1
|
Moulton VR, Gillooly AR, Perl MA, Markopoulou A, Tsokos GC. Serine Arginine-Rich Splicing Factor 1 (SRSF1) Contributes to the Transcriptional Activation of CD3ζ in Human T Cells. PLoS One 2015; 10:e0131073. [PMID: 26134847 PMCID: PMC4489909 DOI: 10.1371/journal.pone.0131073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/28/2015] [Indexed: 01/24/2023] Open
Abstract
T lymphocytes from many patients with systemic lupus erythematosus (SLE) express decreased levels of the T cell receptor (TCR)-associated CD3 zeta (ζ) signaling chain, a feature directly linked to their abnormal phenotype and function. Reduced mRNA expression partly due to defective alternative splicing, contributes to the reduced expression of CD3ζ chain. We previously identified by oligonucleotide pulldown and mass spectrometry approaches, the serine arginine-rich splicing factor 1 (SRSF1) binding to the 3’ untranslated region (UTR) of CD3ζ mRNA. We showed that SRSF1 regulates alternative splicing of the 3’UTR of CD3ζ to promote expression of the normal full length 3`UTR over an unstable splice variant in human T cells. In this study we show that SRSF1 regulates transcriptional activation of CD3ζ. Specifically, overexpression and silencing of SRSF1 respectively increases and decreases CD3ζ total mRNA and protein expression in Jurkat and primary T cells. Using promoter-luciferase assays, we show that SRSF1 enhances transcriptional activity of the CD3ζ promoter in a dose dependent manner. Chromatin immunoprecipitation assays show that SRSF1 is recruited to the CD3ζ promoter. These results indicate that SRSF1 contributes to transcriptional activation of CD3ζ. Thus our study identifies a novel mechanism whereby SRSF1 regulates CD3ζ expression in human T cells and may contribute to the T cell defect in SLE.
Collapse
MESH Headings
- 3' Untranslated Regions
- Alternative Splicing
- CD3 Complex/genetics
- CD3 Complex/metabolism
- Case-Control Studies
- Chromatin Immunoprecipitation
- Dose-Response Relationship, Drug
- Genes, Reporter
- Humans
- Jurkat Cells
- Luciferases/genetics
- Luciferases/metabolism
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/pathology
- Primary Cell Culture
- Promoter Regions, Genetic
- Protein Binding
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Serine-Arginine Splicing Factors/antagonists & inhibitors
- Serine-Arginine Splicing Factors/genetics
- Serine-Arginine Splicing Factors/metabolism
- Signal Transduction
- T-Lymphocytes/drug effects
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Transcriptional Activation
Collapse
Affiliation(s)
- Vaishali R. Moulton
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA, United States of America
- * E-mail:
| | - Andrew R. Gillooly
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA, United States of America
| | - Marcel A. Perl
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA, United States of America
| | - Anastasia Markopoulou
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA, United States of America
| | - George C. Tsokos
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA, United States of America
| |
Collapse
|
2
|
The applied basic research of systemic lupus erythematosus based on the biological omics. Genes Immun 2013; 14:133-46. [PMID: 23446742 DOI: 10.1038/gene.2013.3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by the production of autoantibodies directed against nuclear self-antigens and circulating immune complexes. This results in damages to various organs or systems, including skin, joints, kidneys and the central nervous system. Clinical manifestations of SLE could be diverse, including glomerulonephritis, dermatitis, thrombosis, vasculitis, seizures and arthritis. The complicated pathogenesis and varied clinical symptoms of SLE pose great challenges in the diagnosis and monitoring of this disease. Unfortunately, the etiological factors and pathogenesis of SLE are still not completely understood. It is noteworthy that recent advances in our understanding of the biological omics and emerging technologies have been providing new tools in the analyses of SLE, such as genomics, epigenomics, transcriptomics, proteomics, metabolomics and so on. In this article, we summarize our current knowledge in this field for a better understanding of the pathogenesis, diagnosis and treatment for SLE.
Collapse
|
3
|
Kulkarni DP, Wadia PP, Pradhan TN, Pathak AK, Chiplunkar SV. Mechanisms involved in the down-regulation of TCR zeta chain in tumor versus peripheral blood of oral cancer patients. Int J Cancer 2009; 124:1605-13. [PMID: 19107944 DOI: 10.1002/ijc.24137] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Immune dysfunction is the hallmark of patients with oral cancer. Down-regulation of T cell receptor (TCR) zeta chain expression was observed in T cells from patients with oral squamous cell carcinoma. In peripheral blood, the decrease in TCR zeta chain showed an inverse correlation with the tumor stage as demonstrated by western blotting, confocal microscopy and flow cytometry. The mechanism of TCR zeta chain degradation in the peripheral blood involves ubiquitination and subsequent targeting of TCR zeta for degradation in the lysosome. Decreased expression of PKC theta and the subsequent decrease of TCR zeta chain transcription factor Elf-1 and its binding to DNA may contribute to the decreased/or absent TCR zeta chain transcripts in the tumor infiltrating lymphocytes. Oral cancer patients exhibiting TCR zeta chain defect also showed impaired lymphocyte proliferation, cytokine profile and intracellular calcium release upon stimulation with anti CD3 mAb. Our data shows that posttranslational degradation is primarily responsible for decreased TCR zeta chain expression in the peripheral blood, while a transcriptional defect is observed in the tumor compartment. The down-regulation of TCR zeta chain culminates into impaired lymphocyte responses in these patients.
Collapse
Affiliation(s)
- Dakshayini P Kulkarni
- Chiplunkar Laboratory, Immunology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | | | | | | | | |
Collapse
|
4
|
Juang YT, Wang Y, Jiang G, Peng HB, Ergin S, Finnell M, Magilavy A, Kyttaris VC, Tsokos GC. PP2A dephosphorylates Elf-1 and determines the expression of CD3zeta and FcRgamma in human systemic lupus erythematosus T cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:3658-64. [PMID: 18714041 DOI: 10.4049/jimmunol.181.5.3658] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cells from patients with systemic lupus erythematosus are characterized by decreased expression of CD3zeta-chain and increased expression of FcRgamma-chain, which becomes part of the CD3 complex and contributes to aberrant signaling. Elf-1 enhances the expression of CD3zeta, whereas it suppresses the expression of FcRgamma gene and lupus T cells have decreased amounts of DNA-binding 98 kDa form of Elf-1. We show that the aberrantly increased PP2A in lupus T cells dephosphorylates Elf-1 at Thr-231. Dephosphorylation results in limited expression and binding of the 98 kDa Elf-1 form to the CD3zeta and FcRgamma promoters. Suppression of the expression of the PP2A leads to increased expression of CD3zeta and decreased expression of FcRgamma genes and correction of the early signaling response. Therefore, PP2A serves as a central determinant of abnormal T cell function in human lupus and may represent an appropriate treatment target.
Collapse
Affiliation(s)
- Yuang-Taung Juang
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Gorman CL, Russell AI, Zhang Z, Cunninghame Graham D, Cope AP, Vyse TJ. Polymorphisms in the CD3Z gene influence TCRzeta expression in systemic lupus erythematosus patients and healthy controls. THE JOURNAL OF IMMUNOLOGY 2008; 180:1060-70. [PMID: 18178846 DOI: 10.4049/jimmunol.180.2.1060] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
TCRzeta (CD247) functions as an amplification module in the TCR signaling cascade and is essential for assembly and surface expression of the TCR/CD3 complex. The TCRzeta-chain is down-regulated in many chronic infectious and inflammatory diseases, including systemic lupus erythematosus (SLE). It is unclear whether reduced TCRzeta expression is a cause or a consequence of chronic inflammatory responses. We have addressed this question by adopting a combined genetic and functional approach. We analyzed TCRzeta protein expression using a FACS-based expression index and documented considerable, but longitudinally stable, variation in TCRzeta expression in healthy individuals. The variation in TCRzeta expression was associated with polymorphisms in the CD3Z 3'-untranslated region (UTR) in SLE patients and healthy controls. Detailed mapping of the 3'-UTR revealed that the minor alleles of two single nucleotide polymorphisms (SNPs) in strong disequilibrium (rs1052230 and rs1052231) were the causal variants associated with low TCRzeta expression (p=0.015). Using allelic imbalance analysis, the minor alleles of these 3'-UTR SNPs were associated with one-third of the level of mRNA compared with the major allele. A family-based association analysis showed that the haplotype carrying the low-expression variants predisposes to SLE (p=0.033). This suggests that a genetically determined reduction in TCRzeta expression has functional consequences manifested by systemic autoimmunity.
Collapse
Affiliation(s)
- Claire L Gorman
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, Hammersmith Hospital, UK.
| | | | | | | | | | | |
Collapse
|
6
|
Hsu EC, Lin YC, Hung CS, Huang CJ, Lee MY, Yang SC, Ting LP. Suppression of hepatitis B viral gene expression by protein-tyrosine phosphatase PTPN3. J Biomed Sci 2007; 14:731-44. [PMID: 17588219 DOI: 10.1007/s11373-007-9187-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 06/03/2007] [Indexed: 10/23/2022] Open
Abstract
Protein-tyrosine phosphatase PTPN3 is a membrane-associated non-receptor protein-tyrosine phosphatase. PTPN3 contains a N-terminal FERM domain, a middle PDZ domain, and a C-terminal phosphatase domain. Upon co-expression of PTPN3, the level of human hepatitis B viral (HBV) RNAs, 3.5 kb, 2.4/2.1 kb, and 0.7 kb transcribed from a replicating HBV expression plasmid is significantly reduced in human hepatoma HuH-7 cells. When the expression of endogenous PTPN3 protein is diminished by specific small interfering RNA, the expression of HBV genes is enhanced, indicating that the endogenous PTPN3 indeed plays a suppressive role on HBV gene expression. PTPN3 can interact with HBV core protein. The interaction is mediated via the PDZ domain of PTPN3 and the carboxyl-terminal last four amino acids of core. Either deletion of PDZ domain of PTPN3 or substitution of PDZ ligand in core has no effect on PTPN3-mediated suppression. These results clearly show that the interaction of PTPN3 with core is not required for PTPN3 suppressive effect. Mutation of (359)serine and (835)serine of 14-3-3beta binding sites to alanine, which slightly reduces the interaction with 14-3-3beta, does not influence the PTPN3 effect. In contrast, mutation of the invariant (842)cysteine residue in phosphatase domain to serine, which makes the phosphatase activity inactive, does not change its subcellular localization and interaction with core or 14-3-3beta, but completely abolishes PTPN3-mediated suppression. Furthermore, deletion of FERM domain does not affect the phosphatase activity or interaction with 14-3-3beta, but changes the subcellular localization from cytoskeleton-membrane interface to cytoplasm and nucleus, abolishes binding to core, and diminishes the PTPN3 effect on HBV gene expression. Taken together, these results demonstrate that the phosphatase activity and FERM domain of PTPN3 are essential for its suppression of HBV gene expression.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/metabolism
- Cells, Cultured
- Fluorescent Antibody Technique
- Gene Expression Regulation, Viral
- Gene Silencing
- Genes, Viral
- Hepatitis B virus/genetics
- Hepatitis B virus/metabolism
- Humans
- Liver Neoplasms/metabolism
- Protein Structure, Tertiary
- Protein Tyrosine Phosphatase, Non-Receptor Type 3/analysis
- Protein Tyrosine Phosphatase, Non-Receptor Type 3/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 3/metabolism
- Suppression, Genetic
- Transfection
- Tumor Cells, Cultured
- Viral Core Proteins/genetics
- Viral Core Proteins/metabolism
Collapse
Affiliation(s)
- En-Chi Hsu
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Pei-Tou, Taipei 11221, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
7
|
Rogers KA, Scinicariello F, Attanasio R. IgG Fc receptor III homologues in nonhuman primate species: genetic characterization and ligand interactions. THE JOURNAL OF IMMUNOLOGY 2006; 177:3848-56. [PMID: 16951347 DOI: 10.4049/jimmunol.177.6.3848] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ig Fc receptors bind to immune complexes through interactions with the Fc regions of specific Ab subclasses to initiate or inhibit the defense mechanisms of the leukocytes on which they are expressed. The mechanism of action of IgG-based therapeutic molecules, which are routinely evaluated in nonhuman primate models, involves binding to the low-affinity FcRIII (CD16). The premise that IgG/CD16 interactions in nonhuman primates mimic those present in humans has not been evaluated. Therefore, we have identified and characterized CD16 and associated TCR zeta-chain homologues in rhesus macaques, cynomolgus macaques, baboons, and sooty mangabeys. Similar to humans, CD16 expression was detected on a lymphocyte subpopulation, on monocytes, and on neutrophils of sooty mangabeys. However, CD16 was detected only on a lymphocyte subpopulation and on monocytes in macaques and baboons. A nonhuman primate rCD16 generated in HeLa cells interacted with human IgG1 and IgG2. By contrast, human CD16 binds to IgG1 and IgG3. As shown for humans, the mAb 3G8 was able to block IgG binding to nonhuman primate CD16 and inhibition of nonhuman primate CD16 N-glycosylation enhanced IgG binding. Clearly, differences in interaction with IgG subclasses and in cell-type expression should be considered when using these models for in vivo evaluation of therapeutic Abs.
Collapse
Affiliation(s)
- Kenneth A Rogers
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | | | | |
Collapse
|
8
|
Fang H, Cordoba-Rodriguez R, Lankford CSR, Frucht DM. Anthrax lethal toxin blocks MAPK kinase-dependent IL-2 production in CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2005; 174:4966-71. [PMID: 15814725 DOI: 10.4049/jimmunol.174.8.4966] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Anthrax lethal toxin (LT) is a critical virulence factor that cleaves and inactivates MAPK kinases (MAPKKs) in host cells and has been proposed as a therapeutic target in the treatment of human anthrax infections. Despite the potential use of anti-toxin agents in humans, the standard activity assays for anthrax LT are currently based on cytotoxic actions of anthrax LT that are cell-, strain-, and species-specific, which have not been demonstrated to occur in human cells. We now report that T cell proliferation and IL-2 production inversely correlate with anthrax LT levels in human cell assays. The model CD4+ T cell tumor line, Jurkat, is a susceptible target for the specific protease action of anthrax LT. Anthrax LT cleaves and inactivates MAPKKs in Jurkat cells, whereas not affecting proximal or parallel TCR signal transduction pathways. Moreover, anthrax LT specifically inhibits PMA/ionomycin- and anti-CD3-induced IL-2 production in Jurkat cells. An inhibitor of the protease activity of anthrax LT completely restores IL-2 production by anthrax LT-treated Jurkat cells. Anthrax LT acts on primary CD4+ T cells as well, cleaving MAPKKs and leading to a 95% reduction in anti-CD3-induced proliferation and IL-2 production. These findings not only will be useful in the development of new human cell-based bioassays for the activity of anthrax LT, but they also suggest new mechanisms that facilitate immune evasion by Bacillus anthracis. Specifically, anthrax LT inhibits IL-2 production and proliferative responses in CD4+ T cells, thereby blocking functions that are pivotal in the regulation of immune responses.
Collapse
Affiliation(s)
- Hui Fang
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
9
|
Badran BM, Kunstman K, Stanton J, Moschitta M, Zerghe A, Akl H, Burny A, Wolinsky SM, Willard-Gallo KE. Transcriptional Regulation of the HumanCD3γ Gene: The TATA-LessCD3γ Promoter Functions via an Initiator and Contiguous Sp-Binding Elements. THE JOURNAL OF IMMUNOLOGY 2005; 174:6238-49. [PMID: 15879122 DOI: 10.4049/jimmunol.174.10.6238] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Growing evidence that the CD3gamma gene is specifically targeted in some T cell diseases focused our attention on the need to identify and characterize the elusive elements involved in CD3gamma transcriptional control. In this study, we show that while the human CD3gamma and CD3delta genes are oriented head-to-head and separated by only 1.6 kb, the CD3gamma gene is transcribed from an independent but weak, lymphoid-specific TATA-less proximal promoter. Using RNA ligase-mediated rapid amplification of cDNA ends, we demonstrate that a cluster of transcription initiation sites is present in the vicinity of the primary core promoter, and the major start site is situated in a classical initiator sequence. A GT box immediately upstream of the initiator binds Sp family proteins and the general transcription machinery, with the activity of these adjacent elements enhanced by the presence of a second GC box 10 nt further upstream. The primary core promoter is limited to a sequence that extends upstream to -15 and contains the initiator and GT box. An identical GT box located approximately 50 nt from the initiator functions as a weak secondary core promoter and likely generates transcripts originating upstream from the +1. Finally, we show that two previously identified NFAT motifs in the proximal promoter positively (NFATgamma(1)) or negatively (NFATgamma(1) and NFATgamma(2)) regulate expression of the human CD3gamma gene by their differential binding of NFATc1 plus NF-kappaB p50 or NFATc2 containing complexes, respectively. These data elucidate some of the mechanisms controlling expression of the CD3gamma gene as a step toward furthering our understanding of how its transcription is targeted in human disease.
Collapse
Affiliation(s)
- Bassam M Badran
- Laboratory of Experimental Hematology, Bordet Institute, Faculty of Medicine, University of Brussels, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nambiar MP, Juang YT, Krishnan S, Tsokos GC. Dissecting the molecular mechanisms of TCR zeta chain downregulation and T cell signaling abnormalities in human systemic lupus erythematosus. Int Rev Immunol 2005; 23:245-63. [PMID: 15204087 DOI: 10.1080/08830180490452602] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Abnormal expression of key signaling molecules and defective function of T lymphocytes play a significant role in the pathogenesis of systemic lupus erythematosus (SLE). Probing on altered expression of genes that may predispose to SLE revealed that the expression of TCR zeta chain is defective in the majority of SLE patients. Current research has been directed towards understanding the molecular basis of TCR zeta chain deficiency and dissecting the T cell signalling abnormalities in SLE T cells. Latest developments suggest that interplay of abnormal transcriptional factor expression, aberrant mRNA processing/editing, unbiquitination, proteolysis, and the effects of oxidative stress as well as changes in chromatin structure invariably contribute to TCR zeta chain deficiency in SLE T cells. On the other hand, multiple factors, including altered receptor structure, modulation of membrane clustering, lipid-raft distribution of signaling molecules, and defective signal silencing mechanisms, play a key role in delivering the increased TCR/CD3-mediated intracellular calcium response in SLE T cells.
Collapse
Affiliation(s)
- Madhusoodana P Nambiar
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, and Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
11
|
Graham LJ, Verí MC, DeBell KE, Noviello C, Rawat R, Jen S, Bonvini E, Rellahan B. 70Z/3 Cbl induces PLC gamma 1 activation in T lymphocytes via an alternate Lat- and Slp-76-independent signaling mechanism. Oncogene 2003; 22:2493-503. [PMID: 12717426 DOI: 10.1038/sj.onc.1206318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The oncoprotein 70Z/3 Cbl signals in an autonomous fashion or through blockade of endogenous c-Cbl, a negative regulator of signaling. The mechanism of 70Z/3 Cbl-induced signaling was investigated by comparing the molecular requirements for 70Z/3 Cbl- and TCR-induced phospholipase C gamma 1 (PLC gamma 1) activation. 70Z/3 Cbl-induced PLC gamma 1 tyrosine phosphorylation required, in addition to the PLC gamma 1 N-terminal SH2 domain, the C-terminal SH2 and SH3 domains that were dispensable for TCR-induced phosphorylation. Deletion of the leucine zipper of 70Z/3 Cbl did not eliminate 70Z/3 Cbl-induced PLC gamma 1 phosphorylation, suggesting that blockage of c-Cbl via dimerization with 70Z/3 Cbl cannot fully explain 70Z/3 Cbl activating characteristics. The complete elimination of PLC gamma 1 phosphorylation required deleting the SH3 domain-binding region of 70Z/3 Cbl, consistent with 70Z/3 Cbl binding the PLC gamma 1 SH3 domain. 70Z/3 Cbl-induced PLC gamma 1 phosphorylation required Zap-70, as for the TCR, and the tyrosine kinase binding domain of 70Z/3 Cbl, which binds Zap-70, but did not require PLC gamma 1 binding to Lat, a crucial interaction in TCR-induced PLC gamma 1 phosphorylation. Furthermore, 70Z/3 Cbl-induced activation of NFAT, a PLC gamma 1/Ca(2+)-dependent transcriptional event, required Zap-70, but was independent of Slp-76, an adapter required for TCR-induced NFAT activation. These results suggest that 70Z/3 Cbl and PLC gamma 1 form a TCR-, Lat- and Slp-76-independent complex that leads to PLC gamma 1 phosphorylation and activation.
Collapse
Affiliation(s)
- Laurie J Graham
- Laboratory of Immunobiology, Division of Monoclonal Antibodies, Center for Biologics Evaluation and Research, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Tsokos GC, Nambiar MP, Juang YT. Activation of the Ets transcription factor Elf-1 requires phosphorylation and glycosylation: defective expression of activated Elf-1 is involved in the decreased TCR zeta chain gene expression in patients with systemic lupus erythematosus. Ann N Y Acad Sci 2003; 987:240-5. [PMID: 12727645 DOI: 10.1111/j.1749-6632.2003.tb06054.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Elf-1, a member of the Ets transcription factor family with an estimated molecular mass of 68 kDa, is involved in the transcriptional regulation of several hematopoietic cell genes. It is shown that following O-GlcNAc glycosylation and phosphorylation by PKC theta, the cytoplasm-located, 80-kDa Elf-1 translocates to the nucleus as a 98-kDa protein. In the nucleus, Elf-1 binds to the promoter of the TCR zeta gene and promotes its transcription in Jurkat and fresh human T cells. It is also shown that in the majority of patients with systemic lupus erythematosus (SLE), who are known to express decreased levels of T cell receptor (TCR) zeta chain and mRNA, the 80-kDa Elf-1 protein does not undergo proper post-transcriptional modification, which results in low levels of the 98-kDa protein, lack of Elf-binding to the TCR zeta promoter, and decreased gene transcription. Therefore, a novel activation pathway for a member of the Ets family of transcription factors, which is defective in patients with systemic autoimmunity, has been revealed.
Collapse
Affiliation(s)
- George C Tsokos
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA.
| | | | | |
Collapse
|
13
|
Badran BM, Wolinsky SM, Burny A, Willard-Gallo KE. Identification of three NFAT binding motifs in the 5'-upstream region of the human CD3gamma gene that differentially bind NFATc1, NFATc2, and NF-kappa B p50. J Biol Chem 2002; 277:47136-48. [PMID: 12374807 DOI: 10.1074/jbc.m206330200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus, type 1 (HIV-1) infection of CD4(+) T cells progressively abrogates T cell receptor (TCR).CD3 function and surface expression by specifically interfering with CD3gamma gene transcription. Our data show that the loss of CD3gamma transcripts begins very early after infection and accumulates to a >90% deficiency before a significant effect on surface receptor density is apparent. Blocking TCR.CD3-directed NFAT activation with cyclosporin A provokes a partial re-expression of CD3gamma gene transcripts and surface complexes in a time- and dose-dependent manner. We have identified three NFAT consensus sequences (5'-GGAAA-3') in the 5'-upstream region of the human CD3gamma gene at: -124 to -120 (NFAT(gamma1)), -384 to -380 (NFAT(gamma2)), and +450 to +454 (NFAT(gamma3)) from the first transcription initiation site. Using electrophoretic mobility shift and supershift assays, we show that NFATc2 alone binds to the NFAT(gamma2) motif; however, complexes containing either NFATc2 or NFATc1 plus NF-kappaB p50 bind to the NFAT(gamma1) and NFAT(gamma3) sites. We further demonstrate that NFATc1 and NF-kappaB p50 bind in the same protein.DNA complex and that a fourth Ala added to the core sequence (5'-GGAAAA-3') in NFAT(gamma1), and NFAT(gamma3) is critical for their binding. Finally, we have shown that an increase in the binding of nuclear NFATc2, NFATc1, and NF-kappaB p50 to these three motifs is correlated with a progressive loss of CD3gamma transcripts after HIV-1 infection.
Collapse
Affiliation(s)
- Bassam M Badran
- Laboratory of Experimental Hematology, Faculty of Medicine, University of Brussels, 121 Blvd. de Waterloo, Brussels B1000, Belgium
| | | | | | | |
Collapse
|
14
|
Juang YT, Solomou EE, Rellahan B, Tsokos GC. Phosphorylation and O-linked glycosylation of Elf-1 leads to its translocation to the nucleus and binding to the promoter of the TCR zeta-chain. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:2865-71. [PMID: 11884456 DOI: 10.4049/jimmunol.168.6.2865] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Elf-1, a member of the E 26-specific transcription factor family with a predicted molecular mass of 68 kDa, is involved in the transcriptional regulation of several hematopoietic cell genes. We demonstrate that Elf-1 exists primarily as a 98-kDa form in the nucleus and as an 80-kDa form in the cytoplasm. Phosphorylation and O-linked glycosylation contribute to the increased posttranslational molecular mass of Elf-1. The 98-kDa Elf-1 is released from the cytoplasm tethering retinoblastoma protein and moves to the nucleus, where it binds to the promoter of the TCR zeta-chain gene. Finally, the cytoplasmic 98-kDa form enters the proteasome pathway and undergoes degradation. In conclusion, different forms of Elf-1 are the products of posttranslational modifications that determine its subcellular localization, activity, and metabolic degradation.
Collapse
Affiliation(s)
- Yuang-Taung Juang
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
15
|
Nambiar MP, Fisher CU, Enyedy EJ, Warke VG, Kumar A, Tsokos GC. Oxidative stress is involved in the heat stress-induced downregulation of TCR zeta chain expression and TCR/CD3-mediated [Ca(2+)](i) response in human T-lymphocytes. Cell Immunol 2002; 215:151-61. [PMID: 12202152 DOI: 10.1016/s0008-8749(02)00006-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Exposure of human T-lymphocytes to heat downregulates TCR zeta chain expression and inhibits (TCR)/CD3-mediated production of inositol triphosphate and [Ca(2+)](i) signaling. Here we investigated whether oxidative stress is involved in the heat-induced downregulation of TCR/CD3-mediated signaling. To this end, we have studied the effect of a thiol antioxidant, N-acetyl-L-cysteine (NAC), and a non-thiol antioxidant, allopurinol, on heat-induced downregulation of TCR/CD3-mediated signaling. We found that preincubation of cells with 10mM NAC significantly reversed the downregulation of TCR/CD3-mediated [Ca(2+)](i) response and restored the suppression of TCR zeta chain protein expression as well as prevented its increased membrane distribution in heat-treated cells. NAC also reversed the downregulation of TCR zeta chain mRNA expression and the active 94kDa TCR zeta chain transcription factor, Elf-1, in heat-treated cells. Consistent with the increase in the TCR zeta chain, preincubation with NAC increased the levels of antigen receptor-induced tyrosine phosphorylation of several cytosolic proteins. Finally, treatment with NAC was able to reverse the suppression of IL-2 production in heat-treated cells. Inactive analog, N-acetylserine, failed to reverse the heat-induced downregulation of TCR/CD3-mediated signaling. Allopurinol, another potent non-thiol antioxidant, also restored the TCR/CD3-mediated [Ca(2+)](i) response in heat-treated cells. These results demonstrate that antioxidants restore the expression of TCR zeta chain and reverse the TCR/CD3-mediated signaling abnormalities associated with heat stress and suggest that heat shock-induced oxidative stress is a mediator of the heat-induced biochemical damage that leads to downregulation of signaling in human T-lymphocytes.
Collapse
Affiliation(s)
- Madhusoodana P Nambiar
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA
| | | | | | | | | | | |
Collapse
|
16
|
Isomäki P, Panesar M, Annenkov A, Clark JM, Foxwell BM, Chernajovsky Y, Cope AP. Prolonged exposure of T cells to TNF down-regulates TCR zeta and expression of the TCR/CD3 complex at the cell surface. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:5495-507. [PMID: 11313388 DOI: 10.4049/jimmunol.166.9.5495] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A role for TNF-alpha in the pathogenesis of chronic inflammatory disease is now firmly established. Paradoxically, TNF also has potent immunomodulatory effects on CD4(+) T lymphocytes, because Ag-specific proliferative and cytokine responses are suppressed following prolonged exposure to TNF. We explored whether TNF attenuated T cell activation by uncoupling proximal TCR signal transduction pathways using a mouse T cell hybridoma model. Chronic TNF exposure induced profound, but reversible, T cell hyporesponsiveness, with TNF-treated T cells requiring TCR engagement with higher peptide concentrations for longer periods of time for commitment to IL-2 production. Subsequent experiments revealed that chronic TNF exposure led to a reversible loss of TCRzeta chain expression, in part through a reduction in gene transcription. Down-regulation of TCRzeta expression impaired TCR/CD3 assembly and expression at the cell surface and uncoupled membrane-proximal tyrosine phosphorylation events, including phosphorylation of the TCRzeta chain itself, CD3epsilon, ZAP-70 protein tyrosine kinase, and linker for activation of T cells (LAT). Intracellular Ca(2+) mobilization was also suppressed in TNF-treated T cells. We propose that TNF may contribute to T cell hyporesponsiveness in chronic inflammatory and infectious diseases by mechanisms that include down-regulation of TCRzeta expression. We speculate that by uncoupling proximal TCR signals TNF could also interrupt mechanisms of peripheral tolerance that are dependent upon intact TCR signal transduction pathways.
Collapse
MESH Headings
- Acetylcysteine/pharmacology
- Adaptor Proteins, Signal Transducing
- Animals
- Calcium Signaling/immunology
- Carrier Proteins/metabolism
- Cell Line, Transformed
- Cell Membrane/genetics
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Clonal Deletion
- Dose-Response Relationship, Immunologic
- Down-Regulation/drug effects
- Down-Regulation/immunology
- Humans
- Hybridomas
- Immune Tolerance/drug effects
- Interleukin-2/antagonists & inhibitors
- Interleukin-2/biosynthesis
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/genetics
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Transgenic
- Phosphoproteins/metabolism
- Phosphorylation
- Protein-Tyrosine Kinases/metabolism
- Receptor-CD3 Complex, Antigen, T-Cell/antagonists & inhibitors
- Receptor-CD3 Complex, Antigen, T-Cell/biosynthesis
- Receptor-CD3 Complex, Antigen, T-Cell/genetics
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Recombinant Fusion Proteins/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Time Factors
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/pharmacology
- ZAP-70 Protein-Tyrosine Kinase
Collapse
Affiliation(s)
- P Isomäki
- The Kennedy Institute of Rheumatology Division, Imperial College School of Medicine, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
17
|
Nambiar MP, Enyedy EJ, Warke VG, Krishnan S, Dennis G, Kammer GM, Tsokos GC. Polymorphisms/mutations of TCR-zeta-chain promoter and 3' untranslated region and selective expression of TCR zeta-chain with an alternatively spliced 3' untranslated region in patients with systemic lupus erythematosus. J Autoimmun 2001; 16:133-42. [PMID: 11247639 DOI: 10.1006/jaut.2000.0475] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A vast majority of systemic lupus erythematosus (SLE) patients display decreased expression of TCR zeta-chain mRNA, a critical signaling molecule implicated in the selection of the TCR repertoire and in the prevention of autoimmunity. To identify the molecular mechanisms involved in the downregulation of TCR zeta-chain transcripts in SLE T cells, we investigated the possibility of polymorphisms/mutations in the promoter and the 3' untranslated region. PCR, cloning and sequence analysis of the promoter region from the genomic DNA showed significantly higher number of polymorphisms in SLE T cells compared to non-SLE control subjects (P = 0.044). Promoter sequence was also analysed from granulocytes to delineate the possibility of somatic mutations in activated SLE T cells. Promoter polymorphisms were significantly higher in granulocytes of SLE patients compared to non-SLE controls (P = 0.048), suggesting that these polymorphisms were of genomic origin. Nucleotide analysis of the promoter sequence revealed a -76T insertion compared to the published sequence, in all of the SLE samples and controls. RT-PCR analysis of the TCR zeta-chain 3' untranslated region showed a 344 bp product in addition to the expected 906 bp product. Cloning and sequence analysis of the 344 bp product indicated that it is an alternatively spliced form with both splicing donor and acceptor sites, resulting in deletion of nucleotides 672-1233 of TCR zeta-chain mRNA. Unlike the nomal TCR zeta-chain, the expression of TCR zeta-chain with the alternatively spliced 344 bp 3' untranslated region was higher in SLE T cells compared to non-SLE controls. The number of mutations/polymorphisms in the 906 bp TCR zeta-chain 3' untranslated region were significantly higher in SLE T cells compared to non-SLE subjects (P = 0.032). Frequent mutations/polymorphisms and aberrant splicing of the downstream 3' untranslated region may affect the stability and/or transport of TCR zeta-chain mRNA, leading to its downregulation in SLE T cells.
Collapse
Affiliation(s)
- M P Nambiar
- Department of Cellular Injury, Walter Reed Army Institute of Research, Building 503, Robert Grant Avenue, Silver Spring, MD 20910-7500, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Nambiar MP, Enyedy EJ, Fisher CU, Warke VG, Juang YT, Tsokos GC. Dexamethasone modulates TCR zeta chain expression and antigen receptor-mediated early signaling events in human T lymphocytes. Cell Immunol 2001; 208:62-71. [PMID: 11277620 DOI: 10.1006/cimm.2001.1761] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dexamethasone is a potent anti-inflammatory and immunosupressive agent that has complex, yet incompletely defined, effects on the immune response. Here, we explored the effect of dexamethasone on the expression of TCR zeta chain and TCR/CD3-induced early signaling events in human T lymphocytes. Immunoblotting studies using TCR zeta chain specific mAb showed a dose-dependent biphasic effect of dexamethasone on TCR zeta chain expression, that is, it was increased when cells were incubated with 10 nM, whereas the expression was decreased when incubated with 100 nM dexamethasone. The dose-dependent biphasic effect of dexamethsone on the TCR zeta chain expression was also revealed by FACS analysis of permeabilized cells. Time course studies showed that upregulation of the TCR zeta chain at 10 nM dexamethasone reached maximum levels at 24 h and remained elevated up to 48 h. Other subunits of the TCR/CD3 complex were minimally affected under these conditions. The increased expression of the TCR zeta chain following treatment with 10 nM dexamethasone correlated with increased anti-CD3 antibody-induced tyrosine phosphorylation of the TCR zeta chain and downstream signaling intermediate ZAP-70 and PLC gamma with faster kinetics. Similarly, the induction of TCR zeta chain expression at 10 nM dexamethasone correlated with increased and more sustained TCR/CD3-mediated [Ca(2+)](i) response. Reporter gene assays using TCR zeta chain promoter-driven luciferase gene constructs in Jurkat cells showed that treatment with 10 nM dexamethasone increased TCR zeta chain promoter activity and that the region between -160 and +58 was responsible for the observed effect. These results suggest that dexamethasone primarily acts at the transcriptional level and differentially modulates TCR zeta chain expression and antigen receptor-mediated early signaling events in human peripheral T lymphocytes.
Collapse
MESH Headings
- Adolescent
- Adult
- Blotting, Western
- CD3 Complex/metabolism
- Calcium/metabolism
- Calcium Signaling/drug effects
- Cells, Cultured
- Dexamethasone/administration & dosage
- Dexamethasone/pharmacology
- Dose-Response Relationship, Drug
- Flow Cytometry
- Gene Expression Regulation/drug effects
- Genes, Reporter/genetics
- Humans
- Isoenzymes/metabolism
- Jurkat Cells
- Kinetics
- Phospholipase C gamma
- Phosphorylation/drug effects
- Phosphotyrosine/metabolism
- Promoter Regions, Genetic/genetics
- Protein-Tyrosine Kinases/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/drug effects
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Type C Phospholipases/metabolism
- ZAP-70 Protein-Tyrosine Kinase
Collapse
Affiliation(s)
- M P Nambiar
- Department of Cellular Injury, Walter Reed Army Institute of Research, Building 503, Robert Grant Road, Silver Spring, Maryland 20910-7500, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
The fate of the lymphocyte is determined by integration of signals delivered after the binding of antigen to the surface antigen receptor, signals delivered by cytokines that bind to their surface receptors, and signals initiated after the engagement of other surface receptors, known as costimulatory molecules. The summation of this input determines whether the immune cell will become stimulated, ignore the signal (anergy), or die (apoptosis). Antigen-receptor signaling events are abnormal in lupus lymphocytes, manifested by increased calcium responses and hyperphosphorylation of several cytosolic protein substrates. Further down, at the gene transcription level, the activity of the nuclear factor kappaB is decreased. These events are underwritten by defective T cell receptor zeta chain expression, overexpression of the gamma chain of the Fc(epsilon)RI that functions as an alternate of zeta chain, and decreased p65 -Rel A protein that is responsible for the inducible NFkappaB activity. Accumulated research data have enabled us to begin deciphering the molecular basis of the abnormal lupus lymphocyte and may lead to the development of new medicinal treatments for lupus.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/physiology
- Cell Cycle
- Cyclin-Dependent Kinases/antagonists & inhibitors
- Estrogens/physiology
- Genes, MHC Class II/physiology
- Humans
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/physiopathology
- Mice
- NF-kappa B/physiology
- Receptors, Antigen, T-Cell, gamma-delta/deficiency
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Signal Transduction
- T-Lymphocytes/physiology
- Transcription Factor AP-1/physiology
Collapse
Affiliation(s)
- G C Tsokos
- Department of Medicine, Uniformed Services University of the Health Sciences, and Walter Reed Army Institute of Research, Silver Spring, Maryland 20910-7500, USA.
| | | | | | | |
Collapse
|
20
|
Graham LJ, DeBell KE, Verí M, Stoica B, Mostowski H, Bonvini E, Rellahan B. Differential effects of Cbl and 70Z/3 Cbl on T cell receptor-induced phospholipase Cgamma-1 activity. FEBS Lett 2000; 470:273-80. [PMID: 10745081 DOI: 10.1016/s0014-5793(00)01341-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate that the differential effects Cbl and oncogenic 70Z/3 Cbl have on Ca(2+)/Ras-sensitive NF-AT reporters is partially due to their opposing ability to regulate phospholipase Cgamma1 (PLCgamma1) activation as demonstrated by analysis of the activation of an NF-AT reporter construct and PLCgamma1-mediated inositol phospholipid (PI) hydrolysis. Cbl over-expression resulted in reduced T cell receptor-induced PI hydrolysis, in the absence of any effect on PLCgamma1 tyrosine phosphorylation. In contrast, expression of 70Z/3 Cbl led to an increase in basal and OKT3-induced PLCgamma1 phosphorylation and PI hydrolysis. These data indicate that Cbl and 70Z/3 Cbl differentially regulate PLCgamma1 phosphorylation and activation. The implications of these data on the mechanism of Cbl-mediated signaling regulation are discussed.
Collapse
Affiliation(s)
- L J Graham
- Laboratory of Immunobiology, Division of Monoclonal Antibodies, Center for Biologics Evaluation and Research, HFM-564, Building 29B, Room 3NN10, 29 Lincoln Drive MSC 4555, Bethesda, MD 20892-4555, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Rellahan BL, Jensen JP, Howcroft TK, Singer DS, Bonvini E, Weissman AM. Elf-1 Regulates Basal Expression from the T Cell Antigen Receptor ζ-Chain Gene Promoter. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.6.2794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
In mature T cells, limited synthesis of the TCR-ζ subunit is primarily responsible for regulating surface expression of TCRs. Transcription of ζ is directed by a complex promoter that includes two potential binding sites for the Ets family of transcription factors at −52 (zEBS1) and −135 (zEBS2). Mutation of these two sites results in a marked reduction of transcription from this promoter. Using electrophoretic mobility shift analysis, Elf-1 was demonstrated to be the Ets family member that binds to these sites. One site, zEBS1, matches the optimal Elf-1 consensus sequence in eight of nine bases, making it the best match of any known mammalian Elf-1 binding site. A role for Elf-1 in TCR-ζ trans-activation was confirmed by ectopic expression of Elf-1 in COS-7 cells. This resulted in an increase in TCR-ζ promoter activity that mapped to zEBS1 and zEBS2. Additional support for the involvement of Elf-1 in TCR-ζ trans-activation derives from the finding that a GAL4-Elf-1 fusion protein trans-activated TCR-ζ promoter constructs that had been modified to contain GAL4 DNA binding sites. These results demonstrate that Elf-1 plays an essential role in the trans-activation of a constitutively expressed T cell-specific gene, and that trans-activation occurs in the context of the native promoter in both lymphoid and nonlymphoid cells. Taken together with the existing literature, these data also suggest that the requirement for inducible factors in Elf-1-mediated trans-activation may decrease as the affinity and number of Elf-1 sites increase.
Collapse
Affiliation(s)
- Barbara L. Rellahan
- *Laboratory of Immunobiology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892; and
| | - Jane P. Jensen
- †Laboratory of Immune Cell Biology, National Cancer Institute, and
| | - Thomas K. Howcroft
- ‡Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Dinah S. Singer
- ‡Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ezio Bonvini
- *Laboratory of Immunobiology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892; and
| | | |
Collapse
|
22
|
Rellahan BL, Graham LJ, Stoica B, DeBell KE, Bonvini E. Cbl-mediated regulation of T cell receptor-induced AP1 activation. Implications for activation via the Ras signaling pathway. J Biol Chem 1997; 272:30806-11. [PMID: 9388222 DOI: 10.1074/jbc.272.49.30806] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The functional role of Cbl in regulating T cell receptor (TCR)-mediated signal transduction pathways is unknown. This study uses Cbl overexpression in conjunction with a Ras-sensitive AP1 reporter construct to examine its role in regulating TCR-mediated activation of the Ras pathway. Cbl overexpression in Jurkat T cells inhibited AP1 activity after TCR ligation. However, AP1 induction by 4beta-phorbol 12-myristate 13-acetate, which up-regulates Ras activity in a protein kinase C-dependent, TCR/tyrosine kinase-independent manner, was not affected by Cbl overexpression. Cbl overexpression also did not affect AP1 induction by an activated Ras protein or a membrane-bound form of the guanine nucleotide exchange factor Sos. In addition, activation of the mitogen-activated protein kinase Erk2 was decreased by Cbl overexpression. Therefore, Cbl regulates events that are required for full TCR-mediated Ras activation, and data are presented to support a model whereby Cbl regulates events required for Ras activation via its association with Grb2.
Collapse
Affiliation(s)
- B L Rellahan
- Laboratory of Immunobiology, Division of Monoclonal Antibodies, Office of Therapeutics Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
23
|
Abstract
Many viral and non-viral vector systems have now been developed for gene therapy applications. In this article, the pros and cons of these vector systems are discussed in relation to the different cancer gene therapy strategies. The protocols used in cancer gene therapy can be broadly divided into six categories including gene transfer to explanted cells for use as cell-based cancer vaccines; gene transfer to a small number of tumour cells in situ to achieve a vaccine effect; gene transfer to vascular endothelial cells (VECs) lining the blood vessels of the tumour to interfere with tumour angiogenesis; gene transfer to T lymphocytes to enhance their antitumour effector capability; gene transfer to haemopoietic stem cells (HSCs) to enhance their resistance to cytotoxic drugs and gene transfer to a large number of tumour cells in situ to achieve nonimmune tumour reduction with or without bystander effect. Each of the six strategies makes unique demands on the vector system and these are discussed with reference to currently available vectors. Aspects of vector biology that are in need of further development are discussed in some detail. The final section points to the potential use of replicating viruses as delivery vehicles for efficient in vivo gene transfer to disseminated cancers.
Collapse
Affiliation(s)
- J Zhang
- Cambridge Centre for Protein Engineering, MRC Centre, UK
| | | |
Collapse
|
24
|
Cenciarelli C, Wilhelm KG, Guo A, Weissman AM. T cell antigen receptor ubiquitination is a consequence of receptor-mediated tyrosine kinase activation. J Biol Chem 1996; 271:8709-13. [PMID: 8621503 DOI: 10.1074/jbc.271.15.8709] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Engagement of the T cell antigen receptor results in both its phosphorylation and its ubiquitination. T cell antigen receptor ubiquitination was evaluated in Jurkat, a well characterized human T leukemia cell line. Treatment of cells with the tyrosine kinase inhibitor herbimycin A resulted in an inhibition of receptor ubiquitination. Consistent with this, pervanadate, which increases cellular tyrosine phosphorylation, enhanced receptor ubiquitination. A requirement for receptor-mediated tyrosine kinase activity for ubiquitination was confirmed in cells lacking the tyrosine kinase p56lck and also in cells that are defective in expression of CD45, a tyrosine phosphatase that regulates the activity of p56lck. The need for tyrosine kinase activation for ubiquitination was not bypassed by directly activating protein kinase C and stimulating endocytosis of receptors. These observations establish ubiquitination of the T cell antigen receptor as a tyrosine kinase-dependent manifestation of transmembrane signaling and suggest a role for tyrosine phosphorylation in the ligand-dependent ubiquitination of mammalian transmembrane receptors.
Collapse
Affiliation(s)
- C Cenciarelli
- Laboratory of Immune Cell Biology, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892-1152, USA
| | | | | | | |
Collapse
|
25
|
Jensen JP, Bates PW, Yang M, Vierstra RD, Weissman AM. Identification of a family of closely related human ubiquitin conjugating enzymes. J Biol Chem 1995; 270:30408-14. [PMID: 8530467 DOI: 10.1074/jbc.270.51.30408] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two very closely related human E2 ubiquitin conjugating enzymes, UbfH5B and UbcH5C, have been identified. These enzymes are products of distinct genes and are 88-89% identical in amino acid sequence to the recently described human E2, UbcH5 (now designated UbcH5A), UbcH5A-C are homologous to a family of five ubiquitin conjugating enzymes from Arabidopsis thaliana, AtUBC8-12. They are also closely related to Saccharomyces cerevisiae ScUBC4 and ScUBC5, which are involved in the stress response, and play a central role in the targeting of short-lived regulatory proteins for degradation. mRNAs encoding UbcH5A-C were co-expressed in all cell lines and tissues evaluated, with UbcH5C transcripts generally expressed at the highest levels. Analysis of Southern blots suggests that there are likely to be other related members of this family. Both UbcH5B and UbcH5C form thiol ester adducts with ubiquitin, and have activities similar to UbcH5A and AtUBC8 in the conjugation of ubiquitin to target proteins in the presence of the human ubiquitin protein ligase E6-AP. These results establish the existence of a highly conserved, and widely expressed, family of human ubiquitin conjugating enzymes.
Collapse
Affiliation(s)
- J P Jensen
- Laboratory of Immune Cell Biology, National Cancer Institute, Bethesda, Maryland 20892-1152, USA
| | | | | | | | | |
Collapse
|
26
|
Howcroft TK, Palmer LA, Brown J, Rellahan B, Kashanchi F, Brady JN, Singer DS. HIV Tat represses transcription through Sp1-like elements in the basal promoter. Immunity 1995; 3:127-38. [PMID: 7621073 DOI: 10.1016/1074-7613(95)90165-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
MHC class I genes are potently repressed by HIV Tat, which transactivates the HIV LTR. Tat represses class I transcription by binding to complexes associated with a novel promoter element, consisting of Sp1-like DNA binding sites. Transcription by other Sp1-dependent promoters, such as MDR1 and the minimal SV40 promoters, is also repressed by Tat, whereas the human beta-actin promoter is neither activated by Sp1 nor repressed by Tat. Tat repression can be overcome by a strong enhancer element. Thus, the SV40 72 bp enhancer element confers protection from Tat-mediated repression on both the minimal SV40 promoter and the class I promoter. Surprisingly, Tat can activate the class I promoter in the presence of both the HIV TAR element and a strong upstream enhancer. These data demonstrate that Tat differentially affects Sp1-responsive promoters, depending on promoter architecture.
Collapse
Affiliation(s)
- T K Howcroft
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|