1
|
Wang Y, Shao W, Liu X, Liang Q, Lei J, Shi W, Mei M, Li Y, Tan X, Yu G, Yu L, Zhang L, Qi H. High recallability of memory B cells requires ZFP318-dependent transcriptional regulation of mitochondrial function. Immunity 2024; 57:1848-1863.e7. [PMID: 38889716 DOI: 10.1016/j.immuni.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 02/24/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Expression of the transcriptional regulator ZFP318 is induced in germinal center (GC)-exiting memory B cell precursors and memory B cells (MBCs). Using a conditional ZFP318 fluorescence reporter that also enables ablation of ZFP318-expressing cells, we found that ZFP318-expressing MBCs were highly enriched with GC-derived cells. Although ZFP318-expressing MBCs constituted only a minority of the antigen-specific MBC compartment, their ablation severely impaired recall responses. Deletion of Zfp318 did not alter the magnitude of primary responses but markedly reduced MBC participation in recall. CD40 ligation promoted Zfp318 expression, whereas B cell receptor (BCR) signaling was inhibitory. Enforced ZFP318 expression enhanced recall performance of MBCs that otherwise responded poorly. ZFP318-deficient MBCs expressed less mitochondrial genes, had structurally compromised mitochondria, and were susceptible to reactivation-induced cell death. The abundance of ZFP318-expressing MBCs, instead of the number of antigen-specific MBCs, correlated with the potency of prime-boost vaccination. Therefore, ZFP318 controls the MBC recallability and represents a quality checkpoint of humoral immune memory.
Collapse
Affiliation(s)
- Yifeng Wang
- Changping Laboratory, Yard 28, Science Park Rd., Changping District, Beijing 102206, China
| | - Wen Shao
- Changping Laboratory, Yard 28, Science Park Rd., Changping District, Beijing 102206, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xin Liu
- Changping Laboratory, Yard 28, Science Park Rd., Changping District, Beijing 102206, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qingtai Liang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jiaqi Lei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wenjuan Shi
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Miao Mei
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Tan
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Guocan Yu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Li Yu
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Linqi Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hai Qi
- Changping Laboratory, Yard 28, Science Park Rd., Changping District, Beijing 102206, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China; Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Dirks J, Andres O, Paul L, Manukjan G, Schulze H, Morbach H. IgD shapes the pre-immune naïve B cell compartment in humans. Front Immunol 2023; 14:1096019. [PMID: 36776874 PMCID: PMC9908586 DOI: 10.3389/fimmu.2023.1096019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
B cell maturation and immunoglobulin (Ig) repertoire selection are governed by expression of a functional B cell receptor (BCR). Naïve B cells co-express their BCR as IgM and IgD isotype. However, the role of the additionally expressed IgD on naïve B cells is not known. Here we assessed the impact of IgD on naïve B cell maturation and Ig repertoire selection in 8 individuals from 3 different families with heterozygous loss-of-function or loss-of expression mutations in IGHD. Although naïve B cells from these individuals expressed IgM on their surface, the IGHD variant in heterozygous state entailed a chimeric situation by allelic exclusion with almost half of the naïve B cell population lacking surface IgD expression. Flow cytometric analyses revealed a distinct phenotype of IgD-negative naïve B cells with decreased expression of CD19, CD20 and CD21 as well as lower BAFF-R and integrin-β7 expression. IgD-negative B cells were less responsive in vitro after engaging the IgM-BCR, TLR7/9 or CD40 pathway. Additionally, a selective disadvantage of IgD-negative B cells within the T2 transitional and mature naïve B cell compartment as well as reduced frequencies of IgMlo/- B cells within the mature naïve B cell compartment lacking IgD were evident. RNA-Ig-seq of bulk sorted B cell populations showed an altered selection of distinct VH segments in the IgD-negative mature naïve B cell population. We conclude that IgD expression on human naïve B cells is redundant for generation of naïve B cells in general, but further shapes the naive B cell compartment starting from T2 transitional B cells. Our observations suggest an unexpected role of IgD expression to be critical for selection of distinct Ig VH segments into the pre-immune Ig repertoire and for the survival of IgMlo/- naïve B cells known to be enriched in poly-/autoreactive B cell clones.
Collapse
Affiliation(s)
- Johannes Dirks
- Pediatric Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Oliver Andres
- Pediatric Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Luisa Paul
- Pediatric Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany.,Department of Pediatrics I, University Hospital Essen, University of Duisburg Essen, Essen, Germany
| | - Georgi Manukjan
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany
| | - Henner Morbach
- Pediatric Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Itoh N, Ohshima Y. The dual aspects of IgD in the development of tolerance and the pathogenesis of allergic diseases. Allergol Int 2022; 72:227-233. [PMID: 37010995 DOI: 10.1016/j.alit.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
The cell-surface form of IgD is co-expressed with IgM on mature, naïve B cells as B-cell receptors. The secreted IgD antibody (Ab) is found in relatively modest concentrations in the blood and other body fluids as it has a relatively short serum half-life. IgD Abs produced in the upper-respiratory mucosa presumably participate in host defense against pathogens. The allergen-mediated cross-linkage of basophil-bound IgD Ab enhances type 2 cytokine secretion; IgD Ab may also interfere with IgE-mediated basophil degranulation, suggesting dual and opposing roles of IgD Ab in allergen sensitization and the development of allergen immune tolerance. We recently demonstrated that children with egg allergies who avoided all forms of egg have lower ovomucoid-specific IgD and IgG4 Ab levels than those who only partially avoided egg products and that different mechanisms may regulate allergen-specific IgD Ab production compared to allergen-specific IgG4 Ab production. The relationship between antigen-specific IgD Ab levels and the clinical improvement of asthma and food allergies suggests that antigen-specific IgD Ab affects the process of outgrowing allergies. We discuss the possibility that allergen-specific IgD Ab production reflects low-affinity, allergen-specific IgE production as children outgrow a food allergy.
Collapse
Affiliation(s)
- Naohiro Itoh
- Department of Pediatrics, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| | - Yusei Ohshima
- Department of Pediatrics, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
4
|
Pone EJ, Hernandez-Davies JE, Jan S, Silzel E, Felgner PL, Davies DH. Multimericity Amplifies the Synergy of BCR and TLR4 for B Cell Activation and Antibody Class Switching. Front Immunol 2022; 13:882502. [PMID: 35663959 PMCID: PMC9161726 DOI: 10.3389/fimmu.2022.882502] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Sustained signaling through the B cell antigen receptor (BCR) is thought to occur only when antigen(s) crosslink or disperse multiple BCR units, such as by multimeric antigens found on the surfaces of viruses or bacteria. B cell-intrinsic Toll-like receptor (TLR) signaling synergizes with the BCR to induce and shape antibody production, hallmarked by immunoglobulin (Ig) class switch recombination (CSR) of constant heavy chains from IgM/IgD to IgG, IgA or IgE isotypes, and somatic hypermutation (SHM) of variable heavy and light chains. Full B cell differentiation is essential for protective immunity, where class switched high affinity antibodies neutralize present pathogens, memory B cells are held in reserve for future encounters, and activated B cells also serve as semi-professional APCs for T cells. But the rules that fine-tune B cell differentiation remain partially understood, despite their being essential for naturally acquired immunity and for guiding vaccine development. To address this in part, we have developed a cell culture system using splenic B cells from naive mice stimulated with several biotinylated ligands and antibodies crosslinked by streptavidin reagents. In particular, biotinylated lipopolysaccharide (LPS), a Toll-like receptor 4 (TLR4) agonist, and biotinylated anti-IgM were pre-assembled (multimerized) using streptavidin, or immobilized on nanoparticles coated with streptavidin, and used to active B cells in this precisely controlled, high throughput assay. Using B cell proliferation and Ig class switching as metrics for successful B cell activation, we show that the stimuli are both synergistic and dose-dependent. Crucially, the multimerized immunoconjugates are most active over a narrow concentration range. These data suggest that multimericity is an essential requirement for B cell BCR/TLRs ligands, and clarify basic rules for B cell activation. Such studies highlight the importance in determining the choice of single vs multimeric formats of antigen and PAMP agonists during vaccine design and development.
Collapse
|
5
|
Autoreactive antibodies control blood glucose by regulating insulin homeostasis. Proc Natl Acad Sci U S A 2022; 119:2115695119. [PMID: 35131852 PMCID: PMC8833180 DOI: 10.1073/pnas.2115695119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 12/31/2022] Open
Abstract
The random nature of antibody repertoire generation includes the potential of producing autoantibodies recognizing self-structures. It is believed that establishing immunological tolerance and prevention of autoimmune diseases require the removal of antibody specificities recognizing self. Using insulin as a common and physiologically important autoantigen, we show that anti-insulin antibodies associated with autoimmune diabetes can readily be detected in mice and humans and are involved in the physiological regulation of blood glucose levels. Importantly, human high-affinity, anti-insulin IgM antibodies protect insulin from autoimmune degradation by anti-insulin IgG antibodies. Thus, in contrast to the proposed negative selection, self-recognition and the production of highly autoreactive IgM antibodies are important for tolerance induction. Homeostasis of metabolism by hormone production is crucial for maintaining physiological integrity, as disbalance can cause severe metabolic disorders such as diabetes mellitus. Here, we show that antibody-deficient mice and immunodeficiency patients have subphysiological blood glucose concentrations. Restoring blood glucose physiology required total IgG injections and insulin-specific IgG antibodies detected in total IgG preparations and in the serum of healthy individuals. In addition to the insulin-neutralizing anti-insulin IgG, we identified two fractions of anti-insulin IgM in the serum of healthy individuals. These autoreactive IgM fractions differ in their affinity to insulin. Interestingly, the low-affinity IgM fraction (anti-insulin IgMlow) neutralizes insulin and leads to increased blood glucose, whereas the high-affinity IgM fraction (anti-insulin IgMhigh) protects insulin from neutralization by anti-insulin IgG, thereby preventing blood glucose dysregulation. To demonstrate that anti-insulin IgMhigh acts as a protector of insulin and counteracts insulin neutralization by anti-insulin IgG, we expressed the variable regions of a high-affinity anti-insulin antibody as IgG and IgM. Remarkably, the recombinant anti-insulin IgMhigh normalized insulin function and prevented IgG-mediated insulin neutralization. These results suggest that autoreactive antibodies recognizing insulin are key regulators of blood glucose and metabolism, as they control the concentration of insulin in the blood. Moreover, our data suggest that preventing autoimmune damage and maintaining physiological homeostasis requires adaptive tolerance mechanisms generating high-affinity autoreactive IgM antibodies during memory responses.
Collapse
|
6
|
Renna V, Surova E, Khadour A, Datta M, Amendt T, Hobeika E, Jumaa H. Defective Allelic Exclusion by IgD in the Absence of Autoantigen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:293-302. [PMID: 34930782 DOI: 10.4049/jimmunol.2100726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/02/2021] [Indexed: 11/19/2022]
Abstract
A considerable proportion of peripheral B cells is autoreactive, and it is unclear how the activation of such potentially harmful cells is regulated. In this study, we show that the different activation thresholds or IgM and IgD BCRs adjust B cell activation to the diverse requirements during development. We rely on the autoreactive 3-83 model BCR to generate and analyze mice expressing exclusively autoreactive IgD BCRs on two different backgrounds that determine two stages of autoreactivity, depending on the presence or absence of the cognate Ag. By comparing these models with IgM-expressing control mice, we found that, compared with IgM, IgD has a higher activation threshold in vivo, as it requires autoantigen to enable normal B cell development, including allelic exclusion. Our data indicate that IgM provides the high sensitivity required during early developmental stages to trigger editing of any autoreactive specificities, including those enabling weak interaction with autoantigen. In contrast, IgD has the unique ability to neglect weakly interacting autoantigens while retaining reactivity to higher-affinity Ag. This IgD function enables mature B cells to ignore autoantigens while remaining able to efficiently respond to foreign threats.
Collapse
Affiliation(s)
- Valerio Renna
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Elena Surova
- Spemann Graduate School of Biology and Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany; and.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ahmad Khadour
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Moumita Datta
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Timm Amendt
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Elias Hobeika
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Hassan Jumaa
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany;
| |
Collapse
|
7
|
Amendt T, Jumaa H. Adaptive tolerance: Protection through self-recognition. Bioessays 2022; 44:e2100236. [PMID: 34984705 DOI: 10.1002/bies.202100236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 01/10/2023]
Abstract
The random nature of immunoglobulin gene segment rearrangement inevitably leads to the generation of self-reactive B cells. Avoidance of destructive autoimmune reactions is necessary in order to maintain physiological homeostasis. However, current central and peripheral tolerance concepts fail to explain the massive number of autoantibody-borne autoimmune diseases. Moreover, recent studies have shown that in physiological mouse models autoreactive B cells were neither clonally deleted nor kept in an anergic state, but were instead able to mount autoantibody responses. We propose that activation of autoreactive B cells is induced by polyvalent autoantigen complexes that can occur under physiological conditions. Repeated encounter of autoantigen complexes leads to the production of affinity-matured autoreactive IgM that protects its respective self-targets from degradation. We refer to this novel mechanism as adaptive tolerance. This article discusses the discovery of adaptive tolerance and the unexpected role of high affinity IgM autoantibodies.
Collapse
Affiliation(s)
- Timm Amendt
- Institute of Immunology, University Hospital Ulm, Ulm, Germany
| | - Hassan Jumaa
- Institute of Immunology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
8
|
Wan Z, Zhao Y, Sun Y. Immunoglobulin D and its encoding genes: An updated review. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104198. [PMID: 34237381 DOI: 10.1016/j.dci.2021.104198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/03/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Since the identification of a functional Cδ gene in ostriches, immunoglobulin (Ig) D has been considered to be an extremely evolutionarily conserved Ig isotype besides the IgM found in all classes of jawed vertebrates. However, in contrast to IgM (which remains stable over evolutionary time), IgD shows considerable structural plasticity among vertebrate species and, moreover, its functions are far from elucidated even in humans and mice. Recently, several studies have shown that high expression of the IgD-B-cell receptor (IgD-BCR) may help physiologically autoreactive B cells survive in peripheral lymphoid tissues thanks to unresponsiveness to self-antigens and help their entry into germinal centers to "redeem" autoreactivity via somatic hypermutation. Other studies have demonstrated that secreted IgD may enhance mucosal homeostasis and immunity by linking B cells with basophils to optimize T-helper-2 cell-mediated responses and to constrain IgE-mediated basophil degranulation. Herein, we review the new discoveries on IgD-encoding genes in jawed vertebrates in the past decade. We also highlight advances in the functions of the IgD-BCR and secreted IgD in humans and mice.
Collapse
Affiliation(s)
- Zihui Wan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong, People's Republic of China.
| |
Collapse
|
9
|
Zeng W, Liu G, Luan Q, Yang C, Li S, Yu X, Su L. B-Cell Deficiency Exacerbates Inflammation and Bone Loss in Ligature-Induced Experimental Periodontitis in Mice. J Inflamm Res 2021; 14:5367-5380. [PMID: 34703274 PMCID: PMC8526950 DOI: 10.2147/jir.s330875] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
Objective Periodontitis, one of the most prevalent chronic oral infectious diseases in humans, is induced by the breakdown in the balance between the biofilm and host immune system. Previous studies have shown the presence of large numbers of B cells in periodontitis lesions, implicating that B lymphocytes play a predominant role during the pathogenesis of periodontitis. This study aimed to investigate the role of all B cells in the initiation of periodontitis. Methods Experimental periodontitis was induced in B cell-deficient (CD19Cre) mice and wild-type (WT) control mice by 5-0 silk ligation around the maxillary second molar. Four weeks after ligation, alveolar bone loss was determined by micro-computed tomography. The levels of inflammatory cytokines and receptor activator of NF-κB ligand (RANKL)/osteoprotegerin in periodontal lesions were analyzed using real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemistry. Lymphocyte populations in the cervical lymph nodes and spleen and among the peripheral blood mononuclear cells were detected by flow cytometry. Results B-cell deficiency resulted in increased severity of alveolar bone loss in mouse experimental periodontitis, which was associated with increased osteoclast activity and upregulated RANKL expression in the periodontal lesions. In addition, gingiva cytokine expression profiles were shifted to T helper type 1 (Th1) and Th17 in the CD19Cre mice with ligature-induced periodontitis compared with WT mice. In addition, a reduced CD4+/CD8+ T cell ratio was observed in the CD19Cre mice. Conclusion B-cell deficiency exacerbates the inflammation and alveolar bone loss in ligature-induced experimental periodontitis in mice, implicating that B cells may overall play a protective role in the initiation of periodontitis.
Collapse
Affiliation(s)
- Wenmin Zeng
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Guojing Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Qingxian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Chunyu Yang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Shiyi Li
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Xiaoqian Yu
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Li Su
- Center of Medical and Health Analysis, Peking University, Beijing, People's Republic of China
| |
Collapse
|
10
|
Amendt T, Ayoubi OE, Linder AT, Allies G, Young M, Setz CS, Jumaa H. Primary Immune Responses and Affinity Maturation Are Controlled by IgD. Front Immunol 2021; 12:709240. [PMID: 34434193 PMCID: PMC8381280 DOI: 10.3389/fimmu.2021.709240] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/15/2021] [Indexed: 01/17/2023] Open
Abstract
Mature B cells co-express IgM and IgD B cell antigen receptors (BCR) on their surface. While IgM BCR expression is already essential at early stages of development, the role of the IgD-class BCR remains unclear as most B cell functions appeared unchanged in IgD-deficient mice. Here, we show that IgD-deficient mice have an accelerated rate of B cell responsiveness as they activate antibody production within 24h after immunization, whereas wildtype (WT) animals required 3 days to activate primary antibody responses. Strikingly, soluble monovalent antigen suppresses IgG antibody production induced by multivalent antigen in WT mice. In contrast, IgD-deficient mice were not able to modulate IgG responses suggesting that IgD controls the activation rate of B cells and subsequent antibody production by sensing and distinguishing antigen-valences. Using an insulin-derived peptide we tested the role of IgD in autoimmunity. We show that primary autoreactive antibody responses are generated in WT and in IgD-deficient mice. However, insulin-specific autoantibodies were detected earlier and caused more severe symptoms of autoimmune diabetes in IgD-deficient mice as compared to WT mice. The rapid control of autoimmune diabetes in WT animals was associated with the generation of high-affinity IgM that protects insulin from autoimmune degradation. In IgD-deficient mice, however, the generation of high-affinity protective IgM is delayed resulting in prolonged autoimmune diabetes. Our data suggest that IgD is required for the transition from primary, highly autoreactive, to secondary antigen-specific antibody responses generated by affinity maturation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hassan Jumaa
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
11
|
Sundling C, Lau AWY, Bourne K, Young C, Laurianto C, Hermes JR, Menzies RJ, Butt D, Kräutler NJ, Zahra D, Suan D, Brink R. Positive selection of IgG + over IgM + B cells in the germinal center reaction. Immunity 2021; 54:988-1001.e5. [PMID: 33857421 DOI: 10.1016/j.immuni.2021.03.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/29/2020] [Accepted: 03/17/2021] [Indexed: 11/25/2022]
Abstract
Positive selection of high-affinity B cells within germinal centers (GCs) drives affinity maturation of antibody responses. Here, we examined the mechanism underlying the parallel transition from immunoglobulin M (IgM) to IgG. Early GCs contained mostly unswitched IgM+ B cells; IgG+ B cells subsequently increased in frequency, dominating GC responses 14-21 days after antigen challenge. Somatic hypermutation and generation of high-affinity clones occurred with equal efficiency among IgM+ and IgG+ GC B cells, and inactivation of Ig class-switch recombination did not prevent depletion of IgM+ GC B cells. Instead, high-affinity IgG+ GC B cells outcompeted high-affinity IgM+ GC B cells via a selective advantage associated with IgG antigen receptor structure but independent of the extended cytoplasmic tail. Thus, two parallel forms of GC B-cell-positive selection, based on antigen receptor variable and constant regions, respectively, operate in tandem to ensure high-affinity IgG antibodies predominate in mature serum antibody responses.
Collapse
Affiliation(s)
- Christopher Sundling
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; Division of Infectious Diseases and Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Angelica W Y Lau
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Katherine Bourne
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Clara Young
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Candy Laurianto
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Jana R Hermes
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Rosemary J Menzies
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Danyal Butt
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Nike J Kräutler
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - David Zahra
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Dan Suan
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Robert Brink
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, Sydney, NSW 2010, Australia.
| |
Collapse
|
12
|
Nguyen TG. The therapeutic implications of activated immune responses via the enigmatic immunoglobulin D. Int Rev Immunol 2021; 41:107-122. [PMID: 33410368 DOI: 10.1080/08830185.2020.1861265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Immunoglobulin D (IgD) is an enigmatic antibody and the least appreciated member of the immunoglobulin (Ig) family. Since its discovery over half a century ago, the essence of its function in the immune system has been somewhat enigmatic and less well-defined than other antibody classes. Membrane-bound IgD (mIgD) is mostly recognized as B-cell receptor (BCR) while secreted IgD (sIgD) has been recently implicated in 'arming' basophils and mast cells in mucosal innate immunity. Activations of immune responses via mIgD-BCR or sIgD by specific antigens or anti-IgD antibody thereby produce a broad and complex mix of cellular, antibody and cytokine responses from both the innate and adaptive immune systems. Such broadly activated immune responses via IgD were initially deemed to potentiate and exacerbate the onset of autoimmune and allergic conditions. Paradoxically, treatments with anti-IgD antibody suppressed and ameliorated autoimmune conditions and allergic inflammations in mouse models without compromising the host's general immune defence, demonstrating a unique and novel therapeutic application for anti-IgD antibody treatment. Herein, this review endeavored to collate and summarize the evidence of the unique characteristics and features of activated immune responses via mIgD-BCR and sIgD that revealed an unappreciated immune-regulatory function of IgD in the immune system via an amplifying loop of anti-inflammatory Th2 and tolerogenic responses, and highlighted a novel therapeutic paradigm in harnessing these immune responses to treat human autoimmune and allergic conditions.
Collapse
|
13
|
Zhang J, Xiao H, Bi Y, Long Q, Gong Y, Dai J, Sun M, Cun W. Characteristics of the tree shrew humoral immune system. Mol Immunol 2020; 127:175-185. [PMID: 32992149 DOI: 10.1016/j.molimm.2020.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Preclinical studies require an immune response similar to that of humans in a small animal model that is convenient to operate. Based on genome alignment, tree shrews are small animals considered to be more similar to primates than are rodents, and many human disease models have been established with tree shrews. However, the characteristics of the humoral immune response of tree shrews remain to be elucidated. In this study, the genetic sequence of the heavy chain constant region of tree shrew immunoglobulin (Ig) was complemented, and the results of immunoglobulin domain homology and transcriptome analysis showed that the tree shrew genome encodes only four classes of antibodies and does not encode IgD. The oldest IgM antibody has the highest homology with primates. After the complete sequence of each type of antibody was obtained, the tree shrew antibody protein was further expressed and purified by in vitro recombination, and an IgG quantitative evaluation system was established. The highly effective immuno protective effect induced by HSV-1 infection and the significant bactericidal effect induced by Neisseria meningitidis group C polysaccharide immunization showed that tree shrews exhibited immune responses more similar to humans than to mice. This may provide better predictive value for vaccine preclinical research.
Collapse
Affiliation(s)
- Jingjing Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Hongjian Xiao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Yanwei Bi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Qiong Long
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Yue Gong
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Jiejie Dai
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Ming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Wei Cun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, 935 Jiaoling Road, Kunming, 650118, Yunnan, China.
| |
Collapse
|
14
|
Sun Y, Huang T, Hammarström L, Zhao Y. The Immunoglobulins: New Insights, Implications, and Applications. Annu Rev Anim Biosci 2019; 8:145-169. [PMID: 31846352 DOI: 10.1146/annurev-animal-021419-083720] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunoglobulins (Igs), as one of the hallmarks of adaptive immunity, first arose approximately 500 million years ago with the emergence of jawed vertebrates. Two events stand out in the evolutionary history of Igs from cartilaginous fish to mammals: (a) the diversification of Ig heavy chain (IgH) genes, resulting in Ig isotypes or subclasses associated with novel functions, and (b) the diversification of genetic and structural strategies, leading to the creation of the antibody repertoire we know today. This review first gives an overview of the IgH isotypes identified in jawed vertebrates to date and then highlights the implications or applications of five new recent discoveries arising from comparative studies of Igs derived from different vertebrate species.
Collapse
Affiliation(s)
- Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong, People's Republic of China;
| | - Tian Huang
- Henan Engineering Laboratory for Mammary Bioreactor, School of Life Sciences, Henan University, Kaifeng 475004, Henan, People's Republic of China;
| | - Lennart Hammarström
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet at Karolinska Hospital Huddinge, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden;
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China;
| |
Collapse
|
15
|
Tan C, Noviski M, Huizar J, Zikherman J. Self-reactivity on a spectrum: A sliding scale of peripheral B cell tolerance. Immunol Rev 2019; 292:37-60. [PMID: 31631352 DOI: 10.1111/imr.12818] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022]
Abstract
Efficient mechanisms of central tolerance, including receptor editing and deletion, prevent highly self-reactive B cell receptors (BCRs) from populating the periphery. Despite this, modest self-reactivity persists in (and may even be actively selected into) the mature B cell repertoire. In this review, we discuss new insights into mechanisms of peripheral B cell tolerance that restrain mature B cells from mounting inappropriate responses to endogenous antigens, and place recent work into historical context. In particular, we discuss new findings that have arisen from application of a novel in vivo reporter of BCR signaling, Nur77-eGFP, expression of which scales with the degree of self-reactivity in both monoclonal and polyclonal B cell repertoires. We discuss new and historical evidence that self-reactivity is not just tolerated, but actively selected into the peripheral repertoire. We review recent progress in understanding how dual expression of the IgM and IgD BCR isotypes on mature naive follicular B cells tunes responsiveness to endogenous antigen recognition, and discuss how this may be integrated with other features of clonal anergy. Finally, we discuss how expression of Nur77 itself couples chronic antigen stimulation with B cell tolerance.
Collapse
Affiliation(s)
- Corey Tan
- Biomedical Sciences (BMS) Graduate Program, University of California, San Francisco, CA, USA
| | - Mark Noviski
- Biomedical Sciences (BMS) Graduate Program, University of California, San Francisco, CA, USA.,Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, University of California, San Francisco, CA, USA
| | - John Huizar
- School of Medicine, HHMI Medical Fellows Program, University of California, San Francisco, CA, USA
| | - Julie Zikherman
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, University of California, San Francisco, CA, USA
| |
Collapse
|
16
|
Gold MR, Reth MG. Antigen Receptor Function in the Context of the Nanoscale Organization of the B Cell Membrane. Annu Rev Immunol 2019; 37:97-123. [DOI: 10.1146/annurev-immunol-042718-041704] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The B cell antigen receptor (BCR) plays a central role in the self/nonself selection of B lymphocytes and in their activation by cognate antigen during the clonal selection process. It was long thought that most cell surface receptors, including the BCR, were freely diffusing and randomly distributed. Since the advent of superresolution techniques, it has become clear that the plasma membrane is compartmentalized and highly organized at the nanometer scale. Hence, a complete understanding of the precise conformation and activation mechanism of the BCR must take into account the organization of the B cell plasma membrane. We review here the recent literature on the nanoscale organization of the lymphocyte membrane and discuss how this new information influences our view of the conformational changes that the BCR undergoes during activation.
Collapse
Affiliation(s)
- Michael R. Gold
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Michael G. Reth
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
- Department of Molecular Immunology, Institute of Biology III, Faculty of Biology, University of Freiburg, 79108 Freiburg, Germany
| |
Collapse
|
17
|
Setz CS, Khadour A, Renna V, Iype J, Gentner E, He X, Datta M, Young M, Nitschke L, Wienands J, Maity PC, Reth M, Jumaa H. Pten controls B-cell responsiveness and germinal center reaction by regulating the expression of IgD BCR. EMBO J 2019; 38:embj.2018100249. [PMID: 31015337 PMCID: PMC6545559 DOI: 10.15252/embj.2018100249] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 01/10/2023] Open
Abstract
In contrast to other B‐cell antigen receptor (BCR) classes, the function of IgD BCR on mature B cells remains largely elusive as mature B cells co‐express IgM, which is sufficient for development, survival, and activation of B cells. Here, we show that IgD expression is regulated by the forkhead box transcription factor FoxO1, thereby shifting the responsiveness of mature B cells towards recognition of multivalent antigen. FoxO1 is repressed by phosphoinositide 3‐kinase (PI3K) signaling and requires the lipid phosphatase Pten for its activation. Consequently, Pten‐deficient B cells expressing knock‐ins for BCR heavy and light chain genes are unable to upregulate IgD. Furthermore, in the presence of autoantigen, Pten‐deficient B cells cannot eliminate the autoreactive BCR specificity by secondary light chain gene recombination. Instead, Pten‐deficient B cells downregulate BCR expression and become unresponsive to further BCR‐mediated stimulation. Notably, we observed a delayed germinal center (GC) reaction by IgD‐deficient B cells after immunization with trinitrophenyl‐ovalbumin (TNP‐Ova), a commonly used antigen for T‐cell‐dependent antibody responses. Together, our data suggest that the activation of IgD expression by Pten/FoxO1 results in mature B cells that are selectively responsive to multivalent antigen and are capable of initiating rapid GC reactions and T‐cell‐dependent antibody responses.
Collapse
Affiliation(s)
- Corinna S Setz
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Ahmad Khadour
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Valerio Renna
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Joseena Iype
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany.,Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Eva Gentner
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Xiaocui He
- Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Moumita Datta
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Marc Young
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Lars Nitschke
- Division of Genetics, Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Wienands
- Cellular and Molecular Immunology, Georg August University Göttingen, Göttingen, Germany
| | - Palash C Maity
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Michael Reth
- Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Hassan Jumaa
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
18
|
Maity PC, Datta M, Nicolò A, Jumaa H. Isotype Specific Assembly of B Cell Antigen Receptors and Synergism With Chemokine Receptor CXCR4. Front Immunol 2019. [PMID: 30619343 DOI: 10.3389/fimmu.2018.02988.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Expression of the membrane-bound form of the immunoglobulin (Ig) as part of the antigen receptor is indispensable for both the development and the effector function of B cells. Among five known isotypes, IgM and IgD are the common B cell antigen receptors (BCRs) that are co-expressed in naïve B cells. Despite having identical antigen specificity and being associated with the same signaling heterodimer Igα/Igβ (CD79a/CD79b), IgM and IgD-BCR isotypes functionally differ from each other in the manner of antigen binding, the formation of isolated nanoclusters and in their interaction with co-receptors such as CD19 and CXCR4 on the plasma membrane. With recent developments in experimental techniques, it is now possible to investigate the nanoscale organization of the BCR and better understand early events of BCR engagement. Interestingly, the cytoskeleton network beneath the membrane controls the BCR isotype-specific organization and its interaction with co-receptors. BCR triggering results in reorganization of the cytoskeleton network, which is further modulated by isotype-specific signals from co-receptors. For instance, IgD-BCR is closely associated with CXCR4 on mature B cells and this close proximity allows CXCR4 to employ the BCR machinery as signaling hub. In this review, we discuss the functional specificity and nanocluster assembly of BCR isotypes and the consequences of cross-talk between CXCR4 and IgD-BCR. Furthermore, given the role of BCR and CXCR4 signaling in the development and survival of leukemic B cells, we discuss the consequences of the cross-talk between CXCR4 and the BCR for controlling the growth of transformed B cells.
Collapse
Affiliation(s)
| | - Moumita Datta
- Institute of Immunology, Ulm University, Ulm, Germany
| | | | - Hassan Jumaa
- Institute of Immunology, Ulm University, Ulm, Germany
| |
Collapse
|
19
|
Maity PC, Datta M, Nicolò A, Jumaa H. Isotype Specific Assembly of B Cell Antigen Receptors and Synergism With Chemokine Receptor CXCR4. Front Immunol 2019; 9:2988. [PMID: 30619343 PMCID: PMC6305424 DOI: 10.3389/fimmu.2018.02988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
Expression of the membrane-bound form of the immunoglobulin (Ig) as part of the antigen receptor is indispensable for both the development and the effector function of B cells. Among five known isotypes, IgM and IgD are the common B cell antigen receptors (BCRs) that are co-expressed in naïve B cells. Despite having identical antigen specificity and being associated with the same signaling heterodimer Igα/Igβ (CD79a/CD79b), IgM and IgD-BCR isotypes functionally differ from each other in the manner of antigen binding, the formation of isolated nanoclusters and in their interaction with co-receptors such as CD19 and CXCR4 on the plasma membrane. With recent developments in experimental techniques, it is now possible to investigate the nanoscale organization of the BCR and better understand early events of BCR engagement. Interestingly, the cytoskeleton network beneath the membrane controls the BCR isotype-specific organization and its interaction with co-receptors. BCR triggering results in reorganization of the cytoskeleton network, which is further modulated by isotype-specific signals from co-receptors. For instance, IgD-BCR is closely associated with CXCR4 on mature B cells and this close proximity allows CXCR4 to employ the BCR machinery as signaling hub. In this review, we discuss the functional specificity and nanocluster assembly of BCR isotypes and the consequences of cross-talk between CXCR4 and IgD-BCR. Furthermore, given the role of BCR and CXCR4 signaling in the development and survival of leukemic B cells, we discuss the consequences of the cross-talk between CXCR4 and the BCR for controlling the growth of transformed B cells.
Collapse
Affiliation(s)
| | - Moumita Datta
- Institute of Immunology, Ulm University, Ulm, Germany
| | | | - Hassan Jumaa
- Institute of Immunology, Ulm University, Ulm, Germany
| |
Collapse
|
20
|
Ten Hacken E, Gounari M, Ghia P, Burger JA. The importance of B cell receptor isotypes and stereotypes in chronic lymphocytic leukemia. Leukemia 2018; 33:287-298. [PMID: 30555163 DOI: 10.1038/s41375-018-0303-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/29/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022]
Abstract
B cell receptor (BCR) signaling is a central pathway promoting the survival and proliferation of normal and malignant B cells. Chronic lymphocytic leukemia (CLL) arises from mature B cells, expressing functional BCRs, mainly of immunoglobulin M (IgM) and IgD isotypes. Importantly, 30% of CLL patients express quasi-identical BCRs, the so-called "stereotyped" receptors, indicating the existence of common antigenic determinants, which may drive disease initiation and favor its progression. Although the antigenic specificity of IgM and IgD receptors is identical, there are distinct isotype-specific responses after IgM and IgD triggering. Here, we discuss the most important steps of normal B cell development, and highlight the importance of BCR signaling for CLL pathogenesis, with a focus on differences between IgM and IgD isotype signaling. We also highlight the main characteristics of CLL patient subsets, based on BCR stereotypy, and describe subset-specific BCR function and antigen-binding characteristics. Finally, we outline the key biologic and clinical responses to kinase inhibitor therapy, targeting the BCR-associated Bruton's tyrosine kinase, phosphoinositide-3-kinase, and spleen tyrosine kinase in patients with CLL.
Collapse
Affiliation(s)
- Elisa Ten Hacken
- Department of Leukemia, Unit 428, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Maria Gounari
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Paolo Ghia
- Strategic Research Program on CLL, IRCCS Ospedale San Raffaele and Università Vita-Salute San Raffaele, Milan, Italy
| | - Jan A Burger
- Department of Leukemia, Unit 428, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
21
|
Noviski M, Zikherman J. Control of autoreactive B cells by IgM and IgD B cell receptors: maintaining a fine balance. Curr Opin Immunol 2018; 55:67-74. [PMID: 30292928 DOI: 10.1016/j.coi.2018.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022]
Abstract
A substantial fraction of mature naïve B cells recognize endogenous antigens, and this autoreactivity must be controlled to prevent autoantibody secretion. Selective downregulation of the IgM BCR on autoreactive B cells has long been appreciated, and recent findings illustrate how this might impose tolerance. The BCR isotype maintained on autoreactive B cells, IgD, is less sensitive to endogenous antigens than IgM. This reduced sensitivity may be conferred by structural properties of IgD and/or differential association with activating and inhibitory co-receptors. Once activated, autoreactive B cells are normally excluded from rapid plasma cell responses, but they can enter the germinal center and lose their autoreactivity through a mutation-selection process termed clonal redemption.
Collapse
Affiliation(s)
- Mark Noviski
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA, 94143, USA
| | - Julie Zikherman
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
22
|
Secreted IgD Amplifies Humoral T Helper 2 Cell Responses by Binding Basophils via Galectin-9 and CD44. Immunity 2018; 49:709-724.e8. [PMID: 30291028 DOI: 10.1016/j.immuni.2018.08.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 01/24/2023]
Abstract
B cells thwart antigenic aggressions by releasing immunoglobulin M (IgM), IgG, IgA, and IgE, which deploy well-understood effector functions. In contrast, the role of secreted IgD remains mysterious. We found that some B cells generated IgD-secreting plasma cells following early exposure to external soluble antigens such as food proteins. Secreted IgD targeted basophils by interacting with the CD44-binding protein galectin-9. When engaged by antigen, basophil-bound IgD increased basophil secretion of interleukin-4 (IL-4), IL-5, and IL-13, which facilitated the generation of T follicular helper type 2 cells expressing IL-4. These germinal center T cells enhanced IgG1 and IgE but not IgG2a and IgG2b responses to the antigen initially recognized by basophil-bound IgD. In addition, IgD ligation by antigen attenuated allergic basophil degranulation induced by IgE co-ligation. Thus, IgD may link B cells with basophils to optimize humoral T helper type 2-mediated immunity against common environmental soluble antigens.
Collapse
|
23
|
Nechvatalova J, Bartol SJW, Chovancova Z, Boon L, Vlkova M, van Zelm MC. Absence of Surface IgD Does Not Impair Naive B Cell Homeostasis or Memory B Cell Formation in IGHD Haploinsufficient Humans. THE JOURNAL OF IMMUNOLOGY 2018; 201:1928-1935. [DOI: 10.4049/jimmunol.1800767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
|
24
|
Yasuda S, Sun J, Zhou Y, Wang Y, Lu Q, Yamamura M, Wang JY. Opposing roles of IgM and IgD in BCR-induced B-cell survival. Genes Cells 2018; 23:868-879. [PMID: 30092613 DOI: 10.1111/gtc.12635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 11/30/2022]
Abstract
The B-cell receptor (BCR) transmits a tonic survival signal in the absence of antigen stimulation and an antigen-triggered survival signal. Mature B cells express two types of BCR, IgM and IgD, but it remains unclear how B-cell survival is differentially regulated by these two receptors. We found that, whereas cross-linking IgM on spleen B cells greatly enhanced their survival, cross-linking IgD did not enhance, but rather decreased, their survival. Consistently, cross-linking both IgM and IgD only moderately enhanced B-cell survival, suggesting that IgM and IgD play opposing roles in B-cell survival induced by BCR stimulation. Based on these and additional experimental results, we present a mathematical model integrating IgM- and IgD-mediated survival signals. Our model shows that IgD can transmit a tonic survival signal in the absence of antigen stimulation but cross-linking IgD not only does not generate a survival signal but also disrupts its tonic signal, resulting in inhibition of B-cell survival. These results suggest that IgD attenuates BCR-induced survival in mature B cells, presumably to restrain B-cell response to weak and/or self-antigens and prevent nonspecific B-cell activation and autoimmunity.
Collapse
Affiliation(s)
- Shoya Yasuda
- School of Computing, Tokyo Institute of Technology, Yokohama, Japan.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiping Sun
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yang Zhou
- Division of Life Sciences and Medicine, Department of Traditional Chinese Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.,Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Qing Lu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | | | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Gutzeit C, Chen K, Cerutti A. The enigmatic function of IgD: some answers at last. Eur J Immunol 2018; 48:1101-1113. [PMID: 29733429 DOI: 10.1002/eji.201646547] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/27/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022]
Abstract
IgD emerged soon after IgM at the time of inception of the adaptive immune system. Despite its evolutionary conservation from fish to humans, the specific functions of IgD have only recently begun to be elucidated. Mature B cells undergo alternative mRNA splicing to express IgD and IgM receptors with identical antigenic specificity. The enigma of dual IgD and IgM expression has been tackled by several recent studies showing that IgD helps peripheral accumulation of physiologically autoreactive B cells through its functional unresponsiveness to self-antigens but prompt readiness against foreign antigens. IgD achieves this balance by attenuating IgM-mediated anergy while promoting specific responses to multimeric non-self-antigens. Additional research has clarified how and why certain mucosal B cells become plasmablasts or plasma cells specializing in IgD secretion. In particular, the microbiota has been shown to play an important role in driving class switch-mediated replacement of IgM with IgD. Secreted IgD appears to enhance mucosal homeostasis and immune surveillance by "arming" myeloid effector cells such as basophils and mast cells with IgD antibodies reactive against mucosal antigens, including commensal and pathogenic microbes. Here we will review these advances and discuss their implications in humoral immunity in human and mice.
Collapse
Affiliation(s)
- Cindy Gutzeit
- Immunology Institute, Department of Medicine, Mount Sinai Icahn School of Medicine, New York, NY, USA
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Mucosal Immunology Studies Team (MIST), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Cerutti
- Immunology Institute, Department of Medicine, Mount Sinai Icahn School of Medicine, New York, NY, USA.,Mucosal Immunology Studies Team (MIST), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
26
|
Hajishengallis G, Korostoff JM. Revisiting the Page & Schroeder model: the good, the bad and the unknowns in the periodontal host response 40 years later. Periodontol 2000 2018; 75:116-151. [PMID: 28758305 DOI: 10.1111/prd.12181] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In their classic 1976 paper, Page & Schroeder described the histopathologic events and the types of myeloid cells and lymphocytes involved in the initiation and progression of inflammatory periodontal disease. The staging of periodontal disease pathogenesis as 'initial', 'early', 'established' and 'advanced' lesions productively guided subsequent research in the field and remains fundamentally valid. However, major advances regarding the cellular and molecular mechanisms underlying the induction, regulation and effector functions of immune and inflammatory responses necessitate a reassessment of their work and its integration with emerging new concepts. We now know that each type of leukocyte is actually represented by functionally distinct subsets with different, or even conflicting, roles in immunity and inflammation. Unexpectedly, neutrophils, traditionally regarded as merely antimicrobial effectors in acute conditions and protagonists of the 'initial' lesion, are currently appreciated for their functional versatility and critical roles in chronic inflammation. Moreover, an entirely new field of study, osteoimmunology, has emerged and sheds light on the impact of immunoinflammatory events on the skeletal system. These developments and the molecular dissection of crosstalk interactions between innate and adaptive leukocytes, as well as between the immune system and local homeostatic mechanisms, offer a more nuanced understanding of the host response in periodontitis, with profound implications for treatment. At the same time, deeper insights have generated new questions, many of which remain unanswered. In this review, 40 years after Page & Schroeder proposed their model, we summarize enduring and emerging advances in periodontal disease pathogenesis.
Collapse
|
27
|
Noviski M, Mueller JL, Satterthwaite A, Garrett-Sinha LA, Brombacher F, Zikherman J. IgM and IgD B cell receptors differentially respond to endogenous antigens and control B cell fate. eLife 2018. [PMID: 29521626 PMCID: PMC5897097 DOI: 10.7554/elife.35074] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Naive B cells co-express two BCR isotypes, IgM and IgD, with identical antigen-binding domains but distinct constant regions. IgM but not IgD is downregulated on autoreactive B cells. Because these isotypes are presumed to be redundant, it is unknown how this could impose tolerance. We introduced the Nur77-eGFP reporter of BCR signaling into mice that express each BCR isotype alone. Despite signaling strongly in vitro, IgD is less sensitive than IgM to endogenous antigen in vivo and developmental fate decisions are skewed accordingly. IgD-only Lyn-/- B cells cannot generate autoantibodies and short-lived plasma cells (SLPCs) in vivo, a fate thought to be driven by intense BCR signaling induced by endogenous antigens. Similarly, IgD-only B cells generate normal germinal center, but impaired IgG1+ SLPC responses to T-dependent immunization. We propose a role for IgD in maintaining the quiescence of autoreactive B cells and restricting their differentiation into autoantibody secreting cells.
Collapse
Affiliation(s)
- Mark Noviski
- Biomedical Sciences (BMS) Graduate Program, University of California San Francisco, San Francisco, United States
| | - James L Mueller
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, United States
| | - Anne Satterthwaite
- Department of Immunology, UT Southwestern Medical Center, Dallas, United States
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, University at Buffalo, The State University of New York, Buffalo, United States
| | - Frank Brombacher
- International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine, Division of Immunology, Faculty of Health Sciences, University of Cape Town & Medical Research Council (SAMRC), Cape Town, South Africa
| | - Julie Zikherman
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, United States
| |
Collapse
|
28
|
Roselli G, Martini E, Lougaris V, Badolato R, Viola A, Kallikourdis M. CXCL12 Mediates Aberrant Costimulation of B Lymphocytes in Warts, Hypogammaglobulinemia, Infections, Myelokathexis Immunodeficiency. Front Immunol 2017; 8:1068. [PMID: 28928741 PMCID: PMC5591327 DOI: 10.3389/fimmu.2017.01068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/16/2017] [Indexed: 11/24/2022] Open
Abstract
The Warts, Hypogammaglobulinemia, Infections, Myelokathexis (WHIM) syndrome is an immunodeficiency caused by mutations in chemokine receptor CXCR4. WHIM patient adaptive immunity defects remain largely unexplained. We have previously shown that WHIM-mutant T cells form unstable immunological synapses, affecting T cell activation. Here, we show that, in WHIM patients and WHIM CXCR4 knock-in mice, B cells are more apoptosis prone. Intriguingly, WHIM-mutant B cells were also characterized by spontaneous activation. Searching for a mechanistic explanation for these observations, we uncovered a novel costimulatory effect of CXCL12, the CXCR4 ligand, on WHIM-mutant but not wild-type B cells. The WHIM CXCR4-mediated costimulation led to increased B-cell activation, possibly involving mTOR, albeit without concurrently promoting survival. A reduction in antigenic load during immunization in the mouse was able to circumvent the adaptive immunity defects. These results suggest that WHIM-mutant CXCR4 may lead to spontaneous aberrant B-cell activation, via CXCL12-mediated costimulation, impairing B-cell survival and thus possibly contributing to the WHIM syndrome defects in adaptive immunity.
Collapse
Affiliation(s)
- Giuliana Roselli
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Elisa Martini
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Vassilios Lougaris
- Department of Pediatrics, Institute of Molecular Medicine Angelo Nocivelli, University of Brescia, Brescia, Italy
| | - Raffaele Badolato
- Department of Pediatrics, Institute of Molecular Medicine Angelo Nocivelli, University of Brescia, Brescia, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Marinos Kallikourdis
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano, Italy.,Humanitas University, Rozzano, Italy
| |
Collapse
|
29
|
Myers DR, Zikherman J, Roose JP. Tonic Signals: Why Do Lymphocytes Bother? Trends Immunol 2017; 38:844-857. [PMID: 28754596 DOI: 10.1016/j.it.2017.06.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 01/09/2023]
Abstract
Since the 1990s it has been known that B and T lymphocytes exhibit low-level, constitutive signaling in the basal state (tonic signaling). These lymphocytes display a range of affinity for self, which in turn generates a range of tonic signaling. Surprisingly, what signaling pathways are active in the basal state and the functional relevance of the observed tonic signaling heterogeneity remain open questions today. Here we summarize what is known about the mechanistic and functional details of tonic signaling. We highlight recent advances that have increased our understanding of how the amount of tonic signal impacts immune function, describing novel tools that have moved the field forward and toward a molecular understanding of tonic signaling.
Collapse
Affiliation(s)
- Darienne R Myers
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA 94143, USA
| | - Julie Zikherman
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Jeroen P Roose
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
30
|
Secreted IgM deficiency leads to increased BCR signaling that results in abnormal splenic B cell development. Sci Rep 2017; 7:3540. [PMID: 28615655 PMCID: PMC5471202 DOI: 10.1038/s41598-017-03688-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/03/2017] [Indexed: 11/08/2022] Open
Abstract
Mice lacking secreted IgM (sIgM -/-) antibodies display abnormal splenic B cell development, which results in increased marginal zone and decreased follicular B cell numbers. However, the mechanism by which sIgM exhibit this effect is unknown. Here, we demonstrate that B cells in sIgM -/- mice display increased B cell receptor (BCR) signaling as judged by increased levels of phosphorylated Bruton's tyrosine kinase (pBtk), phosphorylated Spleen tyrosine kinase (pSyk), and nuclear receptor Nur77. Low dosage treatment with the pBtk inhibitor Ibrutinib reversed the altered B cell development in the spleen of sIgM -/- mice, suggesting that sIgM regulate splenic B cell differentiation by decreasing BCR signaling. Mechanistically, we show that B cells, which express BCRs specific to hen egg lysozyme (HEL) display diminished responsiveness to HEL stimulation in presence of soluble anti-HEL IgM antibodies. Our data identify sIgM as negative regulators of BCR signaling and suggest that they can act as decoy receptors for self-antigens that are recognized by membrane bound BCRs.
Collapse
|
31
|
IgD class switching is initiated by microbiota and limited to mucosa-associated lymphoid tissue in mice. Proc Natl Acad Sci U S A 2017; 114:E1196-E1204. [PMID: 28137874 DOI: 10.1073/pnas.1621258114] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Class-switch recombination (CSR) alters the Ig isotype to diversify antibody effector functions. IgD CSR is a rare event, and its regulation is poorly understood. We report that deficiency of 53BP1, a DNA damage-response protein, caused age-dependent overproduction of secreted IgD resulting from increased IgD CSR exclusively within B cells of mucosa-associated lymphoid tissues. IgD overproduction was dependent on activation-induced cytidine deaminase, hematopoietic MyD88 expression, and an intact microbiome, against which circulating IgD, but not IgM, was reactive. IgD CSR occurred via both alternative nonhomologous end-joining and homologous recombination pathways. Microbiota-dependent IgD CSR also was detected in nasal-associated lymphoid tissue of WT mice. These results identify a pathway, present in WT mice and hyperactivated in 53BP1-deficient mice, by which microbiota signal via Toll-like receptors to elicit IgD CSR.
Collapse
|
32
|
Sabouri Z, Perotti S, Spierings E, Humburg P, Yabas M, Bergmann H, Horikawa K, Roots C, Lambe S, Young C, Andrews TD, Field M, Enders A, Reed JH, Goodnow CC. IgD attenuates the IgM-induced anergy response in transitional and mature B cells. Nat Commun 2016; 7:13381. [PMID: 27830696 PMCID: PMC5109548 DOI: 10.1038/ncomms13381] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/28/2016] [Indexed: 01/10/2023] Open
Abstract
Self-tolerance by clonal anergy of B cells is marked by an increase in IgD and decrease in IgM antigen receptor surface expression, yet the function of IgD on anergic cells is obscure. Here we define the RNA landscape of the in vivo anergy response, comprising 220 induced sequences including a core set of 97. Failure to co-express IgD with IgM decreases overall expression of receptors for self-antigen, but paradoxically increases the core anergy response, exemplified by increased Sdc1 encoding the cell surface marker syndecan-1. IgD expressed on its own is nevertheless competent to induce calcium signalling and the core anergy mRNA response. Syndecan-1 induction correlates with reduction of surface IgM and is exaggerated without surface IgD in many transitional and mature B cells. These results show that IgD attenuates the response to self-antigen in anergic cells and promotes their accumulation. In this way, IgD minimizes tolerance-induced holes in the pre-immune antibody repertoire. Self-reactive B cells that are anergic express mainly IgD, yet the function of IgD is not clear. Here the authors analyse primary B cells from mice to show that IgD signalling attenuates self-antigen induced gene expression and promotes survival of anergic B cells that might go on to reactivate to foreign antigens and mutate away from self-reactivity.
Collapse
Affiliation(s)
- Zahra Sabouri
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, Australian Capital Territory 2601, Australia
| | - Samuel Perotti
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, Australian Capital Territory 2601, Australia
| | - Emily Spierings
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, Australian Capital Territory 2601, Australia
| | - Peter Humburg
- Immunology Division, The Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia
| | - Mehmet Yabas
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, Australian Capital Territory 2601, Australia.,Department of Genetics and Bioengineering, Trakya University, 22030 Edirne, Turkey
| | - Hannes Bergmann
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, Australian Capital Territory 2601, Australia
| | - Keisuke Horikawa
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, Australian Capital Territory 2601, Australia
| | - Carla Roots
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, Australian Capital Territory 2601, Australia
| | - Samantha Lambe
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, Australian Capital Territory 2601, Australia
| | - Clara Young
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, Australian Capital Territory 2601, Australia
| | - T Dan Andrews
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, Australian Capital Territory 2601, Australia
| | - Matthew Field
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, Australian Capital Territory 2601, Australia
| | - Anselm Enders
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, Australian Capital Territory 2601, Australia
| | - Joanne H Reed
- Immunology Division, The Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia
| | - Christopher C Goodnow
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, Australian Capital Territory 2601, Australia.,Immunology Division, The Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, School of Medicine, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| |
Collapse
|
33
|
Basu M, Lenka SS, Paichha M, Swain B, Patel B, Banerjee R, Jayasankar P, Das S, Samanta M. Immunoglobulin (Ig) D in Labeo rohita is widely expressed and differentially modulated in viral, bacterial and parasitic antigenic challenges. Vet Immunol Immunopathol 2016; 179:77-84. [DOI: 10.1016/j.vetimm.2016.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/20/2016] [Accepted: 08/08/2016] [Indexed: 11/29/2022]
|
34
|
Ten Hacken E, Sivina M, Kim E, O'Brien S, Wierda WG, Ferrajoli A, Estrov Z, Keating MJ, Oellerich T, Scielzo C, Ghia P, Caligaris-Cappio F, Burger JA. Functional Differences between IgM and IgD Signaling in Chronic Lymphocytic Leukemia. THE JOURNAL OF IMMUNOLOGY 2016; 197:2522-31. [PMID: 27534555 DOI: 10.4049/jimmunol.1600915] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/14/2016] [Indexed: 01/31/2023]
Abstract
BCR signaling is a central pathogenetic pathway in chronic lymphocytic leukemia (CLL). Most CLL cells express BCRs of IgM and IgD isotypes, but the contribution of these isotypes to functional responses remains incompletely defined. We therefore investigated differences between IgM and IgD signaling in freshly isolated peripheral blood CLL cells and in CLL cells cultured with nurselike cells, a model that mimics the lymph node microenvironment. IgM signaling induced prolonged activation of ERK kinases and promoted CLL cell survival, CCL3 and CCL4 chemokine secretion, and downregulation of BCL6, the transcriptional repressor of CCL3 In contrast, IgD signaling induced activation of the cytoskeletal protein HS1, along with F-actin polymerization, which resulted in rapid receptor internalization and failure to support downstream responses, including CLL cell survival and chemokine secretion. IgM and IgD receptor downmodulation, HS1 and ERK activation, chemokine secretion, and BCL6 downregulation were also observed when CLL cells were cocultured with nurselike cells. The Bruton's tyrosine kinase inhibitor ibrutinib effectively inhibited both IgM and IgD isotype signaling. In conclusion, through a variety of functional readouts, we demonstrate very distinct outcomes of IgM and IgD isotype activation in CLL cells, providing novel insight into the regulation of BCR signaling in CLL.
Collapse
Affiliation(s)
- Elisa Ten Hacken
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77230
| | - Mariela Sivina
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77230
| | - Ekaterina Kim
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77230
| | - Susan O'Brien
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77230
| | - William G Wierda
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77230
| | - Alessandra Ferrajoli
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77230
| | - Zeev Estrov
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77230
| | - Michael J Keating
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77230
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt, Germany; and
| | - Cristina Scielzo
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele and Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Paolo Ghia
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele and Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Federico Caligaris-Cappio
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele and Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Jan A Burger
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77230;
| |
Collapse
|
35
|
Affiliation(s)
- Hassan Jumaa
- Institute for Immunology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
36
|
Benhamou D, Labi V, Novak R, Dai I, Shafir-Alon S, Weiss A, Gaujoux R, Arnold R, Shen-Orr SS, Rajewsky K, Melamed D. A c-Myc/miR17-92/Pten Axis Controls PI3K-Mediated Positive and Negative Selection in B Cell Development and Reconstitutes CD19 Deficiency. Cell Rep 2016; 16:419-431. [DOI: 10.1016/j.celrep.2016.05.084] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/14/2016] [Accepted: 05/19/2016] [Indexed: 01/13/2023] Open
|
37
|
Han B, Yuan H, Wang T, Li B, Ma L, Yu S, Huang T, Li Y, Fang D, Chen X, Wang Y, Qiu S, Guo Y, Fei J, Ren L, Pan-Hammarström Q, Hammarström L, Wang J, Wang J, Hou Y, Pan Q, Xu X, Zhao Y. Multiple IgH Isotypes Including IgD, Subclasses of IgM, and IgY Are Expressed in the Common Ancestors of Modern Birds. THE JOURNAL OF IMMUNOLOGY 2016; 196:5138-47. [PMID: 27183632 DOI: 10.4049/jimmunol.1600307] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/14/2016] [Indexed: 12/23/2022]
Abstract
Although evolutionarily just as ancient as IgM, it has been thought for many years that IgD is not present in birds. Based on the recently sequenced genomes of 48 bird species as well as high-throughput transcriptome sequencing of immune-related tissues, we demonstrate in this work that the ostrich (Struthio camelus) possesses a functional δ gene that encodes a membrane-bound IgD H chain with seven CH domains. Furthermore, δ sequences were clearly identified in many other bird species, demonstrating that the δ gene is widely distributed among birds and is only absent in certain bird species. We also show that the ostrich possesses two μ genes (μ1, μ2) and two υ genes (υ1, υ2), in addition to the δ and α genes. Phylogenetic analyses suggest that subclass diversification of both the μ and υ genes occurred during the early stages of bird evolution, after their divergence from nonavian reptiles. Although the positions of the two υ genes are unknown, physical mapping showed that the remaining genes are organized in the order μ1-δ-α-μ2, with the α gene being inverted relative to the others. Together with previous studies, our data suggest that birds and nonavian reptile species most likely shared a common ancestral IgH gene locus containing a δ gene and an inverted α gene. The δ gene was then evolutionarily lost in selected birds, whereas the α gene lost in selected nonavian reptiles. The data obtained in this study provide significant insights into the understanding of IgH gene evolution in tetrapods.
Collapse
Affiliation(s)
- Binyue Han
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Hui Yuan
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Tao Wang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Bo Li
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Li Ma
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Shuyang Yu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Tian Huang
- School of Life Science, Henan University, Kaifeng 475004, People's Republic of China
| | - Yan Li
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; and
| | - Dongming Fang
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Xiaoli Chen
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Yongsi Wang
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Si Qiu
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Ying Guo
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jing Fei
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Liming Ren
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qiang Pan-Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, SE-141 86, Stockholm, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, SE-141 86, Stockholm, Sweden
| | - Jun Wang
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Yong Hou
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Qingjie Pan
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; and
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China;
| | - Yaofeng Zhao
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China;
| |
Collapse
|
38
|
Hobeika E, Maity PC, Jumaa H. Control of B Cell Responsiveness by Isotype and Structural Elements of the Antigen Receptor. Trends Immunol 2016; 37:310-320. [PMID: 27052149 DOI: 10.1016/j.it.2016.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/09/2016] [Accepted: 03/13/2016] [Indexed: 01/08/2023]
Abstract
Expression of a functional B cell antigen receptor (BCR) plays a central role in regulating B cell development, maturation, and effector functions. Although IgM is solely expressed in immature B cell stages, the presence of both IgM- and IgD-BCR isotypes on mature naïve B cells raises the question of whether IgD has a unique role in B cell activation and function. While earlier studies suggested a broad functional redundancy between IgM and IgD, recent data point to an important immune regulatory role of IgD. Herein, we review these findings and discuss how the structural flexibility, mode of antigen binding, and co-receptor interactions, enable the IgD-BCR to act as a 'rheostat', regulating the activation and function of mature naïve B cells.
Collapse
Affiliation(s)
- Elias Hobeika
- Institute of Immunology, University Hospital Ulm, 89081 Ulm, Germany
| | - Palash Chandra Maity
- Department of Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg, 79104 Freiburg, Germany; Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Center for Biological Signaling Studies (BIOSS), Albert-Ludwigs University of Freiburg, 79104 Freiburg, Germany
| | - Hassan Jumaa
- Institute of Immunology, University Hospital Ulm, 89081 Ulm, Germany; Department of Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
39
|
Maity PC, Blount A, Jumaa H, Ronneberger O, Lillemeier BF, Reth M. B cell antigen receptors of the IgM and IgD classes are clustered in different protein islands that are altered during B cell activation. Sci Signal 2015; 8:ra93. [PMID: 26373673 DOI: 10.1126/scisignal.2005887] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The B cell antigen receptors (BCRs) play an important role in the clonal selection of B cells and their differentiation into antibody-secreting plasma cells. Mature B cells have both immunoglobulin M (IgM) and IgD types of BCRs, which have identical antigen-binding sites and are both associated with the signaling subunits Igα and Igβ, but differ in their membrane-bound heavy chain isoforms. By two-color direct stochastic optical reconstruction microscopy (dSTORM), we showed that IgM-BCRs and IgD-BCRs reside in the plasma membrane in different protein islands with average sizes of 150 and 240 nm, respectively. Upon B cell activation, the BCR protein islands became smaller and more dispersed such that the IgM-BCRs and IgD-BCRs were found in close proximity to each other. Moreover, specific stimulation of one class of BCR had minimal effects on the organization of the other. These conclusions were supported by the findings from two-marker transmission electron microscopy and proximity ligation assays. Together, these data provide evidence for a preformed multimeric organization of BCRs on the plasma membrane that is remodeled after B cell activation.
Collapse
Affiliation(s)
- Palash Chandra Maity
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany. Department of Molecular Immunology, Institute of Biology III at the Faculty of Biology of the University of Freiburg, D-79104, and at the Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany.
| | - Amy Blount
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Hassan Jumaa
- Department of Molecular Immunology, Institute of Biology III at the Faculty of Biology of the University of Freiburg, D-79104, and at the Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany. Institute of Immunology, Ulm University, D-89081 Ulm, Germany
| | - Olaf Ronneberger
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany. Institute of Computer Science, University of Freiburg, D-79110 Freiburg Germany
| | | | - Michael Reth
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany. Department of Molecular Immunology, Institute of Biology III at the Faculty of Biology of the University of Freiburg, D-79104, and at the Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany.
| |
Collapse
|
40
|
Übelhart R, Jumaa H. Autoreactivity and the positive selection of B cells. Eur J Immunol 2015; 45:2971-7. [DOI: 10.1002/eji.201444622] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 07/08/2015] [Accepted: 08/13/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Rudolf Übelhart
- Institute of Immunology; University Hospital Ulm; Ulm Germany
| | - Hassan Jumaa
- Institute of Immunology; University Hospital Ulm; Ulm Germany
| |
Collapse
|
41
|
Responsiveness of B cells is regulated by the hinge region of IgD. Nat Immunol 2015; 16:534-43. [PMID: 25848865 DOI: 10.1038/ni.3141] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 03/03/2015] [Indexed: 01/09/2023]
Abstract
Mature B cells express immunoglobulin M (IgM)- and IgD-isotype B cell antigen receptors, but the importance of IgD for B cell function has been unclear. By using a cellular in vitro system and corresponding mouse models, we found that antigens with low valence activated IgM receptors but failed to trigger IgD signaling, whereas polyvalent antigens activated both receptor types. Investigations of the molecular mechanism showed that deletion of the IgD-specific hinge region rendered IgD responsive to monovalent antigen, whereas transferring the hinge to IgM resulted in responsiveness only to polyvalent antigen. Our data suggest that the increased IgD/IgM ratio on conventional B-2 cells is important for preferential immune responses to antigens in immune complexes, and that the increased IgM expression on B-1 cells is essential for B-1 cell homeostasis and function.
Collapse
|
42
|
Senger K, Hackney J, Payandeh J, Zarrin AA. Antibody Isotype Switching in Vertebrates. Results Probl Cell Differ 2015; 57:295-324. [PMID: 26537387 DOI: 10.1007/978-3-319-20819-0_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The humoral or antibody-mediated immune response in vertebrates has evolved to respond to diverse antigenic challenges in various anatomical locations. Diversification of the immunoglobulin heavy chain (IgH) constant region via isotype switching allows for remarkable plasticity in the immune response, including versatile tissue distribution, Fc receptor binding, and complement fixation. This enables antibody molecules to exert various biological functions while maintaining antigen-binding specificity. Different immunoglobulin (Ig) classes include IgM, IgD, IgG, IgE, and IgA, which exist as surface-bound and secreted forms. High-affinity autoantibodies are associated with various autoimmune diseases such as lupus and arthritis, while defects in components of isotype switching are associated with infections. A major route of infection used by a large number of pathogens is invasion of mucosal surfaces within the respiratory, digestive, or urinary tract. Most infections of this nature are initially limited by effector mechanisms such as secretory IgA antibodies. Mucosal surfaces have been proposed as a major site for the genesis of adaptive immune responses, not just in fighting infections but also in tolerating commensals and constant dietary antigens. We will discuss the evolution of isotype switching in various species and provide an overview of the function of various isotypes with a focus on IgA, which is universally important in gut homeostasis as well as pathogen clearance. Finally, we will discuss the utility of antibodies as therapeutic modalities.
Collapse
Affiliation(s)
- Kate Senger
- Department of Immunology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Jason Hackney
- Department of Bioinformatics, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Jian Payandeh
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Ali A Zarrin
- Department of Immunology, Genentech Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
43
|
Abstract
As in mammals, cartilaginous and teleost fishes possess adaptive immune systems based on antigen recognition by immunoglobulins (Ig), T cell receptors (TCR), and major histocompatibility complex molecules (MHC) I and MHC II molecules. Also it is well established that fish B cells and mammalian B cells share many similarities, including Ig gene rearrangements, and production of membrane Ig and secreted Ig forms. This chapter provides an overview of the IgH and IgL chains in cartilaginous and bony fish, including their gene organizations, expression, diversity of their isotypes, and development of the primary repertoire. Furthermore, when possible, we have included summaries of key studies on immune mechanisms such as allelic exclusion, somatic hypermutation, affinity maturation, class switching, and mucosal immune responses.
Collapse
Affiliation(s)
- Eva Bengtén
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA.
| | - Melanie Wilson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA.
| |
Collapse
|
44
|
den Haan JM, Arens R, van Zelm MC. The activation of the adaptive immune system: Cross-talk between antigen-presenting cells, T cells and B cells. Immunol Lett 2014; 162:103-12. [DOI: 10.1016/j.imlet.2014.10.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Alsadeq A, Hobeika E, Medgyesi D, Kläsener K, Reth M. The role of the Syk/Shp-1 kinase-phosphatase equilibrium in B cell development and signaling. THE JOURNAL OF IMMUNOLOGY 2014; 193:268-76. [PMID: 24899508 DOI: 10.4049/jimmunol.1203040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Signal transduction from the BCR is regulated by the equilibrium between kinases (e.g., spleen tyrosine kinase [Syk]) and phosphatases (e.g., Shp-1). Previous studies showed that Syk-deficient B cells have a developmental block at the pro/pre-B cell stage, whereas a B cell-specific Shp-1 deficiency promoted B-1a cell development and led to autoimmunity. We generated B cell-specific Shp-1 and Syk double-knockout (DKO) mice and compared them to the single-knockout mice deficient for either Syk or Shp-1. Unlike Syk-deficient mice, the DKO mice can generate mature B cells, albeit at >20-fold reduced B cell numbers. The DKO B-2 cells are all Syk-negative, whereas the peritoneal B1 cells of the DKO mice still express Syk, indicating that they require this kinase for their proper development. The DKO B-2 cells cannot be stimulated via the BCR, whereas they are efficiently activated via TLR or CD40. We also found that in DKO pre-B cells, the kinase Zap70 is associated with the pre-BCR, suggesting that Zap70 is important to promote B cell maturation in the absence of Syk and SHP-1. Together, our data show that a properly balanced kinase/phosphatase equilibrium is crucial for normal B cell development and function.
Collapse
Affiliation(s)
- Ameera Alsadeq
- Department of Molecular Immunology, Max-Planck-Institut of Immunobiology and Epigenetics, Freiburg 79108, Germany; Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany; and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany
| | - Elias Hobeika
- Department of Molecular Immunology, Max-Planck-Institut of Immunobiology and Epigenetics, Freiburg 79108, Germany; Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany
| | - David Medgyesi
- Department of Molecular Immunology, Max-Planck-Institut of Immunobiology and Epigenetics, Freiburg 79108, Germany; Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany
| | - Kathrin Kläsener
- Department of Molecular Immunology, Max-Planck-Institut of Immunobiology and Epigenetics, Freiburg 79108, Germany; Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany
| | - Michael Reth
- Department of Molecular Immunology, Max-Planck-Institut of Immunobiology and Epigenetics, Freiburg 79108, Germany; Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany; and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany
| |
Collapse
|
46
|
Abstract
The development and function of B lymphocytes critically depend on the non-germline B-cell antigen receptor (BCR). In addition to the diverse antigen-recognition regions, whose coding sequences are generated by the somatic DNA rearrangement, the variety of the constant domains of the Heavy Chain (HC) portion contributes to the multiplicity of the BCR types. The functions of particular classes of the HC, particularly in the context of the membrane BCR, are not completely understood. The expression of the various classes of the HC correlates with the distinct stages of B-cell development, types of B-cell subsets, and their effector functions. In this chapter, we summarize and discuss the accumulated knowledge on the role of the μ, δ, and γ HC isotypes of the conventional and precursor BCR in B-cell differentiation, selection, and engagement with (auto)antigens.
Collapse
Affiliation(s)
- Elena Surova
- Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Freiburg, Germany; Department of Molecular immunology, Faculty of Biology, University of Freiburg and Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Hassan Jumaa
- Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Freiburg, Germany; Department of Molecular immunology, Faculty of Biology, University of Freiburg and Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Department of Immunology, Ulm University, Ulm, Germany.
| |
Collapse
|
47
|
|
48
|
The CXCR4 mutations in WHIM syndrome impair the stability of the T-cell immunologic synapse. Blood 2013; 122:666-73. [PMID: 23794067 DOI: 10.1182/blood-2012-10-461830] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
WHIM (warts, hypogammaglobulinemia, infections, myelokathexis) syndrome is a rare disease characterized by diverse symptoms indicative of aberrantly functioning immunity. It is caused by mutations in the chemokine receptor CXCR4, which impair its intracellular trafficking, leading to increased responsiveness to chemokine ligand and retention of neutrophils in bone marrow. Yet WHIM symptoms related to adaptive immunity, such as delayed IgG switching and impaired memory B-cell function, remain largely unexplained. We hypothesized that the WHIM-associated mutations in CXCR4 may affect the formation of immunologic synapses between T cells and antigen-presenting cells (APCs). We show that, in the presence of competing external chemokine signals, the stability of T-APC conjugates from patients with WHIM-mutant CXCR4 is disrupted as a result of impaired recruitment of the mutant receptor to the immunologic synapse. Using retrogenic mice that develop WHIM-mutant T cells, we show that WHIM-mutant CXCR4 inhibits the formation of long-lasting T-APC interactions in ex vivo lymph node slice time-lapse microscopy. These findings demonstrate that chemokine receptors can affect T-APC synapse stability and allow us to propose a novel mechanism that contributes to the adaptive immune response defects in WHIM patients.
Collapse
|
49
|
Affiliation(s)
- Klaus Rajewsky
- Program in Cellular and Molecular Medicine, Children's Hospital, and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
50
|
Clark AG, Fan Q, Brady GF, Mackin KM, Coffman ED, Weston ML, Foster MH. Regulation of basement membrane-reactive B cells in BXSB, (NZBxNZW)F1, NZB, and MRL/lpr lupus mice. Autoimmunity 2013; 46:188-204. [PMID: 23157336 DOI: 10.3109/08916934.2012.746671] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Autoantibodies to diverse antigens escape regulation in systemic lupus erythematosus under the influence of a multitude of predisposing genes. To gain insight into the differential impact of diverse genetic backgrounds on tolerance mechanisms controlling autoantibody production in lupus, we established a single lupus-derived nephritis associated anti-basement membrane Ig transgene on each of four inbred murine lupus strains, including BXSB, (NZBxNZW)F1, NZB, and MRL/lpr, as approved by the Duke University and the Durham Veterans Affairs Medical Centers' Animal Care and Use Committees. In nonautoimmune C57BL/6 mice, B cells bearing this anti-laminin Ig transgene are stringently regulated by central deletion, editing, and anergy. Here, we show that tolerance is generally intact in unmanipulated Ig transgenic BXSB, (NZBxNZW)F1, and NZB mice, based on absence of serum transgenic anti-laminin autoantibodies and failure to recover spontaneous anti-laminin monoclonal antibodies. Four- to six-fold depletion of splenic B cells in transgenic mice of these strains, as well as in MRL/lpr transgenic mice, and reduced frequency of IgM+ bone marrow B cells suggest that central deletion is grossly intact. Nonetheless the 4 strains demonstrate distinct transgenic B cell phenotypes, including endotoxin-stimulated production of anti-laminin antibodies by B cells from transgenic NZB mice, and in vitro hyperproliferation of both endotoxin- and BCR-stimulated B cells from transgenic BXSB mice, which are shown to have an enrichment of CD21-high marginal zone cells. Rare anti-laminin transgenic B cells spontaneously escape tolerance in MRL/lpr mice. Further study of the mechanisms underlying these strain-specific B cell fates will provide insight into genetic modification of humoral autoimmunity in lupus.
Collapse
Affiliation(s)
- Amy G Clark
- Department of Medicine, Duke University Medical Center, Box 103015, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|