1
|
Fekrvand S, Abolhassani H, Rezaei N. An overview of early genetic predictors of IgA deficiency. Expert Rev Mol Diagn 2024; 24:715-727. [PMID: 39087770 DOI: 10.1080/14737159.2024.2385521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Inborn errors of immunity (IEIs) refer to a heterogeneous category of diseases with defects in the number and/or function of components of the immune system. Immunoglobulin A (IgA) deficiency is the most prevalent IEI characterized by low serum level of IgA and normal serum levels of IgG and/or IgM. Most of the individuals with IgA deficiency are asymptomatic and are only identified through routine laboratory tests. Others may experience a wide range of clinical features including mucosal infections, allergies, and malignancies as the most important features. IgA deficiency is a multi-complex disease, and the exact pathogenesis of it is still unknown. AREAS COVERED This review compiles recent research on genetic and epigenetic factors that may contribute to the development of IgA deficiency. These factors include defects in B-cell development, IgA class switch recombination, synthesis, secretion, and the long-term survival of IgA switched memory B cells and plasma cells. EXPERT OPINION A better and more comprehensive understanding of the cellular pathways involved in IgA deficiency could lead to personalized surveillance and potentially curative strategies for affected patients, especially those with severe symptoms.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
2
|
Grayck MR, McCarthy WC, Solar M, Balasubramaniyan N, Zheng L, Orlicky DJ, Wright CJ. Implications of neonatal absence of innate immune mediated NFκB/AP1 signaling in the murine liver. Pediatr Res 2024; 95:1791-1802. [PMID: 38396130 DOI: 10.1038/s41390-024-03071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/03/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND The developmental immaturity of the innate immune system helps explains the increased risk of infection in the neonatal period. Importantly, innate immune signaling pathways such as p65/NFκB and c-Jun/AP1 are responsible for the prevention of hepatocyte apoptosis in adult animals, yet whether developmental immaturity of these pathways increases the risk of hepatic injury in the neonatal period is unknown. METHODS Using a murine model of endotoxemia (LPS 5 mg/kg IP x 1) in neonatal (P3) and adult mice, we evaluated histologic evidence of hepatic injury and apoptosis, presence of p65/NFκB and c-Jun/AP1 activation and associated transcriptional regulation of apoptotic genes. RESULTS We demonstrate that in contrast to adults, endotoxemic neonatal (P3) mice exhibit a significant increase in hepatic apoptosis. This is associated with absent hepatic p65/NFκB signaling and impaired expression of anti-apoptotic target genes. Hepatic c-Jun/AP1 activity was attenuated in endotoxemic P3 mice, with resulting upregulation of pro-apoptotic factors. CONCLUSIONS These results demonstrate that developmental absence of innate immune p65/NFκB and c-Jun/AP1 signaling, and target gene expression is associated with apoptotic injury in neonatal mice. More work is needed to determine if this contributes to long-term hepatic dysfunction, and whether immunomodulatory approaches can prevent this injury. IMPACT Various aspects of developmental immaturity of the innate immune system may help explain the increased risk of infection in the neonatal period. In adult models of inflammation and infection, innate immune signaling pathways such as p65/NFκB and c-Jun/AP1 are responsible for a protective, pro-inflammatory transcriptome and regulation of apoptosis. We demonstrate that in contrast to adults, endotoxemic neonatal (P3) mice exhibit a significant increase in hepatic apoptosis associated with absent hepatic p65/NFκB signaling and c-Jun/AP1 activity. We believe that these results may explain in part hepatic dysfunction with neonatal sepsis, and that there may be unrecognized developmental and long-term hepatic implications of early life exposure to systemic inflammatory stress.
Collapse
Affiliation(s)
- Maya R Grayck
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - William C McCarthy
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mack Solar
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Natarajan Balasubramaniyan
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - David J Orlicky
- Dept of Pathology, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
3
|
Voisin A, Plaschka M, Perrin-Niquet M, Twardowski J, Boutemine I, Eluard B, Lalle G, Stéphan P, Bouherrou K, Tonon L, Pommier R, Ferrari A, Klein U, Wencker M, Baud V, Cassier PA, Grinberg-Bleyer Y. The NF-κB RelA transcription factor is not required for CD8+ T-cell function in acute viral infection and cancer. Front Immunol 2024; 15:1379777. [PMID: 38504985 PMCID: PMC10948531 DOI: 10.3389/fimmu.2024.1379777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
CD8+ T cells are critical mediators of pathogen clearance and anti-tumor immunity. Although signaling pathways leading to the activation of NF-κB transcription factors have crucial functions in the regulation of immune responses, the CD8+ T cell-autonomous roles of the different NF-κB subunits, are still unresolved. Here, we investigated the function of the ubiquitously expressed transcription factor RelA in CD8+ T-cell biology using a novel mouse model and gene-edited human cells. We found that CD8+ T cell-specific ablation of RelA markedly altered the transcriptome of ex vivo stimulated cells, but maintained the proliferative capacity of both mouse and human cells. In contrast, in vivo experiments showed that RelA deficiency did not affect the CD8+ T-cell response to acute viral infection or transplanted tumors. Our data suggest that in CD8+ T cells, RelA is dispensable for their protective activity in pathological contexts.
Collapse
Affiliation(s)
- Allison Voisin
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut National de la Santé et de la Recherche Médicale (INSERM) 1052, Centre National de la Recherche Scientifique (CNRS) 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Maud Plaschka
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut National de la Santé et de la Recherche Médicale (INSERM) 1052, Centre National de la Recherche Scientifique (CNRS) 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
- St. Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
| | - Marlène Perrin-Niquet
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut National de la Santé et de la Recherche Médicale (INSERM) 1052, Centre National de la Recherche Scientifique (CNRS) 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Julie Twardowski
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut National de la Santé et de la Recherche Médicale (INSERM) 1052, Centre National de la Recherche Scientifique (CNRS) 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Insaf Boutemine
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut National de la Santé et de la Recherche Médicale (INSERM) 1052, Centre National de la Recherche Scientifique (CNRS) 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Baptiste Eluard
- Université Paris Cité, NF-κB, Différenciation et Cancer, Paris, France
| | - Guilhem Lalle
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut National de la Santé et de la Recherche Médicale (INSERM) 1052, Centre National de la Recherche Scientifique (CNRS) 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Pierre Stéphan
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut National de la Santé et de la Recherche Médicale (INSERM) 1052, Centre National de la Recherche Scientifique (CNRS) 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Khaled Bouherrou
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut National de la Santé et de la Recherche Médicale (INSERM) 1052, Centre National de la Recherche Scientifique (CNRS) 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Laurie Tonon
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut National de la Santé et de la Recherche Médicale (INSERM) 1052, Centre National de la Recherche Scientifique (CNRS) 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
- Gilles Thomas Bioinformatics Platform, Fondation Synergie Lyon Cancer, Centre Léon Bérard, Lyon, France
| | - Roxane Pommier
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut National de la Santé et de la Recherche Médicale (INSERM) 1052, Centre National de la Recherche Scientifique (CNRS) 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
- Gilles Thomas Bioinformatics Platform, Fondation Synergie Lyon Cancer, Centre Léon Bérard, Lyon, France
| | - Anthony Ferrari
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut National de la Santé et de la Recherche Médicale (INSERM) 1052, Centre National de la Recherche Scientifique (CNRS) 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
- Gilles Thomas Bioinformatics Platform, Fondation Synergie Lyon Cancer, Centre Léon Bérard, Lyon, France
| | - Ulf Klein
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, United Kingdom
| | - Mélanie Wencker
- Centre International de Recherche en Infectiologie, INSERM U1111, École Normale Supérieure de Lyon, Claude Bernard University Lyon 1, Centre National de la Recherche Scientifique (CNRS), UMR 5308, Lyon, France
| | - Véronique Baud
- Université Paris Cité, NF-κB, Différenciation et Cancer, Paris, France
| | - Philippe A. Cassier
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut National de la Santé et de la Recherche Médicale (INSERM) 1052, Centre National de la Recherche Scientifique (CNRS) 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
- Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Yenkel Grinberg-Bleyer
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut National de la Santé et de la Recherche Médicale (INSERM) 1052, Centre National de la Recherche Scientifique (CNRS) 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| |
Collapse
|
4
|
Zhao M, Chauhan P, Sherman CA, Singh A, Kaileh M, Mazan-Mamczarz K, Ji H, Joy J, Nandi S, De S, Zhang Y, Fan J, Becker KG, Loke P, Zhou W, Sen R. NF-κB subunits direct kinetically distinct transcriptional cascades in antigen receptor-activated B cells. Nat Immunol 2023; 24:1552-1564. [PMID: 37524800 PMCID: PMC10457194 DOI: 10.1038/s41590-023-01561-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/15/2023] [Indexed: 08/02/2023]
Abstract
The nuclear factor kappa B (NF-κB) family of transcription factors orchestrates signal-induced gene expression in diverse cell types. Cellular responses to NF-κB activation are regulated at the level of cell and signal specificity, as well as differential use of family members (subunit specificity). Here we used time-dependent multi-omics to investigate the selective functions of Rel and RelA, two closely related NF-κB proteins, in primary B lymphocytes activated via the B cell receptor. Despite large numbers of shared binding sites genome wide, Rel and RelA directed kinetically distinct cascades of gene expression in activated B cells. Single-cell RNA sequencing revealed marked heterogeneity of Rel- and RelA-specific responses, and sequential binding of these factors was not a major mechanism of protracted transcription. Moreover, nuclear co-expression of Rel and RelA led to functional antagonism between the factors. By rigorously identifying the target genes of each NF-κB subunit, these studies provide insights into exclusive functions of Rel and RelA in immunity and cancer.
Collapse
Affiliation(s)
- Mingming Zhao
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
- Type 2 Immunity Section, Laboratory of Parasitic Diseases National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Prashant Chauhan
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Cheryl A Sherman
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Amit Singh
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Mary Kaileh
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Krystyna Mazan-Mamczarz
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jaimy Joy
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Satabdi Nandi
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Supriyo De
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, USA
| | - Yongqing Zhang
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, USA
| | - Jinshui Fan
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, USA
| | - Kevin G Becker
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, USA
| | - Png Loke
- Type 2 Immunity Section, Laboratory of Parasitic Diseases National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ranjan Sen
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
5
|
Lecerf K, Koboldt DC, Kuehn HS, Jayaraman V, Lee K, Mihalic Mosher T, Yonkof JR, Mori M, Hickey SE, Franklin S, Drew J, Akoghlanian S, Sivaraman V, Rosenzweig SD, Wilson RK, Abraham RS. Case report and review of the literature: immune dysregulation in a large familial cohort due to a novel pathogenic RELA variant. Rheumatology (Oxford) 2022; 62:347-359. [PMID: 35412596 PMCID: PMC9960492 DOI: 10.1093/rheumatology/keac227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To explore and define the molecular cause(s) of a multi-generational kindred affected by Bechet's-like mucocutaneous ulcerations and immune dysregulation. METHODS Whole genome sequencing and confirmatory Sanger sequencing were performed. Components of the NFκB pathway were quantified by immunoblotting, and function was assessed by cytokine production (IL-6, TNF-α, IL-1β) after lipopolysaccharide (LPS) stimulation. Detailed immunophenotyping of T-cell and B-cell subsets was performed in four patients from this cohort. RESULTS A novel variant in the RELA gene, p. Tyr349LeufsTer13, was identified. This variant results in premature truncation of the protein before the serine (S) 536 residue, a key phosphorylation site, resulting in enhanced degradation of the p65 protein. Immunoblotting revealed significantly decreased phosphorylated [p]p65 and pIκBα. The decrease in [p]p65 may suggest reduced heterodimer formation between p50/p65 (NFκB1/RelA). Immunophenotyping revealed decreased naïve T cells, increased memory T cells, and expanded senescent T-cell populations in one patient (P1). P1 also had substantially higher IL-6 and TNF-α levels post-stimulation compared with the other three patients. CONCLUSION Family members with this novel RELA variant have a clinical phenotype similar to other reported RELA cases with predominant chronic mucocutaneous ulceration; however, the clinical phenotype broadens to include Behçet's syndrome and IBD. Here we describe the clinical, immunological and genetic evaluation of a large kindred to further expand identification of patients with autosomal dominant RELA deficiency, facilitating earlier diagnosis and intervention. The functional impairment of the canonical NFκB pathway suggests that this variant is causal for the clinical phenotype in these patients.
Collapse
Affiliation(s)
- Kelsey Lecerf
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital,Division of Allergy and Immunology, Department of Otolaryngology, The Ohio State University Wexner Medical Center
| | - Daniel C Koboldt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD
| | - Vijayakumar Jayaraman
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH
| | - Kristy Lee
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH,Department of Pathology, The Ohio State University Wexner College of Medicine, Columbus, OH
| | - Theresa Mihalic Mosher
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH,Ambry Genetics, Aliso Viejo, CA
| | | | - Mari Mori
- Division of Genetic and Genomic Medicine
| | | | - Samuel Franklin
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH
| | - Joanne Drew
- Division of Pediatric Rheumatology, Department of Pediatrics
| | | | - Vidya Sivaraman
- Division of Pediatric Rheumatology, Department of Pediatrics
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH
| | - Roshini S Abraham
- Correspondence to: Roshini S. Abraham, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH-43205, USA. E-mail:
| |
Collapse
|
6
|
Tortola L, Piattini F, Hausmann A, Ampenberger F, Rosenwald E, Heer S, Hardt WD, Rülicke T, Kisielow J, Kopf M. KappaBle fluorescent reporter mice enable low-background single-cell detection of NF-κB transcriptional activity in vivo. Mucosal Immunol 2022; 15:656-667. [PMID: 35589985 PMCID: PMC9259492 DOI: 10.1038/s41385-022-00525-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/25/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023]
Abstract
Nuclear factor-κB (NF-κB) is a transcription factor with a key role in a great variety of cellular processes from embryonic development to immunity, the outcome of which depends on the fine-tuning of NF-κB activity. The development of sensitive and faithful reporter systems to accurately monitor the activation status of this transcription factor is therefore desirable. To address this need, over the years a number of different approaches have been used to generate NF-κB reporter mice, which can be broadly subdivided into bioluminescence- and fluorescence-based systems. While the former enables whole-body visualization of the activation status of NF-κB, the latter have the potential to allow the analysis of NF-κB activity at single-cell level. However, fluorescence-based reporters frequently show poor sensitivity and excessive background or are incompatible with high-throughput flow cytometric analysis. In this work we describe the generation and analysis of ROSA26 knock-in NF-κB reporter (KappaBle) mice containing a destabilized EGFP, which showed sensitive, dynamic, and faithful monitoring of NF-κB transcriptional activity at the single-cell level of various cell types during inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Luigi Tortola
- Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland.
| | - Federica Piattini
- Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland
| | - Annika Hausmann
- Department of Biology, Institute of Microbiology, ETH, Zurich, Switzerland
| | - Franziska Ampenberger
- Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland
| | - Esther Rosenwald
- Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland
| | - Sebastian Heer
- Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland
| | | | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Jan Kisielow
- Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland
| | - Manfred Kopf
- Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland.
| |
Collapse
|
7
|
Zarate MA, De Dios RK, Balasubramaniyan D, Zheng L, Sherlock LG, Rozance PJ, Wright CJ. The Acute Hepatic NF-κB-Mediated Proinflammatory Response to Endotoxemia Is Attenuated in Intrauterine Growth-Restricted Newborn Mice. Front Immunol 2021; 12:706774. [PMID: 34539638 PMCID: PMC8440955 DOI: 10.3389/fimmu.2021.706774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a relevant predictor for higher rates of neonatal sepsis worldwide and is associated with an impaired neonatal immunity and lower immune cell counts. During the perinatal period, the liver is a key immunological organ responsible for the nuclear factor kappa B (NF-κB)-mediated innate immune response to inflammatory stimuli, but whether this role is affected by IUGR is unknown. Herein, we hypothesized that the newborn liver adapts to calorie-restriction IUGR by inducing changes in the NF-κB signaling transcriptome, leading to an attenuated acute proinflammatory response to intraperitoneal lipopolysaccharide (LPS). We first assessed the hepatic gene expression of key NF-κB factors in the IUGR and normally grown (NG) newborn mice. Real-time quantitative PCR (RT-qPCR) analysis revealed an upregulation of both IκB proteins genes (Nfkbia and Nfkbib) and the NF-κB subunit Nfkb1 in IUGR vs. NG. We next measured the LPS-induced hepatic expression of acute proinflammatory genes (Ccl3, Cxcl1, Il1b, Il6, and Tnf) and observed that the IUGR liver produced an attenuated acute proinflammatory cytokine gene response (Il1b and Tnf) to LPS in IUGR vs. unexposed (CTR). Consistent with these results, LPS-exposed hepatic tumor necrosis factor alpha (TNF-α) protein concentrations were lower in IUGR vs. LPS-exposed NG and did not differ from IUGR CTR. Sex differences at the transcriptome level were observed in the IUGR male vs. female. Our results demonstrate that IUGR induces key modifications in the NF-κB transcriptomic machinery in the newborn that compromised the acute proinflammatory cytokine gene and protein response to LPS. Our results bring novel insights in understanding how the IUGR newborn is immunocompromised due to fundamental changes in NF-κB key factors.
Collapse
Affiliation(s)
- Miguel A Zarate
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Robyn K De Dios
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Durganili Balasubramaniyan
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Laura G Sherlock
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Paul J Rozance
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
8
|
Constitutive activation of NF-κB during early bone marrow development results in loss of B cells at the pro-B-cell stage. Blood Adv 2021; 5:745-755. [PMID: 33560391 DOI: 10.1182/bloodadvances.2020002932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022] Open
Abstract
There is a considerable body of work exploring the role of NF-κB family of transcription factors in the maturation and functions of later stage B cells; however, their role in the earlier bone marrow stages of development is less well understood despite the demonstration that NF-κB activity is present at all early stages of B-cell development. To explore the consequences of early, B cell-targeted constitutive activation of both NF-κB pathways on B-cell development, we generated mice that have either or both. NF-κB pathways constitutively activated beginning in early pro-B cells. In marked contrast to activating a single pathway, we found mice with both pathways constitutively activated displayed a profound loss of B cells, starting with early pro-B cells and peaking at the late pro-B-cell stage, at least in part as a result of increased apoptosis. This effect was found to be cell autonomous and to have striking phenotypic consequences on the secondary lymphoid organs and circulating antibody levels. This effect was also found to be temporal in nature as similar activation under a Cre expressed later in development did not result in generation of a similar phenotype. Taken together, these findings help to shed further light on the need for tight regulation of the NF-κB family of transcription factors during the various stages of B-cell development in the bone marrow.
Collapse
|
9
|
Lalle G, Twardowski J, Grinberg-Bleyer Y. NF-κB in Cancer Immunity: Friend or Foe? Cells 2021; 10:355. [PMID: 33572260 PMCID: PMC7914614 DOI: 10.3390/cells10020355] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
The emergence of immunotherapies has definitely proven the tight relationship between malignant and immune cells, its impact on cancer outcome and its therapeutic potential. In this context, it is undoubtedly critical to decipher the transcriptional regulation of these complex interactions. Following early observations demonstrating the roles of NF-κB in cancer initiation and progression, a series of studies converge to establish NF-κB as a master regulator of immune responses to cancer. Importantly, NF-κB is a family of transcriptional activators and repressors that can act at different stages of cancer immunity. In this review, we provide an overview of the selective cell-intrinsic contributions of NF-κB to the distinct cell types that compose the tumor immune environment. We also propose a new view of NF-κB targeting drugs as a new class of immunotherapies for cancer.
Collapse
Affiliation(s)
| | | | - Yenkel Grinberg-Bleyer
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008 Lyon, France; (G.L.); (J.T.)
| |
Collapse
|
10
|
The many-sided contributions of NF-κB to T-cell biology in health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 361:245-300. [PMID: 34074496 DOI: 10.1016/bs.ircmb.2020.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
T cells (or T lymphocytes) exhibit a myriad of functions in immune responses, ranging from pathogen clearance to autoimmunity, cancer and even non-lymphoid tissue homeostasis. Therefore, deciphering the molecular mechanisms orchestrating their specification, function and gene expression pattern is critical not only for our comprehension of fundamental biology, but also for the discovery of novel therapeutic targets. Among the master regulators of T-cell identity, the functions of the NF-κB family of transcription factors have been under scrutiny for several decades. However, a more precise understanding of their pleiotropic functions is only just emerging. In this review we will provide a global overview of the roles of NF-κB in the different flavors of mature T cells. We aim at highlighting the complex and sometimes diverging roles of the five NF-κB subunits in health and disease.
Collapse
|
11
|
Shendy NAM, Raghu D, Roy S, Perry CH, Safi A, Branco MR, Homayouni R, Abell AN. Coordinated regulation of Rel expression by MAP3K4, CBP, and HDAC6 controls phenotypic switching. Commun Biol 2020; 3:475. [PMID: 32859943 PMCID: PMC7455715 DOI: 10.1038/s42003-020-01200-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Coordinated gene expression is required for phenotypic switching between epithelial and mesenchymal phenotypes during normal development and in disease states. Trophoblast stem (TS) cells undergo epithelial-mesenchymal transition (EMT) during implantation and placentation. Mechanisms coordinating gene expression during these processes are poorly understood. We have previously demonstrated that MAP3K4-regulated chromatin modifiers CBP and HDAC6 each regulate thousands of genes during EMT in TS cells. Here we show that CBP and HDAC6 coordinate expression of only 183 genes predicted to be critical regulators of phenotypic switching. The highest-ranking co-regulated gene is the NF-κB family member Rel. Although NF-κB is primarily regulated post-transcriptionally, CBP and HDAC6 control Rel transcript levels by binding Rel regulatory regions and controlling histone acetylation. REL re-expression in mesenchymal-like TS cells induces a mesenchymal-epithelial transition. Importantly, REL forms a feedback loop, blocking HDAC6 expression and nuclear localization. Together, our work defines a developmental program coordinating phenotypic switching. Noha Shendy et al. study the role of CBP and HDAC6 in phenotypic switching using trophoblast stem cells. They identify Rel, an NF-kB family member, to be transcriptionally coregulated by CBP and HDAC6. Surprisingly, Rel induces mesenchymal-epithelial transition and itself regulated Hdac6 expression and nuclear localization.
Collapse
Affiliation(s)
- Noha Ahmed Mohammed Shendy
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152, USA.,Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Deepthi Raghu
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152, USA
| | - Sujoy Roy
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, 48309-4482, USA
| | | | - Adiba Safi
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152, USA
| | - Miguel Ramos Branco
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Ramin Homayouni
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, 48309-4482, USA
| | - Amy Noel Abell
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152, USA.
| |
Collapse
|
12
|
Lisiero DN, Cheng Z, Tejera MM, Neldner BT, Warrick JW, Wuerzberger-Davis SM, Hoffmann A, Suresh M, Miyamoto S. IκBα Nuclear Export Enables 4-1BB-Induced cRel Activation and IL-2 Production to Promote CD8 T Cell Immunity. THE JOURNAL OF IMMUNOLOGY 2020; 205:1540-1553. [PMID: 32817348 DOI: 10.4049/jimmunol.2000039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]
Abstract
Optimal CD8 T cell immunity is orchestrated by signaling events initiated by TCR recognition of peptide Ag in concert with signals from molecules such as CD28 and 4-1BB. The molecular mechanisms underlying the temporal and spatial signaling dynamics in CD8 T cells remain incompletely understood. In this study, we show that stimulation of naive CD8 T cells with agonistic CD3 and CD28 Abs, mimicking TCR and costimulatory signals, coordinately induces 4-1BB and cRel to enable elevated cytosolic cRel:IκBα complex formation and subsequent 4-1BB-induced IκBα degradation, sustained cRel activation, heightened IL-2 production and T cell expansion. NfkbiaNES/NES CD8 T cells harboring a mutated IκBα nuclear export sequence abnormally accumulate inactive cRel:IκBα complexes in the nucleus following stimulation with agonistic anti-CD3 and anti-CD28 Abs, rendering them resistant to 4-1BB induced signaling and a disrupted chain of events necessary for efficient T cell expansion. Consequently, CD8 T cells in NfkbiaNES/NES mice poorly expand during viral infection, and this can be overcome by exogenous IL-2 administration. Consistent with cell-based data, adoptive transfer experiments demonstrated that the antiviral CD8 T cell defect in NfkbiaNES/NES mice was cell intrinsic. Thus, these results reveal that IκBα, via its unique nuclear export function, enables, rather than inhibits 4-1BB-induced cRel activation and IL-2 production to facilitate optimal CD8 T cell immunity.
Collapse
Affiliation(s)
- Dominique N Lisiero
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705
| | - Zhang Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90025
| | - Melba M Tejera
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706
| | - Brandon T Neldner
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706
| | - Jay W Warrick
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705; and
| | - Shelly M Wuerzberger-Davis
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90025
| | - M Suresh
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706;
| | - Shigeki Miyamoto
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705; .,University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Wisconsin Institute for Medical Research, Madison, WI 53705
| |
Collapse
|
13
|
Kraaijvanger R, Janssen Bonás M, Vorselaars ADM, Veltkamp M. Biomarkers in the Diagnosis and Prognosis of Sarcoidosis: Current Use and Future Prospects. Front Immunol 2020; 11:1443. [PMID: 32760396 PMCID: PMC7372102 DOI: 10.3389/fimmu.2020.01443] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Sarcoidosis is a heterogeneous disease in terms of presentation, duration, and severity. Due to this heterogeneity, it is difficult to align treatment decisions. Biomarkers have proved to be useful for the diagnosis and prognosis of many diseases, and over the years, many biomarkers have been proposed to facilitate diagnosis, prognosis, and treatment decisions. Unfortunately, the ideal biomarker for sarcoidosis has not yet been discovered. The most commonly used biomarkers are serum and bronchoalveolar lavage biomarkers, but these lack the necessary specificity and sensitivity. In sarcoidosis, therefore, a combination of these biomarkers is often used to establish a proper diagnosis or detect possible progression. Other potential biomarkers include imaging tools and cell signaling pathways. Fluor-18-deoxyglucose positron emission tomography and high-resolution computed tomography have been proven to be more sensitive for the diagnosis and prognosis of both pulmonary and cardiac sarcoidosis than the serum biomarkers ACE and sIL-2R. There is an upcoming role for exploration of signaling pathways in sarcoidosis pathogenesis. The JAK/STAT and mTOR pathways in particular have been investigated because of their role in granuloma formation. The activation of these signaling pathways also proved to be a specific biomarker for the prognosis of sarcoidosis. Furthermore, both imaging and cell signaling biomarkers also enable patients who might benefit from a particular type of treatment to be distinguished from those who will not. In conclusion, the diagnostic and prognostic path of sarcoidosis involves many different types of existing and new biomarker. Research addressing biomarkers and disease pathology is ongoing in order to find the ideal sensitive and specific biomarker for this disease.
Collapse
Affiliation(s)
- Raisa Kraaijvanger
- Department of Pulmonology, ILD Center of Excellence, St. Antonius Hospital, Nieuwegein, Netherlands
| | - Montse Janssen Bonás
- Department of Pulmonology, ILD Center of Excellence, St. Antonius Hospital, Nieuwegein, Netherlands
| | - Adriane D. M. Vorselaars
- Department of Pulmonology, ILD Center of Excellence, St. Antonius Hospital, Nieuwegein, Netherlands
| | - Marcel Veltkamp
- Department of Pulmonology, ILD Center of Excellence, St. Antonius Hospital, Nieuwegein, Netherlands
- Department of Pulmonology, University Medical Center, Utrecht, Netherlands
| |
Collapse
|
14
|
The Supernatant of Tonsil-Derived Mesenchymal Stem Cell Has Antiallergic Effects in Allergic Rhinitis Mouse Model. Mediators Inflamm 2020; 2020:6982438. [PMID: 32322164 PMCID: PMC7166282 DOI: 10.1155/2020/6982438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/12/2020] [Indexed: 01/09/2023] Open
Abstract
Methods We isolated T-MSCs from human palatine tonsil and evaluated the ingredients of T-MSCs-CM. The effect of T-MSCs-CM was evaluated in the AR mouse model that was randomly divided into five groups (negative control, positive control, and T-MSCs-CM treated (0.1 mg, 1 mg, and 10 mg)). To investigate the therapeutic effect, we analyzed rhinitis symptoms, serum immunoglobulin (Ig), inflammatory cells, and cytokine expression. We also assessed T cell receptor signal, including MAP kinase (ERK/JNK), p65, and NFAT1. Results We identified the increment of TGF-β1, PGE2, and HGF in the T-MSCs-CM. In an animal study, the T-MSCs-CM-treated group showed significantly reduced allergic symptoms and infiltration of eosinophils and neutrophils in the nasal mucosa, whereas there was no significant difference in total IgE and the OVA-specific IgE level. Additionally, we found that the 10 mg T-MSCs-CM-treated group showed a significantly decreased IL-4 mRNA expression, compared to the (+) Con group. In the analysis of T cell receptor signal, the phosphorylation of MAP kinases, translocation of p65, and activation of NFAT1 were inhibited after T-MSCs-CM. Conclusions Our findings suggest that T-MSCs-CM showed a partial immunomodulatory effect on the AR mouse model by the inhibition of T cell activation via MAP kinase, p65, and NFAT1.
Collapse
|
15
|
Zhu F, Zhang B, Li J, Zhu L. Effects of fermented feed on growth performance, immune response, and antioxidant capacity in laying hen chicks and the underlying molecular mechanism involving nuclear factor-κB. Poult Sci 2020; 99:2573-2580. [PMID: 32359593 PMCID: PMC7597451 DOI: 10.1016/j.psj.2019.12.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022] Open
Abstract
This study investigated the effects of fermented-feed diets on growth performance, immune status, and antioxidant responses in laying hen chicks and the underlying molecular mechanism, specifically, the role of the nuclear factor-κB (NF-κB) signaling pathway. A total of 80 healthy 14-day-old laying hen chicks were randomly divided into 4 treatments: basal diet (CON); basal diet supplemented with 7.5% fermented feed (FD); FD diet plus the NF-κB inhibitor BAY 11-7082 (FD + BAY); and FD diet plus the NF-κB inhibitor JSH-23 (FD + JSH). The NF-κB inhibitors were administered by intraperitoneal injection. The experiment lasted 21 D. Fermented feed supplementation significantly increased the body weight and average body weight gain of laying hen chicks but significantly decreased the feed conversion ratio. Additionally, fermented feed supplementation significantly increased mitogen-activated T-cell and B-cell proliferation in the peripheral blood, as well as elevated the serum concentrations of interleukin (IL)-1, IL-2, IL-4, IL-6, and tumor necrosis factor (TNF-α); however, NF-κB inhibition significantly reduced T-cell proliferation and serum IL-1, IL-6, and TNF-α levels. The levels of IgA, IgG, IgM, and Newcastle disease virus antibody in the serum were significantly increased by the addition of fermented feed. Furthermore, fermented feed supplementation significantly improved antioxidant function, as indicated by the increases of total antioxidant capacity, total superoxide dismutase activity, and glutathione peroxidase activity and the decrease of malonaldehyde level. However, NF-κB inhibition reversed these changes. Western blot analysis showed that fermented feed treatment increased splenic IκB kinase β and NF-κB protein levels, whereas these increases were prevented by NF-κB inhibition. In conclusion, fermented feed improves the growth performance, immune function, and antioxidant capacity of laying hen chicks. Fermented feed-induced modulation of T-cell proliferation, T helper type 1 and T helper type 2 cytokine production, and antioxidation is associated with NF-κB activation.
Collapse
Affiliation(s)
- Fenghua Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Beibei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Jin Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Lianqin Zhu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| |
Collapse
|
16
|
Li C, Yu J, Ai K, Li H, Zhang Y, Zhao T, Wei X, Yang J. IκBα phosphorylation and associated NF-κB activation are essential events in lymphocyte activation, proliferation, and anti-bacterial adaptive immune response of Nile tilapia. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103526. [PMID: 31655126 DOI: 10.1016/j.dci.2019.103526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
Inhibitory protein IκBα plays a crucial role in the inflammatory process and immune response by regulating the activity of transcription factor NF-κB. In teleost, great progress has been achieved regarding NF-κB signaling for innate immunity, but whether this pathway modulates adaptive immunity, and how, remains largely unclear. In this study, after characterizing the sequence, structure, and phylogeny of Nile tilapia Oreochromis niloticus IκBα (defined as On-IκBα), we investigated the association between IκBα-regulated NF-κB activation and the lymphocyte-mediated adaptive immune response in Nile tilapia. We found that On-IκBα was evolutionarily conserved, and its mRNA was expressed widely in various tissues, with most abundance in the trunk kidney. mRNA expression of On-IκBα was significantly upregulated in spleen at both innate and adaptive immune stages after Aeromonas hydrophila infection. Moreover, phosphorylation of On-IκBα and the downstream On-NF-κB p65 was obviously elevated in spleen leukocytes at 3, 5, or 8 days after A. hydrophila infection, indicating the activation of NF-κB signaling. Correlating with the augmented protein phosphorylation, leukocyte proliferation was enhanced during the same immune stage, suggesting the potential association of IκBα and IκBα-regulated NF-κB signaling in the primary adaptive immune response. Although lymphocyte activation by the T cell-specific mitogen PHA did not alter On-IκBα mRNA expression significantly, lymphocyte activation by the agonist PMA obviously elevated On-IκBα and OnNF-κB p65 phosphorylation in spleen leukocytes. Together, the results suggest that IκBα phosphorylation and its regulated NF-κB activation are essential events associated with lymphocyte activation, proliferation, and anti-bacterial adaptive immune response in Nile tilapia. Our study aids to understand the regulatory mechanism of adaptive immunity in teleost.
Collapse
Affiliation(s)
- Cheng Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Junkun Yu
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Huiying Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yu Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Tianyu Zhao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
17
|
Bagheri Y, Sanaei R, Yazdani R, Shekarabi M, Falak R, Mohammadi J, Abolhassani H, Aghamohammadi A. The Heterogeneous Pathogenesis of Selective Immunoglobulin A Deficiency. Int Arch Allergy Immunol 2019; 179:231-246. [DOI: 10.1159/000499044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/18/2019] [Indexed: 11/19/2022] Open
|
18
|
Ameratunga M, Kipps E, Okines AF, Lopez JS. To Cycle or Fight—CDK4/6 Inhibitors at the Crossroads of Anticancer Immunity. Clin Cancer Res 2018; 25:21-28. [DOI: 10.1158/1078-0432.ccr-18-1999] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/21/2018] [Accepted: 09/12/2018] [Indexed: 11/16/2022]
|
19
|
Yue Y, Stone S, Lin W. Role of nuclear factor κB in multiple sclerosis and experimental autoimmune encephalomyelitis. Neural Regen Res 2018; 13:1507-1515. [PMID: 30127103 PMCID: PMC6126134 DOI: 10.4103/1673-5374.237109] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The transcription factor nuclear factor κB (NF-κB) plays major roles in inflammatory diseases through regulation of inflammation and cell viability. Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS). It has been shown that NF-κB is activated in multiple cell types in the CNS of MS patients, including T cells, microglia/macrophages, astrocytes, oligodendrocytes, and neurons. Interestingly, data from animal model studies, particularly studies of experimental autoimmune encephalomyelitis, have suggested that NF-κB activation in these individual cell types has distinct effects on the development of MS. In this review, we will cover the current literature on NF-κB and the evidence for its role in the development of MS and its animal model experimental autoimmune encephalomyelitis.
Collapse
Affiliation(s)
- Yuan Yue
- Department of Neuroscience; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Sarrabeth Stone
- Department of Neuroscience; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Wensheng Lin
- Department of Neuroscience; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
20
|
Fu X, Xu M, Yao S, Zhang H, Zhang C, Zhang J. Staphylococcal enterotoxin C2 mutant drives T lymphocyte activation through PI3K/mTOR and NF-ĸB signaling pathways. Toxicol Appl Pharmacol 2017; 333:51-59. [DOI: 10.1016/j.taap.2017.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/28/2017] [Accepted: 08/10/2017] [Indexed: 11/29/2022]
|
21
|
Interference of Apoptosis by Hepatitis B Virus. Viruses 2017; 9:v9080230. [PMID: 28820498 PMCID: PMC5580487 DOI: 10.3390/v9080230] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/07/2017] [Accepted: 08/10/2017] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) causes liver diseases that have been a consistent problem for human health, leading to more than one million deaths every year worldwide. A large proportion of hepatocellular carcinoma (HCC) cases across the world are closely associated with chronic HBV infection. Apoptosis is a programmed cell death and is frequently altered in cancer development. HBV infection interferes with the apoptosis signaling to promote HCC progression and viral proliferation. The HBV-mediated alteration of apoptosis is achieved via interference with cellular signaling pathways and regulation of epigenetics. HBV X protein (HBX) plays a major role in the interference of apoptosis. There are conflicting reports on the HBV interference of apoptosis with the majority showing inhibition of and the rest reporting induction of apoptosis. In this review, we described recent studies on the mechanisms of the HBV interference with the apoptosis signaling during the virus infection and provided perspective.
Collapse
|
22
|
Ijaz T, Wakamiya M, Sun H, Recinos A, Tilton RG, Brasier AR. Generation and characterization of a novel transgenic mouse harboring conditional nuclear factor-kappa B/RelA knockout alleles. BMC DEVELOPMENTAL BIOLOGY 2016; 16:32. [PMID: 27662828 PMCID: PMC5034478 DOI: 10.1186/s12861-016-0135-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/13/2016] [Indexed: 12/22/2022]
Abstract
Background Nuclear Factor-Kappa B (NF-kB) is a family of transcription factors that are important in embryonic development, inflammation, epithelial-to-mesenchymal transition and cancer. The 65 kDa RelA subunit is the major transcriptional activator of the NF-kB pathways. Whole-body deficiency of RelA leads to massive apoptosis of liver hepatocytes and death in utero. To study the role of RelA in physiology and in disease states in a manner that circumvents this embryonic lethal phenotype, we have generated a mouse with RelA conditional knockout (CKO) alleles containing loxP sites that are deleted by activated Cre recombinase. Results We demonstrate that RelACKO/CKO mice are fertile, do not display any developmental defects and can be crossed with Cre-expressing mice to delete RelA in a temporal, tissue-specific manner. Our mating of RelACKO/CKO mice with Zp3-Cre transgenic led to embryonic lethality of RelA-deficient embryos. In contrast, mating of RelACKO/CKO mice with Col1α2-CreER mice allowed for the generation of double transgenics which could be stimulated with tamoxifen to induce fibroblast-specific RelA deletion in adulthood. Conclusions Based on our collective data, we conclude that this novel RelACKO/CKO mouse allows for efficient deletion of RelA in a tissue-specific manner. This RelACKO/CKO mouse will be an invaluable tool for deciphering the mechanistic roles of RelA in various cells and tissues during development and in disease. Electronic supplementary material The online version of this article (doi:10.1186/s12861-016-0135-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Talha Ijaz
- Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Maki Wakamiya
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Hong Sun
- Internal Medicine-Division of Endocrinology, University of Texas Medical Branch, Galveston, TX, USA
| | - Adrian Recinos
- Internal Medicine-Division of Endocrinology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ronald G Tilton
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA.,Internal Medicine-Division of Endocrinology, University of Texas Medical Branch, Galveston, TX, USA.,Sealy Center for Molecular Medicine, University of Texas Medical Branch, MRB 8.128, 301 University Blvd, Galveston, TX, 77555-1060, USA
| | - Allan R Brasier
- Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA. .,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA. .,Internal Medicine-Division of Endocrinology, University of Texas Medical Branch, Galveston, TX, USA. .,Sealy Center for Molecular Medicine, University of Texas Medical Branch, MRB 8.128, 301 University Blvd, Galveston, TX, 77555-1060, USA.
| |
Collapse
|
23
|
Differential requirements for the canonical NF-κB transcription factors c-REL and RELA during the generation and activation of mature B cells. Immunol Cell Biol 2016; 95:261-271. [PMID: 27649781 PMCID: PMC5360551 DOI: 10.1038/icb.2016.95] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/29/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022]
Abstract
Signaling through the canonical NF-κB pathway is critical for the generation and maintenance of mature B-cells and for antigen-dependent B-cell activation. c-REL (rel) and RELA (rela) are the downstream transcriptional activators of the canonical NF-κB pathway. Studies of B-cells derived from constitutional rel knockout mice and chimeric mice repopulated with rela−/− fetal liver cells provided evidence that the subunits can have distinct roles during B-cell development. However, the B-cell-intrinsic functions of c-REL and RELA during B-cell generation and antigen-dependent B-cell activation have not been determined in vivo. To clarify this issue, we crossed mice with conditional rel and rela alleles individually or in combination to mice that express Cre-recombinase in B-cells. We here report that, whereas single deletion of rel or rela did not impair mature B-cell generation and maintenance, their simultaneous deletion led to a dramatic reduction of follicular and marginal zone B-cells. Upon T-cell-dependent immunization, B-cell-specific deletion of the c-REL subunit alone abrogated the formation of germinal centers (GC), whereas rela deletion did not affect GC formation. T-independent responses were strongly impaired in mice with B-cell-specific deletion of rel, and only modestly in mice with RELA-deficient B-cells. Our findings identify differential requirements for the canonical NF-κB subunits c-REL and RELA at distinct stages of mature B-cell development. The subunits are jointly required for the generation of mature B-cells. During antigen-dependent B-cell activation, c-REL is the critical subunit required for the initiation of the GC-reaction and for optimal T-independent antibody responses, with RELA being largely dispensable at this stage.
Collapse
|
24
|
Naik E, Dixit VM. Usp9X Is Required for Lymphocyte Activation and Homeostasis through Its Control of ZAP70 Ubiquitination and PKCβ Kinase Activity. THE JOURNAL OF IMMUNOLOGY 2016; 196:3438-51. [PMID: 26936881 DOI: 10.4049/jimmunol.1403165] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/09/2016] [Indexed: 11/19/2022]
Abstract
To achieve a durable adaptive immune response, lymphocytes must undergo clonal expansion and induce a survival program that enables the persistence of Ag-experienced cells and the development of memory. During the priming phase of this response, CD4(+)T lymphocytes either remain tolerized or undergo clonal expansion. In this article, we show that Usp9X functions as a positive regulatory switch during T lymphocyte priming through removal of inhibitory monoubiquitination from ZAP70. In the absence of Usp9X, an increased amount of ZAP70 localized to early endosomes consistent with the role of monoubiquitin in endocytic sorting. Usp9X becomes competent to deubiquitinate ZAP70 through TCR-dependent phosphorylation and enhancement of its catalytic activity and association with the LAT signalosome. In B lymphocytes, Usp9X is required for the induction of PKCβ kinase activity after BCR-dependent activation. Accordingly, inUsp9Xknockout B cells, there was a significant reduction in phospho-CARMA1 levels that resulted in reduced CARMA1/Bcl-10/MALT-1 complex formation and NF-κB-dependent cell survival. The pleiotropic effect of Usp9X during Ag-receptor signaling highlights its importance for the development of an effective and durable adaptive immune response.
Collapse
Affiliation(s)
- Edwina Naik
- Department of Physiological Chemistry, Genentech, Inc., South San Francisco, CA 94080
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, Inc., South San Francisco, CA 94080
| |
Collapse
|
25
|
Unexpected functions of nuclear factor-κB during germinal center B-cell development: implications for lymphomagenesis. Curr Opin Hematol 2016; 22:379-87. [PMID: 26049760 DOI: 10.1097/moh.0000000000000160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW B-cell tumors originating from the transformation of germinal center B cells frequently harbor genetic mutations, leading to constitutive activation of the nuclear factor-κB (NF-κB) signaling pathway. The present review highlights recent insights into the roles of separate NF-κB transcription factors in germinal center B-cell development and discusses implications of the results for germinal center lymphomagenesis. RECENT FINDINGS Understanding how aberrant NF-κB activation promotes tumorigenesis requires the understanding of the role of NF-κB in the tumor-precursor cells. Despite extensive knowledge on NF-κB biology, the function of this complex signaling pathway in the differentiation of germinal center B cells is largely unknown. The present review will discuss recent findings that revealed distinct roles of separate NF-κB transcription factors during the germinal center reaction in the context of germinal center lymphomagenesis. Most notably, a single NF-κB subunit, c-REL, was found to be required for the maintenance of the germinal center reaction and was associated with the activation of a metabolic program that promotes cell growth. SUMMARY Identifying the biological roles of the separate NF-κB transcription factor subunits in germinal center biology will help to better understand the pathogenic consequences of their constitutive activation in B-cell tumors. This knowledge may be exploited for the development of targeted antitumor therapies aimed at inhibiting selectively those components of aberrant NF-κB activity which contribute to pathogenesis.
Collapse
|
26
|
NF-κB acts as a multifunctional modulator in bone invasion by oral squamous cell carcinoma. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/s1348-8643(15)00038-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Abstract
Glycosphingolipids (GSLs) are a family of bioactive lipids that in addition to their role in the regulation of structural properties of membrane bilayers have emerged as crucial players in many biological processes and signal transduction pathways. Rather than being uniformly distributed within membrane bilayers, GSLs are localized in selective domains called lipid rafts where many signaling platforms operate. One of the most important functions of GSLs, particularly ceramide, is their ability to regulate cell death pathways and hence cell fate. This complex role is accomplished by the ability of GSLs to act in distinct subcellular strategic centers, such as mitochondria, endoplasmic reticulum (ER) or lysosomes to mediate apoptosis, ER stress, autophagy, lysosomal membrane permeabilization and necroptosis. Hence better understanding the role of GSLs in cell death may be of relevance for a number of pathological processes and diseases, including neurodegeneration, metabolic liver diseases and cancer.
Collapse
|
28
|
The Role of the Transcriptional Regulation of Stromal Cells in Chronic Inflammation. Biomolecules 2015; 5:2723-57. [PMID: 26501341 PMCID: PMC4693255 DOI: 10.3390/biom5042723] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/23/2015] [Accepted: 10/09/2015] [Indexed: 01/02/2023] Open
Abstract
Chronic inflammation is a common process connecting pathologies that vary in their etiology and pathogenesis such as cancer, autoimmune diseases, and infections. The response of the immune system to tissue damage involves a carefully choreographed series of cellular interactions between immune and non-immune cells. In recent years, it has become clear that stromal resident cells have an essential role perpetuating the inflammatory environment and dictating in many cases the outcome of inflammatory based pathologies. Signal transduction pathways remain the main focus of study to understand how stimuli contribute to perpetuating the inflammatory response, mainly due to their potential role as therapeutic targets. However, molecular events orchestrated in the nucleus by transcription factors add additional levels of complexity and may be equally important for understanding the phenotypic differences of activated stromal components during the chronic inflammatory process. In this review, we focus on the contribution of transcription factors to the selective regulation of inducible proinflammatory genes, with special attention given to the regulation of the stromal fibroblastic cell function and response.
Collapse
|
29
|
Pedersen GK, Ádori M, Karlsson Hedestam GB. NF-κB signaling in B-1 cell development. Ann N Y Acad Sci 2015; 1362:39-47. [PMID: 26096766 DOI: 10.1111/nyas.12800] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
NF-κB transcription factors play essential roles in hematopoiesis. In this review, we summarize the requirements of different components of the NF-κB pathway for B-1 cell development and maintenance. The B-1 cell developmental steps are also reviewed, with particular emphasis on stages where NF-κB signaling may be critical.
Collapse
Affiliation(s)
- Gabriel K Pedersen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Monika Ádori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
30
|
Nugent MM, Lee K, He JC. HIPK2 is a new drug target for anti-fibrosis therapy in kidney disease. Front Physiol 2015; 6:132. [PMID: 25972814 PMCID: PMC4411988 DOI: 10.3389/fphys.2015.00132] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/13/2015] [Indexed: 11/13/2022] Open
Abstract
In vitro and animal studies continue to elucidate the mechanisms of fibrosis and have led to advancements in treatment for idiopathic pulmonary fibrosis and cirrhosis, but the search for treatments for renal fibrosis has been more disappointing. Here, we will discuss homeodomain-interacting-protein kinase 2 (HIPK2), a novel regulator of fibrosis that acts upstream of major fibrosis signaling pathways. Its key role in renal fibrosis has been validated in vitro and in several murine models of chronic kidney diseases (CKD).
Collapse
Affiliation(s)
- Melinda M Nugent
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Kyung Lee
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - John Cijiang He
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai New York, NY, USA ; Renal Section, James J. Peter Veterans Administration Medical Center New York, NY, USA
| |
Collapse
|
31
|
Impact on antibody responses of B-cell-restricted transgenic expression of a viral gene inhibiting activation of NF-κB and NFAT. Arch Virol 2015; 160:1477-88. [PMID: 25864175 DOI: 10.1007/s00705-015-2419-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
Abstract
In this work, we have assessed the impact in vivo of the evasion gene A238L of African swine fever virus, an inhibitor of both NF-κB- and NFAT-mediated transcription. The A238L gene was selectively expressed in mouse B lymphocytes using the promoter and enhancer sequences of the mouse Ig μ heavy chain. The IgM primary and IgG2b secondary serological responses and the number of splenic germinal centres in response to the TD antigens DNP-keyhole limpet hemocyanin and sheep red blood cells, respectively, were both lower in the transgenic mice, whereas the response to the TI type-1 and type-2 antigens DNP-Ficoll and DNP-LPS, respectively, were normal, except for the increased levels of IgG3 at day 14 in the DNP-LPS-immunized mice. Thus, it appears that neither p65 (NF-κB) nor NFAT is essential for B-cell development but, in a manner that is still unclear, may be relevant for their function.
Collapse
|
32
|
Lewis M, Vyse S, Shields A, Boeltz S, Gordon P, Spector T, Lehner P, Walczak H, Vyse T. UBE2L3 polymorphism amplifies NF-κB activation and promotes plasma cell development, linking linear ubiquitination to multiple autoimmune diseases. Am J Hum Genet 2015; 96:221-34. [PMID: 25640675 PMCID: PMC4320258 DOI: 10.1016/j.ajhg.2014.12.024] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022] Open
Abstract
UBE2L3 is associated with increased susceptibility to numerous autoimmune diseases, but the underlying mechanism is unexplained. By using data from a genome-wide association study of systemic lupus erythematosus (SLE), we observed a single risk haplotype spanning UBE2L3, consistently aligned across multiple autoimmune diseases, associated with increased UBE2L3 expression in B cells and monocytes. rs140490 in the UBE2L3 promoter region showed the strongest association. UBE2L3 is an E2 ubiquitin-conjugating enzyme, specially adapted to function with HECT and RING-in-between-RING (RBR) E3 ligases, including HOIL-1 and HOIP, components of the linear ubiquitin chain assembly complex (LUBAC). Our data demonstrate that UBE2L3 is the preferred E2 conjugating enzyme for LUBAC in vivo, and UBE2L3 is essential for LUBAC-mediated activation of NF-κB. By accurately quantifying NF-κB translocation in primary human cells from healthy individuals stratified by rs140490 genotype, we observed that the autoimmune disease risk UBE2L3 genotype was correlated with basal NF-κB activation in unstimulated B cells and monocytes and regulated the sensitivity of NF-κB to CD40 stimulation in B cells and TNF stimulation in monocytes. The UBE2L3 risk allele correlated with increased circulating plasmablast and plasma cell numbers in SLE individuals, consistent with substantially elevated UBE2L3 protein levels in plasmablasts and plasma cells. These results identify key immunological consequences of the UBE2L3 autoimmune risk haplotype and highlight an important role for UBE2L3 in plasmablast and plasma cell development.
Collapse
|
33
|
Understanding the Roles of the NF-κB Pathway in Regulatory T Cell Development, Differentiation and Function. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 136:57-67. [DOI: 10.1016/bs.pmbts.2015.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Sasaki Y, Iwai K. Roles of the NF-κB Pathway in B-Lymphocyte Biology. Curr Top Microbiol Immunol 2015; 393:177-209. [PMID: 26275874 DOI: 10.1007/82_2015_479] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
NF-κB was originally identified as a family of transcription factors that bind the enhancer of the immunoglobulin κ light-chain gene. Although its function in the regulation of immunoglobulin κ light-chain gene remains unclear, NF-κB plays critical roles in development, survival, and activation of B lymphocytes. In B cells, many receptors, including B-cell antigen receptor (BCR), activate NF-κB pathway, and the molecular mechanism of receptor-mediated activation of IκB kinase (IKK) complex has been partially revealed. In addition to normal B lymphocytes, NF-κB is also involved in the growth of some types of B-cell lymphomas, and many oncogenic mutations involved in constitutive activation of the NF-κB pathway were recently identified in such cancers. In this review, we first summarize the function of NF-κB in B-cell development and activation, and then describe recent progress in understanding the molecular mechanism of receptor-mediated activation of the IKK complex, focusing on the roles of the ubiquitin system. In the last section, we describe oncogenic mutations that induce NF-κB activation in B-cell lymphoma.
Collapse
Affiliation(s)
- Yoshiteru Sasaki
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
35
|
The Role of BMP Signaling and NF-κB Signaling on Osteoblastic Differentiation, Cancer Development, and Vascular Diseases—Is the Activation of NF-κB a Friend or Foe of BMP Function? BONE MORPHOGENIC PROTEIN 2015; 99:145-70. [DOI: 10.1016/bs.vh.2015.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
36
|
Mohan M, Kumar V, Lackner AA, Alvarez X. Dysregulated miR-34a-SIRT1-acetyl p65 axis is a potential mediator of immune activation in the colon during chronic simian immunodeficiency virus infection of rhesus macaques. THE JOURNAL OF IMMUNOLOGY 2014; 194:291-306. [PMID: 25452565 DOI: 10.4049/jimmunol.1401447] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Persistent gastrointestinal inflammation, a hallmark of progressive HIV/SIV infection, causes disruption of the gastrointestinal epithelial barrier, microbial translocation, and generalized immune activation/inflammation driving AIDS progression. Apart from protein regulators, recent studies strongly suggest critical roles for microRNAs (miRNAs) in regulating and managing certain aspects of the inflammatory process. To examine their immunoregulatory role, we profiled miRNA expression in the colon from 12 chronic SIV-infected and 4 control macaques. After applying multiple comparisons correction, 10 (3 upregulated and 7 downregulated) miRNAs showed differential expression. Most notably, miR-34a showed significant upregulation in both epithelial and lamina propria leukocyte (LPL) compartments. Intense γH2A.X expression in colonic epithelium and LPLs confirmed the contribution of DNA damage response in driving miR-34a upregulation. SIRT1 mRNA and protein decreased significantly in both colonic epithelium and LPLs. Luciferase reporter assays validated rhesus macaque SIRT1 as a direct miR-34a target. Decreased SIRT1 expression was associated with constitutively enhanced expression of the transcriptionally active form of the p65 (acetylated on lysine 310) subunit of NF-κB exclusively in the LPL compartment. The intensity and number of acetylated p65(+) cells was markedly elevated in LPLs of chronically SIV-infected macaques compared with uninfected controls and localized to increased numbers of IgA(+) and IgG(+) plasma cells. These findings provide new insights into the potential role of the miR-34a-SIRT1-p65 axis in causing hyperactivation of the intestinal B cell system. Our results point to a possible mechanism where the normal immunosuppressive function of SIRT1 is inhibited by elevated miR-34a expression resulting in constitutive activation of acetylated p65 (lysine 310).
Collapse
Affiliation(s)
- Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| | - Vinay Kumar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| | - Andrew A Lackner
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| | - Xavier Alvarez
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| |
Collapse
|
37
|
Heise N, De Silva NS, Silva K, Carette A, Simonetti G, Pasparakis M, Klein U. Germinal center B cell maintenance and differentiation are controlled by distinct NF-κB transcription factor subunits. ACTA ACUST UNITED AC 2014; 211:2103-18. [PMID: 25180063 PMCID: PMC4172226 DOI: 10.1084/jem.20132613] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Germinal centers (GCs) are the sites where memory B cells and plasma cells producing high-affinity antibodies are generated during T cell-dependent immune responses. The molecular control of GC B cell maintenance and differentiation remains incompletely understood. Activation of the NF-κB signaling pathway has been implicated; however, the distinct roles of the individual NF-κB transcription factor subunits are unknown. We report that GC B cell-specific deletion of the NF-κB subunits c-REL or RELA, which are both activated by the canonical NF-κB pathway, abolished the generation of high-affinity B cells via different mechanisms acting at distinct stages during the GC reaction. c-REL deficiency led to the collapse of established GCs immediately after the formation of dark and light zones at day 7 of the GC reaction and was associated with the failure to activate a metabolic program that promotes cell growth. Conversely, RELA was dispensable for GC maintenance but essential for the development of GC-derived plasma cells due to impaired up-regulation of BLIMP1. These results indicate that activation of the canonical NF-κB pathway in GC B cells controls GC maintenance and differentiation through distinct transcription factor subunits. Our findings have implications for the role of NF-κB in GC lymphomagenesis.
Collapse
Affiliation(s)
- Nicole Heise
- Herbert Irving Comprehensive Cancer Center, Department of Pathology and Cell Biology, and Department of Microbiology and Immunology, Columbia University, New York, NY 10032
| | - Nilushi S De Silva
- Herbert Irving Comprehensive Cancer Center, Department of Pathology and Cell Biology, and Department of Microbiology and Immunology, Columbia University, New York, NY 10032
| | - Kathryn Silva
- Herbert Irving Comprehensive Cancer Center, Department of Pathology and Cell Biology, and Department of Microbiology and Immunology, Columbia University, New York, NY 10032
| | - Amanda Carette
- Herbert Irving Comprehensive Cancer Center, Department of Pathology and Cell Biology, and Department of Microbiology and Immunology, Columbia University, New York, NY 10032
| | - Giorgia Simonetti
- Herbert Irving Comprehensive Cancer Center, Department of Pathology and Cell Biology, and Department of Microbiology and Immunology, Columbia University, New York, NY 10032
| | | | - Ulf Klein
- Herbert Irving Comprehensive Cancer Center, Department of Pathology and Cell Biology, and Department of Microbiology and Immunology, Columbia University, New York, NY 10032 Herbert Irving Comprehensive Cancer Center, Department of Pathology and Cell Biology, and Department of Microbiology and Immunology, Columbia University, New York, NY 10032 Herbert Irving Comprehensive Cancer Center, Department of Pathology and Cell Biology, and Department of Microbiology and Immunology, Columbia University, New York, NY 10032
| |
Collapse
|
38
|
Hirata-Tsuchiya S, Fukushima H, Katagiri T, Ohte S, Shin M, Nagano K, Aoki K, Morotomi T, Sugiyama G, Nakatomi C, Kokabu S, Doi T, Takeuchi H, Ohya K, Terashita M, Hirata M, Kitamura C, Jimi E. Inhibition of BMP2-induced bone formation by the p65 subunit of NF-κB via an interaction with Smad4. Mol Endocrinol 2014; 28:1460-70. [PMID: 25029242 DOI: 10.1210/me.2014-1094] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bone morphogenic proteins (BMPs) stimulate bone formation in vivo and osteoblast differentiation in vitro via a Smad signaling pathway. Recent findings revealed that the activation of nuclear factor-κB (NF-κB) inhibits BMP-induced osteoblast differentiation. Here, we show that NF-κB inhibits BMP signaling by directly targeting the Smad pathway. A selective inhibitor of the classic NF-κB pathway, BAY11-770682, enhanced BMP2-induced ectopic bone formation in vivo. In mouse embryonic fibroblasts (MEFs) prepared from mice deficient in p65, the main subunit of NF-κB, BMP2, induced osteoblastic differentiation via the Smad complex to a greater extent than that in wild-type MEFs. In p65(-/-) MEFs, the BMP2-activated Smad complex bound much more stably to the target element than that in wild-type MEFs without affecting the phosphorylation levels of Smad1/5/8. Overexpression of p65 inhibited BMP2 activity by decreasing the DNA binding of the Smad complex. The C-terminal region, including the TA2 domain, of p65 was essential for inhibiting the BMP-Smad pathway. The C-terminal TA2 domain of p65 associated with the MH1 domain of Smad4 but not Smad1. Taken together, our results suggest that p65 inhibits BMP signaling by blocking the DNA binding of the Smad complex via an interaction with Smad4. Our study also suggests that targeting the association between p65 and Smad4 may help to promote bone regeneration in the treatment of bone diseases.
Collapse
Affiliation(s)
- Shizu Hirata-Tsuchiya
- Department of Health Improvement (S.H.-T., G.S., C.N., S.K., H.T., E.J.) and Department of Oral Function (S.H.-T., T.M., C.K.), Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; Department of Physiological Science and Molecular Biology (H.F.), Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan; Division of Pathophysiology (T.K., S.O., M.S.), Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan; Section of Pharmacology (K.N., K.A., K.O.), Department of Bio-Matrix, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; Technology and Development Team for BioSignal Program (T.D.), Subteam for BioSignal Integration, RIKEN BioResource Center, Tsukuba-shi, Ibaraki 305-0074, Japan; Laboratory of Molecular and Cellular Biochemistry (M.H.), Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; and Center for Oral Biological Research (C.K., E.J.), Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The NF-κB family of inducible transcription factors is activated in response to a variety of stimuli. Amongst the best-characterized inducers of NF-κB are members of the TNF family of cytokines. Research on NF-κB and TNF have been tightly intertwined for more than 25 years. Perhaps the most compelling examples of the interconnectedness of NF-κB and the TNF have come from analysis of knock-out mice that are unable to activate NF-κB. Such mice die embryonically, however, deletion of TNF or TNFR1 can rescue the lethality thereby illustrating the important role of NF-κB as the key regulator of transcriptional responses to TNF. The physiological connections between NF-κB and TNF cytokines are numerous and best explored in articles focusing on a single TNF family member. Instead, in this review, we explore general mechanisms of TNF cytokine signaling, with a focus on the upstream signaling events leading to activation of the so-called canonical and noncanonical NF-κB pathways by TNFR1 and CD40, respectively.
Collapse
Affiliation(s)
- Matthew S Hayden
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA; Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| |
Collapse
|
40
|
Mise-Omata S, Alles N, Fukazawa T, Aoki K, Ohya K, Jimi E, Obata Y, Doi T. NF-κB RELA-deficient bone marrow macrophages fail to support bone formation and to maintain the hematopoietic niche after lethal irradiation and stem cell transplantation. Int Immunol 2014; 26:607-18. [DOI: 10.1093/intimm/dxu062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
41
|
Gasparini C, Celeghini C, Monasta L, Zauli G. NF-κB pathways in hematological malignancies. Cell Mol Life Sci 2014; 71:2083-102. [PMID: 24419302 PMCID: PMC11113378 DOI: 10.1007/s00018-013-1545-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 12/22/2022]
Abstract
The nuclear factor κB or NF-κB transcription factor family plays a key role in several cellular functions, i.e. inflammation, apoptosis, cell survival, proliferation, angiogenesis, and innate and acquired immunity. The constitutive activation of NF-κB is typical of most malignancies and plays a major role in tumorigenesis. In this review, we describe NF-κB and its two pathways: the canonical pathway (RelA/p50) and the non-canonical pathway (RelB/p50 or RelB/p52). We then consider the role of the NF-κB subunits in the development and functional activity of B cells, T cells, macrophages and dendritic cells, which are the targets of hematological malignancies. The relevance of the two pathways is described in normal B and T cells and in hematological malignancies, acute and chronic leukemias (ALL, AML, CLL, CML), B lymphomas (DLBCLs, Hodgkin's lymphoma), T lymphomas (ATLL, ALCL) and multiple myeloma. We describe the interaction of NF-κB with the apoptotic pathways induced by TRAIL and the transcription factor p53. Finally, we discuss therapeutic anti-tumoral approaches as mono-therapies or combination therapies aimed to block NF-κB activity and to induce apoptosis (PARAs and Nutlin-3).
Collapse
Affiliation(s)
- Chiara Gasparini
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Via dell'Istria 65/1, 34137, Trieste, Italy,
| | | | | | | |
Collapse
|
42
|
Co-Administration of Molecular Adjuvants Expressing NF-Kappa B Subunit p65/RelA or Type-1 Transactivator T-bet Enhance Antigen Specific DNA Vaccine-Induced Immunity. Vaccines (Basel) 2014; 2:196-215. [PMID: 26344618 PMCID: PMC4494262 DOI: 10.3390/vaccines2020196] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/31/2014] [Accepted: 02/28/2014] [Indexed: 12/26/2022] Open
Abstract
DNA vaccine-induced immunity can be enhanced by the co-delivery of synthetic gene-encoding molecular adjuvants. Many of these adjuvants have included cytokines, chemokines or co-stimulatory molecules that have been demonstrated to enhance vaccine-induced immunity by increasing the magnitude or type of immune responses and/or protective efficacy. In this way, through the use of adjuvants, immune responses can be highly customizable and functionally tailored for optimal efficacy against pathogen specific (i.e., infectious agent) or non-pathogen (i.e., cancer) antigens. In the novel study presented here, we examined the use of cellular transcription factors as molecular adjuvants. Specifically the co-delivery of (a) RelA, a subunit of the NF-κB transcription complex or (b) T-bet, a Th1-specific T box transcription factor, along with a prototypical DNA vaccine expressing HIV-1 proteins was evaluated. As well, all of the vaccines and adjuvants were administered to mice using in vivo electroporation (EP), a technology demonstrated to dramatically increase plasmid DNA transfection and subsequent transgene expression with concomitant enhancement of vaccine induced immune responses. As such, this study demonstrated that co-delivery of either adjuvant resulted in enhanced T and B cell responses, specifically characterized by increased T cell numbers, IFN-γ production, as well as enhanced antibody responses. This study demonstrates the use of cellular transcription factors as adjuvants for enhancing DNA vaccine-induced immunity.
Collapse
|
43
|
Alves BN, Tsui R, Almaden J, Shokhirev MN, Davis-Turak J, Fujimoto J, Birnbaum H, Ponomarenko J, Hoffmann A. IκBε is a key regulator of B cell expansion by providing negative feedback on cRel and RelA in a stimulus-specific manner. THE JOURNAL OF IMMUNOLOGY 2014; 192:3121-32. [PMID: 24591377 DOI: 10.4049/jimmunol.1302351] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The transcription factor NF-κB is a regulator of inflammatory and adaptive immune responses, yet only IκBα was shown to limit NF-κB activation and inflammatory responses. We investigated another negative feedback regulator, IκBε, in the regulation of B cell proliferation and survival. Loss of IκBε resulted in increased B cell proliferation and survival in response to both antigenic and innate stimulation. NF-κB activity was elevated during late-phase activation, but the dimer composition was stimulus specific. In response to IgM, cRel dimers were elevated in IκBε-deficient cells, yet in response to LPS, RelA dimers also were elevated. The corresponding dimer-specific sequences were found in the promoters of hyperactivated genes. Using a mathematical model of the NF-κB-signaling system in B cells, we demonstrated that kinetic considerations of IκB kinase-signaling input and IκBε's interactions with RelA- and cRel-specific dimers could account for this stimulus specificity. cRel is known to be the key regulator of B cell expansion. We found that the RelA-specific phenotype in LPS-stimulated cells was physiologically relevant: unbiased transcriptome profiling revealed that the inflammatory cytokine IL-6 was hyperactivated in IκBε(-/-) B cells. When IL-6R was blocked, LPS-responsive IκBε(-/-) B cell proliferation was reduced to near wild-type levels. Our results provide novel evidence for a critical role for immune-response functions of IκBε in B cells; it regulates proliferative capacity via at least two mechanisms involving cRel- and RelA-containing NF-κB dimers. This study illustrates the importance of kinetic considerations in understanding the functional specificity of negative-feedback regulators.
Collapse
Affiliation(s)
- Bryce N Alves
- Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Nupponen I, Kuuliala A, Siitonen S, Repo H, Kuuliala K. Cord Blood Monocytes, Neutrophils and Lymphocytes from Preterm and Full-Term Neonates Show Multiple Aberrations in Signalling Profiles Measured Using Phospho-Specific Whole-Blood Flow Cytometry. Scand J Immunol 2013; 78:426-38. [DOI: 10.1111/sji.12094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 06/25/2013] [Indexed: 11/29/2022]
Affiliation(s)
- I. Nupponen
- Department of Bacteriology and Immunology; Haartman Institute; University of Helsinki; Helsinki Finland
- Department of Neonatology; Hospital for Children and Adolescents; Helsinki University Central Hospital; Helsinki Finland
| | - A. Kuuliala
- Department of Bacteriology and Immunology; Haartman Institute; University of Helsinki; Helsinki Finland
| | - S. Siitonen
- Laboratory Services (HUSLAB); Helsinki University Central Hospital; Helsinki Finland
| | - H. Repo
- Department of Bacteriology and Immunology; Haartman Institute; University of Helsinki; Helsinki Finland
| | - K. Kuuliala
- Department of Bacteriology and Immunology; Haartman Institute; University of Helsinki; Helsinki Finland
| |
Collapse
|
45
|
Edgar AR, Judith PY, Elisa DSM, Rafael CR. Glucocorticoids and estrogens modulate the NF-κB pathway differently in the micro- and macrovasculature. Med Hypotheses 2013; 81:1078-82. [PMID: 24199951 DOI: 10.1016/j.mehy.2013.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
Abstract
Estrogens and glucocorticoids have synergistic effects in the micro and macrovasculature of endothelial cells (ECs), having pro-inflammatory effects in the former and inhibiting the expression of adhesion molecules in the latter. The molecular basis of these effects in the endothelium has not yet been clarified. We postulate that the ECs of the micro- and macrovasculature have different non-genomic mechanisms that regulate levels of preexisting complexes of glucocorticoids and estrogens with their respective receptors. Since these receptors are regulated by NF-κB, their expression could be critical to the activation of a pro- or anti-inflammatory response. In the macrovasculature the synergistic effects of estrogens and glucocorticoids on ECs may be through the inhibition of NF-κB, leading to the inhibition of the expression of inflammatory molecules. It seems likely that glucocorticoid-receptor and estrogen-receptor complexes directly bind to NF-κB proteins in the macrovasculature, resulting in the inhibition of an excessive proinflammatory response. Further insights into these processes may help clarify the role of the endothelial cells of different vascular beds during the inflammatory response and chronic inflammation, and thus contribute to the design of more effective therapeutic strategies for the prevention of diseases related to inflammation, including atherosclerosis, systemic lupus erythematosus and rheumatoid arthritis.
Collapse
Affiliation(s)
- Abarca-Rojano Edgar
- Laboratorio de Respiración Celular Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luıis y Díaz Mirón, México, D.F., Mexico.
| | | | | | | |
Collapse
|
46
|
Nuclear factor kappa B (NF-κB) in multiple sclerosis pathology. Trends Mol Med 2013; 19:604-13. [PMID: 24007818 DOI: 10.1016/j.molmed.2013.08.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/12/2013] [Accepted: 08/02/2013] [Indexed: 12/15/2022]
Abstract
The nuclear factor kappa B (NF-κB) signaling cascade plays a critical role in the regulation of immune and inflammatory responses and has been implicated in the pathogenesis of autoimmune demyelinating diseases such as multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), the main animal model of MS. NF-κB is essential for peripheral immune cell activation and the induction of pathology, but also plays crucial roles in resident cells of the central nervous system (CNS) during disease development. Here we review recent evidence clarifying the role of NF-κB in the different cell compartments contributing to MS pathology and its implications for the development of therapeutic strategies for the treatment of MS and other demyelinating pathologies of the CNS.
Collapse
|
47
|
Ramakrishnan P, Clark PM, Mason DE, Peters EC, Hsieh-Wilson LC, Baltimore D. Activation of the transcriptional function of the NF-κB protein c-Rel by O-GlcNAc glycosylation. Sci Signal 2013; 6:ra75. [PMID: 23982206 DOI: 10.1126/scisignal.2004097] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transcription factor nuclear factor κB (NF-κB) rapidly reprograms gene expression in response to various stimuli, and its activity is regulated by several posttranslational modifications, including phosphorylation, methylation, and acetylation. The addition of O-linked β-N-acetylglucosamine (a process known as O-GlcNAcylation) is an abundant posttranslational modification that is enhanced in conditions such as hyperglycemia and cellular stress. We report that the NF-κB subunit c-Rel is modified and activated by O-GlcNAcylation. We identified serine 350 as the site of O-GlcNAcylation, which was required for the DNA binding and transactivation functions of c-Rel. Blocking the O-GlcNAcylation of this residue abrogated c-Rel-mediated expression of the cytokine-encoding genes IL2, IFNG, and CSF2 in response to T cell receptor (TCR) activation, whereas increasing the extent of O-GlcNAcylation of cellular proteins enhanced the expression of these genes. TCR- or tumor necrosis factor (TNF)-induced expression of other NF-κB target genes, such as NFKBIA (which encodes IκBα) and TNFAIP3 (which encodes A20), occurred independently of the O-GlcNAcylation of c-Rel. Our findings suggest a stimulus-specific role for hyperglycemia-induced O-GlcNAcylation of c-Rel in promoting T cell-mediated autoimmunity in conditions such as type 1 diabetes by enhancing the production of T helper cell cytokines.
Collapse
|
48
|
Ghosh SK, McCormick TS, Eapen BL, Yohannes E, Chance MR, Weinberg A. Comparison of epigenetic profiles of human oral epithelial cells from HIV-positive (on HAART) and HIV-negative subjects. Epigenetics 2013; 8:703-9. [PMID: 23804146 PMCID: PMC3781189 DOI: 10.4161/epi.25028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
HIV-infected subjects on highly active antiretroviral therapy (HAART) are susceptible to comorbid microbial infections in the oral cavity. We observed that primary oral epithelial cells (POECs) isolated from HIV+ subjects on HAART grow more slowly and are less innate immune responsive to microbial challenge when compared with POECs from normal subjects. These aberrant cells also demonstrate epigenetic differences that include reduction in histone deacetylase 1 (HDAC-1) levels and reduced total DNA methyltransferase (DNMT) activity specific to enzymes DNMT1 and DNMT3A. The DNMT activity correlates well with global DNA methylation, indicating that aberrant DNMT activity in HIV+ (on HAART) POECs leads to an aberrantly methylated epithelial cell phenotype. Overall, our results lead us to hypothesize that, in patients with chronic HIV infection on HAART, epigenetic changes in key genes result in increased vulnerability to microbial infection in the oral cavity.
Collapse
Affiliation(s)
- Santosh K Ghosh
- Department of Biological Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Deletion of the NF-κB subunit p65/RelA in the hematopoietic compartment leads to defects in hematopoietic stem cell function. Blood 2013; 121:5015-24. [PMID: 23670180 DOI: 10.1182/blood-2013-02-486142] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hematopoiesis is a tightly regulated process resulting in the production of blood cells. Self-renewal and differentiation of hematopoietic stem cells (HSCs) are key processes in hematopoietic development. Disruption of these steps can lead to altered cell distribution and disease. To investigate the role of the nuclear factor-κB subunit RelA/p65 in the regulation of HSCs in vivo, we generated mice lacking RelA/p65 in the hematopoietic compartment. Using this model system, we show that loss of p65 severely impairs HSC function and occurs in conjunction with increased hematopoietic stem and progenitor cell cycling, extramedullary hematopoiesis, and differentiation defects. Gene array studies of phenotypic HSCs indicate the up-regulation of genes normally expressed in lineage restricted cells, as well as the down-regulation of genes involved in HSC maintenance and homeostasis. We hypothesize that changes in gene expression in p65-deficient cells lead to decreased self-renewal and differentiation efficiency of hematopoietic stem and progenitor cells. These studies demonstrate that p65 is an important regulator of hematopoiesis through the transcription of genes involved in HSC fate.
Collapse
|
50
|
Shi X, Wang X, Li Q, Su M, Chew E, Wong ET, Lacza Z, Radda GK, Tergaonkar V, Han W. Nuclear factor κB (NF-κB) suppresses food intake and energy expenditure in mice by directly activating the Pomc promoter. Diabetologia 2013; 56:925-36. [PMID: 23370526 DOI: 10.1007/s00125-013-2831-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/28/2012] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS While chronic low-grade inflammation is associated with obesity, acute inflammation reduces food intake and leads to negative energy balance. Although both types of inflammation activate nuclear factor κB (NF-κB) signalling, it remains unclear how NF-κB activation results in opposite physiological responses in the two types of inflammation. The goal of this study was to address this question, and to understand the link between inflammation and leptin signalling. METHODS We studied the ability of NF-κB to modulate Pomc transcription, and how it impinges on signal transducer and activator of transcription 3 (STAT3)-mediated leptin signalling by using a combination of animal models, biochemical assays and molecular biology. RESULTS We report that suppression of food intake and physical movement with acute inflammation is not dependent on STAT3 activation in pro-opiomelanocortin (POMC) neurons. Under these conditions, activated NF-κB independently leads to increased Pomc transcription. Electrophoretic mobility shift assay and chromatin immunoprecipitation (ChIP) experiments reveal that NF-κB v-rel reticuloendotheliosis viral oncogene homologue A (avian) (RELA [also known as p65]) binds to the Pomc promoter region between -138 and -88 bp, which also harbours the trans-acting transcription factor 1 (SP1) binding site. We found significant changes in the methylation pattern at this region and reduced Pomc activation under chronic inflammation induced by a high-fat diet. Furthermore, RELA is unable to bind and activate transcription when the Pomc promoter is methylated. Finally, RELA binds to STAT3 and inhibits STAT3-mediated promoter activity, suggesting that RELA, possibly together with forkhead box-containing protein 1 (FOXO1), may prevent STAT3-mediated leptin activation of the Pomc promoter. CONCLUSIONS/INTERPRETATION Our study provides a mechanism for the involvement of RELA in the divergent regulation of energy homeostasis in acute and chronic inflammation.
Collapse
Affiliation(s)
- X Shi
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, #02-02 Helios, 11 Biopolis Way, Singapore 138667, Republic of Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|