macromolecule which was then capable of converting sensitized erythrocytes (EA) to the state EAC'1. The apparent sedimentation constants of C'1q, C'1r, and C'1s and of the macromolecular product of their interaction were approximately 11S, 7S, 4S, and 18S respectively. Association of C'1 subcomponents was prevented and dissociation of macromolecular C'1 was effected by Na3HEDTA and Na2MgEDTA but not by Na2CaEDTA. The rate of formation of macromolecular C'1 was a function of concentration of subcomponents and temperature of interaction, with an apparent energy of activation of 21,000 calories per mol. Ultracentrifugal studies further indicated the macromolecular nature of C'1 in normal human serum. In the absence of EDTA, C'1 sedimented with the serum macroglobulins and C'1 subcomponents were not detected. Conversely, in the presence of EDTA, macromolecular C'1 was not demonstrable and individual C'1 subcomponents could be measured in lighter fractions. The significance of these observations in relation to previous studies on C'1 subcomponents, the role of Ca++ in C'1 function, and the subunit structure of Enzymes has been discussed.
Collapse
|
39
|
YACHNIN S, RUTHENBERG JM. THE INITIATION AND ENHANCEMENT OF HUMAN RED CELL LYSIS BY ACTIVATORS OF THE FIRST COMPONENT OF COMPLEMENT AND BY FIRST COMPONENT ESTERASE; STUDIES USING NORMAL RED CELLS AND RED CELLS FROM PATIENTS WITH PAROXYSMAL NOCTURNAL HEMOGLOBINURIA. J Clin Invest 1996; 44:518-34. [PMID: 14278168 PMCID: PMC292519 DOI: 10.1172/jci105165] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
40
|
Peerschke EI, Reid KB, Ghebrehiwet B. Platelet activation by C1q results in the induction of alpha IIb/beta 3 integrins (GPIIb-IIIa) and the expression of P-selectin and procoagulant activity. J Exp Med 1993; 178:579-87. [PMID: 7688027 PMCID: PMC2191135 DOI: 10.1084/jem.178.2.579] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
C1q receptors (C1qR) have been identified on a variety of somatic and cultured cells including peripheral blood platelets. Since platelets are likely to encounter both circulating C1q multimers and C1q associated with the extracellular matrix after complement activation by the classical pathway, the present study was designed to assess the effect of fluid phase and immobilized C1q on platelet function. Platelet adhesion to C1q-coated surfaces was accompanied by the induction of fibrinogen receptors. Scatchard analysis of fibrinogen binding to adherent platelets revealed the binding of approximately 10,000 molecules of fibrinogen per platelet with a Kd of 0.1 +/- 0.03 microM (mean +/- SD, n = 4). Furthermore, fluid phase C1q multimers were noted to aggregate platelets at doses > 5 micrograms/ml. This aggregation was preceded by a rise in inositol-1,4,5-trisphosphate (IP3) (6.9 +/- 2.4 pmoles/10(9) platelets at 15 s, n = 4), and activation of GPIIb-IIIa complexes supporting fibrinogen binding. Platelet aggregation in response to C1q multimers was accompanied by the aspirin-inhibitable release of granule contents and P-selectin (CD62) expression. Platelet aggregation was inhibited by the collagenous domain of C1q (c-Clq) and a monoclonal antibody directed against C1q receptors, suggesting the direct involvement of the 67-kD platelet C1qR. Antibodies against the very late antigen 2 or CD36 collagen receptors were without effect. Platelet exposure to C1q multimers was also accompanied by the expression of procoagulant activity, as demonstrated by the dose-dependent shortening of the kaolin recalcification time of normal plasma from 108 +/- 12 s in the presence of unstimulated platelets to 62 +/- 14 s in the presence of platelets that had been preincubated (5 min, 37 degrees C) with 100 micrograms/ml multimeric C1q (n = 3). These data suggest that platelet interactions with C1q multimers or immobilized C1q, resulting in the activation of GPIIb-IIIa fibrinogen binding sites and the expression of P-selectin as well as platelet procoagulant activity, are likely to contribute to thrombotic events associated with complement activation and inflammation.
Collapse
Affiliation(s)
- E I Peerschke
- Department of Pathology, State University of New York, Stony Brook 11794
| | | | | |
Collapse
|
41
|
|
42
|
Lane PD, Schumaker VN, Tseng Y, Poon PH. Isolation of human complement subcomponents C1r and C1s in their unactivated, proenzyme forms. J Immunol Methods 1991; 141:219-26. [PMID: 1880428 DOI: 10.1016/0022-1759(91)90148-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have modified a standard isolation procedure for C1r and C1s, which employs IgG-Sepharose affinity chromatography followed by DEAE chromatography. As usual, all steps were performed at low temperature and two proteolytic inhibitors, PMSF and NPGB, were added during affinity chromatography on IgG-Sepharose. The novel condition was to keep the pH at pH 6.1 during the entire procedure, where activation was markedly depressed. In addition, purification was improved by washing the IgG-Sepharose column with a buffer free of added divalent cations immediately prior to elution of the C1r and C1s with EDTA. The final yields of highly purified C1r and C1s were about 20%; little or no activated material was detected in these highly purified fractions.
Collapse
Affiliation(s)
- P D Lane
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024
| | | | | | | |
Collapse
|
43
|
Fusi F, Bronson RA, Hong Y, Ghebrehiwet B. Complement component C1q and its receptor are involved in the interaction of human sperm with zona-free hamster eggs. Mol Reprod Dev 1991; 29:180-8. [PMID: 1878225 DOI: 10.1002/mrd.1080290214] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
C1q is a component of the classical complement pathway that can react with the Fc-fragment of immunoglobulins and with other proteins, such as fibronectin, laminin, and a specific C1q receptor present on several cell types. Given its role in many adhesion systems, mainly related to phagocytosis, we tested the effects of C1q on the interaction between human spermatozoa and zona-free hamster eggs. The presence of C1q in the medium used for gamete coincubation resulted in promotion of sperm-oolemma adhesion and an inhibition of penetration. The number of adherent sperm per egg at 5 micrograms/ml concentration was 90 +/- 35 vs. 29 +/- 7 for the control (P less than 0.001). At 1 microgram/ml, the lower concentration at which C1q had an effect, the number of penetrating sperm/egg was 0.6 vs. 1.7 for the control without C1q (P less than 0.01), and the percent of penetrated eggs was 28% vs. 85%. At 50 micrograms/ml, the percent of penetrated eggs was 7%, with a penetration index of 0.07. The addition of C1q to the medium resulted in sperm agglutination, which varied between sperm donors. The presence of C1q receptors, as detected by anti-C1qR monoclonal antibodies (Mabs), was demonstrated both on zona-free hamster eggs by immunobead rosetting and on human spermatozoa by immunobead binding and indirect immunofluorescence. Mabs directed against different epitopes of C1qR had different effects on gamete interaction, with a partial inhibition of penetration mediated by some of them. The binding of C1q to antibody-free human spermatozoa was also demonstrated both by means of indirect immunofluorescence and utilizing 125I-C1q.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- F Fusi
- Department of Obstetrics and Gynecology, State University of New York, Stony Brook
| | | | | | | |
Collapse
|
44
|
Sharma JN, Mohsin SS. The role of chemical mediators in the pathogenesis of inflammation with emphasis on the kinin system. EXPERIMENTAL PATHOLOGY 1990; 38:73-96. [PMID: 1971600 DOI: 10.1016/s0232-1513(11)80241-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In recent years, numerous agents have been recognized as inflammatory mediators. In this review, however, we discuss only those having direct relevance to human inflammatory diseases These mediators are clinically important due to their proinflammatory properties such as vasodilatation, increased vascular permeability, pain and chemotaxis. They may lead to the fifth cardinal sign, loss of function in inflammatory diseases. Agonists and non-specific antagonists are used as pharmacological tools to investigate the inflammatory role of PGs, LTs, PAF, IL-1, histamine, complement, SP, PMN-leukocytes, and kallikrein-kininogen-kinin systems. Unfortunately, no compound is known which concurrently abolishes all actions and interactions of inflammatory mediators. Therefore it would be highly useful to promote efforts in developing selective and competitive antagonists against proinflammatory actions of these chemical mediators. This may help to a better understanding of the pathogenesis of inflammatory reactions, and it may also be useful for the therapy of inflammatory diseases.
Collapse
Affiliation(s)
- J N Sharma
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Minden, Penang
| | | |
Collapse
|
45
|
Nakamura S, Ohue O, Akiyama K, Abe K. Genetic polymorphism of human C1R subcomponent of the first complement component in the Japanese population. Forensic Sci Int 1988; 39:71-6. [PMID: 2850274 DOI: 10.1016/0379-0738(88)90119-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Genetic polymorphism of the C1R subcomponent of human complement component C1 has been investigated in neuraminidase treated EDTA plasma samples of 440 healthy Japanese individuals living in Tokyo by means of thin-layer polyacrylamide gel isoelectric focusing (PAGIEF) at pH 3.5-9.5 in the presence of 8.0 M urea followed by an electroblotting with enzyme immunoassay. Three common and three rare alleles were detected in the Japanese population. Of these, two common alleles were identical to C1R*1 and C1R*2 and other new alleles were tentatively designated C1R*3, C1R*4, C1R*5 and C1R*6, respectively. The results of the family studies suggested that the genetic model for C1R polymorphism assumed autosomal codominant Mendelian inheritance. The allele frequencies were estimated as C1R*1 = 0.4216, C1R*2 = 0.3602, C1R*3 = 0.2068, C1R*4 = 0.0091 and C1R*R(C1R*5 and C1R*6) = 0.0023, respectively. The distribution of allotypes fitted the Hardy-Weinberg equilibrium. The C1R system provides a useful genetic marker for human genetics, anthropologic studies and forensic science.
Collapse
Affiliation(s)
- S Nakamura
- Department of Legal Medicine, Tokyo Women's Medical College, Japan
| | | | | | | |
Collapse
|
46
|
Hamada A, Young J, Chmielewski RA, Greene BM. C1q enhancement of antibody-dependent granulocyte-mediated killing of nonphagocytosable targets in vitro. J Clin Invest 1988; 82:945-9. [PMID: 2843577 PMCID: PMC303606 DOI: 10.1172/jci113702] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A possible role for C1q in antibody-dependent granulocyte-mediated killing of nonphagocytosable targets was investigated utilizing IgG-dependent granulocyte cytotoxicity directed against microfilariae of Dirofilaria immitis. Granulocyte-mediated killing of microfilariae is enhanced by addition of fresh serum. Lack of C4 did not significantly reduce the observed increase in cytotoxicity. The addition of highly purified monomeric human Clq (0.2 microgram/ml) in the presence of immune IgG resulted in a two- to fivefold enhancement of killing (P less than 0.025). C1q enhancement of killing occurred in the absence of fluid-phase IgG, but killing was significantly less than when both fluid-phase IgG and C1q were present. The effect of C1q was inhibited by the addition of solubilized type I collagen (44-92% inhibition of killing, P less than 0.05). Significant 125I-Clq binding to microfilariae occurred only in the presence of immune IgG. In addition, C1q in concentrations ranging from 0.5 to 2.0 micrograms/ml resulted in a dose-dependent increase in binding of 125I-immune IgG to microfilariae. Finally, when purified C1q was added to preopsonized, washed microfilariae, granulocyte production of superoxide was increased from 0.25 +/- 0.07 to 0.68 +/- 0.07 nm/10(6) cells.10 min (P less than 0.01). These results describe a novel functional role for C1q in enhancement of antibody-dependent cellular cytotoxicity towards nonphagocytosable targets.
Collapse
Affiliation(s)
- A Hamada
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | | | | | | |
Collapse
|
47
|
Peitsch MC, Kovacsovics TJ, Isliker H. A rapid and efficient method for the purification of the complement subcomponents C1r and C1s in zymogen form using fast protein chromatography. J Immunol Methods 1988; 108:265-9. [PMID: 2832479 DOI: 10.1016/0022-1759(88)90428-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The purification of the subcomponents C1r and C1s of the first component of complement involves multiple steps and is time-consuming. This accounts for the frequently observed partial activation of the subcomponents. In this report we propose a simplified procedure of purification using a batch method and fast protein chromatography avoiding a shift of pH. The method provides C1r and C1s in a yield of 35 and 60% respectively. In addition, this study provides a simple and sensitive test to assess functional purity of C1r and C1s with respect to the other C1 subcomponents.
Collapse
Affiliation(s)
- M C Peitsch
- Institute of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | | |
Collapse
|
48
|
Peitsch MC, Tschopp J, Kress A, Isliker H. Antibody-independent activation of the complement system by mitochondria is mediated by cardiolipin. Biochem J 1988; 249:495-500. [PMID: 3277626 PMCID: PMC1148730 DOI: 10.1042/bj2490495] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Non-immune activation of the first component of complement (C1) by the heart mitochondrial inner membrane has been investigated. Cardiolipin, the only strong activator of C1 among phospholipids, is present in large amounts in the heart mitochondrial inner membrane. We therefore studied its contribution to C1 activation by mitochondria. The proteins of the mitochondrial inner membrane were found to activate C1 only weakly, in contrast with the phospholipid fraction which induces strong C1 activation. Furthermore, the digestion of mitochondrial inner membranes with proteolytic enzymes did not affect C1 activation. Additional support in favour of cardiolipin being the responsible activator came from competition experiments with mitochondrial creatine kinase (mt-CPK) and adriamycin, known to bind to cardiolipin. Both mt-CPK and adriamycin displaced C1q from the mitochondrial inner membrane. In addition, C1q displaced mt-CPK bound to mitoplasts.
Collapse
Affiliation(s)
- M C Peitsch
- Institute of Biochemistry, University of Lausanne, Switzerland
| | | | | | | |
Collapse
|
49
|
Kamboh MI, Ferrell RE. Genetic studies of low-abundance human plasma proteins. VII. Heterogeneity of the C1S subcomponent of the first complement component. JOURNAL OF IMMUNOGENETICS 1987; 14:231-8. [PMID: 3331643 DOI: 10.1111/j.1744-313x.1987.tb00385.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Charge-based structural variation has been observed in the C1s subcomponent of the first complement component C1 after isoelectric focusing and immunoblotting. One common and two uncommon autosomal co-dominantly expressed alleles, designated C1S*1, C1S*2 and C1S*3, have been recognized at the C1S structural locus. The frequency of these alleles was 0.979, 0.016 and 0.005, respectively, in a U.S. white population. No variation at the C1S locus was observed in a U.S. black sample (n = 95).
Collapse
Affiliation(s)
- M I Kamboh
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburg, PA 15261
| | | |
Collapse
|
50
|
Uwatoko S, Aotsuka S, Okawa M, Egusa Y, Yokohari R, Aizawa C, Suzuki K. C1q solid-phase radioimmunoassay: evidence for detection of antibody directed against the collagen-like region of C1q in sera from patients with systemic lupus erythematosus. Clin Exp Immunol 1987; 69:98-106. [PMID: 3498589 PMCID: PMC1542256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In earlier studies we showed that the C1q-binding IgG in the sera from patients with systemic lupus erythematosus (SLE) tested by C1q solid-phase radioimmunoassay is cofractionated with monomeric IgG on gel filtration and mostly binds to C1q via the F(ab')2 region. In this study, we found that C1q, even when stripped of its immune complex-binding globular regions by pepsin digestion, retained a substantial part of its ability to bind IgG from SLE sera, suggesting that the collagen-like region of C1q is involved in binding to the SLE IgG. Heat-inactivation of C1q also failed to abolish its ability to bind IgG from SLE sera. In contrast, the binding of C1q to heat-aggregated IgG was completely abrogated by these treatments. In addition, the reaction of heat-aggregated IgG with the solid-phase C1q was markedly dependent on ionic strength whereas the binding of IgG from SLE sera with the solid-phase C1q persisted at high concentrations of salt. These findings suggest that the Clq-binding IgG in SLE sera is, at least in part, antibody directed against the collagen-like region of C1q.
Collapse
Affiliation(s)
- S Uwatoko
- Division of Immunology, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|