1
|
Tang H, Zhu L, Zhao X, Jiang X, Zhang J, Pei C, Li L, Kong X. Characterization of CD3γ/δ gene and its immune response in Qihe crucian carp Carassius auratus after challenged by Aeromonas veronii and Poly(I:C). FISH & SHELLFISH IMMUNOLOGY 2023; 133:108550. [PMID: 36646341 DOI: 10.1016/j.fsi.2023.108550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/23/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
CD3γ/δ found in non-mammalian vertebrates is a CD3 homolog with structural characteristics similar to both mammalian CD3γ and CD3δ, and plays important roles in T cell recognization and immune response in fish. In this study, the full-length of CD3γ/δ from Qihe crucian carp (named CaCD3γ/δ) was cloned and characterized, then the expression response profiles and potential immune functions was explored after Aeromonas veronii and Poly(I:C) challenge. The results showed that the full-length of CaCD3γ/δ was 819 bp including a 5'-UTR of 141 bp, a 3'-UTR of 168 bp, and an ORF of 510 bp encoding a putative 169-aa protein with an estimated MW of 18.71 kD and a theoretical pI of 8.77. The protein sequence of CaCD3γ/δ contained a Leu-Leu and a CXXXC motif in the extracellular domain, and an ITAM and a Leu-Ile motif in the cytoplasm, and a residue of Asn in the transmembrane. CaCD3γ/δ was constitutively expressed in the spleen, liver, gill, and blood of Qihe crucian carp. After the carp were challenged with Poly(I:C) and Aeromonas veronii, the mRNA expression levels of CaCD3γ/δ were significantly changed in the spleen, head kidney, intestine and gill, according to the results of qPCR. However, compared with A. veronii, Poly(I:C) challenge can rapidly induce the CaCD3γ/δ expression levels in head kidney, intestine and spleen, which suggested CaCD3γ/δ may be differentially modulated by different pathogens. Moreover, the results of immunohistochemical analysis showed that the CaCD3γ/δ+ secreted cells in the spleen and gills of Qihe crucian were increased after challenged with Poly(I:C), as well as the spleen challenged with A. veronii, but at different levels. Combined with the fact that vascular congestion, necrosis of parenchymal cells, and inflammatory cells including lymphocytes infiltration were also observed in the gill and spleen of Qihe crucian carp treated with A. veronii and Poly(I:C) revealed by pathological analysis, it was predicted that CaCD3γ/δ+ T lymphocytes may participated in the immune response against pathogens. This study will contribute to understand the important role of CaCD3γ/δ+ T lymphocytes in the immune response of Qihe crucian carp, and provide new insights for the prevention and treatment of the diseases of Qihe crucian carp.
Collapse
Affiliation(s)
- Hairong Tang
- College of Life Science, Henan Normal University, Henan province, PR China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Lei Zhu
- College of Life Science, Henan Normal University, Henan province, PR China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xianghui Kong
- College of Life Science, Henan Normal University, Henan province, PR China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China.
| |
Collapse
|
2
|
Hayakawa K, Formica AM, Brill-Dashoff J, Shinton SA, Ichikawa D, Zhou Y, Morse HC, Hardy RR. Early generated B1 B cells with restricted BCRs become chronic lymphocytic leukemia with continued c-Myc and low Bmf expression. J Exp Med 2016; 213:3007-3024. [PMID: 27899442 PMCID: PMC5154941 DOI: 10.1084/jem.20160712] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/01/2016] [Accepted: 10/21/2016] [Indexed: 01/22/2023] Open
Abstract
Hayakawa et al. show that distinctive B-lineage progression from B-1 development allows for generation of B1a cells with restricted BCRs and self-renewal capacity, both contributing to potential for CLL progression. In mice, generation of autoreactive CD5+ B cells occurs as a consequence of BCR signaling induced by (self)-ligand exposure from fetal/neonatal B-1 B cell development. A fraction of these cells self-renew and persist as a minor B1 B cell subset throughout life. Here, we show that transfer of early generated B1 B cells from Eμ-TCL1 transgenic mice resulted in chronic lymphocytic leukemia (CLL) with a biased repertoire, including stereotyped BCRs. Thus, B1 B cells bearing restricted BCRs can become CLL during aging. Increased anti-thymocyte/Thy-1 autoreactive (ATA) BCR cells in the B1 B cell subset by transgenic expression yielded spontaneous ATA B-CLL/lymphoma incidence, enhanced by TCL1 transgenesis. In contrast, ATA B-CLL did not develop from other B cell subsets, even when the identical ATA BCR was expressed on a Thy-1 low/null background. Thus, both a specific BCR and B1 B cell context were important for CLL progression. Neonatal B1 B cells and their CLL progeny in aged mice continued to express moderately up-regulated c-Myc and down-regulated proapoptotic Bmf, unlike most mature B cells in the adult. Thus, there is a genetic predisposition inherent in B-1 development generating restricted BCRs and self-renewal capacity, with both features contributing to potential for progression to CLL.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Zhou
- Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Herbert C Morse
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | | |
Collapse
|
3
|
Molecular evolution of immunoglobulin superfamily genes in primates. Immunogenetics 2011; 63:417-28. [PMID: 21390552 DOI: 10.1007/s00251-011-0519-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 02/17/2011] [Indexed: 01/08/2023]
Abstract
Genes of the immunoglobulin superfamily (IgSF) have a wide variety of cellular activities. In this study, we investigated molecular evolution of IgSF genes in primates by comparing orthologous sequences of 249 IgSF genes among human, chimpanzee, orangutan, rhesus macaque, and common marmoset. To evaluate the non-synonymous/synonymous substitution ratio (ω), we applied Bn-Bs program and PAML program. IgSF genes were classified into 11 functional categories based on the Gene Ontology (GO) database. Among them, IgSF genes in three functional categories, immune system process (GO:0002376), defense response (GO:0006952), and multi-organism process (GO:0051704), which are tightly linked to the regulation of immune system had much higher values of ω than genes in the other GO categories. In addition, we estimated the average values of ω for each primate lineage. Although each primate lineage had comparable average values of ω, the human lineage showed the lowest ω value for the immune-related genes. Furthermore, 11 IgSF genes, SIGLEC5, SLAMF6, CD33, CD3E, CEACAM8, CD3G, FCER1A, CD48, CD4, TIM4, and FCGR2A, were implied to have been under positive selective pressure during the course of primate evolution. Further sequence analyses of CD3E and CD3G from 23 primate species suggested that the Ig domains of CD3E and CD3G underwent the positive Darwinian selection.
Collapse
|
4
|
Braunstein M, Anderson MK. Developmental progression of fetal HEB(-/-) precursors to the pre-T-cell stage is restored by HEBAlt. Eur J Immunol 2010; 40:3173-82. [PMID: 21061441 DOI: 10.1002/eji.201040360] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 08/12/2010] [Accepted: 08/20/2010] [Indexed: 02/06/2023]
Abstract
Gene knockout studies have shown that the E-protein transcription factor HEB is required for normal thymocyte development. We have identified a unique form of HEB, called HEBAlt, which is expressed only during the early stages of T-cell development, whereas HEBCan is expressed throughout T-cell development. Here, we show that HEB(-/-) precursors are inhibited at the β-selection checkpoint of T-cell development due to impaired expression of pTα and function of CD3ε, both of which are necessary for pre-TCR signaling. Transgenic expression of HEBAlt in HEB(-/-) precursors, however, upregulated pTα and allowed development to CD4(+) CD8(+) stage in fetal thymocytes. Moreover, HEBAlt did overcome the CD3ε signaling defect in HEB(-/-) Rag-1(-/-) thymocytes. The HEBAlt transgene did not permit Rag-1(-/-) precursors to bypass β-selection, indicating that it was not acting as a dominant negative inhibitor of other E-proteins. Therefore, our results provide the first mechanistic evidence that HEBAlt plays a critical role in early T-cell development and show that it can collaborate with fetal thymic stromal elements to create a regulatory environment that supports T-cell development past the β-selection checkpoint.
Collapse
Affiliation(s)
- Marsela Braunstein
- Sunnybrook Health Sciences Centre and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
5
|
Kim ST, Touma M, Takeuchi K, Sun ZYJ, Dave VP, Kappes DJ, Wagner G, Reinherz EL. Distinctive CD3 heterodimeric ectodomain topologies maximize antigen-triggered activation of alpha beta T cell receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:2951-9. [PMID: 20660709 PMCID: PMC2936104 DOI: 10.4049/jimmunol.1000732] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The alphabeta TCR has recently been suggested to function as an anisotropic mechanosensor during immune surveillance, converting mechanical energy into a biochemical signal upon specific peptide/MHC ligation of the alphabeta clonotype. The heterodimeric CD3epsilongamma and CD3epsilondelta subunits, each composed of two Ig-like ectodomains, form unique side-to-side hydrophobic interfaces involving their paired G-strands, rigid connectors to their respective transmembrane segments. Those dimers are laterally disposed relative to the alphabeta heterodimer within the TCR complex. In this paper, using structure-guided mutational analysis, we investigate the functional consequences of a striking asymmetry in CD3gamma and CD3delta G-strand geometries impacting ectodomain shape. The uniquely kinked conformation of the CD3gamma G-strand is crucial for maximizing Ag-triggered TCR activation and surface TCR assembly/expression, offering a geometry to accommodate juxtaposition of CD3gamma and TCR beta ectodomains and foster quaternary change that cannot be replaced by the isologous CD3delta subunit's extracellular region. TCRbeta and CD3 subunit protein sequence analyses among Gnathostomata species show that the Cbeta FG loop and CD3gamma subunit coevolved, consistent with this notion. Furthermore, restoration of T cell activation and development in CD3gamma(-/-) mouse T lineage cells by interspecies replacement can be rationalized from structural insights on the topology of chimeric mouse/human CD3epsilondelta dimers. Most importantly, our findings imply that CD3gamma and CD3delta evolved from a common precursor gene to optimize peptide/MHC-triggered alphabeta TCR activation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- CD3 Complex/chemistry
- CD3 Complex/genetics
- CD3 Complex/physiology
- Evolution, Molecular
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Molecular Sequence Data
- Organ Culture Techniques
- Protein Multimerization
- Protein Structure, Quaternary
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Sheep
- Signal Transduction/genetics
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Sun Taek Kim
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Maki Touma
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Koh Takeuchi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Zhen-Yu J. Sun
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Vibhuti P. Dave
- Lymphocyte Development Laboratory, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Dietmar J. Kappes
- Blood Cell Development and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Ellis L. Reinherz
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
6
|
|
7
|
Brodeur JF, Li S, Martins MDS, Larose L, Dave VP. Critical and Multiple Roles for the CD3ε Intracytoplasmic Tail in Double Negative to Double Positive Thymocyte Differentiation. THE JOURNAL OF IMMUNOLOGY 2009; 182:4844-53. [DOI: 10.4049/jimmunol.0803679] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Siegers GM, Swamy M, Fernández-Malavé E, Minguet S, Rathmann S, Guardo AC, Pérez-Flores V, Regueiro JR, Alarcón B, Fisch P, Schamel WWA. Different composition of the human and the mouse gammadelta T cell receptor explains different phenotypes of CD3gamma and CD3delta immunodeficiencies. ACTA ACUST UNITED AC 2007; 204:2537-44. [PMID: 17923503 PMCID: PMC2118495 DOI: 10.1084/jem.20070782] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The γδ T cell receptor for antigen (TCR) comprises the clonotypic TCRγδ, the CD3 (CD3γε and/or CD3δε), and the ζζ dimers. γδ T cells do not develop in CD3γ-deficient mice, whereas human patients lacking CD3γ have abundant peripheral blood γδ T cells expressing high γδ TCR levels. In an attempt to identify the molecular basis for these discordant phenotypes, we determined the stoichiometries of mouse and human γδ TCRs using blue native polyacrylamide gel electrophoresis and anti-TCR–specific antibodies. The γδ TCR isolated in digitonin from primary and cultured human γδ T cells includes CD3δ, with a TCRγδCD3ε2δγζ2 stoichiometry. In CD3γ-deficient patients, this may allow substitution of CD3γ by the CD3δ chain and thereby support γδ T cell development. In contrast, the mouse γδ TCR does not incorporate CD3δ and has a TCRγδCD3ε2γ2ζ2 stoichiometry. CD3γ-deficient mice exhibit a block in γδ T cell development. A human, but not a mouse, CD3δ transgene rescues γδ T cell development in mice lacking both mouse CD3δ and CD3γ chains. This suggests important structural and/or functional differences between human and mouse CD3δ chains during γδ T cell development. Collectively, our results indicate that the different γδ T cell phenotypes between CD3γ-deficient humans and mice can be explained by differences in their γδ TCR composition.
Collapse
Affiliation(s)
- Gabrielle M Siegers
- Max-Planck-Institute of Immunobiology and University of Freiburg, 79108 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Liu YY, Wang Z, Thomas J, Goodwin KJ, Stavrou S, Neville DM. Polymorphisms of CD3epsilon in cynomolgus and rhesus monkeys and their relevance to anti-CD3 antibodies and immunotoxins. Immunol Cell Biol 2007; 85:357-62. [PMID: 17325695 DOI: 10.1038/sj.icb.7100042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The monoclonal antibody FN18 has been used as a marker for monkey T cells and as a T-cell-depleting reagent when conjugated to diphtheria toxin that was mutated to prevent binding to non-targeted cells. The antibody recognizes a conformational epitope on the ectodomain of monkey CD3epsilon and displays a range of binding activity to the T cells from different rhesus and cynomolgus monkeys. Our quantitative fluorescence-activated cell sorting analysis of the FN18 reactivity to T cells from different rhesus and cynomolgus monkeys showed that there are at least three levels of FN18 reactivity in the monkeys tested: high, moderate and low. On the basis of available DNA sequence information, we determined the gene structure of rhesus CD3epsilon chain and designed primers that can be used to amplify and quickly sequence the ectodomain of monkey CD3epsilon. Our sequence analysis revealed that the extent of nucleotide sequence variation in this area is greater than that previously reported. In addition to the amino acids at positions 45 and 50, we demonstrated that position 35 of CD3epsilon was also important and substitution of amino acid A for V at this position greatly reduced T-cell reactivity to FN18. We found that T cells from monkeys with high FN18 reactivity all had V, E and R at positions 35, 45 and 50 in CD3epsilon, respectively; those having low FN18 reactivity were homozygous in CD3epsilon with at least one of the changes: V35 to A, E45 to G and R to 50Q, whereas members in the moderate group are heterozygous, having both V and A, E and G, R and Q at these locations. A cytotoxicity assay revealed that T cells from a heterozygous rhesus monkey with moderate FN18 reactivity were much (about 40 times) less sensitive to a FN18-derived immunotoxin than those from a homozygous rhesus monkey having high FN18 reactivity.
Collapse
Affiliation(s)
- Yuan Yi Liu
- Section on Biophysical Chemistry, Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Recio MJ, Moreno-Pelayo MA, Kiliç SS, Guardo AC, Sanal O, Allende LM, Pérez-Flores V, Mencía A, Modamio-Høybjør S, Seoane E, Regueiro JR. Differential Biological Role of CD3 Chains Revealed by Human Immunodeficiencies. THE JOURNAL OF IMMUNOLOGY 2007; 178:2556-64. [PMID: 17277165 DOI: 10.4049/jimmunol.178.4.2556] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The biological role in vivo of the homologous CD3gamma and delta invariant chains within the human TCR/CD3 complex is a matter of debate, as murine models do not recapitulate human immunodeficiencies. We have characterized, in a Turkish family, two new patients with complete CD3gamma deficiency and SCID symptoms and compared them with three CD3gamma-deficient individuals belonging to two families from Turkey and Spain. All tested patients shared similar immunological features such as a partial TCR/CD3 expression defect, mild alphabeta and gammadelta T lymphocytopenia, poor in vitro proliferative responses to Ags and mitogens at diagnosis, and very low TCR rearrangement excision circles and CD45RA(+) alphabeta T cells. However, intrafamilial and interfamilial clinical variability was observed in patients carrying the same CD3G mutations. Two reached the second or third decade in healthy conditions, whereas the other three showed lethal SCID features with enteropathy early in life. In contrast, all reported human complete CD3delta (or CD3epsilon) deficiencies are in infants with life-threatening SCID and very severe alphabeta and gammadelta T lymphocytopenia. Thus, the peripheral T lymphocyte pool was comparatively well preserved in human CD3gamma deficiencies despite poor thymus output or clinical outcome. We propose a CD3delta >> CD3gamma hierarchy for the relative impact of their absence on the signaling for T cell production in humans.
Collapse
MESH Headings
- Adult
- Animals
- CD3 Complex/genetics
- CD3 Complex/immunology
- Child
- Female
- Humans
- Infant
- Leukocyte Common Antigens/genetics
- Leukocyte Common Antigens/immunology
- Lymphopenia/genetics
- Lymphopenia/immunology
- Male
- Mice
- Mutation
- Pedigree
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Severe Combined Immunodeficiency/genetics
- Severe Combined Immunodeficiency/immunology
- Spain
- T-Lymphocytes/immunology
- Thymus Gland/immunology
- Turkey
Collapse
Affiliation(s)
- María J Recio
- Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fernández-Malavé E, Wang N, Pulgar M, Schamel WWA, Alarcón B, Terhorst C. Overlapping functions of human CD3delta and mouse CD3gamma in alphabeta T-cell development revealed in a humanized CD3gamma-mouse. Blood 2006; 108:3420-7. [PMID: 16888097 DOI: 10.1182/blood-2006-03-010850] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Humans lacking the CD3gamma subunit of the pre-TCR and TCR complexes exhibit a mild alphabeta T lymphopenia, but have normal T cells. By contrast, CD3gamma-deficient mice are almost devoid of mature alphabeta T cells due to an early block of intrathymic development at the CD4(-)CD8(-) double-negative (DN) stage. This suggests that in humans but not in mice, the highly related CD3delta chain replaces CD3gamma during alphabeta T-cell development. To determine whether human CD3delta (hCD3delta) functions in a similar manner in the mouse in the absence of CD3gamma, we introduced an hCD3delta transgene in mice that were deficient for both CD3delta and CD3gamma, in which thymocyte development is completely arrested at the DN stage. Expression of hCD3delta efficiently supported pre-TCR-mediated progression from the DN to the CD4(+)CD8(+) double-positive (DP) stage. However, alphabetaTCR-mediated positive and negative thymocyte selection was less efficient than in wild-type mice, which correlated with a marked attenuation of TCR-mediated signaling. Of note, murine CD3gamma-deficient TCR complexes that had incorporated hCD3delta displayed abnormalities in structural stability resembling those of T cells from CD3gamma-deficient humans. Taken together, these data demonstrate that CD3delta and CD3gamma play a different role in humans and mice in pre-TCR and TCR function during alphabeta T-cell development.
Collapse
Affiliation(s)
- Edgar Fernández-Malavé
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
12
|
Kjer-Nielsen L, Dunstone MA, Kostenko L, Ely LK, Beddoe T, Mifsud NA, Purcell AW, Brooks AG, McCluskey J, Rossjohn J. Crystal structure of the human T cell receptor CD3 epsilon gamma heterodimer complexed to the therapeutic mAb OKT3. Proc Natl Acad Sci U S A 2004; 101:7675-80. [PMID: 15136729 PMCID: PMC419665 DOI: 10.1073/pnas.0402295101] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Indexed: 11/18/2022] Open
Abstract
The CD3 epsilon gamma heterodimer is essential for expression and function of the T cell receptor. The crystal structure of the human CD3 epsilon gamma heterodimer is described to 2.1-A resolution complexed with OKT3, a therapeutic mAb that not only activates and tolerizes mature T cells but also induces regulatory T cells. The mode of CD3 epsilon gamma dimerization provides a general structural basis for CD3 assembly and maps candidate T cell antigen receptor docking sites, including a duplicated linear region rich in acidic residues that is unique to human CD3 epsilon. OKT3 binds to an atypically small area of CD3 epsilon and has a low affinity for the isolated CD3 epsilon gamma heterodimer. The structure of the OKT3/CD3 epsilon gamma complex has implications for T cell signaling and therapeutic design.
Collapse
Affiliation(s)
- Lars Kjer-Nielsen
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Candéias SM, Mancini SJC, Touvrey C, Borel E, Jouvin-Marche E, Marche PN. p53-dependent and p53-independent pathways for radiation-induced immature thymocyte differentiation. Oncogene 2004; 23:1922-9. [PMID: 14755249 DOI: 10.1038/sj.onc.1207320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The pre-T-cell receptor (TCR) delivers essential survival/differentiation signals to the developing thymocytes. Severe combined immunodeficient (SCID) and recombination-activating gene (RAG)-deficient mice are unable to assemble antigen receptor genes, and therefore cannot express a pre-TCR. Consequently, T lymphocyte differentiation is arrested at an early stage in the thymus of these animals, and immature thymocytes are eliminated through apoptotic processes. This maturation arrest can be relieved and thymocyte differentiation rescued after the exposure of these mice to whole-body gamma-irradiation. Whereas the promotion of immature thymocyte survival/differentiation was shown to require p53 activity in irradiated SCID mice, it was suggested, on the other hand, that p53 activation prevents immature thymocytes survival/differentiation in irradiated RAG-deficient mice. However, SCID mice have impaired responses to ionizing radiation. In this paper, we analysed p53 requirement in radiation-induced thymocyte differentiation in CD3epsilon(Delta5/Delta5) mice, where pre-TCR deficiency also results in an early block of lymphocyte development. Our results show at the cellular and molecular levels that, in this DNA repair-proficient model, irradiation-induced thymocyte differentiation proceeds either by a p53-dependent or by a p53-independent pathway, which differ in their sensitivity to the radiation dose delivered.
Collapse
MESH Headings
- Animals
- CD3 Complex/genetics
- CD3 Complex/physiology
- Cell Differentiation/radiation effects
- Flow Cytometry
- Gene Rearrangement, T-Lymphocyte
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, SCID
- Polymerase Chain Reaction
- Receptors, Antigen/deficiency
- Receptors, Antigen/genetics
- Receptors, Antigen/radiation effects
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/radiation effects
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Whole-Body Irradiation
Collapse
Affiliation(s)
- Serge Michel Candéias
- 1Laboratoire d'Immunochimie, Commissariat à l'Energie Atomique-Grenoble, Département Réponse et Dynamique Cellulaire, INSERM U548, Université Joseph Fourier, 17 rue des martyrs, 38054 Grenoble, France.
| | | | | | | | | | | |
Collapse
|
14
|
von Boehmer H, Aifantis I, Gounari F, Azogui O, Haughn L, Apostolou I, Jaeckel E, Grassi F, Klein L. Thymic selection revisited: how essential is it? Immunol Rev 2003; 191:62-78. [PMID: 12614352 DOI: 10.1034/j.1600-065x.2003.00010.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Intrathymic T cell development represents one of the best studied paradigms of mammalian development. Lymphoid committed precursors enter the thymus and the Notch1 receptor plays an essential role in committing them to the T cell lineages. The pre-T cell receptor (TCR), as an autonomous cell signaling receptor, commits cells to the alphabeta lineage while its rival, the gammadeltaTCR, is involved in generating the gammadelta lineage of T cells. Positive and negative selection of immature alphabetaTCR-expressing cells are essential mechanisms for generating mature T cells, committing them to the CD4 and CD8 lineages and avoiding autoimmunity. Additional lineages of alphabetaT cells, such as the natural killer T cell lineage and the CD25+ regulatory T cell lineage, are formed when the alphabetaTCR encounters specific ligands in suitable microenvironments. Thus, positive selection and receptor-instructed lineage commitment represent a hallmark of the thymus. Ectopically expressed organ-specific antigens contribute to thymic self-nonself discrimination, which represents an essential feature for the evolutionary fitness of mammalian species.
Collapse
Affiliation(s)
- Harald von Boehmer
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Doucey MA, Goffin L, Naeher D, Michielin O, Baumgärtner P, Guillaume P, Palmer E, Luescher IF. CD3 delta establishes a functional link between the T cell receptor and CD8. J Biol Chem 2003; 278:3257-64. [PMID: 12215456 DOI: 10.1074/jbc.m208119200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
T cells expressing T cell receptor (TCR) complexes that lack CD3 delta, either due to deletion of the CD3 delta gene, or by replacement of the connecting peptide of the TCR alpha chain, exhibit severely impaired positive selection and TCR-mediated activation of CD8 single-positive T cells. Because the same defects have been observed in mice expressing no CD8 beta or tailless CD8 beta, we examined whether CD3 delta serves to couple TCR.CD3 with CD8. To this end we used T cell hybridomas and transgenic mice expressing the T1 TCR, which recognizes a photoreactive derivative of the PbCS 252-260 peptide in the context of H-2K(d). We report that, in thymocytes and hybridomas expressing the T1 TCR.CD3 complex, CD8 alpha beta associates with the TCR. This association was not observed on T1 hybridomas expressing only CD8 alpha alpha or a CD3 delta(-) variant of the T1 TCR. CD3 delta was selectively co-immunoprecipitated with anti-CD8 antibodies, indicating an avid association of CD8 with CD3 delta. Because CD8 alpha beta is a raft constituent, due to this association a fraction of TCR.CD3 is raft-associated. Cross-linking of these TCR-CD8 adducts results in extensive TCR aggregate formation and intracellular calcium mobilization. Thus, CD3 delta couples TCR.CD3 with raft-associated CD8, which is required for effective activation and positive selection of CD8(+) T cells.
Collapse
Affiliation(s)
- Marie-Agnès Doucey
- Institute for Biochemistry, University of Lausanne, Epalinges 1066, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Law CL, Hayden-Ledbetter M, Buckwalter S, McNeill L, Nguyen H, Habecker P, Thorne BA, Dua R, Ledbetter JA. Expression and characterization of recombinant soluble human CD3 molecules: presentation of antigenic epitopes defined on the native TCR-CD3 complex. Int Immunol 2002; 14:389-400. [PMID: 11934875 DOI: 10.1093/intimm/14.4.389] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The TCR-CD3 complex consists of the clonotypic disulfide-linked TCRalphabeta or TCRdeltagamma heterodimers, and the invariant CD3delta, epsilon, gamma and zeta chains. We generated plasmid constructs expressing the extracellular domains of the CD3delta, epsilon or gamma subunits fused to human IgG1 Fc. Recombinant fusion proteins consisting of individual CD3delta, epsilon or gamma subunits reacted poorly with anti-CD3 mAb including G19-4, BC3, OKT3 and 64.1. Co-expression of the CD3epsilon-Ig with either the CD3delta-Ig (CD3epsilondelta-Ig) or the CD3gamma-Ig (CD3epsilongamma-Ig) resulted in fusion proteins with much increased binding to G19-4. A brief acid treatment of the purified CD3epsilondelta-Ig fusion protein substantially improved its binding to BC3, OKT3 and 64.1. Surface plasmon resonance analysis revealed that the dissociation constants for CD3epsilondelta-Ig and anti-CD3 mAb ranged from 10(-8) to 10(-9) M. Based on these results, a single-chain (sc) construct encoding the CD3delta chain linked to the CD3epsilon chain with a flexible linker followed by human IgG1 Fc was expressed. The sc CD3deltaepsilon-scIg reacted with anti-CD3 mAb without requiring acid treatment. Moreover, anti-CD3 mAb bound CD3epsilondelta-Ig at a higher affinity than CD3epsilongamma-Ig, suggesting potential structural differences between the CD3epsilondelta and CD3epsilongamma subunits. In summary, we report the expression of soluble recombinant CD3 proteins that demonstrate structural characteristics of the native CD3 complex expressed on the T cell surface. These CD3 fusion proteins can be used to further analyze the structure of the TCR-CD3 complex, and to identify molecules that can interfere with TCR-CD3-mediated signal transduction by disrupting the interaction between CD3 and TCR subunits.
Collapse
|
17
|
Mancini SJ, Candéias SM, Di Santo JP, Ferrier P, Marche PN, Jouvin-Marche E. TCRA gene rearrangement in immature thymocytes in absence of CD3, pre-TCR, and TCR signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4485-93. [PMID: 11591775 DOI: 10.4049/jimmunol.167.8.4485] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During thymocyte differentiation, TCRA genes are massively rearranged only after productively rearranged TCRB genes are expressed in association with pTalpha and CD3 complex molecules within a pre-TCR. Signaling from the pre-TCR via the CD3 complex is thought to be required to promote TCRA gene accessibility and recombination. However, alphabeta(+) thymocytes do develop in pTalpha-deficient mice, showing that TCRalpha-chain genes are rearranged, either in CD4(-)CD8(-) or CD4(+)CD8(+) thymocytes, in the absence of pre-TCR expression. In this study, we analyzed the TCRA gene recombination status of early immature thymocytes in mutant mice with arrested thymocyte development, deficient for either CD3 or pTalpha and gammac expression. ADV genes belonging to different families were found rearranged to multiple AJ segments in both cases. Thus, TCRA gene rearrangement is independent of CD3 and gammac signaling. However, CD3 expression was found to play a role in transcription of rearranged TCRalpha-chain genes in CD4(-)CD8(-) thymocytes. Taken together, these results provide new insights into the molecular control of early T cell differentiation.
Collapse
Affiliation(s)
- S J Mancini
- Laboratoire d'Immunochimie, Commissariat à l'Energie Atomique-Grenoble, Département de Biologie Moléculaire et Structurale, Institut National de la Santé et de la Recherche Médicale U548, Université Joseph Fourier, Grenoble, France
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Transgenic mice expressing a T-cell-specific dominant interfering allele (MEnT) of the c-Myb transcription factor have a pronounced block in CD4(-)CD8(-) (DN) development. In this study we show that differentiation of DN MEnT thymocytes is blocked due to the failure of cells to enter the cell cycle following beta-selection, the process by which productive rearrangement of the T-cell receptor (TCR) beta-chain permits maturation of cells into CD4(+)CD8(+) (DP) thymocytes. c-myb mRNA continues to be expressed in DN cells in mice lacking a functional pre-TCR signalling pathway, implying that its transcriptional regulation is independent of the signalling events regulating beta-selection. It is also expressed in the absence of cytokine signalling. However, we show that c-Myb protein is required for the function in beta-selection of its known upstream activator, the serine/threonine kinase Pim1: MEnT expression inhibits the cell cycle in Pim1 transgenic DN thymocytes and prevents Pim1-mediated rescue of a RAG1(-/-) developmental block. Super activation of c-Myb by Pim1 may therefore be required for beta-selection.
Collapse
Affiliation(s)
- R Pearson
- CRC Centre for Cell and Molecular Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | |
Collapse
|
19
|
CD3 IMMUNODEFICIENCIES. Radiol Clin North Am 2000. [DOI: 10.1016/s0033-8389(22)00175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Zapata DA, Pacheco-Castro A, Torres PS, Millán R, Regueiro JR. CD3 IMMUNODEFICIENCIES. Immunol Allergy Clin North Am 2000. [DOI: 10.1016/s0889-8561(05)70130-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Haks MC, Krimpenfort P, van den Brakel JH, Kruisbeek AM. Pre-TCR signaling and inactivation of p53 induces crucial cell survival pathways in pre-T cells. Immunity 1999; 11:91-101. [PMID: 10435582 DOI: 10.1016/s1074-7613(00)80084-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Signaling through the pre-TCR is essential for early T cell development and is severely impaired in mice lacking the CD3 gamma chain of the pre-TCR. We here address the molecular mechanisms underlying this defect. Impaired pre-TCR signaling is shown to be associated with a profound increase in the number of apoptotic CD4- CD8- (DN) thymocytes. Introduction of p53 deficiency into CD3 gamma-deficient mice completely reverses the cell survival defect in CD3 gamma-deficient DN thymocytes and rescues the block in pre-T cell differentiation. In addition, the CD4+ CD8+ (DP) compartment is expanded to its normal size. These findings suggest that the pre-TCR regulates progression through the DNA-damage checkpoint of the DN to DP transition by inactivating p53.
Collapse
Affiliation(s)
- M C Haks
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam
| | | | | | | |
Collapse
|
22
|
Malissen B, Ardouin L, Lin SY, Gillet A, Malissen M. Function of the CD3 subunits of the pre-TCR and TCR complexes during T cell development. Adv Immunol 1999; 72:103-48. [PMID: 10361573 DOI: 10.1016/s0065-2776(08)60018-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- B Malissen
- Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, France
| | | | | | | | | |
Collapse
|
23
|
Wang B, Wang N, Whitehurst CE, She J, Chen J, Terhorst C. T Lymphocyte Development in the Absence of CD3ε or CD3γδεζ. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.1.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
CD3γ, δ, ε, and ζ proteins together with the pre-TCR α-chain (pTα) and a rearranged TCR β-chain assemble to form the pre-TCR that controls the double negative (DN) to double positive (DP) stages of thymopoiesis. The CD3 proteins are expressed before pTα and TCR β-chains in prothymocytes and are expressed intracellularly in precursor NK cells, suggesting that the CD3 complex may function independent of pTα and TCRβ. In this report, both the role of CD3ε exclusively, and the role of CD3 proteins collectively, in thymocyte and NK cell development were examined. In a mouse strain termed εΔP, a neomycin cassette inserted within the CD3ε promoter abolishes CD3ε and δ expression and also abolishes CD3γ expression in all but a small minority (≤1%) of prothymocytes. These prothymocytes became deficient in CD3ε alone upon reconstitution of CD3δ expression and were severely, but not completely, arrested at the DN stage, as small numbers of double positive thymocytes were detected. In de facto CD3γδεζnull mice generated by crossing the εΔP mice with CD3ζ−/− mice, thymopoiesis were arrested at the CD44−CD25+ DN stage as observed in RAG−/− mice, DJ and VDJ recombination at the TCRβ locus was functional, and normal numbers of NK cells were detected. Together, the findings demonstrate that during thymocyte development, the CD3 complex collectively is not essential until the critical CD44−CD25+ DN stage in which pre-TCR begins to function, whereas CD3ε is critical for the assembly of pre-TCR. Moreover, CD3 proteins are dispensable for NK cell development.
Collapse
Affiliation(s)
- Baoping Wang
- *Division of Immunology, Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA 02215; and
| | - Ninghai Wang
- *Division of Immunology, Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA 02215; and
| | - Charles E. Whitehurst
- †Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jian She
- *Division of Immunology, Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA 02215; and
| | - Jianzhu Chen
- †Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Cox Terhorst
- *Division of Immunology, Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA 02215; and
| |
Collapse
|