1
|
Blanco R, Muñoz JP. Molecular Insights into HR-HPV and HCMV Co-Presence in Cervical Cancer Development. Cancers (Basel) 2025; 17:582. [PMID: 40002177 PMCID: PMC11853276 DOI: 10.3390/cancers17040582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/27/2024] [Accepted: 11/03/2024] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Cervical cancer remains a significant health concern worldwide and the primary cause of cancerous cervical lesions is the infection with high-risk human papillomavirus (HR-HPV). However, emerging evidence suggests that HR-HPV infection alone is insufficient for cancer development, and other co-factors may contribute to cervical carcinogenesis. Human cytomegalovirus (HCMV), a common herpesvirus frequently detected in cervical cancer samples, has demonstrated oncogenic potential. OBJECTIVES This review aims to explore the molecular interactions between HR-HPV and HCMV in promoting cervical cancer progression. METHODS A comprehensive search was conducted in PubMed and Google Scholar, focusing on articles examining the role of HCMV in cervical tissues and/or cells, selected based on relevance and significance. RESULTS The reviewed literature indicates that HCMV and HR-HPV share several oncogenic mechanisms that could drive cervical cell transformation. CONCLUSIONS Both viruses may synergistically promote cervical epithelial transformation and tumor progression in multiple ways. HR-HPV may facilitate HCMV entry by increasing host cell receptors essential for viral attachment. Additionally, HR-HPV and HCMV may cooperatively disrupt cellular processes, enhancing carcinogenesis. Both viruses may also modulate the local immune environment, enabling immune evasion and lesion persistence. However, further in vitro and in vivo studies are required to validate these hypotheses.
Collapse
Affiliation(s)
- Rancés Blanco
- Independent Researcher, Av. Vicuña Mackenna Poniente 6315, La Florida 8240000, Chile
| | - Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| |
Collapse
|
2
|
Medica S, Denton M, Diggins NL, Kramer-Hansen O, Crawford LB, Mayo AT, Perez WD, Daily MA, Parkins CJ, Slind LE, Pung LJ, Weber WC, Jaeger HK, Streblow ZJ, Sulgey G, Kreklywich CN, Alexander T, Rosenkilde MM, Caposio P, Hancock MH, Streblow DN. Third intracellular loop of HCMV US28 is necessary for signaling and viral reactivation. J Virol 2025; 99:e0180124. [PMID: 39655954 PMCID: PMC11784217 DOI: 10.1128/jvi.01801-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/13/2024] [Indexed: 02/01/2025] Open
Abstract
The human cytomegalovirus (HCMV) encoded chemokine receptor US28 plays a critical role in viral pathogenesis, mediating several processes such as cellular migration, differentiation, transformation, and viral latency and reactivation. Despite significant research examining the signal transduction pathways utilized by US28, the precise mechanism by which US28 activates these pathways remains unclear. We performed a mutational analysis of US28 to identify signaling domains that are critical for functional activities. Our results indicate that specific residues within the third intracellular loop (ICL3) of US28 are major determinants of G-protein coupling and downstream signaling activity. Alanine substitutions at positions S218, K223, and R225 attenuated US28-mediated activation of MAPK and RhoA signal transduction pathways. Furthermore, we show that mutations at positions S218, K223, or R225 result in impaired coupling to multiple Gα isoforms. However, these substitutions did not affect US28 plasma membrane localization or the receptor internalization rate. Utilizing CD34+ HPC models, we demonstrate that attenuation of US28 signaling via mutation of residues within the ICL3 region results in an inability of the virus to efficiently reactivate from latency. These results were recapitulated in vivo, utilizing a humanized mouse model of HCMV infection. Together, our results provide new insights into the mechanism by which US28 manipulates host signaling networks to mediate viral latency and reactivation. The results reported here will guide the development of targeted therapies to prevent HCMV-associated disease.IMPORTANCEHuman cytomegalovirus (HCMV) is a β-herpesvirus that infects between 44% and 100% of the world population. Primary infection is typically asymptomatic and results in the establishment of latent infection within CD34+hematopoietic progenitor cells (HPCs). However, reactivation from latent infection remains a significant cause of morbidity and mortality in immunocompromised individuals. The viral chemokine receptor US28 influences various cellular processes crucial for viral latency and reactivation, yet the precise mechanism by which US28 functions remains unclear. Through mutational analysis, we identified key residues within the third intracellular loop (ICL3) of US28 that govern G-protein coupling, downstream signaling, and viral reactivation in vitro and in vivo. These findings offer novel insights into how US28 manipulates host signaling networks to regulate HCMV latency and reactivation and expand our understanding of HCMV pathogenesis.
Collapse
Affiliation(s)
- Samuel Medica
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Michael Denton
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Nicole L. Diggins
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Olivia Kramer-Hansen
- Department of Biomedical Sciences Molecular Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Lindsey B. Crawford
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Adam T. Mayo
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Wilma D. Perez
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Michael A. Daily
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Christopher J. Parkins
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Luke E. Slind
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Lydia J. Pung
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Whitney C. Weber
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Hannah K. Jaeger
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Zachary J. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Gauthami Sulgey
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Craig N. Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Timothy Alexander
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Mette M. Rosenkilde
- Department of Biomedical Sciences Molecular Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Meaghan H. Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, USA
| |
Collapse
|
3
|
Miller WE, O'Connor CM. CMV-encoded GPCRs in infection, disease, and pathogenesis. Adv Virus Res 2024; 118:1-75. [PMID: 38461029 DOI: 10.1016/bs.aivir.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
G protein coupled receptors (GPCRs) are seven-transmembrane domain proteins that modulate cellular processes in response to external stimuli. These receptors represent the largest family of membrane proteins, and in mammals, their signaling regulates important physiological functions, such as vision, taste, and olfaction. Many organisms, including yeast, slime molds, and viruses encode GPCRs. Cytomegaloviruses (CMVs) are large, betaherpesviruses, that encode viral GPCRs (vGPCRs). Human CMV (HCMV) encodes four vGPCRs, including UL33, UL78, US27, and US28. Each of these vGPCRs, as well as their rodent and primate orthologues, have been investigated for their contributions to viral infection and disease. Herein, we discuss how the CMV vGPCRs function during lytic and latent infection, as well as our understanding of how they impact viral pathogenesis.
Collapse
Affiliation(s)
- William E Miller
- Department of Molecular and Cellular Bioscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Christine M O'Connor
- Infection Biology, Sheikha Fatima bint Mubarak Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH, United States; Case Comprehensive Cancer Center, Cleveland, OH, United States.
| |
Collapse
|
4
|
Bebelman MP, Setiawan IM, Bergkamp ND, van Senten JR, Crudden C, Bebelman JPM, Verweij FJ, van Niel G, Siderius M, Pegtel DM, Smit MJ. Exosomal release of the virus-encoded chemokine receptor US28 contributes to chemokine scavenging. iScience 2023; 26:107412. [PMID: 37575190 PMCID: PMC10415803 DOI: 10.1016/j.isci.2023.107412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/22/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
The human cytomegalovirus (HCMV)-encoded chemokine receptor US28 contributes to various aspects of the viral life cycle and promotes immune evasion by scavenging chemokines from the microenvironment of HCMV-infected cells. In contrast to the plasma membrane localization of most human chemokine receptors, US28 has a predominant intracellular localization. In this study, we used immunofluorescence and electron microscopy to determine the localization of US28 upon exogenous expression, as well as in HCMV-infected cells. We observed that US28 localizes to late endosomal compartments called multivesicular bodies (MVBs), where it is sorted in intraluminal vesicles. Live-cell total internal reflection fluorescence (TIRF) microscopy revealed that US28-containing MVBs can fuse with the plasma membrane, resulting in the secretion of US28 on exosomes. Exosomal US28 binds the chemokines CX3CL1 and CCL5, and US28-containing exosomes inhibited the CX3CL1-CX3CR1 signaling axis. These findings suggest that exosomal release of US28 contributes to chemokine scavenging and immune evasion by HCMV.
Collapse
Affiliation(s)
- Maarten P. Bebelman
- Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
- Department Pathology, Cancer Center Amsterdam, VU University Medical Center, de Boelelaan 1118, Amsterdam 1081 HZ, the Netherlands
| | - Irfan M. Setiawan
- Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Nick D. Bergkamp
- Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Jeffrey R. van Senten
- Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Caitrin Crudden
- Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
- Department Pathology, Cancer Center Amsterdam, VU University Medical Center, de Boelelaan 1118, Amsterdam 1081 HZ, the Netherlands
| | - Jan Paul M. Bebelman
- Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Frederik J. Verweij
- Division of Cell Biology, Neurobiology and Biophysics, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Guillaume van Niel
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266 Université de Paris, Paris, France
| | - Marco Siderius
- Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - D. Michiel Pegtel
- Department Pathology, Cancer Center Amsterdam, VU University Medical Center, de Boelelaan 1118, Amsterdam 1081 HZ, the Netherlands
| | - Martine J. Smit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| |
Collapse
|
5
|
Bergkamp ND, van Senten JR, Brink HJ, Bebelman MP, van den Bor J, Çobanoğlu TS, Dinkla K, Köster J, Klau G, Siderius M, Smit MJ. A virally encoded GPCR drives glioblastoma through feed-forward activation of the SK1-S1P 1 signaling axis. Sci Signal 2023; 16:eade6737. [PMID: 37582160 DOI: 10.1126/scisignal.ade6737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 07/27/2023] [Indexed: 08/17/2023]
Abstract
The G protein-coupled receptor (GPCR) US28 encoded by the human cytomegalovirus (HCMV) is associated with accelerated progression of glioblastomas, aggressive brain tumors with a generally poor prognosis. Here, we showed that US28 increased the malignancy of U251 glioblastoma cells by enhancing signaling mediated by sphingosine-1-phosphate (S1P), a bioactive lipid that stimulates oncogenic pathways in glioblastoma. US28 expression increased the abundance of the key components of the S1P signaling axis, including an enzyme that generates S1P [sphingosine kinase 1 (SK1)], an S1P receptor [S1P receptor 1 (S1P1)], and S1P itself. Enhanced S1P signaling promoted glioblastoma cell proliferation and survival by activating the kinases AKT and CHK1 and the transcriptional regulators cMYC and STAT3 and by increasing the abundance of cancerous inhibitor of PP2A (CIP2A), driving several feed-forward signaling loops. Inhibition of S1P signaling abrogated the proliferative and anti-apoptotic effects of US28. US28 also activated the S1P signaling axis in HCMV-infected cells. This study uncovers central roles for S1P and CIP2A in feed-forward signaling that contributes to the US28-mediated exacerbation of glioblastoma.
Collapse
Affiliation(s)
- Nick D Bergkamp
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jeffrey R van Senten
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Hendrik J Brink
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Maarten P Bebelman
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jelle van den Bor
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tuğçe S Çobanoğlu
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Johannes Köster
- Algorithms for Reproducible Bioinformatics, Institute of Human Genetics, Faculty of Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Medical Oncology, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Gunnar Klau
- Algorithmic Bioinformatics, Department of Computer Science, Heinrich Heine University, Düsseldorf, Germany
| | - Marco Siderius
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
6
|
Bonavita CM, White TM, Francis J, Farrell HE, Davis-Poynter NJ, Cardin RD. The Viral G-Protein-Coupled Receptor Homologs M33 and US28 Promote Cardiac Dysfunction during Murine Cytomegalovirus Infection. Viruses 2023; 15:711. [PMID: 36992420 PMCID: PMC10054303 DOI: 10.3390/v15030711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that infects the majority of the world population and causes lifelong latent infection. HCMV has been shown to exacerbate cardiovascular diseases, including myocarditis, vascular sclerosis, and transplant vasculopathy. Recently, we have shown that murine CMV (MCMV) recapitulates the cardiovascular dysfunction observed in patients with HCMV-induced myocarditis. To understand the viral mechanisms involved in CMV-induced heart dysfunction, we further characterized cardiac function in response to MCMV and examined virally encoded G-protein-coupled receptor homologs (vGPCRs) US28 and M33 as potential factors that promote infection in the heart. We hypothesized that the CMV-encoded vGPCRs could exacerbate cardiovascular damage and dysfunction. Three viruses were used to evaluate the role of vGPCRs in cardiac dysfunction: wild-type MCMV, a M33-deficient virus (∆M33), and a virus with the M33 open reading frame (ORF) replaced with US28, an HCMV vGPCR (i.e., US28+). Our in vivo studies revealed that M33 plays a role in promoting cardiac dysfunction by increasing viral load and heart rate during acute infection. During latency, ΔM33-infected mice demonstrated reduced calcification, altered cellular gene expression, and less cardiac hypertrophy compared with wild-type MCMV-infected mice. Ex vivo viral reactivation from hearts was less efficient in ΔM33-infected animals. HCMV protein US28 expression restored the ability of the M33-deficient virus to reactivate from the heart. US28+ MCMV infection caused damage to the heart comparable with wild-type MCMV infection, suggesting that the US28 protein is sufficient to complement the function of M33 in the heart. Altogether, these data suggest a role for vGPCRs in viral pathogenesis in the heart and thus suggest that vGPCRs promote long-term cardiac damage and dysfunction.
Collapse
Affiliation(s)
- Cassandra M. Bonavita
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Timothy M. White
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Joseph Francis
- Department of Comparative Biological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Helen E. Farrell
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | | | - Rhonda D. Cardin
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
7
|
White TM, Bonavita CM, Stanfield BA, Farrell HE, Davis-Poynter NJ, Cardin RD. The CMV-encoded G protein-coupled receptors M33 and US28 play pleiotropic roles in immune evasion and alter host T cell responses. Front Immunol 2022; 13:1047299. [PMID: 36569845 PMCID: PMC9768342 DOI: 10.3389/fimmu.2022.1047299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Human cytomegalovirus (HCMV) is a global health threat due to its ubiquity and lifelong persistence in infected people. During latency, host CD8+ T cell responses to HCMV continue to increase in a phenomenon known as memory inflation. We used murine CMV (MCMV) as a model for HCMV to characterize the memory inflation response to wild-type MCMV (KP) and a latency-defective mutant (ΔM33stop), which lacks M33, an MCMV chemokine receptor homolog. M33 is essential for normal reactivation from latency and this was leveraged to determine whether reactivation in vivo contributes to T cell memory inflation. Methods Mice were infected with wild-type or mutant MCMV and T cell responses were analyzed by flow cytometry at acute and latent time points. Ex vivo reactivation and cytotoxicity assays were carried out to further investigate immunity and virus replication. Quantitative reverse-transcriptase polymerase chain reaction (q-RTPCR) was used to examine gene expression during reactivation. MHC expression on infected cells was analyzed by flow cytometry. Finally, T cells were depleted from latently-infected B cell-deficient mice to examine the in vivo difference in reactivation between wild-type and ΔM33stop. Results We found that ΔM33stop triggers memory inflation specific for peptides derived from the immediate-early protein IE1 but not the early protein m164, in contrast to wild-type MCMV. During ex vivo reactivation, gene expression in DM33stop-infected lung tissues was delayed compared to wild-type virus. Normal gene expression was partially rescued by substitution of the HCMV US28 open reading frame in place of the M33 gene. In vivo depletion of T cells in immunoglobulin heavy chain-knockout mice resulted in reactivation of wild-type MCMV, but not ΔM33stop, confirming the role of M33 during reactivation from latency. Further, we found that M33 induces isotype-specific downregulation of MHC class I on the cell surface suggesting previously unappreciated roles in immune evasion. Discussion Our results indicate that M33 is more polyfunctional than previously appreciated. In addition to its role in reactivation, which had been previously described, we found that M33 alters viral gene expression, host T cell memory inflation, and MHC class I expression. US28 was able to partially complement most functions of M33, suggesting that its role in HCMV infection may be similarly pleotropic.
Collapse
Affiliation(s)
- Timothy M. White
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Cassandra M. Bonavita
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Brent A. Stanfield
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Helen E. Farrell
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | | | - Rhonda D. Cardin
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, United States,*Correspondence: Rhonda D. Cardin,
| |
Collapse
|
8
|
Rosenkilde MM, Tsutsumi N, Knerr JM, Kildedal DF, Garcia KC. Viral G Protein-Coupled Receptors Encoded by β- and γ-Herpesviruses. Annu Rev Virol 2022; 9:329-351. [PMID: 35671566 PMCID: PMC9584139 DOI: 10.1146/annurev-virology-100220-113942] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herpesviruses are ancient large DNA viruses that have exploited gene capture as part of their strategy to escape immune surveillance, promote virus spreading, or reprogram host cells to benefit their survival. Most acquired genes are transmembrane proteins and cytokines, such as viral G protein-coupled receptors (vGPCRs), chemokines, and chemokine-binding proteins. This review focuses on the vGPCRs encoded by the human β- and γ-herpesviruses. These include receptors from human cytomegalovirus, which encodes four vGPCRs: US27, US28, UL33, and UL78; human herpesvirus 6 and 7 with two receptors: U12 and U51; Epstein-Barr virus with one: BILF1; and Kaposi's sarcoma-associated herpesvirus with one: open reading frame 74. We discuss ligand binding, signaling, and structures of the vGPCRs in light of robust differences from endogenous receptors. Finally, we briefly discuss the therapeutic targeting of vGPCRs as future treatment of acute and chronic herpesvirus infections. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark;
| | - Naotaka Tsutsumi
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Julius M Knerr
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark;
| | | | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology, and Structural Biology, and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA;
| |
Collapse
|
9
|
Davis-Poynter N, Farrell HE. Constitutive Signaling by the Human Cytomegalovirus G Protein Coupled Receptor Homologs US28 and UL33 Enables Trophoblast Migration In Vitro. Viruses 2022; 14:v14020391. [PMID: 35215985 PMCID: PMC8879092 DOI: 10.3390/v14020391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/26/2022] Open
Abstract
Human cytomegalovirus (HCMV) encodes four homologs of G protein coupled receptors (vGPCRs), of which two, designated UL33 and US28, signal constitutively. UL33 and US28 are also conserved with chemokine receptors: US28 binds numerous chemokine classes, including the membrane bound chemokine, fractalkine; whereas UL33 remains an orphan receptor. There is emerging data that UL33 and US28 each contribute to HCMV associated disease, although no studies to date have reported their potential contribution to aberrant placental physiology that has been detected with HCMV congenital infection. We investigated the signaling repertoire of UL33 and US28 and their potential to enable trophoblast mobilization in vitro. Results demonstrate the constitutive activation of CREB by each vGPCR in ACIM-88 and HTR-8SVneo trophoblasts; constitutive NF-kB activation was detected for US28 only. Constitutive signaling by each vGPCR enabled trophoblast migration. For US28, fractalkine exhibited inverse agonist activity and dampened trophoblast migration. UL33 stimulated expression of both p38 mitogen activated (MAP) and Jun N-terminal (JNK) kinases; while p38 MAP kinase stimulated CREB, JNK was inhibitory, suggesting that UL33 dependent CREB activation was regulated by p38/JNK crosstalk. Given that chemokines and their receptors are important for placental development, these data point to the potential of HCMV UL33 and US28 to interfere with trophoblast responses which are important for normal placental development.
Collapse
Affiliation(s)
- Nicholas Davis-Poynter
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia;
- Centre for Child Health Research, The University of Queensland, Brisbane 4000, Australia
| | - Helen E. Farrell
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia;
- Centre for Child Health Research, The University of Queensland, Brisbane 4000, Australia
- Correspondence:
| |
Collapse
|
10
|
Looi CK, Hii LW, Chung FFL, Mai CW, Lim WM, Leong CO. Roles of Inflammasomes in Epstein-Barr Virus-Associated Nasopharyngeal Cancer. Cancers (Basel) 2021; 13:1786. [PMID: 33918087 PMCID: PMC8069343 DOI: 10.3390/cancers13081786] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 02/05/2023] Open
Abstract
Epstein-Barr virus (EBV) infection is recognised as one of the causative agents in most nasopharyngeal carcinoma (NPC) cases. Expression of EBV viral antigens can induce host's antiviral immune response by activating the inflammasomes to produce pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and IL-18. These cytokines are known to be detrimental to a wide range of virus-infected cells, in which they can activate an inflammatory cell death program, called pyroptosis. However, aberrant inflammasome activation and production of its downstream cytokines lead to chronic inflammation that may contribute to various diseases, including NPC. In this review, we summarise the roles of inflammasomes during viral infection, how EBV evades inflammasome-mediated immune response, and progress into tumourigenesis. The contrasting roles of inflammasomes in cancer, as well as the current therapeutic approaches used in targeting inflammasomes, are also discussed in this review. While the inflammasomes appear to have dual roles in carcinogenesis, there are still many questions that remain unanswered. In particular, the exact molecular mechanism responsible for the regulation of the inflammasomes during carcinogenesis of EBV-associated NPC has not been explored thoroughly. Furthermore, the current practical application of inflammasome inhibitors is limited to specific tumour types, hence, further studies are warranted to discover the potential of targeting the inflammasomes for the treatment of NPC.
Collapse
Affiliation(s)
- Chin King Looi
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia; (C.K.L.); (L.-W.H.)
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
| | - Ling-Wei Hii
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia; (C.K.L.); (L.-W.H.)
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Felicia Fei-Lei Chung
- Mechanisms of Carcinogenesis Section (MCA), Epigenetics Group (EGE), International Agency for Research on Cancer World Health Organisation, CEDEX 08 Lyon, France;
| | - Chun-Wai Mai
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei-Meng Lim
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chee-Onn Leong
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
11
|
De Groof TWM, Elder EG, Siderius M, Heukers R, Sinclair JH, Smit MJ. Viral G Protein-Coupled Receptors: Attractive Targets for Herpesvirus-Associated Diseases. Pharmacol Rev 2021; 73:828-846. [PMID: 33692148 DOI: 10.1124/pharmrev.120.000186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Herpesviruses are ubiquitous pathogens that establish lifelong, latent infections in their host. Spontaneous reactivation of herpesviruses is often asymptomatic or clinically manageable in healthy individuals, but reactivation events in immunocompromised or immunosuppressed individuals can lead to severe morbidity and mortality. Moreover, herpesvirus infections have been associated with multiple proliferative cardiovascular and post-transplant diseases. Herpesviruses encode viral G protein-coupled receptors (vGPCRs) that alter the host cell by hijacking cellular pathways and play important roles in the viral life cycle and these different disease settings. In this review, we discuss the pharmacological and signaling properties of these vGPCRs, their role in the viral life cycle, and their contribution in different diseases. Because of their prominent role, vGPCRs have emerged as promising drug targets, and the potential of vGPCR-targeting therapeutics is being explored. Overall, these vGPCRs can be considered as attractive targets moving forward in the development of antiviral, cancer, and/or cardiovascular disease treatments. SIGNIFICANCE STATEMENT: In the last decade, herpesvirus-encoded G protein-coupled receptors (GPCRs) have emerged as interesting drug targets with the growing understanding of their critical role in the viral life cycle and in different disease settings. This review presents the pharmacological properties of these viral receptors, their role in the viral life cycle and different diseases, and the emergence of therapeutics targeting viral GPCRs.
Collapse
Affiliation(s)
- Timo W M De Groof
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Elizabeth G Elder
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Marco Siderius
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Raimond Heukers
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - John H Sinclair
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Martine J Smit
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| |
Collapse
|
12
|
Hu L, Wen Z, Chen J, Chen Y, Jin L, Shi H, Chen J, Chen J. The cytomegalovirus UL146 gene product vCXCL1 promotes the resistance of hepatic cells to CD8 + T cells through up-regulation of PD-L1. Biochem Biophys Res Commun 2020; 532:393-399. [PMID: 32883520 DOI: 10.1016/j.bbrc.2020.08.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 01/03/2023]
Abstract
The HCMV (human cytomegalovirus) encodes numerous proteins which function to evade the immune response, which allows the virus to replicate. Exploring the mechanisms of HCMV immune escape helps to find the strategy to inhibit HCMV replicate. CD8+ T cells play a critical role in the immune response to viral pathogens. However, the mechanisms of HCMV to evade the attack by CD8+ T cells remain largely unknown. Viral CXCL1 (vCXCL1) is the production of HCMV UL146 gene. Here, we found that vCXCL1 promoted the resistance of hepatic cells to CD8+ T cells. vCXCL1 increased the levels of PD-L1 protein expression and mRNA expression. VCXCL1 enhanced the binding of STAT3 transcription factor to the promoter of PD-L1 and increased the activity of PD-L1 promoter. Furthermore, down-regulation of PD-L1 reduced the effects of vCXCL1 on the resistance of hepatic cells to CD8+ T cells. Taken together, vCXCL1 promotes the resistance of hepatic cells to CD8+ T cells through up-regulation of PD-L1. This finding might provide a new mechanism of HCMV immune escape.
Collapse
Affiliation(s)
- Linglong Hu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Zhengwang Wen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Jingjing Chen
- Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Yiping Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Longteng Jin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Haifan Shi
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Junya Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Jie Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China.
| |
Collapse
|
13
|
The constitutive activity of the viral-encoded G protein-coupled receptor US28 supports a complex signalling network contributing to cancer development. Biochem Soc Trans 2020; 48:1493-1504. [PMID: 32779712 PMCID: PMC7458396 DOI: 10.1042/bst20190988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/05/2020] [Accepted: 07/14/2020] [Indexed: 12/23/2022]
Abstract
US28 is a viral G protein-coupled receptor (GPCR) encoded by the human cytomegalovirus (HCMV). This receptor, expressed both during lytic replication and viral latency, is required for latency. US28 is binding to a wide variety of chemokines but also exhibits a particularly high constitutive activity robustly modulating a wide network of cellular pathways altering the host cell environment to benefit HCMV infection. Several studies suggest that US28-mediated signalling may contribute to cancer progression. In this review, we discuss the unique structural characteristics that US28 acquired through evolution that confer a robust constitutive activity to this viral receptor. We also describe the wide downstream signalling network activated by this constitutive activation of US28 and discuss how these signalling pathways may promote and support important cellular aspects of cancer.
Collapse
|
14
|
Identification of a novel signaling complex containing host chemokine receptor CXCR4, Interleukin-10 receptor, and human cytomegalovirus US27. Virology 2020; 548:49-58. [PMID: 32838946 DOI: 10.1016/j.virol.2020.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 11/21/2022]
Abstract
Human cytomegalovirus (HCMV) is a widespread herpesvirus that establishes latency in myeloid cells and persists by manipulating immune signaling. Chemokine receptor CXCR4 and its ligand CXCL12 regulate movement of myeloid progenitors into bone marrow and out into peripheral tissues. HCMV amplifies CXCL12-CXCR4 signaling through viral chemokine receptor US27 and cmvIL-10, a viral cytokine that binds the cellular IL-10 receptor (IL-10R), but precisely how these viral proteins influence CXCR4 is unknown. We used the proximity ligation assay (PLA) to examine association of CXCR4, IL-10R, and US27 in both transfected and HCMV-infected cells. CXCR4 and IL-10R colocalized to discrete clusters, and treatment with CXCL12 and cmvIL-10 dramatically increased receptor clustering and calcium flux. US27 was associated with CXCR4 and IL-10R in PLA clusters and further enhanced cluster formation and calcium signaling. These results indicate that CXCR4, IL-10R, and US27 form a novel virus-host signaling complex that enhances CXCL12 signaling during HCMV infection.
Collapse
|
15
|
van Senten JR, Bebelman MP, van Gasselt P, Bergkamp ND, van den Bor J, Siderius M, Smit MJ. Human Cytomegalovirus-Encoded G Protein-Coupled Receptor UL33 Facilitates Virus Dissemination via the Extracellular and Cell-to-Cell Route. Viruses 2020; 12:v12060594. [PMID: 32486172 PMCID: PMC7354556 DOI: 10.3390/v12060594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) encodes four G protein-coupled receptor (GPCR) homologs. Three of these receptors, UL78, US27 and US28, are known for their roles in HCMV dissemination and latency. Despite importance of its rodent orthologs for viral replication and pathogenesis, such a function is not reported for the HCMV-encoded GPCR UL33. Using the clinical HCMV strain Merlin, we show that UL33 facilitates both cell-associated and cell-free virus transmission. A UL33-deficient virus derivative revealed retarded virus spread, formation of less and smaller plaques, and reduced extracellular progeny during multi-cycle growth analysis in fibroblast cultures compared to parental virus. The growth of UL33-revertant, US28-deficient, and US28-revertant viruses were similar to parental virus under multistep growth conditions. UL33- and US28-deficient Merlin viruses impaired cell-associated virus spread to a similar degree. Thus, the growth defect displayed by the UL33-deficient virus but not the US28-deficient virus reflects UL33's contribution to extracellular transmission. In conclusion, UL33 facilitates cell-associated and cell-free spread of the clinical HCMV strain Merlin in fibroblast cultures.
Collapse
|
16
|
van Senten JR, Fan TS, Siderius M, Smit MJ. Viral G protein-coupled receptors as modulators of cancer hallmarks. Pharmacol Res 2020; 156:104804. [PMID: 32278040 DOI: 10.1016/j.phrs.2020.104804] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
Herpesviruses encode transmembrane G protein-coupled receptors (GPCRs), which share structural homology to human chemokine receptors. These viral GPCRs include KSHV-encoded ORF74, EBV-encoded BILF1, and HCMV-encoded US28, UL33, UL78 and US27. Viral GPCRs hijack various signaling pathways and cellular networks, including pathways involved in the so-called cancer hallmarks as defined by Hanahan and Weinberg. These hallmarks describe cellular characteristics crucial for transformation and tumor progression. The cancer hallmarks involve growth factor-independent proliferation, angiogenesis, avoidance of apoptosis, invasion and metastasis, metabolic reprogramming, genetic instability and immune evasion amongst others. The role of beta herpesviruses modulating these cancer hallmarks is clearly highlighted by the proliferative and pro-angiogenic phenotype associated with KSHV infection which is largely ascribed to the ORF74-mediated modulation of signaling networks in host cells. For HCMV and Epstein-Bar encoded GPCRs, oncomodulatory effects have been described which contribute to the cancer hallmarks, thereby enhancing oncogenic development. In this review, we describe the main signaling pathways controlling the hallmarks of cancer which are affected by the betaherpesvirus encoded GPCRs. Most prominent among these involve the JAK-STAT, PI(3)K-AKT, NFkB and MAPK signaling nodes. These insights are important to effectively target these viral GPCRs and their signaling networks in betaherpesvirus-associated malignancies.
Collapse
Affiliation(s)
- Jeffrey R van Senten
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Tian Shu Fan
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Marco Siderius
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Bauer A, Madela J, Berg C, Daugvilaite V, Gurka S, Mages HW, Kroczek RA, Rosenkilde MM, Voigt S. Rat cytomegalovirus-encoded γ-chemokine vXCL1 is a highly adapted, species-specific agonist for rat XCR1-positive dendritic cells. J Cell Sci 2019; 133:jcs.236190. [PMID: 31649144 DOI: 10.1242/jcs.236190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) expressing the chemokine receptor XCR1 are specialized in antigen cross-presentation to control infections with intracellular pathogens. XCR1-positive (XCR1+) DCs are attracted by XCL1, a γ-chemokine secreted by activated CD8+ T cells and natural killer cells. Rat cytomegalovirus (RCMV) is the only virus known to encode a viral XCL1 analog (vXCL1) that competes for XCR1 binding with the endogenous chemokine. Here we show that vXCL1 from two different RCMV strains, as well as endogenous rat XCL1 (rXCL1) bind to and induce chemotaxis exclusively in rat XCR1+ DCs. Whereas rXCL1 activates the XCR1 Gi signaling pathway in rats and humans, both of the vXCL1s function as species-specific agonists for rat XCR1. In addition, we demonstrate constitutive internalization of XCR1 in XCR1-transfected HEK293A cells and in splenic XCR1+ DCs. This internalization was independent of β-arrestin 1 and 2 and was enhanced after binding of vXCL1 and rXCL1; however, vXCL1 appeared to be a stronger agonist. These findings suggest a decreased surface expression of XCR1 during DC cultivation at 37°C, and subsequent impairment of chemotactic activity and XCR1+ DC function.
Collapse
Affiliation(s)
- Agnieszka Bauer
- Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany
| | - Julia Madela
- Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany
| | - Christian Berg
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark.,Infectious Diseases Unit, Department of Medicine, Herlev-Gentofte Hospital, University of Copenhagen, 2730 Herlev, Denmark
| | - Viktorija Daugvilaite
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Stephanie Gurka
- Molecular Immunology, Robert Koch Institute, 13353 Berlin, Germany
| | - Hans Werner Mages
- Centre for biological threats and special pathogens, Robert Koch Institute, 13353 Berlin, Germany
| | | | - Mette M Rosenkilde
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sebastian Voigt
- Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany .,Department of Pediatric Oncology/Hematology/Stem Cell Transplantation, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
18
|
Cytomegalovirus is a tumor-associated virus: armed and dangerous. Curr Opin Virol 2019; 39:49-59. [PMID: 31525538 DOI: 10.1016/j.coviro.2019.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/05/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
Human cytomegalovirus (HCMV) gene products are present in multiple human malignancies, often in specific association with tumor cells and tumor vasculature. Emerging evidence from human and mouse models of CMV infection in cancer indicate that CMV can transform epithelial cells, promote epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial (MET) in tumor cells, promote tumor angiogenesis and proliferation and incapacitate the host anti-CMV immune response. This review will discuss the increasing role of HCMV in human cancer by demonstrating how HCMV is well suited for impacting major themes in oncogenesis including initiation, promotion, progression, metastasis and immune evasion. What emerges is a picture of an extremely versatile pathogen that may play a significant role in human cancer progression and death.
Collapse
|
19
|
Human cytomegalovirus infection is correlated with enhanced cyclooxygenase-2 and 5-lipoxygenase protein expression in breast cancer. J Cancer Res Clin Oncol 2019; 145:2083-2095. [PMID: 31203442 PMCID: PMC6658585 DOI: 10.1007/s00432-019-02946-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/27/2019] [Indexed: 01/26/2023]
Abstract
Purpose While enhanced expression of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LO) and their derived metabolites is associated with breast cancer (BC) risk, the precise link between BC carcinogenesis and enhanced inflammatory activity remains to be clarified. Human Cytomegalovirus (HCMV) may induce expression of COX-2 and 5-LO and is frequently found in breast cancer biopsies. Thus, we investigated whether there is an association between HCMV proteins and expression of COX-2 and 5-LO in human BC tissue and BC cell lines. Materials and methods Paraffin embedded biopsies obtained from 49 patients with breast cancer and 26 tissue samples from adjacent, benign breast tissues were retrospectively examined for HCMV-immediate early (IE), HCMV-Late (LA), COX-2, and 5-LO proteins by immunohistochemistry. In vitro, uninfected and HCMV-infected BC cell lines were examined for COX-2 and 5-LO transcripts and proteins by PCR and flow cytometry. Results Extensive expression of COX-2, 5-LO and HCMV-IE proteins were preferentially detected in BC samples. We found a statistically significant concordant correlation between extensive HCMV-IE and COX-2 (P < 0.0001) as well as with HCMV-IE and 5-LO (P = 0.0003) in infiltrating BC. In vitro, HCMV infection induced COX-2 and 5-LO transcripts and COX-2 proteins in MCF-7 cells (P =0.008, P =0.018, respectively). In MDA-MB-231 cells that already had high base line levels of COX-2 expression, HCMV induced both COX-2 and 5-LO proteins but not transcripts. Conclusion Our findings demonstrate a significant correlation between extensive HCMV-IE protein expression and overexpression of COX-2 and 5-LO in human breast cancer. Electronic supplementary material The online version of this article (10.1007/s00432-019-02946-8) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Frank T, Niemann I, Reichel A, Stamminger T. Emerging roles of cytomegalovirus-encoded G protein-coupled receptors during lytic and latent infection. Med Microbiol Immunol 2019; 208:447-456. [PMID: 30900091 DOI: 10.1007/s00430-019-00595-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/09/2019] [Indexed: 12/28/2022]
Abstract
Cytomegaloviruses (CMVs) have developed multiple diverse strategies to ensure their replicative success and to evade immune recognition. Given the fact that G protein-coupled receptors (GPCRs) are key regulators of numerous cellular processes and modify a variety of signaling pathways, it is not surprising that CMVs and other herpesviruses have hijacked mammalian GPCRs during their coevolution. Human cytomegalovirus (HCMV) encodes for four viral GPCR homologues (vGPCRs), termed US27, US28, UL33, and UL78. Although HCMV-encoded GPCRs were first described in 1990, the pivotal functions of these viral receptor proteins were detected only recently. Here, we summarize seminal knowledge on the functions of herpesviral vGPCRs with a focus on novel roles of cytomegalovirus-encoded vGPCRs for viral spread and the regulation of latency.
Collapse
Affiliation(s)
- Theresa Frank
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ina Niemann
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Reichel
- Institute for Virology, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Thomas Stamminger
- Institute for Virology, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
21
|
Abstract
Cytomegaloviruses (CMVs) are large, complex pathogens that persistently and systemically colonize most mammals. Human cytomegalovirus (HCMV) causes congenital harm, and has proved hard to control. One problem is that key vaccine targets - virus entry and spread in naive hosts - remain ill-defined. As CMVs predate human speciation, those of other mammals can provide new insight. Murine CMV (MCMV) enters new hosts via olfactory neurons. Like HCMV it binds to heparan, which is lacking from most differentiated apical epithelia but is displayed on olfactory neuronal cilia. It then spreads via infected dendritic cells (DCs), which migrate to draining lymph nodes (LNs), rejoin the circulation by entering high endothelial venules (HEVs), and extravasate into other tissues. This migration depends quantitatively on M33, a constitutively active viral G protein-coupled receptor (GPCR). The homologous US28 GPCR of HCMV can substitute for M33 in allowing MCMV-infected DCs to leave LNs via HEVs, so HCMV could potentially use the same route. The capacity of DCs to seed MCMV to tissues, and for other DCs to collect it for redistribution, suggest that DC recirculation chronically maintains and links diverse CMV reservoirs through lytic exchange.
Collapse
Affiliation(s)
- Helen E Farrell
- School of Chemistry and Molecular Biosciences and Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Philip G Stevenson
- School of Chemistry and Molecular Biosciences and Child Health Research Centre, University of Queensland, Brisbane, Australia
| |
Collapse
|
22
|
Roles of GP33, a guinea pig cytomegalovirus-encoded G protein-coupled receptor homolog, in cellular signaling, viral growth and inflammation in vitro and in vivo. PLoS Pathog 2018; 14:e1007487. [PMID: 30571759 PMCID: PMC6319746 DOI: 10.1371/journal.ppat.1007487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 01/04/2019] [Accepted: 11/27/2018] [Indexed: 11/23/2022] Open
Abstract
Cytomegaloviruses (CMVs) encode cellular homologs to evade host immune functions. In this study, we analyzed the roles of GP33, a guinea pig CMV (GPCMV)-encoded G protein-coupled receptor (GPCR) homolog, in cellular signaling, viral growth and pathogenesis. The cDNA structure of GP33 was determined by RACE. The effects of GP33 on some signaling pathways were analyzed in transient transfection assays. The redET two-step recombination system for a BAC containing the GPCMV genome was used to construct a mutant GPCMV containing an early stop codon in the GP33 gene (Δ33) and a rescued GPCMV (r33). We found the following: 1) GP33 activated the CRE- and NFAT-, but not the NFκB-mediated signaling pathway. 2) GP33 was dispensable for infection in tissue cultures and in normal animals. 3) In pregnant animals, viral loads of r33 in the livers, lungs, spleens, and placentas at 6 days post-infection were higher than those of Δ33, although the viruses were cleared by 3 weeks post-infection. 4) The presence of GP33 was associated with frequent lesions, including alveolar hemorrhage in the lungs, and inflammation in the lungs, livers, and spleens of the dams. Our findings suggest that GP33 has critical roles in the pathogenesis of GPCMV during pregnancy. We hypothesize that GP33-mediated signaling activates cytokine secretion from the infected cells, which results in inflammation in some of the maternal organs and the placentas. Alternatively, GP33 may facilitate transient inflammation that is induced by the chemokine network specific to the pregnancy. Cytomegalovirus (CMV) is a major pathogen that causes congenital diseases, including birth defects and developmental abnormalities in newborns. Better understanding of the immune evasion mechanisms may open the way to the development of new types of live attenuated vaccines for congenital CMV infection. In contrast to murine and rat CMVs, guinea pig CMV (GPCMV) causes infection in utero, which makes GPCMV animal models a useful tool for understanding the pathogenesis of congenital infection and evaluation of vaccine strategies. By constructing a GPCMV mutant lacking GP33, a viral G protein-coupled receptor homolog, this study found that GP33 was involved in the induction of significant inflammatory responses in pregnant but not in normal animals. As GP33 activated the NFAT- and CRE-, but not the NFκB-signal pathway, it is plausible that GP33 enhanced cytokine expression, which results in pathogenic outcomes in the maternal organs and placentas.
Collapse
|
23
|
The Human Cytomegalovirus US27 Gene Product Constitutively Activates Antioxidant Response Element-Mediated Transcription through G βγ, Phosphoinositide 3-Kinase, and Nuclear Respiratory Factor 1. J Virol 2018; 92:JVI.00644-18. [PMID: 30209167 DOI: 10.1128/jvi.00644-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/28/2018] [Indexed: 12/23/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that modulates host chemokine signaling during persistent infection in the host. HCMV encodes four proteins with homology to the chemokine receptor family of G protein-coupled receptors (GPCRs): US27, US28, UL33, and UL78. Each of the four receptors modulates host CXCR4 signaling. US28, UL33, and UL78 impair CXCR4 signaling outcomes, while US27 enhances signaling, as evidenced by increased calcium mobilization and cell migration to CXCL12. To investigate the effects of US27 on CXCR4 during virus infection, fibroblasts were infected with bacterial artificial chromosome-derived clinical strain HCMV TB40/E-mCherry (wild type [WT]), mutants lacking US27 (TB40/E-mCherry-US27Δ [US27Δ]) or all four GPCRs (TB40 E-mCherry-allΔ), or mutants expressing only US27 but not US28, UL33, or UL78 (TB40/E-mCherry-US27wt [US27wt]). CXCR4 gene expression was significantly higher in WT- and US27wt-infected fibroblasts. This effect was evident at 3 h postinfection, suggesting that US27 derived from the parental virion enhanced CXCR4 expression. Reporter gene assays demonstrated that US27 increased transcriptional activity regulated by the antioxidant response element (ARE), and small interfering RNA treatment indicated that this effect was mediated by NRF-1, the primary transcription factor for CXCR4. Increased translocation of NRF-1 into the nucleus of WT-infected cells compared to mock- or US27Δ-infected cells was confirmed by immunofluorescence microscopy. Chemical inhibitors targeting Gβγ and phosphoinositide 3-kinase (PI3K) ablated the increase in ARE-driven transcription, implicating these proteins as mediators of US27-stimulated gene transcription. This work identifies the first signaling pathway activated by HCMV US27 and may reveal a novel regulatory function for this orphan viral receptor in stimulating stress response genes during infection.IMPORTANCE Human cytomegalovirus (HCMV) is the most common congenital infection worldwide, causing deafness, blindness, and other serious birth defects. CXCR4 is a human chemokine receptor that is crucial for both fetal development and immune responses. We found that the HCMV protein US27 stimulates increased expression of CXCR4 through activation of the transcription factor nuclear respiratory factor 1 (NRF-1). NRF-1 regulates stress response genes that contain the antioxidant response element (ARE), and HCMV infection is associated with increased expression of many stress response genes when US27 is present. Our results show that the US27 protein activates the NRF-1/ARE pathway, stimulating higher expression of CXCR4 and other stress response genes, which is likely to be beneficial for virus replication and/or immune evasion.
Collapse
|
24
|
Krishna BA, Miller WE, O'Connor CM. US28: HCMV's Swiss Army Knife. Viruses 2018; 10:E445. [PMID: 30127279 PMCID: PMC6116241 DOI: 10.3390/v10080445] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/08/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
US28 is one of four G protein coupled receptors (GPCRs) encoded by human cytomegalovirus (HCMV). The US28 protein (pUS28) is a potent signaling molecule that alters a variety of cellular pathways that ultimately alter the host cell environment. This viral GPCR is expressed not only in the context of lytic replication but also during viral latency, highlighting its multifunctional properties. pUS28 is a functional GPCR, and its manipulation of multiple signaling pathways likely impacts HCMV pathogenesis. Herein, we will discuss the impact of pUS28 on both lytic and latent infection, pUS28-mediated signaling and its downstream consequences, and the influence this viral GPCR may have on disease states, including cardiovascular disease and cancer. We will also discuss the potential for and progress towards exploiting pUS28 as a novel therapeutic to combat HCMV.
Collapse
Affiliation(s)
- Benjamin A Krishna
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - William E Miller
- Department of Molecular Genetics, Biochemistry, & Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA.
| | - Christine M O'Connor
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
25
|
Abstract
Alveolar soft part sarcoma (ASPS) is an exquisitely rare sarcoma of unknown histogenesis, with a predilection for adolescents and young adults, characterized by slow progressive clinical course and high frequency of metastases. They are traditionally chemoresistant with very limited treatment options in the metastatic setting. Human cytomegalovirus (HCMV) is a DNA β-herpes virus and it is characterized by persistent lifelong and latent infection. There is growing evidence to indicate the presence of HCMV proteins and nucleic acids in glioblastoma, medulloblastoma, rhabdomyosarcoma, and a variety of solid organ malignancies of the breast, prostate, lung, and colon at very high prevalence. Immunotherapy-based clinical trials targeting specific cytomegalovirus proteins are currently in progress in the treatment of glioblastoma. Herein, we evaluated for the presence of HCMV proteins (IE1 and pp65), genes (US28 and UL96), and RNA in a cohort of ASPS. Six confirmed cases of ASPS were retrieved and full thickness sections of formalin-fixed paraffin-embedded material were stained for anti-HMCV-IE1 and anti-HCMV-pp65. Any nuclear and/or cytoplasmic staining was considered positive. DNA was purified from 50 µm of formalin-fixed paraffin-embedded material. One hundred nanogram of DNA was amplified using polymerase chain reaction for primers specific to HCMV-US28 (forward: AGCGTGCCGTGTACGTTAC and reverse: ATAAAGACAAGCACGACC) and HCMV-UL96 (forward: ACAGCTCTTAAAGGACGTGATGCG and reverse: ACCGTGTCCTTCAGCTCGGTTAAA) using Promega Taq polymerase. HCMV in situ hybridization was performed. All 6 cases of ASPS were positive for both HCMV-IE1 and HCMV-pp65. Usable DNA was available in 4 of the 6 cases. HCMV-US28 gene was found in 75% (3/4) of cases and HCMV-UL96 gene was detected in 50% (2/4) of cases. Importantly, all cases tested positive for at least 1 gene. HCMV-encoded RNA was identified in 80% (4/5) of cases. The presence of HCMV DNA, RNA along with HCMV protein indicates that HCMV is present in ASPS and may contribute to its pathogenesis.
Collapse
|
26
|
Itoh A, Sadanari H, Takemoto M, Matsubara K, Daikoku T, Murayama T. Tricin inhibits the CCL5 induction required for efficient growth of human cytomegalovirus. Microbiol Immunol 2018; 62:341-347. [PMID: 29603339 DOI: 10.1111/1348-0421.12590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 11/27/2022]
Abstract
Treatment of human embryonic lung fibroblast (HEL) cells with tricin (4', 5, 7-trihydroxy-3', 5'-dimethoxyflavone) following infection with human cytomegalovirus (HCMV) reportedly significantly suppresses HCMV replication. In the present work, the mechanisms for the anti-HCMV effects of tricin in HEL cells were examined. It was found that exposure of HEL cells to tricin inhibited HCMV replication, with concomitant decreases in amounts of transcripts of the CC chemokine RANTES (CCL5)-encoding gene and in expression of the CCL5 protein. It was also found that transcripts of HCMV immediate early 1 (IE1), and HCMV UL54 (encoding DNA polymerase) and replication of HCMV was significantly lower in CCL5 gene-knockdown cells. These results suggest that the anti-HCMV activity of tricin differs from that of ganciclovir and that CCL5 is one of the chemokines involved in HCMV replication. In addition, it is possible that chemokine CCL5 is one of the targets of tricin.
Collapse
Affiliation(s)
- Akimasa Itoh
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Hidetaka Sadanari
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Masaya Takemoto
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Keiko Matsubara
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Tohru Daikoku
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Tsugiya Murayama
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| |
Collapse
|
27
|
Fujimoto KJ, Nema D, Ninomiya M, Koketsu M, Sadanari H, Takemoto M, Daikoku T, Murayama T. An in silico-designed flavone derivative, 6-fluoro-4'-hydroxy-3',5'-dimetoxyflavone, has a greater anti-human cytomegalovirus effect than ganciclovir in infected cells. Antiviral Res 2018; 154:10-16. [PMID: 29559264 DOI: 10.1016/j.antiviral.2018.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 11/24/2022]
Abstract
A novel type of antiviral agent for human cytomegalovirus (HCMV) is required, because the appearance of ganciclovir (GCV) resistant viruses has been reported. Tricin (4',5,7-trihydroxy-3',5'-dimethoxyflavone) has been shown to suppress significantly HCMV replication in human embryonic lung (HEL) fibroblast cells. Recently, we revealed that the action of tricin is different from that of GCV and cyclin-dependent kinase 9 (CDK9) is one of the target proteins of tricin. These results suggested that tricin is considered as a novel type of anti-HCMV agent. However, its anti-HCMV potency is not greater than that of GCV. This study tried to develop novel compounds with much greater anti-HCMV activity than GCV. We first made modifications to tricin by introducing fluorine atom, and then performed molecular docking simulations using the designed compounds and CDK9. The calculated binding energies showed that 6F-tricin (6-fluoro-4'-hydroxy-3',5'-dimetoxyflavone) binds to CDK9 much stronger than tricin. Based on these results, 6F-tricin was synthesized, and then its anti-HCMV effect was analyzed in HEL cell cultures. As a result, 6F-tricin strongly suppressed HCMV replication in a dose-dependent manner. The anti-HCMV activity with a 50% effective concentration (EC50) was 0.126 nM, corresponding to about 1/200 and 1/400 of EC50 of GCV (27.5 nM) and tricin (54.3 nM), respectively. Moreover, 6F-tricin had no cytotoxicity against HEL cells at concentrations up to 10 μM. We further performed detailed analysis on the amino acid contributions to the binding energies and found that the strong binding affinity for 6F-tricin to CDK9 is attributed to the specific binding orientation of 6F-tricin in the ATP-binding site. These results suggest that 6F-tricin is a promising candidate for anti-HCMV drug development.
Collapse
Affiliation(s)
- Kazuhiro J Fujimoto
- Center for Basic Education, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Daiki Nema
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Masayuki Ninomiya
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Hidetaka Sadanari
- Center for Basic Education, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Masaya Takemoto
- Center for Basic Education, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Tohru Daikoku
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Tsugiya Murayama
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan.
| |
Collapse
|
28
|
Sadanari H, Fujimoto KJ, Sugihara Y, Ishida T, Takemoto M, Daikoku T, Murayama T. The anti-human cytomegalovirus drug tricin inhibits cyclin-dependent kinase 9. FEBS Open Bio 2018; 8:646-654. [PMID: 29632816 PMCID: PMC5881553 DOI: 10.1002/2211-5463.12398] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 11/23/2022] Open
Abstract
4′,5,7‐trihydroxy‐3′,5′‐dimethoxyflavone (tricin), derived from Sasa albo‐marginata, has been reported to suppress significantly human cytomegalovirus (HCMV) replication in human embryonic lung (HEL) fibroblast cells. However, the target protein of tricin remains unclear. This study focused on the anti‐HCMV activity of tricin in terms of its binding affinity to cyclin‐dependent kinase 9 (CDK9). A molecular docking study predicted that tricin binds well to the ATP‐binding site of CDK9. Experimental measurements then revealed that tricin inhibits the kinase activity of CDK9 and affects the phosphorylation of the carboxy‐terminal domain of RNA polymerase II. Based on these results, we conclude that CDK9 is one of the target proteins of tricin. We also found that tricin possesses anti‐HCMV activity with no cytotoxicity against HEL cells.
Collapse
Affiliation(s)
- Hidetaka Sadanari
- Center for Basic Education Faculty of Pharmaceutical Sciences Hokuriku University Kanazawa Japan
| | - Kazuhiro J Fujimoto
- Center for Basic Education Faculty of Pharmaceutical Sciences Hokuriku University Kanazawa Japan
| | - Yuto Sugihara
- Center for Basic Education Faculty of Pharmaceutical Sciences Hokuriku University Kanazawa Japan
| | - Tomoki Ishida
- Center for Basic Education Faculty of Pharmaceutical Sciences Hokuriku University Kanazawa Japan
| | - Masaya Takemoto
- Center for Basic Education Faculty of Pharmaceutical Sciences Hokuriku University Kanazawa Japan
| | - Tohru Daikoku
- Department of Microbiology and Immunology Faculty of Pharmaceutical Sciences Hokuriku University Kanazawa Japan
| | - Tsugiya Murayama
- Department of Microbiology and Immunology Faculty of Pharmaceutical Sciences Hokuriku University Kanazawa Japan
| |
Collapse
|
29
|
Human Cytomegalovirus UL111A and US27 Gene Products Enhance the CXCL12/CXCR4 Signaling Axis via Distinct Mechanisms. J Virol 2018; 92:JVI.01981-17. [PMID: 29237840 DOI: 10.1128/jvi.01981-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/06/2017] [Indexed: 01/19/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a prevalent pathogen that establishes lifelong infection in the host. Virus persistence is aided by extensive manipulation of the host immune system, particularly cytokine and chemokine signaling pathways. The HCMV UL111A gene encodes cmvIL-10, an ortholog of human interleukin-10 that has many immunomodulatory effects. We found that cmvIL-10 increased signaling outcomes from human CXCR4, a chemokine receptor with essential roles in hematopoiesis and immune cell trafficking, in response to its natural ligand CXCL12. Calcium flux and chemotaxis to CXCL12 were significantly greater in the presence of cmvIL-10 in monocytes, epithelial cells, and fibroblasts that express CXCR4. cmvIL-10 effects on CXCL12/CXCR4 signaling required the IL-10 receptor and Stat3 activation. Heightened signaling occurred both in HCMV-infected cells and in uninfected bystander cells, suggesting that cmvIL-10 may broadly influence chemokine networks by paracrine signaling during infection. Moreover, CXCL12/CXCR4 signaling was amplified in HCMV-infected cells compared to mock-infected cells even in the absence of cmvIL-10. Enhanced CXCL12/CXCR4 outcomes were associated with expression of the virally encoded chemokine receptor US27, and CXCL12/CXCR4 activation was reduced in cells infected with a deletion mutant lacking US27 (TB40/E-mCherry-US27Δ). US27 effects were Stat3 independent but required close proximity to CXCR4 in cell membranes of either HCMV-infected or US27-transfected cells. Thus, HCMV encodes two proteins, cmvIL-10 and US27, that exhibit distinct mechanisms for enhancing CXCR4 signaling. Either individually or in combination, cmvIL-10 and US27 may enable HCMV to exquisitely manipulate CXCR4 signaling to alter host immune responses and modify cell trafficking patterns during infection.IMPORTANCE The human chemokine system plays a central role in host defense, as evidenced by the many strategies devised by viruses for manipulating it. Human cytomegalovirus (HCMV) is widespread in the human population, but infection rarely causes disease except in immunocompromised hosts. We found that two different HCMV proteins, cmvIL-10 and US27, act through distinct mechanisms to upregulate the signaling activity of a cellular chemokine receptor, CXCR4. cmvIL-10 is a secreted viral cytokine that affects CXCR4 signaling in both infected and uninfected cells, while US27 is a component of the virus particle and impacts CXCR4 activity only in infected cells. Both cmvIL-10 and US27 promote increased intracellular calcium signaling and cell migration in response to chemokine CXCL12 binding to CXCR4. Our results demonstrate that HCMV exerts fine control over the CXCL12/CXCR4 pathway, which could lead to enhanced virus dissemination, altered immune cell trafficking, and serious health implications for HCMV patients.
Collapse
|
30
|
Chan NSW, Chee SP, Caspers L, Bodaghi B. Clinical Features of CMV-Associated Anterior Uveitis. Ocul Immunol Inflamm 2017; 26:107-115. [PMID: 29172842 DOI: 10.1080/09273948.2017.1394471] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cytomegalovirus (CMV) anterior uveitis is the most common ocular manifestation of CMV disease in immunocompetent individuals. It is thought to be due to a local reactivation of latent CMV and is usually unilateral. The acute form presents as Posner-Schlossman Syndrome, a recurrent hypertensive anterior uveitis with few granulomatous keratic precipitates. There are geographic differences in the chronic form of CMV anterior uveitis. Asian patients commonly present as Fuchs Uveitis Syndrome with diffuse stellate keratic precipitates, while the European patients present with a chronic hypertensive anterior uveitis with fewer keratic precipitates that are brown in color and located inferiorly. Characteristic features of CMV anterior uveitis include mild anterior chamber inflammation, elevated intraocular pressure, stromal iris atrophy. Synechiae, macular edema and retinitis are typically absent. CMV disease may also be associated with the development of corneal endotheliitis with a reduced endothelial cell count. Long-term complications include glaucomatous optic neuropathy and cataract formation.
Collapse
Affiliation(s)
- Nicole Shu-Wen Chan
- a Ocular Inflammation and Immunology Service , Singapore National Eye Centre , Singapore
| | - Soon-Phaik Chee
- a Ocular Inflammation and Immunology Service , Singapore National Eye Centre , Singapore.,b Ocular Inflammation and Immunology Research Group , Singapore Eye Research Institute , Singapore.,c Department of Ophthalmology, Yong Loo Lin School of Medicine , National University of Singapore , Singapore.,d Ophthalmology & Visual Sciences Academic Clinical Program, Duke-National University of Singapore Medical School , Singapore
| | - Laure Caspers
- e Department of Ophthalmology , CHU St Pierre and Université Libre de Bruxelles , Brussels , Belgium
| | - Bahram Bodaghi
- f DHU ViewRestore , University of Pierre and Marie Curie, Sorbonne Universités , Paris , France
| |
Collapse
|
31
|
Abstract
Human cytomegalovirus (HCMV) encodes numerous proteins and microRNAs that function to evade the immune response and allow the virus to replicate and disseminate in the face of a competent innate and acquired immune system. The establishment of a latent infection by CMV, which if completely quiescent at the level of viral gene expression would represent an ultimate in immune evasion strategies, is not sufficient for lifelong persistence and dissemination of the virus. CMV needs to reactivate and replicate in a lytic cycle of infection in order to disseminate further, which occurs in the face of a fully primed secondary immune response. Without reactivation, latency itself would be redundant for the virus. It is also becoming clear that latency is not a totally quiescent state, but is characterized by limited viral gene expression. Therefore, the virus also needs immune evasion strategies during latency. An effective immune response to CMV is required or viral replication will cause morbidity and ultimately mortality in the host. There is clearly a complex balance between virus immune evasion and host immune recognition over a lifetime. This poses the important question of whether long-term evasion or manipulation of the immune response driven by CMV is detrimental to health. In this meeting report, three groups used the murine model of CMV (MCMV) to examine if the contribution of the virus to immune senescence is set by the (i) initial viral inoculum, (ii) inflation of T cell responses, (iii) or the balance between functionally distinct effector CD4+ T cells. The work of other groups studying the CMV response in humans is discussed. Their work asks whether the ability to make immune responses to new antigens is compromised by (i) age and HCMV carriage, (ii) long-term exposure to HCMV giving rise to an overall immunosuppressive environment and increased levels of latent virus, or (iii) adapted virus mutants (used as potential vaccines) that have the capacity to elicit conventional and unconventional T cell responses.
Collapse
|
32
|
Stegman JR, Margulies BJ. The human cytomegalovirus chemokine receptor homolog encoded by US27. Virus Genes 2017; 53:516-521. [DOI: 10.1007/s11262-017-1462-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022]
|
33
|
Effect of human cytomegalovirus (HCMV) US27 on CXCR4 receptor internalization measured by fluorogen-activating protein (FAP) biosensors. PLoS One 2017; 12:e0172042. [PMID: 28207860 PMCID: PMC5313195 DOI: 10.1371/journal.pone.0172042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/30/2017] [Indexed: 01/08/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen and a member of the Herpesviridae family. HCMV has a large genome that encodes many genes that are non-essential for virus replication but instead play roles in manipulation of the host immune environment. One of these is the US27 gene, which encodes a protein with homology to the chemokine receptor family of G protein-coupled receptors (GPCRs). The US27 protein has no known chemokine ligands but can modulate the signaling activity of host receptor CXCR4. We investigated the mechanism for enhanced CXCR4 signaling in the presence of US27 using a novel biosensor system comprised of fluorogen activating proteins (FAPs). FAP-tagged CXCR4 and US27 were used to explore receptor internalization and recovery dynamics, and the results demonstrate that significantly more CXCR4 internalization was observed in the presence of US27 compared to CXCR4 alone upon stimulation with CXCL12. While ligand-induced endocytosis rates were higher, steady state internalization of CXCR4 was not affected by US27. Additionally, US27 underwent rapid endocytosis at a rate that was independent of either CXCR4 expression or CXCL12 stimulation. These results demonstrate that one mechanism by which US27 can enhance CXCR4 signaling is to alter receptor internalization dynamics, which could ultimately have the effect of promoting virus dissemination by increasing trafficking of HCMV-infected cells to tissues where CXCL12 is highly expressed.
Collapse
|
34
|
Lee S, Chung YH, Lee C. US28, a Virally-Encoded GPCR as an Antiviral Target for Human Cytomegalovirus Infection. Biomol Ther (Seoul) 2017; 25:69-79. [PMID: 28035083 PMCID: PMC5207464 DOI: 10.4062/biomolther.2016.208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/19/2016] [Accepted: 11/22/2016] [Indexed: 11/05/2022] Open
Abstract
Viruses continue to evolve a new strategy to take advantage of every aspect of host cells in order to maximize their survival. Due to their central roles in transducing a variety of transmembrane signals, GPCRs seem to be a prime target for viruses to pirate for their own use. Incorporation of GPCR functionality into the genome of herpesviruses has been demonstrated to be essential for pathogenesis of many herpesviruses-induced diseases. Here, we introduce US28 of human cytomegalovirus (HCMV) as the best-studied example of virally-encoded GPCRs to manipulate host GPCR signaling. In this review, we wish to summarize a number of US28-related topics including its regulation of host signaling pathways, its constitutive internalization, its structural and functional analysis, its roles in HCMV biology and pathogenesis, its proliferative activities and role in oncogenesis, and pharmacological modulation of its biological activities. This review will aid in our understanding of how pathogenic viruses usurp the host GPCR signaling for successful viral infection. This kind of knowledge will enable us to build a better strategy to control viral infection by normalizing the virally-dysregulated host GPCR signaling.
Collapse
Affiliation(s)
- Sungjin Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Choongho Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| |
Collapse
|
35
|
The Cytoplasmic C-Tail of the Mouse Cytomegalovirus 7 Transmembrane Receptor Homologue, M78, Regulates Endocytosis of the Receptor and Modulates Virus Replication in Different Cell Types. PLoS One 2016; 11:e0165066. [PMID: 27760189 PMCID: PMC5070858 DOI: 10.1371/journal.pone.0165066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/05/2016] [Indexed: 12/03/2022] Open
Abstract
Virus homologues of seven-transmembrane receptors (7TMR) are encoded by all beta- and gammaherpesviruses, suggesting important functional roles. M78 of mouse cytomegalovirus (MCMV) is representative of a family of 7TMR conserved in all betaherpesviruses. M78 family members have been found to exhibit cell-type specific effects upon virus replication in tissue culture and to affect virus pathogenesis in vivo. We reported previously that M78, for which no ligands are known, undergoes rapid, constitutive endocytosis. In this study, we have investigated the role of the M78 cytoplasmic C-tail in mediating endocytosis and consequences of C-tail deletion upon replication and pathogenesis. Mutations of M78 (C-tail truncations or point mutations) and CCR5-M78 chimeras identified two distinct regions affecting endocytosis. The first was a classical acidic di-leucine motif (DDxxxLL), located close to the C-terminus. The second region, the activity of which was suppressed by downstream sequences, included the putative 8th helix, located close to the 7th transmembrane domain. A recombinant MCMV expressing an endocytosis-deficient M78, lacking most of the C-tail (M78_CΔ155), had a cell-type specific replication phenotype. M78_CΔ155 had restricted replication in bone marrow macrophages, indistinguishable from an M78-null recombinant. In contrast, M78_CΔ155 replicated normally or with enhanced titres to wild type virus in other tested cell-types, whereas M78-null was attenuated. Distinct phenotypes for M78_CΔ155 and M78-null suggest that the C-tail deletion resulted in M78 dysfunction, rather than complete loss of function; furthermore, they highlight a cell-type specific role of M78 during replication. Infection of mice (intranasal) demonstrated that M78_CΔ155, similar to M78-null, was cleared more rapidly from the lungs than wild type virus and was severely attenuated for replication in salivary glands. It may be speculated that attenuation of both M78_CΔ155 and M78-null for replication in macrophages may have contributed to their similar pathogenic phenotypes.
Collapse
|
36
|
Crow MS, Lum KK, Sheng X, Song B, Cristea IM. Diverse mechanisms evolved by DNA viruses to inhibit early host defenses. Crit Rev Biochem Mol Biol 2016; 51:452-481. [PMID: 27650455 PMCID: PMC5285405 DOI: 10.1080/10409238.2016.1226250] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In mammalian cells, early defenses against infection by pathogens are mounted through a complex network of signaling pathways shepherded by immune-modulatory pattern-recognition receptors. As obligate parasites, the survival of viruses is dependent on the evolutionary acquisition of mechanisms that tactfully dismantle and subvert the cellular intrinsic and innate immune responses. Here, we review the diverse mechanisms by which viruses that accommodate DNA genomes are able to circumvent activation of cellular immunity. We start by discussing viral manipulation of host defense protein levels by either transcriptional regulation or protein degradation. We next review viral strategies used to repurpose or inhibit these cellular immune factors by molecular hijacking or by regulating their post-translational modification status. Additionally, we explore the infection-induced temporal modulation of apoptosis to facilitate viral replication and spread. Lastly, the co-evolution of viruses with their hosts is highlighted by the acquisition of elegant mechanisms for suppressing host defenses via viral mimicry of host factors. In closing, we present a perspective on how characterizing these viral evasion tactics both broadens the understanding of virus-host interactions and reveals essential functions of the immune system at the molecular level. This knowledge is critical in understanding the sources of viral pathogenesis, as well as for the design of antiviral therapeutics and autoimmunity treatments.
Collapse
Affiliation(s)
- Marni S. Crow
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Krystal K. Lum
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Xinlei Sheng
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Bokai Song
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| |
Collapse
|
37
|
Söderberg-Nauclér C, Fornara O, Rahbar A. Cytomegalovirus driven immunosenescence-An immune phenotype with or without clinical impact? Mech Ageing Dev 2016; 158:3-13. [PMID: 27318107 DOI: 10.1016/j.mad.2016.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 11/30/2022]
Abstract
The continuous emerging increase in life span has led to vulnerability to a number of different diseases in the elderly. Some of these risks may be attributed to specific changes in the immune system referred to as immunoscenescence. This term aims to describe decreased immune functions among elderly individuals, and is characterized to be harmful age-associated changes in the immune system that lead to its gradual immune dysfunction. An impaired function of the immune system may increase susceptibility to various diseases in the elderly population such as infections, cardiovascular diseases and cancer. Although it is unclear how this immune phenotype develops, emerging evidence suggest that it may reflect an exhaustion of the immune system, possibly caused by one or several chronic infections. The main candidate is human cytomegalovirus (CMV), which can induce immune dysfunctions observed in immunoscenescence. Although the immune system is currently considered to be exhausted in CMV positive elderly individuals, it is not known whether such dysfunction of the immune system is a main reason for increased susceptibility to other diseases, or if direct effects of the virus in disease pathogenesis reflect the increased vulnerability to them. These aspects will be discussed in this review.
Collapse
Affiliation(s)
- Cecilia Söderberg-Nauclér
- Department of Medicine, Exp Cardiovascular Research Unit and Department of Neurology, Center for Molecular Medicine, Solna, Karolinska Institute, Stockholm, Sweden.
| | - Olesja Fornara
- Department of Medicine, Exp Cardiovascular Research Unit and Department of Neurology, Center for Molecular Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| | - Afsar Rahbar
- Department of Medicine, Exp Cardiovascular Research Unit and Department of Neurology, Center for Molecular Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
38
|
Leukocyte Immunoglobulin-Like Receptor 1-Expressing Human Natural Killer Cell Subsets Differentially Recognize Isolates of Human Cytomegalovirus through the Viral Major Histocompatibility Complex Class I Homolog UL18. J Virol 2016; 90:3123-37. [PMID: 26739048 PMCID: PMC4810621 DOI: 10.1128/jvi.02614-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/30/2015] [Indexed: 12/11/2022] Open
Abstract
Immune responses of natural killer (NK) cell are controlled by the balance between activating and inhibitory receptors, but the expression of these receptors varies between cells within an individual. Although NK cells are a component of the innate immune system, particular NK cell subsets expressing Ly49H are positively selected and increase in frequency in response to cytomegalovirus infection in mice. Recent evidence suggests that in humans certain NK subsets also have an increased frequency in the blood of human cytomegalovirus (HCMV)-infected individuals. However, whether these subsets differ in their capacity of direct control of HCMV-infected cells remains unclear. In this study, we developed a novel in vitro assay to assess whether human NK cell subsets have differential abilities to inhibit HCMV growth and dissemination. NK cells expressing or lacking NKG2C did not display any differences in controlling viral dissemination. However, when in vitro-expanded NK cells were used, cells expressing or lacking the inhibitory receptor leukocyte immunoglobulin-like receptor 1 (LIR1) were differentially able to control dissemination. Surprisingly, the ability of LIR1+ NK cells to control virus spread differed between HCMV viral strains, and this phenomenon was dependent on amino acid sequences within the viral ligand UL18. Together, the results here outline an in vitro technique to compare the long-term immune responses of different human NK cell subsets and suggest, for the first time, that phenotypically defined human NK cell subsets may differentially recognize HCMV infections. IMPORTANCE HCMV infection is ubiquitous in most populations; it is not cleared by the host after primary infection but persists for life. The innate and adaptive immune systems control the spread of virus, for which natural killer (NK) cells play a pivotal role. NK cells can respond to HCMV infection by rapid, short-term, nonspecific innate responses, but evidence from murine studies suggested that NK cells may display long-term, memory-like responses to murine cytomegalovirus infection. In this study, we developed a new assay that examines human NK cell subsets that have been suggested to play a long-term memory-like response to HCMV infection. We show that changes in an HCMV viral protein that interacts with an NK cell receptor can change the ability of NK cell subsets to control HCMV while the acquisition of another receptor has no effect on virus control.
Collapse
|
39
|
Dupont L, Reeves MB. Cytomegalovirus latency and reactivation: recent insights into an age old problem. Rev Med Virol 2015; 26:75-89. [PMID: 26572645 DOI: 10.1002/rmv.1862] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 12/25/2022]
Abstract
Human cytomegalovirus (HCMV) infection remains a major cause of morbidity in patient populations. In certain clinical settings, it is the reactivation of the pre-existing latent infection in the host that poses the health risk. The prevailing view of HCMV latency was that the virus was essentially quiescent in myeloid progenitor cells and that terminal differentiation resulted in the initiation of the lytic lifecycle and reactivation of infectious virus. However, our understanding of HCMV latency and reactivation at the molecular level has been greatly enhanced through recent advancements in systems biology approaches to perform global analyses of both experimental and natural latency. These approaches, in concert with more classical reductionist experimentation, are furnishing researchers with new concepts in cytomegalovirus latency and suggest that latent infection is far more active than first thought. In this review, we will focus on new studies that suggest that distinct sites of cellular latency could exist in the human host, which, when coupled with recent observations that report different transcriptional programmes within cells of the myeloid lineage, argues for multiple latent phenotypes that could impact differently on the biology of this virus in vivo. Finally, we will also consider how the biology of the host cell where the latent infection persists further contributes to the concept of a spectrum of latent phenotypes in multiple cell types that can be exploited by the virus.
Collapse
Affiliation(s)
- Liane Dupont
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Matthew B Reeves
- Institute of Immunity and Transplantation, University College London, London, UK
| |
Collapse
|
40
|
Abstract
Human periodontitis is associated with a wide range of bacteria and viruses and with complex innate and adaptive immune responses. Porphyromonas gingivalis, Tannerella forsythia, Aggregatibacter actinomycetemcomitans, Treponema denticola, cytomegalovirus and other herpesviruses are major suspected pathogens of periodontitis, and a combined herpesvirus–bacterial periodontal infection can potentially explain major clinical features of the disease. Cytomegalovirus infects periodontal macrophages and T‐cells and elicits a release of interleukin‐1β and tumor necrosis factor‐α. These proinflammatory cytokines play an important role in the host defense against the virus, but they also have the potential to induce alveolar bone resorption and loss of periodontal ligament. Gingival fibroblasts infected with cytomegalovirus also exhibit diminished collagen production and release of an increased level of matrix metalloproteinases. This article reviews innate and adaptive immunity to cytomegalovirus and suggests that immune responses towards cytomegalovirus can play roles in controlling, as well as in exacerbating, destructive periodontal disease.
Collapse
|
41
|
Lisboa LF, Egli A, Fairbanks J, O'Shea D, Manuel O, Husain S, Kumar D, Humar A. CCL8 and the Immune Control of Cytomegalovirus in Organ Transplant Recipients. Am J Transplant 2015; 15:1882-92. [PMID: 25764912 DOI: 10.1111/ajt.13207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/03/2014] [Accepted: 12/24/2014] [Indexed: 02/06/2023]
Abstract
Monitoring of cytomegalovirus cell-mediated immunity is a promising tool for the refinement of preventative and therapeutic strategies posttransplantation. Typically, the interferon-γ response to T cell stimulation is measured. We evaluated a broad range of cytokine and chemokines to better characterize the ex vivo host-response to CMV peptide stimulation. In a cohort of CMV viremic organ transplant recipients, chemokine expression-specifically CCL8 (AUC 0.849 95% CI 0.721-0.978; p = 0.003) and CXCL10 (AUC 0.841, 95% CI 0.707-0.974; p = 0.004)-was associated with control of viral replication. In a second cohort of transplant recipients at high-risk for CMV, the presence of a polymorphism in the CCL8 promoter conferred an increased risk of viral replication after discontinuation of antiviral prophylaxis (logrank hazard ratio 3.6; 95% CI 2.077-51.88). Using cell-sorting experiments, we determined that the primary cell type producing CCL8 in response to CMV peptide stimulation was the monocyte fraction. Finally, in vitro experiments using standard immunosuppressive agents demonstrated a dose-dependent reduction in CCL8 production. Chemokines appear to be important elements of the cell-mediated response to CMV infection posttransplant, as here suggested for CCL8, and translation of this knowledge may allow for the tailoring and improvement of preventative strategies.
Collapse
Affiliation(s)
- L F Lisboa
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - A Egli
- Infection Biology Lab, Department Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - J Fairbanks
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - D O'Shea
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - O Manuel
- Infectious Diseases Service and Transplantation Center, University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - S Husain
- Department of Medicine and Multi-organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - D Kumar
- Department of Medicine and Multi-organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - A Humar
- Department of Medicine and Multi-organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Rationally designed chemokine-based toxin targeting the viral G protein-coupled receptor US28 potently inhibits cytomegalovirus infection in vivo. Proc Natl Acad Sci U S A 2015; 112:8427-32. [PMID: 26080445 DOI: 10.1073/pnas.1509392112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The use of receptor-ligand interactions to direct toxins to kill diseased cells selectively has shown considerable promise for treatment of a number of cancers and, more recently, autoimmune disease. Here we move the fusion toxin protein (FTP) technology beyond cancer/autoimmune therapeutics to target the human viral pathogen, human cytomegalovirus (HCMV), on the basis of its expression of the 7TM G protein-coupled chemokine receptor US28. The virus origin of US28 provides an exceptional chemokine-binding profile with high selectivity and improved binding for the CX3C chemokine, CX3CL1. Moreover, US28 is constitutively internalizing by nature, providing highly effective FTP delivery. We designed a synthetic CX3CL1 variant engineered to have ultra-high affinity for US28 and greater specificity for US28 than the natural sole receptor for CX3CL1, CX3CR1, and we fused the synthetic variant with the cytotoxic domain of Pseudomonas Exotoxin A. This novel strategy of a rationally designed FTP provided unparalleled anti-HCMV efficacy and potency in vitro and in vivo.
Collapse
|
43
|
de Munnik SM, Smit MJ, Leurs R, Vischer HF. Modulation of cellular signaling by herpesvirus-encoded G protein-coupled receptors. Front Pharmacol 2015; 6:40. [PMID: 25805993 PMCID: PMC4353375 DOI: 10.3389/fphar.2015.00040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/12/2015] [Indexed: 12/22/2022] Open
Abstract
Human herpesviruses (HHVs) are widespread infectious pathogens that have been associated with proliferative and inflammatory diseases. During viral evolution, HHVs have pirated genes encoding viral G protein-coupled receptors (vGPCRs), which are expressed on infected host cells. These vGPCRs show highest homology to human chemokine receptors, which play a key role in the immune system. Importantly, vGPCRs have acquired unique properties such as constitutive activity and the ability to bind a broad range of human chemokines. This allows vGPCRs to hijack human proteins and modulate cellular signaling for the benefit of the virus, ultimately resulting in immune evasion and viral dissemination to establish a widespread and lifelong infection. Knowledge on the mechanisms by which herpesviruses reprogram cellular signaling might provide insight in the contribution of vGPCRs to viral survival and herpesvirus-associated pathologies.
Collapse
Affiliation(s)
- Sabrina M de Munnik
- Amsterdam Institute for Molecules Medicines and Systems - Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecules Medicines and Systems - Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam Netherlands
| | - Rob Leurs
- Amsterdam Institute for Molecules Medicines and Systems - Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam Netherlands
| | - Henry F Vischer
- Amsterdam Institute for Molecules Medicines and Systems - Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam Netherlands
| |
Collapse
|
44
|
Naing Z, Webel R, Hamilton S, Schmeiser C, Scott G, Marschall M, Rawlinson W. Stimulatory effects of human cytomegalovirus tegument protein pp71 lead to increased expression of CCL2 (monocyte chemotactic protein-1) during infection. J Gen Virol 2015; 96:1855-62. [PMID: 25711967 DOI: 10.1099/vir.0.000101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human cytomegalovirus (CMV) is the most common infectious cause of congenital birth defects in developed countries. Studies of infected amniotic fluid and placentae show CMV infection leads to a pro-inflammatory shift in cytokine profiles with implications for pathogenesis of foetal disease. ELISA, immunofluorescence and real-time-PCR assays were used to investigate CCL2 (monocyte chemotactic protein-1) and TNF-α changes following CMV infection of human fibroblasts, as well as following transient expression of CMV gene products in HeLa cells. Infection of human fibroblasts with CMV AD169 resulted in increased cytoplasmic and extracellular expression of CCL2 during early stages of infection, followed by marked downregulation of the chemokine at late times. Induction of CCL2 was not observed with CMV clinical strain Merlin, consistent with the postulated immune-evasion potential of this genetically intact WT strain. Comparison between live and UV-irradiated virus infections showed that changes in CCL2 levels were a direct response to active CMV replication. There were no significant changes in TNF-α expression during a parallel time-course of CMV infection. In transient transfection assays, overexpression of CMV tegument protein pp71 resulted in intracellular and extracellular upregulation of CCL2 protein. mRNA analysis showed that pp71-induced elevation in CCL2 was mediated through transcriptional upregulation. The data showed that CMV-induced upregulation of CCL2 during early stages of infection was mediated, at least in part, by stimulation of viral pp71, which may contribute to viral pathogenesis through enhanced virus dissemination.
Collapse
Affiliation(s)
- Zin Naing
- 1Virology Research Laboratory, Department of Microbiology, South Eastern Area Laboratory Services, Prince of Wales Hospital, Sydney, NSW, Australia 2School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia 3Australian Centre for Perinatal Science, University of New South Wales, Sydney, NSW, Australia
| | - Rike Webel
- 4Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stuart Hamilton
- 1Virology Research Laboratory, Department of Microbiology, South Eastern Area Laboratory Services, Prince of Wales Hospital, Sydney, NSW, Australia 5School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Cathrin Schmeiser
- 4Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gillian Scott
- 1Virology Research Laboratory, Department of Microbiology, South Eastern Area Laboratory Services, Prince of Wales Hospital, Sydney, NSW, Australia 5School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Manfred Marschall
- 4Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - William Rawlinson
- 3Australian Centre for Perinatal Science, University of New South Wales, Sydney, NSW, Australia 2School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia 1Virology Research Laboratory, Department of Microbiology, South Eastern Area Laboratory Services, Prince of Wales Hospital, Sydney, NSW, Australia
| |
Collapse
|
45
|
Abstract
ABSTRACT Viruses have evolved to subvert host cell pathways to enable their replication and persistence. In particular, virus-encoded gene products target the host's immune system to evade elimination by antiviral immune defenses. Cytokines are soluble, secreted proteins, which regulate many aspects of immune responses, by providing signals through cell surface receptors on target cells. Cytokine pathways are therefore attractive targets for modulation by viruses during their replication cycle. This review deals with modulation of cytokine pathways by the human herpesvirus, a family of viruses that are capable of life-long persistence in the host and cause severe disease particularly in immunocompromised individuals.
Collapse
|
46
|
Mølleskov-Jensen AS, Oliveira MT, Farrell HE, Davis-Poynter N. Virus-Encoded 7 Transmembrane Receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 129:353-93. [DOI: 10.1016/bs.pmbts.2014.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Identification and functional comparison of seven-transmembrane G-protein-coupled BILF1 receptors in recently discovered nonhuman primate lymphocryptoviruses. J Virol 2014; 89:2253-67. [PMID: 25505061 DOI: 10.1128/jvi.02716-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Coevolution of herpesviruses with their respective host has resulted in a delicate balance between virus-encoded immune evasion mechanisms and host antiviral immunity. BILF1 encoded by human Epstein-Barr virus (EBV) is a 7-transmembrane (7TM) G-protein-coupled receptor (GPCR) with multiple immunomodulatory functions, including attenuation of PKR phosphorylation, activation of G-protein signaling, and downregulation of major histocompatibility complex (MHC) class I surface expression. In this study, we explored the evolutionary and functional relationships between BILF1 receptor family members from EBV and 12 previously uncharacterized nonhuman primate (NHP) lymphocryptoviruses (LCVs). Phylogenetic analysis defined 3 BILF1 clades, corresponding to LCVs of New World monkeys (clade A) or Old World monkeys and great apes (clades B and C). Common functional properties were suggested by a high degree of sequence conservation in functionally important regions of the BILF1 molecules. A subset of BILF1 receptors from EBV and LCVs from NHPs (chimpanzee, orangutan, marmoset, and siamang) were selected for multifunctional analysis. All receptors exhibited constitutive signaling activity via G protein Gαi and induced activation of the NF-κB transcription factor. In contrast, only 3 of 5 were able to activate NFAT (nuclear factor of activated T cells); chimpanzee and orangutan BILF1 molecules were unable to activate NFAT. Similarly, although all receptors were internalized, BILF1 from the chimpanzee and orangutan displayed an altered cellular localization pattern with predominant cell surface expression. This study shows how biochemical characterization of functionally important orthologous viral proteins can be used to complement phylogenetic analysis to provide further insight into diverse microbial evolutionary relationships and immune evasion function. IMPORTANCE Epstein-Barr virus (EBV), known as an oncovirus, is the only human herpesvirus in the genus Lymphocryptovirus (LCV). EBV uses multiple strategies to hijack infected host cells, establish persistent infection in B cells, and evade antiviral immune responses. As part of EBV's immune evasion strategy, the virus encodes a multifunctional 7-transmembrane (7TM) G-protein-coupled receptor (GPCR), EBV BILF1. In addition to multiple immune evasion-associated functions, EBV BILF1 has transforming properties, which are linked to its high constitutive activity. We identified BILF1 receptor orthologues in 12 previously uncharacterized LCVs from nonhuman primates (NHPs) of Old and New World origin. As 7TM receptors are excellent drug targets, our unique insight into the molecular mechanism of action of the BILF1 family and into the evolution of primate LCVs may enable validation of EBV BILF1 as a drug target for EBV-mediated diseases, as well as facilitating the design of drugs targeting EBV BILF1.
Collapse
|
48
|
Roseoloviruses and their modulation of host defenses. Curr Opin Virol 2014; 9:178-87. [DOI: 10.1016/j.coviro.2014.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 12/27/2022]
|
49
|
The DRY box and C-terminal domain of the human cytomegalovirus US27 gene product play a role in promoting cell growth and survival. PLoS One 2014; 9:e113427. [PMID: 25409008 PMCID: PMC4237426 DOI: 10.1371/journal.pone.0113427] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/28/2014] [Indexed: 01/24/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that can lay dormant in healthy individuals and establish lifelong latent infection. This successful co-existence is facilitated by a number of viral gene products that manipulate host cellular functions and immune responses. Among these immunomodulatory genes are four G-protein coupled receptors (GPCRs) encoded by HCMV, designated US27, US28, UL33, and UL78. Studies have shown the US28 gene product to be a functional chemokine receptor that signals both constitutively and in a ligand-dependent manner, resulting in a wide range of cellular effects. In previous work, we have found that US27 expression results in at least two biological effects: enhanced CXCR4 signaling and increased in cellular proliferation in HEK293 cells. Here, we examined the involvement of two protein domains, the DRY box and the C-terminal intracellular domain (CTD) of US27, in mediating both cell proliferation and survival. While both domains were required for a proliferative effect, loss of either domain only moderately impacted cell survival, suggesting that US27 may interact with cell survival pathways through protein regions other than the DRY box and CTD. Quantitative RT-PCR arrays were used to profile changes in cellular gene expression in the HEK293-US27 cell line, and down-regulation of cell cycle regulators CDKN1A/p21/CIP1 (cyclin dependent kinase inhibitor 1A) and SESN (Sestrin2 or Hi95) was observed. These results indicate that increased cell proliferation due to US27 may be linked to suppression of negative growth regulators, and that these interactions require the DRY box and CTD.
Collapse
|
50
|
Steen A, Sparre-Ulrich AH, Thiele S, Guo D, Frimurer TM, Rosenkilde MM. Gating function of isoleucine-116 in TM-3 (position III:16/3.40) for the activity state of the CC-chemokine receptor 5 (CCR5). Br J Pharmacol 2014; 171:1566-79. [PMID: 24328926 DOI: 10.1111/bph.12553] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE A conserved amino acid within a protein family indicates a significance of the residue. In the centre of transmembrane helix (TM)-5, position V:13/5.47, an aromatic amino acid is conserved among class A 7TM receptors. However, in 37% of chemokine receptors - a subgroup of 7TM receptors - it is a leucine indicating an altered function. Here, we describe the significance of this position and its possible interaction with TM-3 for CCR5 activity. EXPERIMENTAL APPROACH The effects of [L203F]-CCR5 in TM-5 (position V:13/5.47), [I116A]-CCR5 in TM-3 (III:16/3.40) and [L203F;G286F]-CCR5 (V:13/5.47;VII:09/7.42) were determined in G-protein- and β-arrestin-coupled signalling. Computational modelling monitored changes in amino acid conformation. KEY RESULTS [L203F]-CCR5 increased the basal level of G-protein coupling (20-70% of Emax ) and β-arrestin recruitment (50% of Emax ) with a threefold increase in agonist potency. In silico, [I116A]-CCR5 switched χ1-angle in [L203F]-CCR5. Furthermore, [I116A]-CCR5 was constitutively active to a similar degree as [L203F]-CCR5. Tyr(244) in TM-6 (VI:09/6.44) moved towards TM-5 in silico, consistent with its previously shown function for CCR5 activation. On [L203F;G286F]-CCR5 the antagonist aplaviroc was converted to a superagonist. CONCLUSIONS AND IMPLICATIONS The results imply that an aromatic amino acid in the centre of TM-5 controls the level of receptor activity. Furthermore, Ile(116) acts as a gate for the movement of Tyr(244) towards TM-5 in the active state, a mechanism proposed previously for the β2 -adrenoceptor. The results provide an understanding of chemokine receptor function and thereby information for the development of biased and non-biased antagonists and inverse agonists.
Collapse
Affiliation(s)
- A Steen
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|