1
|
Yu H, Yang W, Cao M, Lei Q, Yuan R, Xu H, Cui Y, Chen X, Su X, Zhuo H, Lin L. Mechanism study of ubiquitination in T cell development and autoimmune disease. Front Immunol 2024; 15:1359933. [PMID: 38562929 PMCID: PMC10982411 DOI: 10.3389/fimmu.2024.1359933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
T cells play critical role in multiple immune processes including antigen response, tumor immunity, inflammation, self-tolerance maintenance and autoimmune diseases et. Fetal liver or bone marrow-derived thymus-seeding progenitors (TSPs) settle in thymus and undergo T cell-lineage commitment, proliferation, T cell receptor (TCR) rearrangement, and thymic selections driven by microenvironment composed of thymic epithelial cells (TEC), dendritic cells (DC), macrophage and B cells, thus generating T cells with diverse TCR repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg with the help of TEC and DC, serving for immune tolerance. The sequential proliferation, cell fate decision, and selection during T cell development and self-tolerance establishment are tightly regulated to ensure the proper immune response without autoimmune reaction. There are remarkable progresses in understanding of the regulatory mechanisms regarding ubiquitination in T cell development and the establishment of self-tolerance in the past few years, which holds great potential for further therapeutic interventions in immune-related diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Wenyong Yang
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Min Cao
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Qingqiang Lei
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Renbin Yuan
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - He Xu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yuqian Cui
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xuerui Chen
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xu Su
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Hui Zhuo
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Liangbin Lin
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| |
Collapse
|
2
|
Identifying T Cell Receptors from High-Throughput Sequencing: Dealing with Promiscuity in TCRα and TCRβ Pairing. PLoS Comput Biol 2017; 13:e1005313. [PMID: 28103239 PMCID: PMC5289640 DOI: 10.1371/journal.pcbi.1005313] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 02/02/2017] [Accepted: 12/15/2016] [Indexed: 12/20/2022] Open
Abstract
Characterisation of the T cell receptors (TCR) involved in immune responses is important for the design of vaccines and immunotherapies for cancer and autoimmune disease. The specificity of the interaction between the TCR heterodimer and its peptide-MHC ligand derives largely from the juxtaposed hypervariable CDR3 regions on the TCRα and TCRβ chains, and obtaining the paired sequences of these regions is a standard for functionally defining the TCR. A brute force approach to identifying the TCRs in a population of T cells is to use high-throughput single-cell sequencing, but currently this process remains costly and risks missing small clones. Alternatively, CDR3α and CDR3β sequences can be associated using their frequency of co-occurrence in independent samples, but this approach can be confounded by the sharing of CDR3α and CDR3β across clones, commonly observed within epitope-specific T cell populations. The accurate, exhaustive, and economical recovery of TCR sequences from such populations therefore remains a challenging problem. Here we describe an algorithm for performing frequency-based pairing (alphabetr) that accommodates CDR3α- and CDR3β-sharing, cells expressing two TCRα chains, and multiple forms of sequencing error. The algorithm also yields accurate estimates of clonal frequencies.
Collapse
|
3
|
Rothenberg EV, Kueh HY, Yui MA, Zhang JA. Hematopoiesis and T-cell specification as a model developmental system. Immunol Rev 2016; 271:72-97. [PMID: 27088908 DOI: 10.1111/imr.12417] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pathway to generate T cells from hematopoietic stem cells guides progenitors through a succession of fate choices while balancing differentiation progression against proliferation, stage to stage. Many elements of the regulatory system that controls this process are known, but the requirement for multiple, functionally distinct transcription factors needs clarification in terms of gene network architecture. Here, we compare the features of the T-cell specification system with the rule sets underlying two other influential types of gene network models: first, the combinatorial, hierarchical regulatory systems that generate the orderly, synchronized increases in complexity in most invertebrate embryos; second, the dueling 'master regulator' systems that are commonly used to explain bistability in microbial systems and in many fate choices in terminal differentiation. The T-cell specification process shares certain features with each of these prevalent models but differs from both of them in central respects. The T-cell system is highly combinatorial but also highly dose-sensitive in its use of crucial regulatory factors. The roles of these factors are not always T-lineage-specific, but they balance and modulate each other's activities long before any mutually exclusive silencing occurs. T-cell specification may provide a new hybrid model for gene networks in vertebrate developmental systems.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Hao Yuan Kueh
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mary A Yui
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jingli A Zhang
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
4
|
Bunimovich YL, Nair-Gill E, Riedinger M, McCracken MN, Cheng D, McLaughlin J, Radu CG, Witte ON. Deoxycytidine kinase augments ATM-Mediated DNA repair and contributes to radiation resistance. PLoS One 2014; 9:e104125. [PMID: 25101980 PMCID: PMC4125169 DOI: 10.1371/journal.pone.0104125] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 07/10/2014] [Indexed: 11/19/2022] Open
Abstract
Efficient and adequate generation of deoxyribonucleotides is critical to successful DNA repair. We show that ataxia telangiectasia mutated (ATM) integrates the DNA damage response with DNA metabolism by regulating the salvage of deoxyribonucleosides. Specifically, ATM phosphorylates and activates deoxycytidine kinase (dCK) at serine 74 in response to ionizing radiation (IR). Activation of dCK shifts its substrate specificity toward deoxycytidine, increases intracellular dCTP pools post IR, and enhances the rate of DNA repair. Mutation of a single serine 74 residue has profound effects on murine T and B lymphocyte development, suggesting that post-translational regulation of dCK may be important in maintaining genomic stability during hematopoiesis. Using [(18)F]-FAC, a dCK-specific positron emission tomography (PET) probe, we visualized and quantified dCK activation in tumor xenografts after IR, indicating that dCK activation could serve as a biomarker for ATM function and DNA damage response in vivo. In addition, dCK-deficient leukemia cell lines and murine embryonic fibroblasts exhibited increased sensitivity to IR, indicating that pharmacologic inhibition of dCK may be an effective radiosensitization strategy.
Collapse
Affiliation(s)
- Yuri L. Bunimovich
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, California, United States of America
| | - Evan Nair-Gill
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Mireille Riedinger
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Melissa N. McCracken
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Donghui Cheng
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jami McLaughlin
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Caius G. Radu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, California, United States of America
- Ahmanson Translational Imaging Division, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Owen N. Witte
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
5
|
Schroeder JH, Bell LS, Janas ML, Turner M. Pharmacological inhibition of glycogen synthase kinase 3 regulates T cell development in vitro. PLoS One 2013; 8:e58501. [PMID: 23526989 PMCID: PMC3603984 DOI: 10.1371/journal.pone.0058501] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/06/2013] [Indexed: 11/19/2022] Open
Abstract
The development of functional T cells requires receptor-mediated transition through multiple checkpoints in the thymus. Double negative 3 (DN3) thymocytes are selected for the presence of a rearranged TCR beta chain in a process termed β-selection which requires signalling via the pre-TCR, Notch1 and CXCL12. Signal integration by these receptors converges on core pathways including the Phosphatidylinositol-3-kinase (PI3K) pathway. Glycogen Synthase Kinase 3 (GSK3) is generally thought to be negatively regulated by the PI3K pathway but its role in β-selection has not been characterised. Here we show that developmental progression of DN3 thymocytes is promoted following inhibition of GSK3 by the synthetic compound CHIR99021. CHIR99021 allows differentiation in the absence of pre-TCR-, Notch1- or CXCL12-mediated signalling. It antagonizes IL-7-mediated inhibition of DP thymocyte differentiation and increases IL-7-promoted cell recovery. These data indicate a potentially important role for inactivation of GSK3 during β-selection. They might help to establish an in vitro stromal cell-free culture system of thymocyte development and offer a new platform for screening regulators of proliferation, differentiation and apoptosis.
Collapse
Affiliation(s)
- Jan-Hendrik Schroeder
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Lewis S. Bell
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Michelle L. Janas
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Janas ML, Turner M. Interaction of Ras with p110γ is required for thymic β-selection in the mouse. THE JOURNAL OF IMMUNOLOGY 2011; 187:4667-75. [PMID: 21930962 DOI: 10.4049/jimmunol.1101949] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thymocytes are tested for productive rearrangement of the tcrb locus by expression of a pre-TCR in a process termed β-selection, which requires both Notch1 and CXCR4 signaling. It has been shown that activation of the GTPase Ras allows thymocytes to proliferate and differentiate in the absence of a Pre-TCR; the direct targets of Ras at this checkpoint have not been identified, however. Mice with a mutant allele of p110γ unable to bind active Ras revealed that CXCR4-mediated PI3K activation is Ras dependent. The Ras-p110γ interaction was necessary for efficient β-selection-promoted proliferation but was dispensable for the survival or differentiation of thymocytes. Uncoupling Ras from p110γ provides unambiguous identification of a Ras interaction required for thymic β-selection.
Collapse
Affiliation(s)
- Michelle L Janas
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | | |
Collapse
|
7
|
Vicente R, Swainson L, Marty-Grès S, De Barros SC, Kinet S, Zimmermann VS, Taylor N. Molecular and cellular basis of T cell lineage commitment. Semin Immunol 2010; 22:270-5. [PMID: 20630771 DOI: 10.1016/j.smim.2010.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 04/23/2010] [Indexed: 12/16/2022]
Abstract
The thymus forms as an alymphoid thymic primordium with T cell differentiation requiring the seeding of this anlage. This review will focus on the characteristics of the hematopoietic progenitors which colonize the thymus and their subsequent commitment/differentiation, both in mice and men. Within the thymus, the interplay between Notch1 and IL-7 signals is crucial for the orchestration of T cell development, but the precise requirements for these factors in murine and human thympoeisis are not synonymous. Recent advances in our understanding of the mechanisms regulating precursor entry and their maintenance in the thymus will also be presented.
Collapse
Affiliation(s)
- Rita Vicente
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535/IFR 122, 34293 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Requirement for deoxycytidine kinase in T and B lymphocyte development. Proc Natl Acad Sci U S A 2009; 107:5551-6. [PMID: 20080663 DOI: 10.1073/pnas.0913900107] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deoxycytidine kinase (dCK) is a rate-limiting enzyme in deoxyribonucleoside salvage, a metabolic pathway that recycles products of DNA degradation. dCK phosphorylates and therefore activates nucleoside analog prodrugs frequently used in cancer, autoimmunity, and viral infections. In contrast to its well established therapeutic relevance, the biological function of dCK remains enigmatic. Highest levels of dCK expression are found in thymus and bone marrow, indicating a possible role in lymphopoiesis. To test this hypothesis we generated and analyzed dCK knockout (KO) mice. dCK inactivation selectively and profoundly affected T and B cell development. A 90-fold decrease in thymic cellularity was observed in the dCK KO mice relative to wild-type littermates. Lymphocyte numbers in the dCK KO mice were 5- to 13-fold below normal values. The severe impact of dCK inactivation on lymphopoiesis was unexpected given that nucleoside salvage has been thought to play a limited, "fine-tuning" role in regulating deoxyribonucleotide triphosphate pools produced by the de novo pathway. The dCK KO phenotype challenges this view and indicates that, in contrast to the great majority of other somatic cells, normal lymphocyte development critically requires the deoxyribonucleoside salvage pathway.
Collapse
|
9
|
Hager-Theodorides AL, Rowbotham NJ, Outram SV, Dessens JT, Crompton T. Beta-selection: abundance of TCRbeta-/gammadelta- CD44- CD25- (DN4) cells in the foetal thymus. Eur J Immunol 2007; 37:487-500. [PMID: 17273993 PMCID: PMC2651467 DOI: 10.1002/eji.200636503] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Expression of TCRβ and pre-TCR signalling are essential for differentiation of CD4–CD8– double negative (DN) thymocytes to the CD4+CD8+ double-positive (DP) stage. Thymocyte development in adult Rag1, Rag2 or TCRβδ-deficient mice is arrested at the DN3 stage leading to the assumption that pre-TCR signalling and β-selection occur at, and are obligatory for, the transition from DN3 to DN4. We show that the majority of DN3 and DN4 cells that differentiate during early embryogenesis in wild-type mice do not express intracellular (ic) TCRβ/γδ. These foetal icTCRβ−/γδ− DN4 cells were T lineage as determined by expression of Thy1 and icCD3 and TCRβ DJ rearrangement. In addition, in the foetal Rag1–/– thymus, a normal percentage of DN4 cells were present. In wild-type mice after hydrocortisone-induced synchronisation of differentiation, the majority of DN4 cells that first emerged did not express icTCRβ/γδ, showing that adult thymocytes can also differentiate to the DN4 stage independently of pre-TCR signalling. Pre-TCR signalling induced expansion in the DN4 population, but lack of TCRβ/γδ expression did not immediately induce apoptosis. Our data demonstrate in vivo differentiation from DN3 to DN4 cell in the absence of TCRβ/γδ expression in the foetal thymus, and after hydrocortisone treatment of adult mice.
Collapse
Affiliation(s)
| | - Nicola J Rowbotham
- Division of Cell and Molecular Biology, Faculty of Natural Sciences, Imperial College LondonLondon, UK
| | - Susan V Outram
- Division of Cell and Molecular Biology, Faculty of Natural Sciences, Imperial College LondonLondon, UK
| | - Johannes T Dessens
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical MedicineLondon, UK
| | - Tessa Crompton
- Division of Cell and Molecular Biology, Faculty of Natural Sciences, Imperial College LondonLondon, UK
| |
Collapse
|
10
|
Haidl ID, Falk I, Nerz G, Eichmann K. Metalloproteinase-dependent control of thymocyte differentiation and proliferation. Scand J Immunol 2006; 64:280-6. [PMID: 16918697 DOI: 10.1111/j.1365-3083.2006.01820.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of T cells in the thymus is dependent on interactions between thymocytes and thymic stromal cells, on stimulation by growth factors, and on the binding to and migration along extracellular matrix (ECM) components. As metalloproteinases (MP) are involved in processes such as growth factor release and ECM modelling, we assessed the effect of MP inhibitors on T-cell development using fetal thymic organ culture systems. MP inhibitors significantly reduced the numbers of CD4/CD8 double-positive (DP) and mature single-positive thymocytes generated, correlated with a reduced number of cell cycles between the double-negative (DN)3 and DP stages. The progression of early thymocyte progenitors through the DN1-4 stages of development was also severely affected, including incomplete upregulation of CD25, decreased DN3 cell numbers, reduced rearrangement of the T-cell receptor (TCR)-beta locus and expression of intracellular TCR-beta by fewer DN3 cells. When purified DN1 cells were utilized as donor cells in reaggregate thymic organ cultures, essentially no DP thymocytes were produced in the presence of MP inhibitors. The results suggest that MP inhibitors affect the differentiation of developing thymocytes before, and reduce proliferation after, pre-TCR-mediated selection.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Proliferation
- Cells, Cultured
- Gene Rearrangement
- Genes, T-Cell Receptor beta
- Metalloproteases/antagonists & inhibitors
- Metalloproteases/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Organ Culture Techniques
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocytes/physiology
- Thymus Gland/cytology
- Thymus Gland/embryology
- Thymus Gland/physiology
Collapse
Affiliation(s)
- I D Haidl
- Max-Planck-Institute of Immunobiology, Stübeweg 51, D-79108 Freiburg, Germany
| | | | | | | |
Collapse
|
11
|
Warmflash A, Weigert M, Dinner AR. Control of Genotypic Allelic Inclusion through TCR Surface Expression. THE JOURNAL OF IMMUNOLOGY 2005; 175:6412-9. [PMID: 16272293 DOI: 10.4049/jimmunol.175.10.6412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To gain insight into the molecular causes and functional consequences of allelic inclusion of TCR alpha-chains, we develop a computational model for thymocyte selection in which the signal that determines cell fate depends on surface expression. Analysis of receptor pairs on selected dual TCR cells reveals that allelic inclusion permits both autoreactive TCR and receptors not in the single TCR cell repertoire to be selected. However, in comparison with earlier theoretical studies, relatively few dual TCR cells display receptors with high avidity for thymic ligands because their alpha-chains compete aggressively for the beta-chain, which hinders rescue from clonal deletion. This feature of the model makes clear that allelic inclusion does not in itself compromise central tolerance. A specific experiment based on modulation of TCR surface expression levels is proposed to test the model.
Collapse
|
12
|
Swainson L, Kinet S, Manel N, Battini JL, Sitbon M, Taylor N. Glucose transporter 1 expression identifies a population of cycling CD4+ CD8+ human thymocytes with high CXCR4-induced chemotaxis. Proc Natl Acad Sci U S A 2005; 102:12867-72. [PMID: 16126902 PMCID: PMC1200272 DOI: 10.1073/pnas.0503603102] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
GLUT1, the major glucose transporter in peripheral T lymphocytes, is induced upon T cell receptor activation. However, the role of GLUT1 during human thymocyte differentiation remains to be evaluated. Our identification of GLUT1 as the human T lymphotrophic virus (HTLV) receptor has enabled us to use tagged HTLV-receptor-binding domain fusion proteins to specifically monitor surface GLUT1 expression. Here, we identify a unique subset of CD4+ CD8+ double-positive (DP) thymocytes, based on their GLUT1 surface expression. Whereas these cells express variable levels of CD8, they express uniformly high levels of CD4. Glucose uptake was 7-fold higher in CD4(hi) DP thymocytes than in CD4(lo) DP thymocytes (P = 0.0002). Further analyses indicated that these GLUT1+ thymocytes are early post-beta-selection, as demonstrated by low levels of T cell receptor (TCR)alphabeta and CD3. This population of immature GLUT1+ DP cells is rapidly cycling and can be further distinguished by specific expression of the transferrin receptor. Importantly, the CXCR4 chemokine receptor is expressed at 15-fold higher levels on GLUT1+ DP thymocytes, as compared with the DP GLUT1- subset, and the former cells show enhanced chemotaxis to the CXCR4 ligand CXCL12. Thus, during human thymopoiesis, GLUT1 is up-regulated after beta-selection, and these immature DP cells constitute a population with distinct metabolic and chemotactic properties.
Collapse
Affiliation(s)
- Louise Swainson
- Institut de Génétique Moléculaire, Unité Mixte de Recherche 5535, Montpellier, Cedex 5, France
| | | | | | | | | | | |
Collapse
|
13
|
Miyazaki M, Kawamoto H, Kato Y, Itoi M, Miyazaki K, Masuda K, Tashiro S, Ishihara H, Igarashi K, Amagai T, Kanno R, Kanno M. Polycomb group gene mel-18 regulates early T progenitor expansion by maintaining the expression of Hes-1, a target of the Notch pathway. THE JOURNAL OF IMMUNOLOGY 2005; 174:2507-16. [PMID: 15728456 DOI: 10.4049/jimmunol.174.5.2507] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polycomb group (PcG) proteins play a role in the maintenance of cellular identity throughout many rounds of cell division through the regulation of gene expression. In this report we demonstrate that the loss of the PcG gene mel-18 impairs the expansion of the most immature T progenitor cells at a stage before the rearrangement of the TCR beta-chain gene in vivo and in vitro. This impairment of these T progenitors appears to be associated with increased susceptibility to cell death. We also show that the expression of Hes-1, one of the target genes of the Notch signaling pathway, is drastically down-regulated in early T progenitors isolated from mel-18(-/-) mice. In addition, mel-18(-/-) T precursors could not maintain the Hes-1 expression induced by Delta-like-1 in monolayer culture. Collectively, these data indicate that mel-18 contributes to the maintenance of the active state of the Hes-1 gene as a cellular memory system, thereby supporting the expansion of early T progenitors.
Collapse
Affiliation(s)
- Masaki Miyazaki
- Department of Immunology, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Xi H, Kersh GJ. Early Growth Response Gene 3 Regulates Thymocyte Proliferation during the Transition from CD4−CD8− to CD4+CD8+1. THE JOURNAL OF IMMUNOLOGY 2004; 172:964-71. [PMID: 14707069 DOI: 10.4049/jimmunol.172.2.964] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In thymocytes developing in the alphabeta lineage, the transition from CD4, CD8 double negative (DN) to CD4, CD8 double positive (DP) is associated with several rounds of cell division and changes in the expression of multiple genes. This transition is induced by the formation of a pre-TCR that includes a rearranged TCR beta-chain and the pre-TCR alpha-chain. The mechanism by which the pre-TCR influences both gene expression and proliferation has not been defined. We have evaluated the role played by early growth response gene 3 (Egr3) in translating pre-TCR signals into differentiation and proliferation. Egr3 is a transcriptional regulator that contains a zinc-finger DNA binding domain. We find that Egr3-deficient mice have a reduced number of thymocytes compared with wild-type mice, and that this is due to poor proliferation during the DN to DP transition. Treatment of both Egr3(+/+) and Egr3(-/-) mice on the Rag1(-/-) background with anti-CD3epsilon Ab in vivo results in similar differentiation events, but reduced cell recovery in the Egr3(-/-) mice. We have also generated transgenic mice that express high levels of Egr3 constitutively, and when these mice are bred onto a Rag1(-/-) background they exhibit increased proliferation in the absence of stimulation and have pre-TCR alpha-chain and CD25 down-regulation, as well as increased Calpha expression. The results show that Egr3 is an important regulator of proliferation in response to pre-TCR signals, and that it also may regulate some specific aspects of differentiation.
Collapse
Affiliation(s)
- Hongkang Xi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 1639 Pierce Drive, Atlanta, GA 30322, USA
| | | |
Collapse
|
15
|
Abstract
The specificity of the adaptive immune response is, in part, dependent on the clonal expression of the mature T cell receptor (TCR) on T lymphocytes. One mechanism regulating the clonality of the TCR occurs at the level of TCR-beta gene rearrangements during lymphocyte development. Expression of a nascent TCR-beta chain together with pre-Talpha (pTalpha) and CD3 molecules to form the pre-TCR complex, represents a critical checkpoint in T cell differentiation known as beta-selection. Indeed, failure to generate a functionally rearranged TCR-beta chain at this stage of development results in apoptosis. Signals derived from the pre-TCR complex trigger a maturation program within developing thymocytes that includes: rescue from apoptosis; inhibition of further DNA recombination at the TCR-beta gene locus (allowing for the clonality of antigen receptor expression; allelic exclusion); and induction of proliferation and differentiation. The signaling mechanisms that control this developmental program remain largely undefined. Here, we discuss recent evidence investigating the molecular mechanisms that regulate thymocyte differentiation downstream of pre-TCR formation.
Collapse
Affiliation(s)
- Alison M Michie
- Department of Immunology and Bacteriology, Western Infirmary, University of Glasgow, Glasgow, Scotland, G11 6NT, UK
| | | |
Collapse
|
16
|
Su DM, Manley NR. Stage-specific changes in fetal thymocyte proliferation during the CD4-8- to CD4+8+ transition in wild type, Rag1-/-, and Hoxa3,Pax1 mutant mice. BMC Immunol 2002; 3:12. [PMID: 12241558 PMCID: PMC130029 DOI: 10.1186/1471-2172-3-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2002] [Accepted: 09/19/2002] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The function of the thymic microenvironment is to promote thymocyte maturation, in part via regulation of thymocyte proliferation and cell death. Defects in fetal thymic epithelial cell (TEC) development and function, and therefore in the formation of a functional microenvironment, can be caused either directly by TEC differentiation defects or indirectly by defective thymocyte maturation. In this paper we studied fetal thymocyte proliferation during the early transition from the CD3-4-8- (triple negative, TN) to CD4+8+ (double positive, DP) stages. We compared wild type mice with Rag1-/- mice and with Hoxa3+/-Pax1-/- compound mutant mice, which have blocks at different stages of thymocyte development. RESULTS Wild type fetal and adult thymus showed stage-specific differences in the proliferation profiles of developing thymocytes, with fetal stages showing generally higher levels of proliferation. The proliferation profile of fetal thymocytes from Rag1-/- mutants also had stage-specific increases in proliferation compared to wild type fetal thymocytes, in contrast to the lower proliferation previously reported for thymocytes from adult Rag1-/- mutants. We have previously shown that Hoxa3+/-Pax1-/- mice have abnormal fetal TEC development, resulting in increased apoptosis at the TN to DP transition and decreased DP cell numbers. Fetal thymocytes from Hoxa3+/-Pax1-/- compound mutants had increased proliferation, but fewer proliferating cells, at the DP stage. We also observed a decrease in the level of the cytokines IL-7 and SCF produced by Hoxa3+/-Pax1-/-TECs. CONCLUSION Our results indicate complex and stage-specific effects of abnormal TEC development on thymocyte proliferation.
Collapse
Affiliation(s)
- Dong-ming Su
- Department of Genetics, University of Georgia, Athens, Georgia 30602 USA
| | - Nancy R Manley
- Department of Genetics, University of Georgia, Athens, Georgia 30602 USA
| |
Collapse
|
17
|
Vaillant F, Blyth K, Andrew L, Neil JC, Cameron ER. Enforced expression of Runx2 perturbs T cell development at a stage coincident with beta-selection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:2866-74. [PMID: 12218099 DOI: 10.4049/jimmunol.169.6.2866] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The development of T cells in the thymus is regulated by a series of stage-specific transcription factors. Deregulated expression of these factors can lead to alterations in thymocyte development with the production of aberrant cell subsets and predispose to tumor formation. The three genes of the Runx family are multilineage regulators of differentiation that have been reported to be expressed in the T cell lineage. However, their roles in thymocyte development and T cell function are largely unknown. While the Runx2/Cbfa1/AML3/Pebp2alphaa gene plays a primary role in osteogenesis and regulates a number of key bone regulatory genes, we show here that Runx2 is also expressed during the earliest phase of thymic development, in the double-negative subset. Furthermore, enforced expression of Runx2 in transgenic mice under the CD2 promoter was found to affect T cell development at a stage coincident with beta-selection, resulting in an expansion of double-negative CD4 and CD8 immature single-positive cells. Unlike wild-type controls this preselection population (CD4-CD8+heat-stable Ag+TCR-) is in a nonproliferative state, but appears to be primed for further transformation events. Overall the data suggest that Runx2 accelerates development to the CD8 immature single-positive stage, but retards subsequent differentiation to the double-positive stage. Thus, Runx2 joins a small group of transcription factors that can interfere with early T cell development, cause an expansion of a specific subset, and predispose to lymphoma.
Collapse
Affiliation(s)
- François Vaillant
- Molecular Oncology Laboratory, Institute of Comparative Medicine, University of Glasgow Veterinary School, Glasgow, United Kingdom.
| | | | | | | | | |
Collapse
|
18
|
Falk I, Nerz G, Haidl I, Krotkova A, Eichmann K. Immature thymocytes that fail to express TCRbeta and/or TCRgamma delta proteins die by apoptotic cell death in the CD44(-)CD25(-) (DN4) subset. Eur J Immunol 2001; 31:3308-17. [PMID: 11745348 DOI: 10.1002/1521-4141(200111)31:11<3308::aid-immu3308>3.0.co;2-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pre-TCR/CD3 signals are essential for survival and maturation of (CD44(-)25(+)) DN3 thymocytes via the (CD44(-)25(-)) DN4 stage to CD4(+)CD8(+) (DP) cells, a process termed beta-selection. The exact developmental stages of apoptosis resulting from lack of pre-TCR/CD3 signals have so far not been determined. Here we analyzed apoptotic cell death in relation to expression of clonotypic TCR polypeptides and to cell cycle status in immature thymocyte subpopulations of wild type (wt) mice and of several strains of mice with compromised pre-TCR/CD3 signaling complexes. In wt mice or pre-TCR/CD3-deficient mice, apoptotic cells could not be detected among DN3 cells but accumulated in a subset of DN4 expressing CD69. Apoptotic CD69(+)DN4 cells were rare in wt mice and were found among DN4 cells that were negative or low for intracellular TCRbeta and negative for TCRgamma delta polypeptide chains. Apoptotic CD69(+)DN4 cells were abundant in pre-TCR/CD3 signaling-deficient mice in which most DN4 cells failed to express clonotypic TCR polypeptides. Survival of DN4 cells, but not maturation of DN3 cells to DN4, was found to depend on the expression of clonotypic TCR polypeptides in the same cell. The results suggest that thymocytes unsuccessful in alpha beta or in gamma delta lineage development die by apoptosis in the DN4 subset.
Collapse
MESH Headings
- Animals
- Antigens, CD/analysis
- Antigens, Differentiation, T-Lymphocyte/analysis
- Apoptosis
- Gene Rearrangement
- Genes, T-Cell Receptor beta
- Genes, T-Cell Receptor delta
- Genes, T-Cell Receptor gamma
- Hyaluronan Receptors/analysis
- Lectins, C-Type
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- Receptors, Interleukin-2/analysis
- T-Lymphocyte Subsets/physiology
Collapse
Affiliation(s)
- I Falk
- Max-Planck-Institut für Immunbiologie, Freiburg, Germany
| | | | | | | | | |
Collapse
|
19
|
Huynh T, Würch A, Bruyns E, Korinek V, Schraven B, Eichmann K. Developmentally regulated expression of the transmembrane adaptor protein trim in fetal and adult T cells. Scand J Immunol 2001; 54:146-54. [PMID: 11439161 DOI: 10.1046/j.1365-3083.2001.00953.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
TRIM is a recently identified transmembrane adaptor protein which is exclusively expressed in T cells and natural killer (NK) cells. In peripheral blood T cells TRIM has been reported to coprecipitate, comodulate, and cocap with the T-cell receptor (TCR), suggesting that it is an integral component of the TCR/CD3/zeta complex. Here we investigate the expression of TRIM mRNAs and proteins in developing thymocytes. Two splicing isoforms with open reading frames are observed, namely a full length (TRIM) and a truncated version (DeltaTM-TRIM). The latter lacks the extracellular and transmembrane domains as well as the first 10 cytoplasmic aminoacids and is significantly expressed only as mRNA in early fetal thymocytes. TRIM mRNA is detected in all mainstream thymocyte subsets in adult mice. TRIM protein, in contrast, first appears in the DN2 (CD44+ CD25+) subset of adult double negative (DN) cells. In fetal thymocyte development, TRIM mRNA is seen from dg 14.5 onwards whereas TRIM protein appears first on dg 16.5. In contrast to the adult, the TRIM protein was seen in a subset of fetal DN1 cells. In fetal and adult thymocytes, TRIM protein expression was highest in DN2, DN3 (CD44-25+) and in DP cells, compatible with a functional role at or around phases of thymic selection.
Collapse
Affiliation(s)
- T Huynh
- Max-Planck-Institut für Immunbiologie, D-79108 Freiburg, Immunomodulation Laboratory, Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Baur N, Eichmann K. CD3-dependent regulation of early TCRβ gene expression in mainstream αβ and NKαβ T cell development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001. [DOI: 10.1007/978-1-4615-0685-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Wilson A, Maréchal C, MacDonald HR. Biased V beta usage in immature thymocytes is independent of DJ beta proximity and pT alpha pairing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:51-7. [PMID: 11123276 DOI: 10.4049/jimmunol.166.1.51] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
During thymus development, the TCR beta locus rearranges before the TCR alpha locus. Pairing of productively rearranged TCR beta-chains with an invariant pT alpha chain leads to the formation of a pre-TCR and subsequent expansion of immature pre-T cells. Essentially nothing is known about the TCR V beta repertoire in pre-T cells before or after the expression of a pre-TCR. Using intracellular staining, we show here that the TCR V beta repertoire is significantly biased at the earliest developmental stage in which VDJ beta rearrangement has occurred. Moreover (and in contrast to the V(H) repertoire in immature B cells), V beta repertoire biases in immature T cells do not reflect proximity of V beta gene segments to the DJ beta cluster, nor do they depend upon preferential V beta pairing with the pT alpha chain. We conclude that V gene repertoires in developing T and B cells are controlled by partially distinct mechanisms.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Division/genetics
- Cell Division/immunology
- Female
- Flow Cytometry
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Intracellular Fluid/immunology
- Intracellular Fluid/metabolism
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Multigene Family/genetics
- Multigene Family/immunology
- Protein Precursors/biosynthesis
- Protein Precursors/genetics
- Protein Precursors/physiology
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Staining and Labeling
- T-Lymphocytes/chemistry
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Thymus Gland/chemistry
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- A Wilson
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland
| | | | | |
Collapse
|
22
|
Jacobs H. TCR-independent T cell development mediated by gain-of-oncogene function or loss-of-tumor-suppressor gene function. Semin Immunol 2000; 12:487-502. [PMID: 11085181 DOI: 10.1006/smim.2000.0262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms that govern differentiation of T cell precursors during intrathymic development bridge an interdisciplinary research field of immunology, oncology and developmental biology. Critical checkpoints controlling early thymic T cell development and homeostasis are set by the proper signaling function of the IL-7 receptor, c-Kit receptor, and the pre-T cell antigen receptor (pre-TCR). Given the intimate link between cell cycle control and differentiation in T cell development, proto-oncogenes and tumor suppressors participate as physiological effectors downstream of these receptors not only to influence the cell cycle but also to determine differentiation and survival. Gain- or loss-of-function mutations of these downstream effectors uncouples partially or completely T cell precursors from these checkpoints, providing a selective advantage and enabling aberrant development. These effectors can be identified by provirus tagging in normal mice and more readily by complementation tagging in mice with a predefined block in T cell differentiation.
Collapse
Affiliation(s)
- H Jacobs
- Basel Institute for Immunology, Switzerland
| |
Collapse
|
23
|
Michie AM, Trop S, Wiest DL, Zúñiga-Pflücker JC. Extracellular signal-regulated kinase (ERK) activation by the pre-T cell receptor in developing thymocytes in vivo. J Exp Med 1999; 190:1647-56. [PMID: 10587355 PMCID: PMC2195734 DOI: 10.1084/jem.190.11.1647] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/1999] [Accepted: 09/29/1999] [Indexed: 12/17/2022] Open
Abstract
The first checkpoint in T cell development occurs between the CD4(-)CD8(-) and CD4(+)CD8(+) stages and is associated with formation of the pre-T cell receptor (TCR). The signaling mechanisms that drive this progression remain largely unknown. Here, we show that extracellular signal-regulated kinases (ERKs)-1/2 are activated upon engagement of the pre-TCR. Using a novel experimental system, we demonstrate that expression of the pre-TCR by developing thymocytes induces ERK-1/2 activation within the thymus. In addition, the activation of this pre-TCR signaling cascade is mediated through Lck. These findings directly link pre-TCR complex formation with specific downstream signaling components in vivo.
Collapse
Affiliation(s)
- Alison M. Michie
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Sébastien Trop
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - David L. Wiest
- Division of Basic Sciences, Immunobiology Working Group, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | | |
Collapse
|
24
|
Bonnin D, Prakken B, Samodal R, La Cava A, Carson DA, Albani S. Ontogeny of synonymous T cell populations with specificity for a self MHC epitope mimicked by a bacterial homologoue: an antigen-specific T cell analysis in a non-transgenic system. Eur J Immunol 1999; 29:3826-36. [PMID: 10601990 DOI: 10.1002/(sici)1521-4141(199912)29:12<3826::aid-immu3826>3.0.co;2-s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
By means of a novel technique for identification and isolation of MHC class II-restricted antigen-specific T cells, we describe here in non-transgenic BALB / c mice physiological positive selection of an oligoclonal population of T cells which recognizes both a self MHC-derived peptide (Ialpha52) and a bacterial homologoue (Hi15). The results support a model for self peptide-mediated generation of T cells which have specificity for microbial antigens through molecular mimicry. This mechanism may be a model for the ontogeny of a physiological T cell response to infectious agents. Loss of control of these circuits may be part of the inciting factors of autoimmunity.
Collapse
Affiliation(s)
- D Bonnin
- Department of Medicine University of California, San Diego, La Jolla, USA
| | | | | | | | | | | |
Collapse
|
25
|
Mancini S, Candéias SM, Fehling HJ, von Boehmer H, Jouvin-Marche E, Marche PN. TCR α-Chain Repertoire in pTα-Deficient Mice Is Diverse and Developmentally Regulated: Implications for Pre-TCR Functions and TCRA Gene Rearrangement. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.11.6053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Pre-TCR expression on developing thymocytes allows cells with productive TCRB gene rearrangements to further differentiate. In wild-type mice, most TCRA gene rearrangements are initiated after pre-TCR expression. However, in pTα-deficient mice, a substantial number of αβ+ thymocytes are still produced, in part because early TCR α-chain expression can rescue immature thymocytes from cell death. In this study, the nature of these TCR α-chains, produced and expressed in the absence of pre-TCR expression, have been analyzed. We show, by FACS analysis and sequencing of rearranged transcripts, that the TCRA repertoire is diverse in pTα−/− mice and that the developmental regulation of AJ segment use is maintained, yet slightly delayed around birth when compared with wild-type mice. We also found that T cell differentiation is more affected by pTα inactivation during late gestation than later in life. These data suggest that the pre-TCR is not functionally required for the initiation and regulation of TCRA gene rearrangement and that fetal thymocytes are more dependent than adult cells on pTα-derived signals for their differentiation.
Collapse
Affiliation(s)
- Stéphane Mancini
- *Laboratoire d’Immunochimie, Commissariat à l’Energie Atomique-Grenoble, Département de Biologie Moléculaire et Structurale, Institut National de la Santé et de la Recherche Médicale Unit 238, Université Joseph Fourier, Grenoble, France
| | - Serge M. Candéias
- *Laboratoire d’Immunochimie, Commissariat à l’Energie Atomique-Grenoble, Département de Biologie Moléculaire et Structurale, Institut National de la Santé et de la Recherche Médicale Unit 238, Université Joseph Fourier, Grenoble, France
| | | | - Harald von Boehmer
- ‡Institut Necker, Institut National de la Santé et de la Recherche Médicale Unit 373, Paris, France
| | - Evelyne Jouvin-Marche
- *Laboratoire d’Immunochimie, Commissariat à l’Energie Atomique-Grenoble, Département de Biologie Moléculaire et Structurale, Institut National de la Santé et de la Recherche Médicale Unit 238, Université Joseph Fourier, Grenoble, France
| | - Patrice N. Marche
- *Laboratoire d’Immunochimie, Commissariat à l’Energie Atomique-Grenoble, Département de Biologie Moléculaire et Structurale, Institut National de la Santé et de la Recherche Médicale Unit 238, Université Joseph Fourier, Grenoble, France
| |
Collapse
|
26
|
Wilson A, Capone M, MacDonald HR. Unexpectedly late expression of intracellular CD3epsilon and TCR gammadelta proteins during adult thymus development. Int Immunol 1999; 11:1641-50. [PMID: 10508182 DOI: 10.1093/intimm/11.10.1641] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During adult thymus development immature CD4(-)CD8(-) [double-negative (DN)] precursor cells pass through four phenotypically distinct stages defined by expression of CD44 and CD25: CD44(hi)CD25(-) (DN1), CD44(hi)CD25(+) (DN2), CD44(lo)CD25(+) (DN3) and CD44(lo)CD25(-) (DN4). Although it is well established that the TCR beta, gamma and delta genes are rearranged and expressed in association with the CD3 components in DN thymocytes, the precise timing of expression of the TCR and CD3 proteins has not been determined. In this report we have utilized a sensitive intracellular (ic) staining technique to analyze the expression of ic CD3epsilon, TCR beta and TCR gammadelta proteins in immature DN subsets. As expected from previous studies of TCR beta rearrangement and mRNA expression, icTCR beta(+) cells were first detected in the DN3 subset and their proportion increased thereafter. Surprisingly, however, both icCD3epsilon(+) and icTCR gammadelta(+) cells were detected at later stages of development than was predicted by molecular studies. In particular icCD3epsilon protein expression coincided with the transition from the DN2 to DN3 stage of development, whereas icTCR gammadelta protein expression was only detected in a minor subset of DN4 cells. The implications of these findings for alphabeta lineage divergence will be discussed.
Collapse
MESH Headings
- Age Factors
- Animals
- Biomarkers
- CD3 Complex
- Cell Differentiation
- Female
- Flow Cytometry
- Hyaluronan Receptors/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/deficiency
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Interleukin-2/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/metabolism
- Thymus Gland/growth & development
- Thymus Gland/metabolism
- Time Factors
Collapse
Affiliation(s)
- A Wilson
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne,Ch. Des Boveresses 155, 1066 Epalinges, Switzerland
| | | | | |
Collapse
|
27
|
Piper H, Litwin S, Mehr R. Models for Antigen Receptor Gene Rearrangement. II. Multiple Rearrangement in the TCR: Allelic Exclusion or Inclusion? THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.4.1799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
This series of papers addresses the effects of continuous Ag receptor gene rearrangement in lymphocytes on allelic exclusion. The previous paper discussed light chain gene rearrangement and receptor editing in B cells, and showed that these processes are ordered on three different levels. This order, combined with the constraints imposed by a strong negative selection, was shown to lead to effective allelic exclusion. In the present paper, we discuss rearrangement of TCR genes. In the TCR α-chain, allelic inclusion may be the rule rather than the exception. Several previous models, which attempted to explain experimental observations, such as the fractions of cells containing two productive TCRα rearrangements, did not sufficiently account for TCR gene organization, which limits secondary rearrangement, and for the effects of subsequent thymic selection. We present here a detailed, comprehensive computer simulation of TCR gene rearrangement, incorporating the interaction of this process with other aspects of lymphocyte development, including cell division, selection, cell death, and maturation. Our model shows how the observed fraction of T cells containing productive TCRα rearrangements on both alleles can be explained by the parameters of thymic selection imposed over a random rearrangement process.
Collapse
Affiliation(s)
- Hannah Piper
- *Department of Molecular Biology, Princeton University, Princeton, NJ 08544; and
| | | | - Ramit Mehr
- *Department of Molecular Biology, Princeton University, Princeton, NJ 08544; and
| |
Collapse
|
28
|
Wiest DL, Berger MA, Carleton M. Control of early thymocyte development by the pre-T cell receptor complex: A receptor without a ligand? Semin Immunol 1999; 11:251-62. [PMID: 10441211 DOI: 10.1006/smim.1999.0181] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Beta-selection refers to a developmental checkpoint linking thymocyte survival to the outcome of antigen receptor gene rearrangement. Immature thymocytes that productively rear-range the gene segments of the TCRbeta locus undergo proliferative expansion and mature to the CD4(+)CD8(+)stage; those failing to do so die by apoptosis. How are these precursor cells alerted that TCRbeta rearrangement has been productive? While it is clear that this process involves signals transduced by a surrogate form of the TCR termed the pre-TCR, it remains unclear how pre-TCR signals are triggered. In this review, we will discuss the implications of recent experimental attempts to address this issue, as well as how pre-TCR activation is linked to the changes in gene expression that underlie thymocyte development.
Collapse
Affiliation(s)
- D L Wiest
- Division of Basic Sciences, Immunobiology Working Group, Fox Chase Cancer Center, 7701 Burholme Ave., Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
29
|
Rocca B, Spain LM, Puré E, Langenbach R, Patrono C, FitzGerald GA. Distinct roles of prostaglandin H synthases 1 and 2 in T-cell development. J Clin Invest 1999; 103:1469-77. [PMID: 10330429 PMCID: PMC408457 DOI: 10.1172/jci6400] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/1999] [Accepted: 04/16/1999] [Indexed: 11/17/2022] Open
Abstract
Prostaglandin G and H synthases, or cyclooxygenases (COXs), catalyze the formation of prostaglandins (PGs). Whereas COX-1 is diffusely expressed in lymphoid cells in embryonic day 15.5 thymus, COX-2 expression is sparse, apparently limited to stromal cells. By contrast, COX-2 is predominant in a subset of medullary stromal cells in three- to five-week-old mice. The isozymes also differ in their contributions to lymphocyte development. Thus, experiments with selective COX-1 inhibitors in thymic lobes from normal and recombinase-activating gene-1 knockout mice support a role for this isoform in the transition from CD4(-)CD8(-) double-negative (DN) to CD4(+)CD8(+) double-positive (DP). Concordant data were obtained in COX-1 knockouts. Pharmacological inhibition and genetic deletion of COX-2, by contrast, support its role during early thymocyte proliferation and differentiation and, later, during maturation of the CD4 helper T-cell lineage. PGE2, but not other PGs, can rescue the effects of inhibition of either isoform, although it acts through distinct EP receptor subtypes. COX-dependent PG generation may represent a mechanism of thymic stromal support for T-cell development.
Collapse
Affiliation(s)
- B Rocca
- Center for Experimental Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
30
|
Würch A, Biro J, Falk I, Mossmann H, Eichmann K. Reduced Generation but Efficient TCRβ-Chain Selection of CD4+8+ Double-Positive Thymocytes in Mice with Compromised CD3 Complex Signaling. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.5.2741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Maturation to the CD4+8+ double-positive (DP) stage of thymocyte development is restricted to cells that have passed TCRβ selection, an important checkpoint at which immature CD4−8− double-negative (DN) cells that express TCRβ polypeptide chains are selected for further maturation. The generation of DP thymocytes following TCRβ selection is dependent on cellular survival, differentiation, and proliferation, and the entire process appears to be mediated by the pre-TCR/CD3 complex. In this study, we investigate the signaling requirements for TCRβ selection using mice single deficient and double deficient for CD3ζ/η and/or p56lck. While the numbers of DP cells are strongly reduced in the single-deficient mice, a further drastic reduction in the generation of DP thymocytes is seen in the double-deficient mice. The poor generation of DP cells in the mutant mice is primarily due to an impaired ability of CD25+ DN thymocytes to proliferate following expression of a TCRβ-chain. Nevertheless, the residual DP cells in all mutant mice are strictly selected for expression of TCRβ polypeptide chains. DN thymocytes of mutant mice expressed TCRβ and CD3ε at the cell surface and contained mRNA for pre-Tα, but not for clonotypic TCRα-chains, together suggesting that TCRβ selection is mediated by pre-TCR signaling in all cases. The data suggest differential requirements of pre-TCR signaling for cell survival on the one hand, and for the proliferative burst associated with TCRβ selection on the other.
Collapse
Affiliation(s)
- Andreas Würch
- Max-Planck-Institut für Immunbiologie, Freiburg, Germany
| | - Judit Biro
- Max-Planck-Institut für Immunbiologie, Freiburg, Germany
| | - Ingrid Falk
- Max-Planck-Institut für Immunbiologie, Freiburg, Germany
| | - Horst Mossmann
- Max-Planck-Institut für Immunbiologie, Freiburg, Germany
| | - Klaus Eichmann
- Max-Planck-Institut für Immunbiologie, Freiburg, Germany
| |
Collapse
|
31
|
Würch A, Biro J, Potocnik AJ, Falk I, Mossmann H, Eichmann K. Requirement of CD3 complex-associated signaling functions for expression of rearranged T cell receptor beta VDJ genes in early thymic development. J Exp Med 1998; 188:1669-78. [PMID: 9802979 PMCID: PMC2212509 DOI: 10.1084/jem.188.9.1669] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
During alpha beta thymocyte development, the clonotypic alpha beta-T cell receptor (TCR) is preceded by sequentially expressed immature versions of the TCR-CD3 complex: the pre-TCR, containing a clonotypic TCR-beta chain and invariant pre-Talpha, is expressed on pre-T cells before rearrangement of the TCR-alpha locus. Moreover, clonotype-independent CD3 complexes (CIC) appear on pro-T cells before VDJ rearrangements of TCR-beta genes. The pre-TCR is known to mediate TCR-beta selection, the prerequisite for maturation of CD4(-)8(-) double negative (DN) thymocytes to the CD4(+)8(+) double positive stage. A developmental function of CIC has so far not been delineated. In mice single deficient and double deficient for CD3zeta/eta and/or p56(lck), we observe a pronounced reduction in the proportions of CD25(+) DN thymocytes that express intracellular TCR-beta chains. TCR-beta transcripts are reduced in parallel with TCR-beta polypeptide chains whereas no reduction in TCR-beta locus rearrangements could be detected. Wild-type levels of TCR-beta transcripts and of cells expressing TCR-beta polypeptide chains are induced by treatment with anti-CD3epsilon mAb. The data suggest that the initial expression of rearranged TCR-beta VDJ genes in pro-T cell to pre-T cell progression is dependent on CD3 complex signaling, and thus define a putative developmental function for CIC.
Collapse
Affiliation(s)
- A Würch
- Max-Planck-Institut für Immunbiologie, D-79108 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Schwarz DA, Katayama CD, Hedrick SM. Schlafen, a new family of growth regulatory genes that affect thymocyte development. Immunity 1998; 9:657-68. [PMID: 9846487 DOI: 10.1016/s1074-7613(00)80663-9] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Schlafen (Slfn) family of genes are differentially regulated during thymocyte maturation and are preferentially expressed in the lymphoid tissues. Ectopic expression of the prototype member Slfn1 early in the T lineage profoundly alters cell growth and development. In these mice, the DP thymocytes fail to complete maturation, and, depending on the transgene dosage, the number of thymocytes is reduced to 1%-30% of normal. Furthermore, expression of the Schlafen family members in fibroblasts and thymoma cells either retards or ablates cell growth. The conceptual protein sequences deduced for each of the family members have no similarity to characterized proteins and must therefore participate in a heretofore unknown regulatory mechanism guiding both cell growth and T cell development.
Collapse
Affiliation(s)
- D A Schwarz
- Cancer Center and the Department of Biology, University of California, San Diego, La Jolla 92093-0687, USA
| | | | | |
Collapse
|
33
|
Trigueros C, Ramiro AR, Carrasco YR, de Yebenes VG, Albar JP, Toribio ML. Identification of a late stage of small noncycling pTalpha- pre-T cells as immediate precursors of T cell receptor alpha/beta+ thymocytes. J Exp Med 1998; 188:1401-12. [PMID: 9782117 PMCID: PMC2213418 DOI: 10.1084/jem.188.8.1401] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/1997] [Revised: 06/26/1998] [Indexed: 11/26/2022] Open
Abstract
During thymocyte development, progression from T cell receptor (TCR)beta to TCRalpha rearrangement is mediated by a CD3-associated pre-TCR composed of the TCRbeta chain paired with pre-TCRalpha (pTalpha). A major issue is how surface expression of the pre-TCR is regulated during normal thymocyte development to control transition through this checkpoint. Here, we show that developmental expression of pTalpha is time- and stage-specific, and is confined in vivo to a limited subset of large cycling human pre-T cells that coexpress low density CD3. This restricted expression pattern allowed the identification of a novel subset of small CD3(-) thymocytes lacking surface pTalpha, but expressing cytoplasmic TCRbeta, that represent late noncycling pre-T cells in which recombination activating gene reexpression and downregulation of T early alpha transcription are coincident events associated with cell cycle arrest, and immediately preceding TCRalpha gene expression. Importantly, thymocytes at this late pre-T cell stage are shown to be functional intermediates between large pTalpha+ pre-T cells and TCRalpha/beta+ thymocytes. The results support a developmental model in which pre-TCR-expressing pre-T cells are brought into cycle, rapidly downregulate surface pre-TCR, and finally become small resting pre-T cells, before the onset of TCRalpha gene expression.
Collapse
Affiliation(s)
- C Trigueros
- Centro de Biología Molecular "Severo Ochoa,"
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
We recently identified a fetal thymic developmental stage (NK1.1+/CD117(lo)) that characterizes committed T/NK progenitors. We now report the existence of phenotypically and functionally identical T/NK progenitors in mouse fetal blood and spleen but not in fetal liver. These precursors are indistinguishable from previously characterized fetal blood "prothymocytes" (CD90+/CD117(lo)), with the exception that they express NK1.1, lack markers associated with T lineage commitment, maintain a germline TCRbeta locus, and can give rise to both T and NK cells. Moreover, NK1.1+/CD90+/CD117(lo) fetal blood precursors are present in athymic nude mice. These results suggest that the T/NK lineage commitment pathway is thymus-independent. In contrast, full commitment to the alphabeta T lineage does not precede thymus colonization.
Collapse
Affiliation(s)
- J R Carlyle
- Department of Immunology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
35
|
|
36
|
Rodewald HR, Haller C. Antigen-receptor junctional diversity in growth-factor-receptor mutant mice. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 1998; 22:351-365. [PMID: 9700464 DOI: 10.1016/s0145-305x(98)00013-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Precursor lymphocytes undergo expansion prior to immunoglobulin (Ig) or T cell receptor (TCR) rearrangements. Development of thymocytes, but not B cells, is entirely blocked in mice lacking both the receptor-tyrosine-kinase c-kit and the common cytokine receptor gamma chain (gamma c). In c-kit-gamma c-mice, TCR beta rearrangements are limited to mono- or oligoclonal DJ junctions. Here, effects of lack of c-kit or gamma c, or both, on the junctional diversity of TCR gamma and delta, and Ig VH(DH)JH loci were analyzed. All rearrangements were present in wildtype and mutant mice. However, sequencing of the junctions revealed monoclonal TCR gamma (V gamma 2 J gamma 1) and TCR delta (V delta 1(D delta)J delta 2) joints in c-kit-gamma c-, but not c-kit+ gamma c- or wildtype thymocytes. In contrast to TCR beta, gamma and delta loci, VHDHJH junctions were more diverse in c-kit-gamma c-mice. Thus, the two analyzed growth factor receptors mediate signaling pathways required for progenitor expansion and generation of junctional diversity at TCR loci, but have less influence on the diversity of IgH junctions.
Collapse
MESH Headings
- Animals
- Female
- Gene Rearrangement, T-Lymphocyte
- Genes, Immunoglobulin
- Genetic Variation
- Growth Substances/physiology
- Immunoglobulin Joining Region/genetics
- Immunoglobulin Variable Region/genetics
- Immunoglobulin delta-Chains/genetics
- Immunoglobulin gamma-Chains/genetics
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Mutant Strains
- Proto-Oncogene Proteins c-kit/genetics
- Proto-Oncogene Proteins c-kit/physiology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- Spleen
- Thymus Gland
Collapse
Affiliation(s)
- H R Rodewald
- Basel Institute for Immunology, Basel, Switzerland.
| | | |
Collapse
|