1
|
Milovic A, Duong JV, Barbour AG. The infection-tolerant white-footed deermouse tempers interferon responses to endotoxin in comparison to the mouse and rat. eLife 2024; 12:RP90135. [PMID: 38193896 PMCID: PMC10945503 DOI: 10.7554/elife.90135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
The white-footed deermouse Peromyscus leucopus, a long-lived rodent, is a key reservoir in North America for agents of several zoonoses, including Lyme disease, babesiosis, anaplasmosis, and a viral encephalitis. While persistently infected, this deermouse is without apparent disability or diminished fitness. For a model for inflammation elicited by various pathogens, the endotoxin lipopolysaccharide (LPS) was used to compare genome-wide transcription in blood by P. leucopus, Mus musculus, and Rattus norvegicus and adjusted for white cell concentrations. Deermice were distinguished from the mice and rats by LPS response profiles consistent with non-classical monocytes and alternatively-activated macrophages. LPS-treated P. leucopus, in contrast to mice and rats, also displayed little transcription of interferon-gamma and lower magnitude fold-changes in type 1 interferon-stimulated genes. These characteristics of P. leucopus were also noted in a Borrelia hermsii infection model. The phenomenon was associated with comparatively reduced transcription of endogenous retrovirus sequences and cytoplasmic pattern recognition receptors in the deermice. The results reveal a mechanism for infection tolerance in this species and perhaps other animal reservoirs for agents of human disease.
Collapse
Affiliation(s)
- Ana Milovic
- Department of Microbiology & Molecular Genetics, University of California, IrvineIrvineUnited States
| | - Jonathan V Duong
- Department of Microbiology & Molecular Genetics, University of California, IrvineIrvineUnited States
| | - Alan G Barbour
- Departments of Medicine, Microbiology & Molecular Genetics, and Ecology & Evolutionary Biology, University of California, IrvineIrvineUnited States
| |
Collapse
|
2
|
Milovic A, Duong JV, Barbour AG. The white-footed deermouse, an infection-tolerant reservoir for several zoonotic agents, tempers interferon responses to endotoxin in comparison to the mouse and rat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543964. [PMID: 37745581 PMCID: PMC10515768 DOI: 10.1101/2023.06.06.543964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The white-footed deermouse Peromyscus leucopus, a long-lived rodent, is a key reservoir for agents of several zoonoses, including Lyme disease. While persistently infected, this deermouse is without apparent disability or diminished fitness. For a model for inflammation elicited by various pathogens, the endotoxin lipopolysaccharide (LPS) was used to compare genome-wide transcription in blood by P. leucopus, Mus musculus and Rattus norvegicus and adjusted for white cell concentrations. Deermice were distinguished from the mice and rats by LPS response profiles consistent with non-classical monocytes and alternatively-activated macrophages. LPS-treated P. leucopus, in contrast to mice and rats, also displayed little transcription of interferon-gamma and lower magnitude fold-changes in type 1 interferon-stimulated genes. This was associated with comparatively reduced transcription of endogenous retrovirus sequences and cytoplasmic pattern recognition receptors in the deermice. The results reveal a mechanism for infection tolerance in this species and perhaps other animal reservoirs for agents of human disease.
Collapse
Affiliation(s)
- Ana Milovic
- Department of Microbiology & Molecular Genetics, University of California Irvine
| | - Jonathan V. Duong
- Department of Microbiology & Molecular Genetics, University of California Irvine
| | - Alan G. Barbour
- Departments of Medicine, Microbiology & Molecular Genetics, and Ecology & Evolutionary Biology, University of California Irvine
| |
Collapse
|
3
|
Liu Y, Niu Y, Ma X, Xiang Y, Wu D, Li W, Wang T, Niu D. Porcine endogenous retrovirus: classification, molecular structure, regulation, function, and potential risk in xenotransplantation. Funct Integr Genomics 2023; 23:60. [PMID: 36790562 DOI: 10.1007/s10142-023-00984-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
Xenotransplantation with porcine organs has been recognized as a promising solution to alleviate the shortage of organs for human transplantation. Porcine endogenous retrovirus (PERV), whose proviral DNAs are integrated in the genome of all pig breeds, is a main microbiological risk for xenotransplantation. Over the last decades, some advances on PERVs' studies have been achieved. Here, we reviewed the current progress of PERVs including the classification, molecular structure, regulation, function in immune system, and potential risk in xenotransplantation. We also discussed the problem of insufficient study on PERVs as well as the questions need to be answered in the future work.
Collapse
Affiliation(s)
- Yu Liu
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yifan Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xiang Ma
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.,College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,Jinhua Jinfan Feed Co., Ltd, Jinhua, Zhejiang, 321000, China
| | - Yun Xiang
- Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, 321000, China
| | - De Wu
- Postdoctoral Research Station, Jinhua Development Zone, Jinhua, Zhejiang, 321000, China
| | - Weifen Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu, 211300, China.
| | - Dong Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
4
|
Denner J. Endogenous retroviruses expressed in human tumours cannot be used as targets for anti-tumour vaccines. Transl Oncol 2020; 14:100941. [PMID: 33221683 PMCID: PMC7689320 DOI: 10.1016/j.tranon.2020.100941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 11/23/2022] Open
Abstract
Endogenous retroviruses are expressed in human tumours. In some animal tumour models passive and active immunization against retroviral antigens expressed in the tumour tissues helped to inhibit tumour development. Human tumour cells expressing human endogenous retroviruses (HERVs) transplanted into animals were also inhibited by antibodies against HERVs. Since HERVs are also expressed in the human placenta, on human stem cells and immune cells, immunisation against HERVs may be harmful if applied.
Many tumour cells express on their surface proteins of endogenous retroviruses (ERVs) and there are suggestions to use these retroviral antigens as target for anti-tumour vaccines. However, until now there is no convincing data showing that this strategy works, in contrast, there are considerations suggesting that this strategy may be harmful if applied.
Collapse
Affiliation(s)
- Joachim Denner
- Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany.
| |
Collapse
|
5
|
Alcazer V, Bonaventura P, Depil S. Human Endogenous Retroviruses (HERVs): Shaping the Innate Immune Response in Cancers. Cancers (Basel) 2020; 12:cancers12030610. [PMID: 32155827 PMCID: PMC7139688 DOI: 10.3390/cancers12030610] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/18/2022] Open
Abstract
Human Endogenous Retroviruses (HERVs) are accounting for 8% of the human genome. These sequences are remnants from ancient germline infections by exogenous retroviruses. After million years of evolution and multiple integrations, HERVs have acquired many damages rendering them defective. At steady state, HERVs are mostly localized in the heterochromatin and silenced by methylation. Multiple conditions have been described to induce their reactivation, including auto-immune diseases and cancers. HERVs re-expression leads to RNA (simple and double-stranded) and DNA production (by reverse transcription), modulating the innate immune response. Some studies also argue for a role of HERVs in shaping the evolution of innate immunity, notably in the development of the interferon response. However, their exact role in the innate immune response, particularly in cancer, remains to be defined. In this review, we see how HERVs could be key-players in mounting an antitumor immune response. After a brief introduction on HERVs characteristics and biology, we review the different mechanisms by which HERVs can interact with the immune system, with a focus on the innate response. We then discuss the potential impact of HERVs expression on the innate immune response in cancer.
Collapse
Affiliation(s)
- Vincent Alcazer
- Cancer Research Center of Lyon, 69008 Lyon, France
- Department of Clinical Hematology, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
- Correspondence: (V.A.); (S.D.)
| | - Paola Bonaventura
- Cancer Research Center of Lyon, 69008 Lyon, France
- Centre Léon Bérard, 69008 Lyon, France
| | - Stephane Depil
- Cancer Research Center of Lyon, 69008 Lyon, France
- Centre Léon Bérard, 69008 Lyon, France
- Université Claude Bernard Lyon 1, 69008 Lyon, France
- ErVaccine Technologies, 69008 Lyon, France
- Correspondence: (V.A.); (S.D.)
| |
Collapse
|
6
|
Transposable element dysregulation in systemic lupus erythematosus and regulation by histone conformation and Hsp90. Clin Immunol 2018; 197:6-18. [PMID: 30149120 DOI: 10.1016/j.clim.2018.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 01/27/2023]
Abstract
Systemic lupus erythematosus (SLE) represents an autoimmune disease in which activation of the type I interferon pathway leads to dysregulation of tolerance and the generation of autoantibodies directed against nuclear constituents. The mechanisms driving the activation of the interferon pathway in SLE have been the subject of intense investigation but are still incompletely understood. Transposable elements represent an enormous source of RNA that could potentially stimulate the cell intrinsic RNA-recognition pathway, leading to upregulation of interferons. We used RNA-seq to define transposable element families and subfamilies in three cell types in SLE and found diverse effects on transposable element expression in the three cell types and even within a given family of transposable elements. When potential mechanisms were examined, we found that Hsp90 inhibition could drive increased expression of multiple type of transposable elements. Both direct inhibition and the delivery of a heat shock itself, which redirects heat shock regulators (including Hsp90) off of basal expression promoters and onto heat shock-responsive promoters, led to increased transposable element expression. This effect was amplified by the concurrent delivery of a histone deacetylase inhibitor. We conclude that transposable elements are dysregulated in SLE and there are tissue-specific effects and locus-specific effects. The magnitude of RNAs attributable to transposable elements makes their dysregulation of critical interest in SLE where transposable element RNA complexed with proteins has been shown to drive interferon expression.
Collapse
|
7
|
Attig J, Young GR, Stoye JP, Kassiotis G. Physiological and Pathological Transcriptional Activation of Endogenous Retroelements Assessed by RNA-Sequencing of B Lymphocytes. Front Microbiol 2017; 8:2489. [PMID: 29312197 PMCID: PMC5733090 DOI: 10.3389/fmicb.2017.02489] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022] Open
Abstract
In addition to evolutionarily-accrued sequence mutation or deletion, endogenous retroelements (EREs) in eukaryotic genomes are subject to epigenetic silencing, preventing or reducing their transcription, particularly in the germplasm. Nevertheless, transcriptional activation of EREs, including endogenous retroviruses (ERVs) and long interspersed nuclear elements (LINEs), is observed in somatic cells, variably upon cellular differentiation and frequently upon cellular transformation. ERE transcription is modulated during physiological and pathological immune cell activation, as well as in immune cell cancers. However, our understanding of the potential consequences of such modulation remains incomplete, partly due to the relative scarcity of information regarding genome-wide ERE transcriptional patterns in immune cells. Here, we describe a methodology that allows probing RNA-sequencing (RNA-seq) data for genome-wide expression of EREs in murine and human cells. Our analysis of B cells reveals that their transcriptional response during immune activation is dominated by induction of gene transcription, and that EREs respond to a much lesser extent. The transcriptional activity of the majority of EREs is either unaffected or reduced by B cell activation both in mice and humans, albeit LINEs appear considerably more responsive in the latter host. Nevertheless, a small number of highly distinct ERVs are strongly and consistently induced during B cell activation. Importantly, this pattern contrasts starkly with B cell transformation, which exhibits widespread induction of EREs, including ERVs that minimally overlap with those responsive to immune stimulation. The distinctive patterns of ERE induction suggest different underlying mechanisms and will help separate physiological from pathological expression.
Collapse
Affiliation(s)
- Jan Attig
- Retroviral Immunology, The Francis Crick Institute, London, United Kingdom
| | - George R Young
- Retrovirus-Host Interactions, The Francis Crick Institute, London, United Kingdom
| | - Jonathan P Stoye
- Retrovirus-Host Interactions, The Francis Crick Institute, London, United Kingdom.,Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, London, United Kingdom.,Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Kassiotis G, Stoye JP. Immune responses to endogenous retroelements: taking the bad with the good. Nat Rev Immunol 2016; 16:207-19. [PMID: 27026073 DOI: 10.1038/nri.2016.27] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ultimate form of parasitism and evasion of host immunity is for the parasite genome to enter the germ line of the host species. Retroviruses have invaded the host germ line on the grandest scale, and this is evident in the extraordinary abundance of endogenous retroelements in the genome of all vertebrate species that have been studied. Many of these endogenous retroelements have retained viral characteristics; some also the capacity to replicate and, consequently, the potential to trigger host innate and adaptive immune responses. However, although retroelements are mainly recognized for their pathogenic potential, recent evidence suggests that this 'enemy within' may also have beneficial roles in tuning host immune reactivity. In this Review, we discuss how the immune system recognizes and is shaped by endogenous retroelements.
Collapse
Affiliation(s)
- George Kassiotis
- Retroviral Immunology, the Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK.,Department of Medicine, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| | - Jonathan P Stoye
- Department of Medicine, Faculty of Medicine, Imperial College London, London W2 1PG, UK.,Retrovirus-Host Interactions, the Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| |
Collapse
|
9
|
Young GR, Mavrommatis B, Kassiotis G. Microarray analysis reveals global modulation of endogenous retroelement transcription by microbes. Retrovirology 2014; 11:59. [PMID: 25063042 PMCID: PMC4222864 DOI: 10.1186/1742-4690-11-59] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 07/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A substantial proportion of both the mouse and human genomes comprise of endogenous retroelements (REs), which include endogenous retroviruses. Over evolutionary time, REs accumulate inactivating mutations or deletions and thus lose the ability to replicate. Additionally, REs can be transcriptionally repressed by dedicated mechanisms of the host. Nevertheless, many of them still possess and express intact open reading frames, and their transcriptional activity has been associated with many physiological and pathological processes of the host. However, this association remains tenuous due to incomplete understanding of the mechanism by which RE transcription is regulated. Here, we use a bioinformatics tool to examine RE transcriptional activity, measured by microarrays, in murine and human immune cells responding to microbial stimulation. RESULTS Immune cell activation by microbial signals in vitro caused extensive changes in the transcription not only of the host genes involved in the immune response, but also of numerous REs. Modulated REs were frequently found near or embedded within similarly-modulated host genes. Focusing on probes reporting single-integration, intergenic REs, revealed extensive transcriptional responsiveness of these elements to microbial signals. Microbial stimulation modulated RE expression in a cell-intrinsic manner. In line with these results, the transcriptional activity of numerous REs followed characteristics in different tissues according to exposure to environmental microbes and was further heavily altered during viral infection or imbalances with intestinal microbiota, both in mice and humans. CONCLUSIONS Together, these results highlight the utility of improved methodologies in assessing RE transcription profiles in both archived and new microarray data sets. More importantly, application of this methodology suggests that immune activation, as a result of infection with pathogens or dysbiosis with commensal microbes, causes global modulation of RE transcription. RE responsiveness to external stimuli should, therefore, be considered in any association between RE transcription and disease.
Collapse
Affiliation(s)
| | | | - George Kassiotis
- Division of Immunoregulation, MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK.
| |
Collapse
|
10
|
Denner J, Mihica D, Kaulitz D, Schmidt CM. Increased titers of neutralizing antibodies after immunization with both envelope proteins of the porcine endogenous retroviruses (PERVs). Virol J 2012; 9:260. [PMID: 23126255 PMCID: PMC3554530 DOI: 10.1186/1743-422x-9-260] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 10/31/2012] [Indexed: 11/29/2022] Open
Abstract
Despite enormous difficulties to induce antibodies neutralizing HIV-1, especially broadly neutralizing antibodies directed against the conserved membrane proximal external region (MPER) of the transmembrane envelope protein, such antibodies can be easily induced in the case of gammaretroviruses, among them the porcine endogenous retroviruses (PERVs). In addition to neutralizing antibodies directed against the transmembrane envelope protein p15E, neutralizing antibodies were also induced by immunization with the surface envelope protein gp70. PERVs represent a special risk for xenotransplantation using pig tissues or organs since they are integrated in the genome of all pigs and infect human cells and a vaccine may protect from transmission to the recipient. To investigate the effect of simultaneous immunization with both proteins in detail, a study was performed in hamsters. Gp70 and p15E of PERV were produced in E. coli, purified and used for immunization. All animals developed binding antibodies against the antigens used for immunization. Sera from animals immunized with p15E recognized epitopes in the MPER and the fusion peptide proximal region (FPPR) of p15E. One MPER epitope showed a sequence homology to an epitope in the MPER of gp41 of HIV-1 recognized by broadly neutralizing antibodies found in HIV infected individuals. Neutralizing antibodies were detected in all sera. Most importantly, sera from animals immunized with gp70 had a higher neutralizing activity when compared with the sera from animals immunized with p15E and sera from animals immunized with gp70 together with p15E had a higher neutralizing activity compared with sera from animals immunized with each antigen alone. These immunization studies are important for the development of vaccines against other retroviruses including the human immunodeficiency virus HIV-1.
Collapse
Affiliation(s)
- Joachim Denner
- Center of HIV and Retrovirology, Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany.
| | | | | | | |
Collapse
|
11
|
Young GR, Eksmond U, Salcedo R, Alexopoulou L, Stoye JP, Kassiotis G. Resurrection of endogenous retroviruses in antibody-deficient mice. Nature 2012; 491:774-8. [PMID: 23103862 PMCID: PMC3511586 DOI: 10.1038/nature11599] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 09/18/2012] [Indexed: 01/12/2023]
Abstract
The mammalian host has developed a long-standing symbiotic relationship with a considerable number of microbial species. These include the microbiota on environmental surfaces, such as the respiratory and gastrointestinal tracks1, and also endogenous retroviruses (ERVs), comprising a substantial fraction of the mammalian genome2,3. The long-term consequences for the host of interaction with these microbial species can range from mutualism to parasitism and are not always completely understood. The potential impact of one microbial symbiont on another is even less clear. We have studied the control of ERVs in the commonly-used C57BL/6 (B6) mouse strain, which lacks endogenous murine leukaemia viruses (MLVs) able to replicate in murine cells. We demonstrate the spontaneous emergence of fully infectious ecotropic4 MLV (eMLV) in B6 mice with a range of distinct immune deficiencies affecting antibody production. These recombinant retroviruses establish infection of immunodeficient mouse colonies, and ultimately result in retrovirus-induced lymphomas. Notably, ERV activation in immune-deficient mice is prevented in husbandry conditions associated with reduced or absent intestinal microbiota. Our results shed light onto a previously unappreciated role for immunity in the control of ERVs and provide a potential mechanistic link between immune activation by microbial triggers and a range of pathologies associated with ERVs, including cancer.
Collapse
Affiliation(s)
- George R Young
- Division of Immunoregulation, MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | | | | | | | | | | |
Collapse
|
12
|
Shen CH, Steiner LA. Genome structure and thymic expression of an endogenous retrovirus in zebrafish. J Virol 2004; 78:899-911. [PMID: 14694121 PMCID: PMC368747 DOI: 10.1128/jvi.78.2.899-911.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2003] [Accepted: 10/03/2003] [Indexed: 11/20/2022] Open
Abstract
In a search for previously unknown genes that are required for lymphocyte development in zebrafish, a retroviral sequence was identified in a subtracted thymus cDNA library and in genomic DNA libraries. The provirus is 11.2 kb and contains intact open reading frames for the gag, pol, and env genes, as well as nearly identical flanking long terminal repeat sequences. As determined by in situ hybridization, the thymus appears to be a major tissue for retroviral expression in both larval and adult fish. Several viral transcripts were found by Northern blotting in the adult thymus. The provirus was found at the same genomic locus in sperm from four fish, suggesting that it is an endogenous retrovirus. Phylogenetic analysis indicates that it is closest to, yet distinct from, the cluster of murine leukemia virus-related retroviruses, suggesting that this virus represents a new group of retroviruses.
Collapse
Affiliation(s)
- Ching-Hung Shen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
13
|
Chen H, Chung SW, Wong PM. Expression of a truncated retroviral envelope gene enhances expression of normal cellular phenotypes. J Biomed Sci 2000; 7:514-22. [PMID: 11060500 DOI: 10.1007/bf02253367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The envelope gene of Moloney murine leukemia virus (Mo-MLV) and its various functional domains have been studied extensively but not as much in terms of their biological effects on cell growth. In this study, we report the biological characterization of a truncated Mo-MLV envelope gene, LN11, which is devoid of a signal peptide. Its expression in various cell types, as compared to the control, enabled the transduced cells to assume a more normal phenotype, which is defined by an increase in contact inhibition and factor dependence, as well as reduced tumorigenicity. LN11-transduced fibroblasts exhibited a higher degree of contact inhibition, assumed a more flattened morphology and were more adherent compared to the control. In v-abl transformed hematopoietic cells, expression of LN11 resulted in slower cell growth, which was due to an enhanced dependence on exogenous growth factors. Enforced expression of LN11 also resulted in a slower rate of tumor development and a reduced tumor load. Thus, modification of a retroviral genome could have a significant impact on cell growth and development. This is one example where we need to consider the safety issue carefully when constructing retrovirus vectors for gene therapy.
Collapse
Affiliation(s)
- H Chen
- Department of Pathology and Laboratory Medicine, Fels Institute, Temple University School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
14
|
Hoyt PR, Wang TH, Henley DC, Yang DM, Ch'ang LY, Yang WK. Carbon tetrachloride induction of rapid changes in liver nuclear protein factors capable of sequence-specific binding to regulatory elements in the long terminal repeat of polytropic-class endogenous murine leukemia virus-related proviruses. Mol Carcinog 1993; 8:245-54. [PMID: 8280373 DOI: 10.1002/mc.2940080407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Treatment of mice with hepatic carcinogens, including CCl4, has been shown to rapidly enhance the transcription of endogenous murine leukemia virus-related proviral sequences in the liver. To understand the mechanism for this transcriptional stimulation, we used nuclear protein preparations from mouse livers to perform DNase I protection analyses and identified nuclear protein binding on approximately 20 individual sequences within the regulatory regions of the long terminal repeat (LTR) of a polytropic-class endogenous provirus clone. From 3 to 144 h after treatment with CCl4, the livers of FVB/N mice were analyzed for specific nuclear protein binding to the LTR DNA. Three to nine hours after CCl4 treatment, decreased protection was seen at potential regulatory cis-elements throughout the LTR, including specific sites within the putative negative regulatory element (located 5' of the consensus enhancer sequences) and the 3' terminal portion of the polytropic class-specific enhancer-like inserted sequence element and around the CCAA(C/T) box in the promoter region. In addition, by 3-6 h after treatment, a transient increase in protection activity for the transcription initiation site occurred. The loss of cis-element protection expanded to other binding sites and became most marked by 48 h after treatment. As the regenerating liver recovered, the nuclear protein binding activities for these LTR sequences also recovered, but protection at the TATAA and transcription initiation sites remained deprotected at 144 h after treatment. Nuclear protein protection of other sites, particularly in the conserved LTR enhancer sequences, was minimally affected by CCl4 treatment. Three nuclear protein binding sites that showed rapid CCl4-induced kinetic changes were homologous to the consensus sequence for the binding of the transcription factor families MEF-2, HNF-1, and C/EBP. The complex kinetic changes in factors that may contribute to the rapid and transient induction of endogenous retroviral gene expression in the liver after CCl4 exposure are discussed.
Collapse
Affiliation(s)
- P R Hoyt
- Biology Division, Oak Ridge National Laboratory, Tennessee
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
The spontaneous leukemias of AKR mice are caused by mink cell focus-forming (MCF) viruses. These viruses are generated by recombination between several endogenous murine retroviruses. The virological events leading to the generation of the leukemogenic agent were investigated by using an oligonucleotide specific for the U3 region of the leukemogenic virus and env-reactive oligonucleotide probes specific for the different classes of endogenous murine leukemia virus. It was shown that (i) the leukemogenic MCF virus is formed by recombination between at least three different endogenous sequences; (ii) the U3 donor for the leukemogenic virus is the inducible xenotropic virus Bxv-1; (iii) all spontaneous tumors contain viruses with duplicated enhancer regions in their long terminal repeats; (iv) enhancer duplication is a somatic event, since Bxv-1 contains only one copy; (v) the first recombinant virus detectable in mass populations of thymocytes by Southern hybridization analysis contains all structural features of the ultimate leukemogenic virus; and (vi) the multiple novel viruses in a given tumor represent progeny of the same unique recombination events. On the basis of these results, an analysis of the virological events leading to AKR thymomas is presented.
Collapse
Affiliation(s)
- J P Stoye
- Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | | |
Collapse
|
16
|
Yang WK, Ch'ang LY, Koh CK, Myer FE, Yang MD. Mouse endogenous retroviral long-terminal-repeat (LTR) elements and environmental carcinogenesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1989; 36:247-66. [PMID: 2544010 DOI: 10.1016/s0079-6603(08)60175-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Stoye JP, Coffin JM. Polymorphism of murine endogenous proviruses revealed by using virus class-specific oligonucleotide probes. J Virol 1988; 62:168-75. [PMID: 2824845 PMCID: PMC250515 DOI: 10.1128/jvi.62.1.168-175.1988] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Inbred mice contain three classes of endogenous nonecotropic murine leukemia virus-related sequences, namely xenotropic, polytropic, and modified polytropic proviruses. Oligonucleotide probes specific for the three different classes were prepared and used to examine the diversity of endogenous sequences present in eight different strains of mice: HRS/J, BALB/cJ, A/J, AKR/J, C57BL/6J, DBA/2J, C57L/J, and C3H/HeJ. A high degree of polymorphism was observed. Overall, the strains showed between 17% (A/J and HRS/J) and 65% (C57BL/6J and C57L/J) shared proviruses, and only four proviruses were present in all eight strains. The similarity among the strains is due in part to the few proviruses present in all of the strains but also represents the independent assortment of a limited set of proviruses. These oligonucleotides provide a basis for determining the stability, distribution, and mutagenic potential of nonecotropic proviruses within the mouse genome.
Collapse
Affiliation(s)
- J P Stoye
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | |
Collapse
|
18
|
Britt WJ, Chesebro B, Portis JL. Identification of a unique erythroleukemia-associated retroviral gp70 expressed during early stages of normal erythroid differentiation. J Exp Med 1984; 159:1591-603. [PMID: 6202815 PMCID: PMC2187311 DOI: 10.1084/jem.159.6.1591] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Late in the course of Friend virus (FV)-induced erythroleukemia, leukemic spleen cells express a cell surface retroviral gp70 envelope protein not detected during the early proliferative phase of the disease. Characterization of this gp70 revealed it was unrelated to the input Friend murine leukemia virus (F-MuLV), but antigenically similar to a unique subset of endogenous xenotropic viruses. This gp70 was expressed by murine erythroleukemia cell lines but has not been identified on cell lines of other lineages. A monoclonal antibody (18-6) specifically reactive with this polypeptide was used to examine hematopoietic organs of normal uninoculated mice. This antibody detected a gp70 expressed by a majority of erythroid cells in fetal liver and by a small but significant percentage of normal adult spleen and bone marrow cells. Increased erythropoietic activity induced by treatment of adult mice with phenylhydrazine ( PHZ ) resulted in a seven- to eightfold increase in the frequency of spleen and bone marrow cells expressing this gp70. Peptide map analysis indicated that the 18-6 reactive gp70 expressed by Friend erythroleukemia cells and by cells from normal fetal liver were structurally identical. These results suggested that this unique gp70 was an erythroid-specific differentiation antigen.
Collapse
|