1
|
Shi J, Yin W, Chen W. Mathematical models of TCR initial triggering. Front Immunol 2024; 15:1411614. [PMID: 39091495 PMCID: PMC11291225 DOI: 10.3389/fimmu.2024.1411614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
T cell receptors (TCRs) play crucial roles in regulating T cell response by rapidly and accurately recognizing foreign and non-self antigens. The process involves multiple molecules and regulatory mechanisms, forming a complex network to achieve effective antigen recognition. Mathematical modeling techniques can help unravel the intricate network of TCR signaling and identify key regulators that govern it. In this review, we introduce and briefly discuss relevant mathematical models of TCR initial triggering, with a focus on kinetic proofreading (KPR) models with different modified structures. We compare the topology structures, biological hypotheses, parameter choices, and simulation performance of each model, and summarize the advantages and limitations of them. Further studies on TCR modeling design, aiming for an optimized balance of specificity and sensitivity, are expected to contribute to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Jiawei Shi
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Weiwei Yin
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Laletin V, Bernard PL, Montersino C, Yamanashi Y, Olive D, Castellano R, Guittard G, Nunès JA. DOK1 and DOK2 regulate CD8 T cell signaling and memory formation without affecting tumor cell killing. Sci Rep 2024; 14:15053. [PMID: 38956389 PMCID: PMC11220026 DOI: 10.1038/s41598-024-66075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Targeting intracellular inhibiting proteins has been revealed to be a promising strategy to improve CD8+ T cell anti-tumor efficacy. Here, we are focusing on intracellular inhibiting proteins specific to TCR signaling: DOK1 and DOK2 expressed in T cells. We hypothesized that depletion of intracellular inhibition checkpoint DOK1 and DOK2 could improve CD8+ T-cell based cancer therapies. To evaluate the role of DOK1 and DOK2 depletion in physiology and effector function of CD8+ T lymphocytes and in cancer progression, we established a transgenic T cell receptor mouse model specific to melanoma antigen hgp100 (pmel-1 TCR Tg) in WT and Dok1/Dok2 DKO (double KO) mice. We showed that both DOK1 and DOK2 depletion in CD8+ T cells after an in vitro pre-stimulation induced a higher percentage of effector memory T cells as well as an up regulation of TCR signaling cascade- induced by CD3 mAbs, including the increased levels of pAKT and pERK, two major phosphoproteins involved in T cell functions. Interestingly, this improved TCR signaling was not observed in naïve CD8+ T cells. Despite this enhanced TCR signaling essentially shown upon stimulation via CD3 mAbs, pre-stimulated Dok1/Dok2 DKO CD8+ T cells did not show any increase in their activation or cytotoxic capacities against melanoma cell line expressing hgp100 in vitro. Altogether we demonstrate here a novel aspect of the negative regulation by DOK1 and DOK2 proteins in CD8+ T cells. Indeed, our results allow us to conclude that DOK1 and DOK2 have an inhibitory role following long term T cell stimulations.
Collapse
Affiliation(s)
- Vladimir Laletin
- Centre de Recherche en Cancérologie de Marseille, CRCM, Immunity and Cancer Team, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille University, Marseille, France
| | - Pierre-Louis Bernard
- Centre de Recherche en Cancérologie de Marseille, CRCM, Immunity and Cancer Team, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille University, Marseille, France
| | - Camille Montersino
- Centre de Recherche en Cancérologie de Marseille, CRCM, TrGET Pre-Clinical Assay Platform, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille University, Marseille, France
| | - Yuji Yamanashi
- Division of Genetics, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Daniel Olive
- Centre de Recherche en Cancérologie de Marseille, CRCM, Immunity and Cancer Team, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille University, Marseille, France
| | - Rémy Castellano
- Centre de Recherche en Cancérologie de Marseille, CRCM, TrGET Pre-Clinical Assay Platform, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille University, Marseille, France
| | - Geoffrey Guittard
- Centre de Recherche en Cancérologie de Marseille, CRCM, Immunity and Cancer Team, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille University, Marseille, France
| | - Jacques A Nunès
- Centre de Recherche en Cancérologie de Marseille, CRCM, Immunity and Cancer Team, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille University, Marseille, France.
| |
Collapse
|
3
|
Zhao X, Wu LZ, Ng EKY, Leow KWS, Wei Q, Gascoigne NRJ, Brzostek J. Non-Stimulatory pMHC Enhance CD8 T Cell Effector Functions by Recruiting Coreceptor-Bound Lck. Front Immunol 2021; 12:721722. [PMID: 34707605 PMCID: PMC8542885 DOI: 10.3389/fimmu.2021.721722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Under physiological conditions, CD8+ T cells need to recognize low numbers of antigenic pMHC class I complexes in the presence of a surplus of non-stimulatory, self pMHC class I on the surface of the APC. Non-stimulatory pMHC have been shown to enhance CD8+ T cell responses to low amounts of antigenic pMHC, in a phenomenon called co-agonism, but the physiological significance and molecular mechanism of this phenomenon are still poorly understood. Our data show that co-agonist pMHC class I complexes recruit CD8-bound Lck to the immune synapse to modulate CD8+ T cell signaling pathways, resulting in enhanced CD8+ T cell effector functions and proliferation, both in vitro and in vivo. Moreover, co-agonism can boost T cell proliferation through an extrinsic mechanism, with co-agonism primed CD8+ T cells enhancing Akt pathway activation and proliferation in neighboring CD8+ T cells primed with low amounts of antigen.
Collapse
Affiliation(s)
- Xiang Zhao
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Liang-Zhe Wu
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Esther K Y Ng
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kerisa W S Leow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Qianru Wei
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicholas R J Gascoigne
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joanna Brzostek
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Howson LJ, Li J, von Borstel A, Barugahare A, Mak JYW, Fairlie DP, McCluskey J, Turner SJ, Davey MS, Rossjohn J. Mucosal-Associated Invariant T Cell Effector Function Is an Intrinsic Cell Property That Can Be Augmented by the Metabolic Cofactor α-Ketoglutarate. THE JOURNAL OF IMMUNOLOGY 2021; 206:1425-1435. [PMID: 33597151 DOI: 10.4049/jimmunol.2001048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are an innate-like population of unconventional T cells that respond rapidly to microbial metabolite Ags or cytokine stimulation. Because of this reactivity and surface expression of CD45RO+, CD45RA-, and CD127+, they are described as effector memory cells. Yet, there is heterogeneity in MAIT cell effector response. It is unclear what factors control MAIT cell effector capacity, whether it is fixed or can be modified and if this differs based on whether activation is TCR dependent or independent. To address this, we have taken a systematic approach to examine human MAIT cell effector capacity across healthy individuals in response to ligand and cytokine stimulation. We demonstrate the heterogenous nature of MAIT cell effector capacity and that the ability to produce an effector response is not directly attributable to TCR clonotype or coreceptor expression. Global gene transcription analysis revealed that the MAIT cell effector capacity produced in response to TCR stimulation is associated with increased expression of the epigenetic regulator lysine demethylase 6B (KDM6B). Addition of a KDM6B inhibitor did not alter MAIT cell effector function to Ag or cytokine stimulation. However, addition of the KDM6B cofactor α-ketoglutarate greatly enhanced MAIT cell effector capacity to TCR-dependent stimulation in a partially KDM6B-dependent manner. These results demonstrate that the TCR-dependent effector response of MAIT cells is epigenetically regulated and dependent on the availability of metabolic cofactors.
Collapse
Affiliation(s)
- Lauren J Howson
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia;
| | - Jasmine Li
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Anouk von Borstel
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Adele Barugahare
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jeffrey Y W Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Stephen J Turner
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Martin S Davey
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; and.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|
5
|
Sun Y, Xie J, Anyalebechi JC, Chen CW, Sun H, Xue M, Liang Z, Morrow KN, Coopersmith CM, Ford ML. CD28 Agonism Improves Survival in Immunologically Experienced Septic Mice via IL-10 Released by Foxp3 + Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:3358-3371. [PMID: 33158954 DOI: 10.4049/jimmunol.2000595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/13/2020] [Indexed: 01/22/2023]
Abstract
Immune dysregulation during sepsis is mediated by an imbalance of T cell costimulatory and coinhibitory signaling. CD28 is downregulated during sepsis and is significantly altered on memory versus naive T cells. Thus, to study the role of CD28 during sepsis in a more physiologically relevant context, we developed a "memory mouse" model in which animals are subjected to pathogen infections to generate immunologic memory, followed by sepsis induction via cecal ligation and puncture. Using this system, we show that agonistic anti-CD28 treatment resulted in worsened survival in naive septic animals but conferred a significant survival advantage in immunologically experienced septic animals. Mechanistically, this differential response was driven by the ability of CD28 agonism to elicit IL-10 production from regulatory T cells uniquely in memory but not naive mice. Moreover, elevated IL-10 released by activated regulatory T cells in memory mice inhibited sepsis-induced T cell apoptosis via the antiapoptotic protein Bcl-xL. Together, these data demonstrate that immunologic experience is an important parameter that affects sepsis pathophysiology and can fundamentally change the outcome of modulating the CD28 pathway during sepsis. This study suggests that testing therapeutic strategies in immunologically experienced hosts may be one way to increase the physiologic relevance of rodent models in sepsis research.
Collapse
Affiliation(s)
- Yini Sun
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322.,Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang 110000, China
| | - Jianfeng Xie
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322.,Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | | | - Ching-Wen Chen
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322
| | - He Sun
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322.,Department of Hepatobiliary Surgery and Transplantation, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang 110000, China
| | - Ming Xue
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322.,Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhe Liang
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322
| | - Kristen N Morrow
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322
| | - Craig M Coopersmith
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322.,Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA 30322; and
| | - Mandy L Ford
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322; .,Emory Transplant Center, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
6
|
Wei Q, Brzostek J, Sankaran S, Casas J, Hew LSQ, Yap J, Zhao X, Wojciech L, Gascoigne NRJ. Lck bound to coreceptor is less active than free Lck. Proc Natl Acad Sci U S A 2020; 117:15809-15817. [PMID: 32571924 PMCID: PMC7355011 DOI: 10.1073/pnas.1913334117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Src family kinase Lck plays critical roles during T cell development and activation, as it phosphorylates the TCR/CD3 complex to initiate TCR signaling. Lck is present either in coreceptor-bound or coreceptor-unbound (free) forms, and we here present evidence that the two pools of Lck have different molecular properties. We discovered that the free Lck fraction exhibited higher mobility than CD8α-bound Lck in OT-I T hybridoma cells. The free Lck pool showed more activating Y394 phosphorylation than the coreceptor-bound Lck pool. Consistent with this, free Lck also had higher kinase activity, and free Lck mediated higher T cell activation as compared to coreceptor-bound Lck. Furthermore, the coreceptor-Lck coupling was independent of TCR activation. These findings give insights into the initiation of TCR signaling, suggesting that changes in coreceptor-Lck coupling constitute a mechanism for regulation of T cell sensitivity.
Collapse
Affiliation(s)
- Qianru Wei
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545
| | - Joanna Brzostek
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545
| | - Shvetha Sankaran
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456
| | - Javier Casas
- Department of Biochemistry, Molecular Biology and Physiology, Universidad de Valladolid, Valladolid, Spain, 47005
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain, 47003
| | - Lois Shi-Qi Hew
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545
| | - Jiawei Yap
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545
| | - Xiang Zhao
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545
| | - Lukasz Wojciech
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545
| | - Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545;
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456
| |
Collapse
|
7
|
Bhatta A, Chan MA, Benedict SH. Engagement of CD45 alters early signaling events in human T cells co-stimulated through TCR + CD28. Cell Immunol 2020; 353:104130. [PMID: 32446033 DOI: 10.1016/j.cellimm.2020.104130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/03/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
Previously our lab has shown that co-stimulation of human T cells through different co-stimulatory molecules tune differentiation to different phenotypes. An open question is where in the signaling pathways induced by the co-stimulation do differences occur that contribute to outcome of differentiation. In this project, we investigate the early signaling process by comparing events that follow engagement of CD45 alone or in association with a co-stimulatory molecule: CD28. CD45 plays a crucial role to initiate T cell signaling by dephosphorylating a negatively regulatory tyrosine residue in Src family kinases such as Lck. First, we observed that engagement of CD45 alone induced signaling in T cells. We observed that TCR/CD3 stimulation with CD45 promoted prolonged Lck association with TCR/CD3 complex and Lck remained associated during TCR/CD3 + CD28 + CD45 stimulation as well. We concluded that Lck association is dependent on TCR/CD3 and CD45 engagement. Hence, CD45 altered early signaling events in T cells.
Collapse
Affiliation(s)
- Anuja Bhatta
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States.
| | - Marcia A Chan
- Department of Pediatrics, Division of Allergy, Asthma, and Immunology, Children's Mercy Hospital, Kansas City, MO, United States
| | - Stephen H Benedict
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
8
|
Da Rocha S, Bigot J, Onodi F, Cosette J, Corre G, Poupiot J, Fenard D, Gjata B, Galy A, Neildez-Nguyen TMA. Temporary Reduction of Membrane CD4 with the Antioxidant MnTBAP Is Sufficient to Prevent Immune Responses Induced by Gene Transfer. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 14:285-299. [PMID: 31497619 PMCID: PMC6718808 DOI: 10.1016/j.omtm.2019.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 06/29/2019] [Indexed: 12/14/2022]
Abstract
Unexpectedly, the synthetic antioxidant MnTBAP was found to cause a rapid and reversible downregulation of CD4 on T cells in vitro and in vivo. This effect resulted from the internalization of membrane CD4 T cell molecules into clathrin-coated pits and involved disruption of the CD4/p56Lck complex. The CD4 deprivation induced by MnTBAP had functional consequences on CD4-dependent infectious processes or immunological responses as shown in various models, including gene therapy. In cultured human T cells, MnTBAP-induced downregulation of CD4 functionally suppressed gp120- mediated lentiviral transduction in a model relevant for HIV infection. The injection of MnTBAP in mice reduced membrane CD4 on lymphocytes in vivo within 5 days of treatment, preventing OVA peptide T cell immunization while allowing subsequent immunization once treatment was stopped. In a mouse gene therapy model, MnTBAP treatment at the time of adenovirus-associated virus (AAV) vector administration, successfully controlled the induction of anti-transgene and anti-capsid immune responses mediated by CD4+ T cells, enabling the redosing mice with the same vector. These functional data provide new avenues to develop alternative therapeutic immunomodulatory strategies based on temporary regulation of CD4. These could be particularly useful for AAV gene therapy in which novel strategies for redosing are needed.
Collapse
Affiliation(s)
- Sylvie Da Rocha
- Ecole Pratique des Hautes Etudes, PSL Research University, INTEGRARE UMR_S951, INSERM, Généthon, Univ-Evry, 91002 Evry, France
| | - Jérémy Bigot
- Ecole Pratique des Hautes Etudes, PSL Research University, INTEGRARE UMR_S951, INSERM, Généthon, Univ-Evry, 91002 Evry, France
| | - Fanny Onodi
- Ecole Pratique des Hautes Etudes, PSL Research University, INTEGRARE UMR_S951, INSERM, Généthon, Univ-Evry, 91002 Evry, France
| | | | - Guillaume Corre
- Ecole Pratique des Hautes Etudes, PSL Research University, INTEGRARE UMR_S951, INSERM, Généthon, Univ-Evry, 91002 Evry, France
| | - Jérôme Poupiot
- Ecole Pratique des Hautes Etudes, PSL Research University, INTEGRARE UMR_S951, INSERM, Généthon, Univ-Evry, 91002 Evry, France
| | - David Fenard
- Ecole Pratique des Hautes Etudes, PSL Research University, INTEGRARE UMR_S951, INSERM, Généthon, Univ-Evry, 91002 Evry, France
| | | | - Anne Galy
- Ecole Pratique des Hautes Etudes, PSL Research University, INTEGRARE UMR_S951, INSERM, Généthon, Univ-Evry, 91002 Evry, France
| | - Thi My Anh Neildez-Nguyen
- Ecole Pratique des Hautes Etudes, PSL Research University, INTEGRARE UMR_S951, INSERM, Généthon, Univ-Evry, 91002 Evry, France
| |
Collapse
|
9
|
Piccirillo AR, Cattley RT, D'Cruz LM, Hawse WF. Histone acetyltransferase CBP is critical for conventional effector and memory T-cell differentiation in mice. J Biol Chem 2018; 294:2397-2406. [PMID: 30573679 DOI: 10.1074/jbc.ra118.006977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/13/2018] [Indexed: 12/21/2022] Open
Abstract
Compared with naïve T cells, memory CD8+ T cells have a transcriptional landscape and proteome that are optimized to generate a more rapid and robust response to secondary infection. Additionally, rewired kinase signal transduction pathways likely contribute to the superior recall response of memory CD8+ T cells, but this idea has not been experimentally confirmed. Herein, we utilized an MS approach to identify proteins that are phosphorylated on tyrosine residues in response to Listeria-induced T-cell receptor (TCR) stimulation in both naïve and memory CD8+ T cells from mice and separated by fluorescence- and flow cytometry-based cell sorting. This analysis identified substantial differences in tyrosine kinase signaling networks between naïve and memory CD8+ T cells. We also observed that an important axis in memory CD8+ T cells couples Janus kinase 2 (JAK2) hyperactivation to the phosphorylation of CREB-binding protein (CBP). Functionally, JAK2-catalyzed phosphorylation enabled CBP to bind with higher affinity to acetylated histone peptides, indicating a potential epigenetic mechanism that could contribute to rapid initiation of transcriptional programs in memory CD8+ T cells. Moreover, we found that CBP itself is essential for conventional effector and memory CD8+ T-cell formation. These results indicate how signaling pathways are altered to promote CD8+ memory cell formation and rapid responses to and protection from repeat infections.
Collapse
Affiliation(s)
- Ann R Piccirillo
- From the Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Richard T Cattley
- From the Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Louise M D'Cruz
- From the Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - William F Hawse
- From the Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
10
|
Jain A, Song R, Wakeland EK, Pasare C. T cell-intrinsic IL-1R signaling licenses effector cytokine production by memory CD4 T cells. Nat Commun 2018; 9:3185. [PMID: 30093707 PMCID: PMC6085393 DOI: 10.1038/s41467-018-05489-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/04/2018] [Indexed: 12/31/2022] Open
Abstract
Innate cytokines are critical drivers of priming and differentiation of naive CD4 T cells, but their functions in memory T cell response are largely undefined. Here we show that IL-1 acts as a licensing signal to permit effector cytokine production by pre-committed Th1 (IFN-γ), Th2 (IL-13, IL-4, and IL-5) and Th17 (IL-17A, IL-17F, and IL-22) lineage cells. This licensing function of IL-1 is conserved across effector CD4 T cells generated by diverse immunological insults. IL-1R signaling stabilizes cytokine transcripts to enable productive and rapid effector functions. We also demonstrate that successful lineage commitment does not translate into productive effector functions in the absence of IL-1R signaling. Acute abrogation of IL-1R signaling in vivo results in reduced IL-17A production by intestinal Th17 cells. These results extend the role of innate cytokines beyond CD4 T cell priming and establish IL-1 as a licensing signal for memory CD4 T cell function. CD4 T cell polarizations and functions are regulated by cytokines from innate cells. Here the authors show that IL-1 deficiency does not impair the differentiation of Th1, Th2 and Th17, but IL-1 signaling is required for maintaining the expressions of their respective key cytokines to ‘license’ the functions of these T cell subsets.
Collapse
Affiliation(s)
- Aakanksha Jain
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ran Song
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Edward K Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Chandrashekhar Pasare
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
11
|
Abstract
Memory cytotoxic T lymphocytes (CTLs) are able to provide protections to the host against repeated insults from intracellular pathogens. However, it has not been completely understood how the effector functions of memory CTLs are induced upon antigen challenge, which is directly related to the efficacy of their protection. Third signal cytokines, such as IL-12 and type I interferon, have been suggested to be involved in the protective function of memory CTLs, but direct evidence is warranted. In this report, we found that memory CTLs need to be reactivated to exert effector functions. Infusion of a large population of quiescent memory CTLs did not lead to cancer control in tumor-bearing mice, whereas infusion of a reactivated memory CTL population did. This reactivation of memory CTLs requires cytokines such as IL-12 in addition to antigen but was less dependent upon costimulation and IL-2 compared to naive CTLs. Memory CTLs responded more quickly and with greater strength than their naive counterparts upon stimulation, which is associated with higher upregulation of important transcription factors such as T-bet and phosphorylated STAT4. In addition, memory CTLs underwent less expansion than naive CTLs upon pathogen challenge. In conclusion, effector functions of established memory CTLs may be affected by certain cytokines such as IL-12 and type I IFN. Thus, a pathogen's ability to induce cytokines could contribute to the efficacy of protection of an established memory CTL population.
Collapse
|
12
|
Khiew SH, Yang J, Young JS, Chen J, Wang Q, Yin D, Vu V, Miller ML, Sciammas R, Alegre ML, Chong AS. CTLA4-Ig in combination with FTY720 promotes allograft survival in sensitized recipients. JCI Insight 2017; 2:92033. [PMID: 28469082 PMCID: PMC5414557 DOI: 10.1172/jci.insight.92033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/21/2017] [Indexed: 12/30/2022] Open
Abstract
Despite recent evidence of improved graft outcomes and safety, the high incidence of early acute cellular rejection with belatacept, a high-affinity CTLA4-Ig, has limited its use in clinical transplantation. Here we define how the incomplete control of endogenous donor-reactive memory T cells results in belatacept-resistant rejection in an experimental model of BALB/c.2W-OVA donor heart transplantation into C57BL/6 recipients presensitized to donor splenocytes. These sensitized mice harbored modestly elevated numbers of endogenous donor-specific memory T cells and alloantibodies compared with naive recipients. Continuous CTLA4-Ig treatment was unexpectedly efficacious at inhibiting endogenous graft-reactive T cell expansion but was unable to inhibit late CD4+ and CD8+ T cell infiltration into the allografts, and rejection was observed in 50% of recipients by day 35 after transplantation. When CTLA4-Ig was combined with the sphingosine 1-phosphate receptor-1 (S1PR1) functional antagonist FTY720, alloantibody production was inhibited and donor-specific IFN-γ-producing T cells were reduced to levels approaching nonsensitized tolerant recipients. Late T cell recruitment into the graft was also restrained, and graft survival improved with this combination therapy. These observations suggest that a rational strategy consisting of inhibiting memory T cell expansion and trafficking into the allograft with CTLA4-Ig and FTY720 can promote allograft survival in allosensitized recipients.
Collapse
Affiliation(s)
| | - Jinghui Yang
- Section of Transplantation, Department of Surgery
| | | | - Jianjun Chen
- Section of Transplantation, Department of Surgery
| | - Qiang Wang
- Section of Transplantation, Department of Surgery
| | - Dengping Yin
- Section of Transplantation, Department of Surgery
| | - Vinh Vu
- Section of Transplantation, Department of Surgery
| | - Michelle L. Miller
- Section of Rheumatology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Roger Sciammas
- Center for Comparative Medicine, University of California, Davis, California, USA
| | - Maria-Luisa Alegre
- Section of Rheumatology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
13
|
Martinez RJ, Andargachew R, Martinez HA, Evavold BD. Low-affinity CD4+ T cells are major responders in the primary immune response. Nat Commun 2016; 7:13848. [PMID: 27976744 PMCID: PMC5234832 DOI: 10.1038/ncomms13848] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 11/04/2016] [Indexed: 12/21/2022] Open
Abstract
A robust primary immune response has been correlated with the precursor number of antigen-specific T cells, as identified using peptide MHCII tetramers. However, these tetramers identify only the highest-affinity T cells. Here we show the entire CD4+ T-cell repertoire, inclusive of low-affinity T cells missed by tetramers, using a T-cell receptor (TCR) signalling reporter and micropipette assay to quantify naive precursors and expanded populations. In vivo limiting dilution assays reveal hundreds more precursor T cells than previously thought, with higher-affinity tetramer-positive T cells, comprising only 5-30% of the total antigen-specific naive repertoire. Lower-affinity T cells maintain their predominance as the primary immune response progresses, with no enhancement of survival of T cells with high-affinity TCRs. These findings demonstrate that affinity for antigen does not control CD4+ T-cell entry into the primary immune response, as a diverse range in affinity is maintained from precursor through peak of T-cell expansion.
Collapse
Affiliation(s)
- Ryan J. Martinez
- Department of Microbiology and Immunology, Emory University, 1510 Clifton Rd NE, Atlanta Georgia, 30322, USA
| | - Rakieb Andargachew
- Department of Microbiology and Immunology, Emory University, 1510 Clifton Rd NE, Atlanta Georgia, 30322, USA
| | - Hunter A. Martinez
- Department of Microbiology and Immunology, Emory University, 1510 Clifton Rd NE, Atlanta Georgia, 30322, USA
| | - Brian D. Evavold
- Department of Microbiology and Immunology, Emory University, 1510 Clifton Rd NE, Atlanta Georgia, 30322, USA
| |
Collapse
|
14
|
Ashouri JF, Weiss A. Endogenous Nur77 Is a Specific Indicator of Antigen Receptor Signaling in Human T and B Cells. THE JOURNAL OF IMMUNOLOGY 2016; 198:657-668. [PMID: 27940659 DOI: 10.4049/jimmunol.1601301] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022]
Abstract
Distinguishing true Ag-stimulated lymphocytes from bystanders activated by the inflammatory milieu has been difficult. Nur77 is an immediate early gene whose expression is rapidly upregulated by TCR signaling in murine T cells and human thymocytes. Nur77-GFP transgenes serve as specific TCR and BCR signaling reporters in murine transgenic models. In this study, we demonstrate that endogenous Nur77 protein expression can serve as a reporter of TCR and BCR specific signaling in human PBMCs. Nur77 protein amounts were assessed by immunofluorescence and flow cytometry in T and B cells isolated from human PBMCs obtained from healthy donors that had been stimulated by their respective Ag receptors. We demonstrate that endogenous Nur77 is a more specific reporter of Ag-specific signaling events than the commonly used CD69 activation marker in both human T and B cells. This is reflective of the disparity in signaling pathways that regulate the expression of Nur77 and CD69. Assessing endogenous Nur77 protein expression has great potential to identify Ag-activated lymphocytes in human disease.
Collapse
Affiliation(s)
- Judith F Ashouri
- The Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, and the Howard Hughes Medical Institute at the University of California, San Francisco, San Francisco, CA 94143
| | - Arthur Weiss
- The Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, and the Howard Hughes Medical Institute at the University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
15
|
Kim HJ, Yoon IH, Min BH, Kim YH, Shin JS, Kim JM, Kim JS, Nam HY, Lee WW, Park CG. Porcine antigen-specific IFN-γ ELISpot as a potentially valuable tool for monitoring cellular immune responses in pig-to-non-human primate islet xenotransplantation. Xenotransplantation 2016; 23:310-9. [PMID: 27464486 DOI: 10.1111/xen.12248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/19/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND Recent progress in xenotransplantation of porcine islets to non-human primates (NHPs) gives hope for human clinical trials in the near future. Thus, implementation of an appropriate monitoring method to detect the development of detrimental porcine antigen-specific cellular immune responses is necessary. The enzyme-linked immunospot (ELISpot) assay has been widely used to monitor antigen-specific alloreactive T-cell responses in humans; however, the utility of porcine islet-specific ELISpot assay has not yet been thoroughly evaluated for pig-to-NHPs intraportal islet xenotransplantation. METHODS The optimal ELISpot assay conditions, including the number of responder and stimulator cells and the provision of costimulation, were determined. Then, ELISpot assays were conducted on serial stocks of peripheral blood mononuclear cell (PBMC) samples previously isolated from NHP recipients transplanted with porcine islets. Either splenocytes from donor pigs or pancreatic islets from third-party pigs were used for antigen stimulation. At the same time, the ratio of CD4(+) /CD8(+) T cells and the percentage of CD4(+) FoxP3(+) T cells in the peripheral blood were evaluated. Finally, liver biopsy samples were evaluated to assess the immunopathology of the grafts. RESULTS The optimal conditions for the ELISpot assay were defined as 2.5 × 10(5) responder cells incubated with 5.0 × 10(5) stimulator cells in 96-well, flat-bottom plates without further costimulation. Using donor splenocytes as stimulators, a serial interferon-gamma (IFN-γ) ELISpot assay with PBMCs from the monkeys with prolonged porcine islet grafts (>180 days) demonstrated that the number of donor antigen-specific IFN-γ-producing cells significantly increased upon overt graft rejection. However, use of third-party porcine islets as stimulators did not reflect graft rejection, suggesting that the use of donor-specific PBMCs, and not tissue (porcine islet)-specific cells, as stimulators could better serve the purpose of this assay in adult porcine islet transplantation. IFN-γ spot number was neither influenced by the peripheral blood CD4(+) /CD8(+) T-cell ratio nor the percentage of CD4(+) FoxP3(+) T cells. Finally, in cases of overt graft rejection, the number of IFN-γ spots and the graft-infiltrating T cells in biopsied liver samples increased simultaneously. CONCLUSION Use of PBMCs in a porcine antigen-specific IFN-γ ELISpot assay is a reliable method for monitoring T-cell-mediated rejection in pig-to-NHP islet xenotransplantation.
Collapse
Affiliation(s)
- Hyun-Je Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Il-Hee Yoon
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Byoung-Hoon Min
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Korea
| | - Yong-Hee Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Microbiology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jun-Seop Shin
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Min Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Sik Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Korea
| | - Hye-Young Nam
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Won-Woo Lee
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea.,Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
IL-33 in T Cell Differentiation, Function, and Immune Homeostasis. Trends Immunol 2016; 37:321-333. [DOI: 10.1016/j.it.2016.03.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 01/01/2023]
|
17
|
Ziraldo C, Gong C, Kirschner DE, Linderman JJ. Strategic Priming with Multiple Antigens can Yield Memory Cell Phenotypes Optimized for Infection with Mycobacterium tuberculosis: A Computational Study. Front Microbiol 2016; 6:1477. [PMID: 26779136 PMCID: PMC4701940 DOI: 10.3389/fmicb.2015.01477] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/08/2015] [Indexed: 12/16/2022] Open
Abstract
Lack of an effective vaccine results in 9 million new cases of tuberculosis (TB) every year and 1.8 million deaths worldwide. Although many infants are vaccinated at birth with BCG (an attenuated M. bovis), this does not prevent infection or development of TB after childhood. Immune responses necessary for prevention of infection or disease are still unknown, making development of effective vaccines against TB challenging. Several new vaccines are ready for human clinical trials, but these trials are difficult and expensive; especially challenging is determining the appropriate cellular response necessary for protection. The magnitude of an immune response is likely key to generating a successful vaccine. Characteristics such as numbers of central memory (CM) and effector memory (EM) T cells responsive to a diverse set of epitopes are also correlated with protection. Promising vaccines against TB contain mycobacterial subunit antigens (Ag) present during both active and latent infection. We hypothesize that protection against different key immunodominant antigens could require a vaccine that produces different levels of EM and CM for each Ag-specific memory population. We created a computational model to explore EM and CM values, and their ratio, within what we term Memory Design Space. Our model captures events involved in T cell priming within lymph nodes and tracks their circulation through blood to peripheral tissues. We used the model to test whether multiple Ag-specific memory cell populations could be generated with distinct locations within Memory Design Space at a specific time point post vaccination. Boosting can further shift memory populations to memory cell ratios unreachable by initial priming events. By strategically varying antigen load, properties of cellular interactions within the LN, and delivery parameters (e.g., number of boosts) of multi-subunit vaccines, we can generate multiple Ag-specific memory populations that cover a wide range of Memory Design Space. Given a set of desired characteristics for Ag-specific memory populations, we can use our model as a tool to predict vaccine formulations that will generate those populations.
Collapse
Affiliation(s)
- Cordelia Ziraldo
- Department of Chemical Engineering, University of Michigan, Ann ArborMI, USA; Department of Microbiology and Immunology, University of Michigan Medical School, Ann ArborMI, USA
| | - Chang Gong
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann ArborMI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann ArborMI, USA
| | - Denise E Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Jennifer J Linderman
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor MI, USA
| |
Collapse
|
18
|
Ville S, Poirier N, Blancho G, Vanhove B. Co-Stimulatory Blockade of the CD28/CD80-86/CTLA-4 Balance in Transplantation: Impact on Memory T Cells? Front Immunol 2015; 6:411. [PMID: 26322044 PMCID: PMC4532816 DOI: 10.3389/fimmu.2015.00411] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/27/2015] [Indexed: 12/30/2022] Open
Abstract
CD28 and CTLA-4 are prototypal co-stimulatory and co-inhibitory cell surface signaling molecules interacting with CD80/86, known to be critical for immune response initiation and regulation, respectively. Initial “bench-to-beside” translation, two decades ago, resulted in the development of CTLA4-Ig, a biologic that targets CD80/86 and prevents T-cell costimulation. In spite of its proven effectiveness in inhibiting allo-immune responses, particularly in murine models, clinical experience in kidney transplantation with belatacept (high-affinity CTLA4-Ig molecule) reveals a high incidence of acute, cell-mediated rejection. Originally, the etiology of belatacept-resistant graft rejection was thought to be heterologous immunity, i.e., the cross-reactivity of the pool of memory T cells from pathogen-specific immune responses with alloantigens. Recently, the standard view that memory T cells arise from effector cells after clonal contraction has been challenged by a “developmental” model, in which less differentiated memory T cells generate effector cells. This review delineates how this shift in paradigm, given the differences in co-stimulatory and co-inhibitory signal depending on the maturation stage, could profoundly affect our understanding of the CD28/CD80-86/CTLA-4 blockade and highlights the potential advantages of selectively targeting CD28, instead of CD80/86, to control post-transplant immune responses.
Collapse
Affiliation(s)
- Simon Ville
- Unité Mixte de Recherche, UMR_S 1064, Institut National de la Santé et de la Recherche Médicale , Nantes , France ; Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes , Nantes , France
| | - Nicolas Poirier
- Unité Mixte de Recherche, UMR_S 1064, Institut National de la Santé et de la Recherche Médicale , Nantes , France ; Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes , Nantes , France ; Effimune SAS , Nantes , France
| | - Gilles Blancho
- Unité Mixte de Recherche, UMR_S 1064, Institut National de la Santé et de la Recherche Médicale , Nantes , France ; Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes , Nantes , France
| | - Bernard Vanhove
- Unité Mixte de Recherche, UMR_S 1064, Institut National de la Santé et de la Recherche Médicale , Nantes , France ; Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes , Nantes , France ; Effimune SAS , Nantes , France
| |
Collapse
|
19
|
Gascoigne NRJ. Immunology: Tolerance lies in the timing. Nature 2014; 515:502-3. [PMID: 25428497 DOI: 10.1038/515502a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nicholas R J Gascoigne
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
| |
Collapse
|
20
|
T-cell co-stimulation through the CD2 and CD28 co-receptors induces distinct signalling responses. Biochem J 2014; 460:399-410. [PMID: 24665965 DOI: 10.1042/bj20140040] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Full T-cell activation critically depends on the engagement of the TCR (T-cell receptor) in conjunction with a second signal by co-stimulatory receptors that boost the immune response. In the present study we have compared signalling patterns induced by the two co-receptors CD2 and CD28 in human peripheral blood T-cells. These co-receptors were previously suggested to be redundant in function. By a combination of multi-parameter phosphoflow cytometry, phosphokinase arrays and Western blot analyses, we demonstrate that CD2 co-stimulation induces phosphorylation of the TCR-proximal signalling complex, whereas CD28 activates distal signalling molecules, including the transcription factors NF-κB (nuclear factor κB), ATF (activating transcription factor)-2, STAT3/5 (signal transducer and activator of transcription 3/5), p53 and c-Jun. These signalling patterns were conserved in both naïve and effector/memory T-cell subsets. We show that free intracellular Ca(2+) and signalling through the PI3K (phosphoinositide 3-kinase)/Akt pathway are required for proper CD28-induced NF-κB activation. The signalling patterns induced by CD2 and CD28 co-stimulation lead to distinct functional immune responses in T-cell proliferation and cytokine production. In conclusion, CD2 and CD28 co-stimulation induces distinct signalling responses and functional outcomes in T-cells.
Collapse
|
21
|
Gong C, Linderman JJ, Kirschner D. Harnessing the heterogeneity of T cell differentiation fate to fine-tune generation of effector and memory T cells. Front Immunol 2014; 5:57. [PMID: 24600448 PMCID: PMC3928592 DOI: 10.3389/fimmu.2014.00057] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/31/2014] [Indexed: 11/13/2022] Open
Abstract
Recent studies show that naïve T cells bearing identical T cell receptors experience heterogeneous differentiation and clonal expansion processes. The factors controlling this outcome are not well characterized, and their contributions to immune cell dynamics are similarly poorly understood. In this study, we develop a computational model to elaborate mechanisms occurring within and between two important physiological compartments, lymph nodes and blood, to determine how immune cell dynamics are controlled. Our multi-organ (multi-compartment) model integrates cellular and tissue level events and allows us to examine the heterogeneous differentiation of individual precursor cognate naïve T cells to generate both effector and memory T lymphocytes. Using this model, we simulate a hypothetical immune response and reproduce both primary and recall responses to infection. Increased numbers of antigen-bearing dendritic cells (DCs) are predicted to raise production of both effector and memory T cells, and distinct “sweet spots” of peptide-MHC levels on those DCs exist that favor CD4+ or CD8+ T cell differentiation toward either effector or memory cell phenotypes. This has important implications for vaccine development and immunotherapy.
Collapse
Affiliation(s)
- Chang Gong
- Department of Computational Medicine and Bioinformatics, University of Michigan , Ann Arbor, MI , USA
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan , Ann Arbor, MI , USA
| | - Denise Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School , Ann Arbor, MI , USA
| |
Collapse
|
22
|
Mehlhop-Williams ER, Bevan MJ. Memory CD8+ T cells exhibit increased antigen threshold requirements for recall proliferation. ACTA ACUST UNITED AC 2014; 211:345-56. [PMID: 24493801 PMCID: PMC3920562 DOI: 10.1084/jem.20131271] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Memory CD8+ T cells require stronger TCR stimulation than naive cells to enter cell cycle due to reduced Zap70 activation and increased levels of protein tyrosine phosphatases. A hallmark of immunological memory is the ability of previously primed T cells to undergo rapid recall responses upon antigen reencounter. Classic work has suggested that memory T cells proliferate in response to lower doses of antigen than naive T cells and with reduced requirements for co-stimulation. In contrast to this premise, we observed that naive but not memory T cells proliferate in vivo in response to limited antigen presentation. To reconcile these observations, we tested the antigen threshold requirement for cell cycle entry in naive and central memory CD8+ T cells. Although both naive and memory T cells detect low dose antigen, only naive T cells activate cell cycle effectors. Direct comparison of TCR signaling on a single cell basis indicated that central memory T cells do not activate Zap70, induce cMyc expression, or degrade p27 in response to antigen levels that activate these functions in naive T cells. The reduced sensitivity of memory T cells may result from both decreased surface TCR expression and increased expression of protein tyrosine phosphatases as compared with naive T cells. Our data describe a novel aspect of memory T cell antigen threshold sensitivity that may critically regulate recall expansion.
Collapse
Affiliation(s)
- Erin R Mehlhop-Williams
- Department of Immunology and 2 the Howard Hughes Medical Institute, University of Washington, Seattle, WA 98109
| | | |
Collapse
|
23
|
Opata MM, Stephens R. Early Decision: Effector and Effector Memory T Cell Differentiation in Chronic Infection. ACTA ACUST UNITED AC 2014; 9:190-206. [PMID: 24790593 PMCID: PMC4000274 DOI: 10.2174/1573395509666131126231209] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/08/2013] [Accepted: 11/19/2013] [Indexed: 11/22/2022]
Abstract
As effector memory T cells (Tem) are the predominant population elicited by chronic parasitic infections,
increasing our knowledge of their function, survival and derivation, as phenotypically and functionally distinct from
central memory and effector T cells will be critical to vaccine development for these diseases. In some infections, memory
T cells maintain increased effector functions, however; this may require the presence of continued antigen, which can also
lead to T cell exhaustion. Alternatively, in the absence of antigen, only the increase in the number of memory cells
remains, without enhanced functionality as central memory. In order to understand the requirement for antigen and the
potential for longevity or protection, the derivation of each type of memory must be understood. A thorough review of the
data establishes the existence of both memory (Tmem) precursors and effector T cells (Teff) from the first hours of an
immune response. This suggests a new paradigm of Tmem differentiation distinct from the proposition that Tmem only
appear after the contraction of Teff. Several signals have been shown to be important in the generation of memory T cells,
such as the integrated strength of “signals 1-3” of antigen presentation (antigen receptor, co-stimulation, cytokines) as
perceived by each T cell clone. Given that these signals integrated at antigen presentation cells have been shown to
determine the outcome of Teff and Tmem phenotypes and numbers, this decision must be made at a very early stage. It
would appear that the overwhelming expansion of effector T cells and the inability to phenotypically distinguish memory
T cells at early time points has masked this important decision point. This does not rule out an effect of repeated
stimulation or chronic inflammatory milieu on populations generated in these early stages. Recent studies suggest that
Tmem are derived from early Teff, and we suggest that this includes Tem as well as Tcm. Therefore, we propose a
testable model for the pathway of differentiation from naïve to memory that suggests that Tem are not fully differentiated
effector cells, but derived from central memory T cells as originally suggested by Sallusto et al. in 1999, but much
debated since.
Collapse
Affiliation(s)
- Michael M Opata
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Disease, 300 University Avenue, Galveston, TX 77555-0435, USA
| | - Robin Stephens
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Disease, 300 University Avenue, Galveston, TX 77555-0435, USA
| |
Collapse
|
24
|
Borger JG, Zamoyska R, Gakamsky DM. Proximity of TCR and its CD8 coreceptor controls sensitivity of T cells. Immunol Lett 2013; 157:16-22. [PMID: 24263053 PMCID: PMC3931270 DOI: 10.1016/j.imlet.2013.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/30/2013] [Accepted: 11/04/2013] [Indexed: 11/02/2022]
Abstract
Spatial organisation of T cell receptor (TCR) and its coreceptor CD8 on the surface of live naïve and Ag-experienced CD8(+) T cells was resolved by fluorescence lifetime cross-correlation microscopy. We found that exposure of naïve CD8(+) T cells to antigen (Ag) causes formation of [TCR, CD8] functional ensembles on the cell surface which correlated with significantly enhanced sensitivity of these cells. In contrast, TCR and CD8 are randomly distributed on the surface of naïve cells. Our model suggests that close proximity of TCR and CD8 can increase Ag sensitivity of T cells by significant accelerating the TCR-peptide-major histocompatibility complex (pMHC) binding rate and stabilisation of this complex. We suggest that the proximity of these primary signalling molecules contributes to the mechanism of functional avidity maturation of CD8(+) T cells by switching them from a low to high sensitivity mode.
Collapse
Affiliation(s)
- Jessica G Borger
- Institute of Immunology and Infection Research, The University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Rose Zamoyska
- Institute of Immunology and Infection Research, The University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Dmitry M Gakamsky
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, UK; Collaborative Optical Spectroscopy, Micromanipulation and Imaging Centre COSMIC, School of Physics and Astronomy, The University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, UK.
| |
Collapse
|
25
|
Cordoba SP, Choudhuri K, Zhang H, Bridge M, Basat AB, Dustin ML, van der Merwe PA. The large ectodomains of CD45 and CD148 regulate their segregation from and inhibition of ligated T-cell receptor. Blood 2013; 121:4295-302. [PMID: 23580664 PMCID: PMC3663424 DOI: 10.1182/blood-2012-07-442251] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 03/25/2013] [Indexed: 11/20/2022] Open
Abstract
T-cell receptor (TCR) triggering results in a cascade of intracellular tyrosine phosphorylation events that ultimately leads to T-cell activation. It is dependent on changes in the relative activities of membrane-associated tyrosine kinases and phosphatases near the engaged TCR. CD45 and CD148 are transmembrane tyrosine phosphatases with large ectodomains that have activatory and inhibitory effects on TCR triggering. This study investigates whether and how the ectodomains of CD45 and CD148 modulate their inhibitory effect on TCR signaling. Expression in T cells of forms of these phosphatases with truncated ectodomains inhibited TCR triggering. In contrast, when these phosphatases were expressed with large ectodomains, they had no inhibitory effect. Imaging studies revealed that truncation of the ectodomains enhanced colocalization of these phosphatases with ligated TCR at the immunological synapse. Our results suggest that the large ectodomains of CD45 and CD148 modulate their inhibitory effect by enabling their passive, size-based segregation from ligated TCR, supporting the kinetic-segregation model of TCR triggering.
Collapse
Affiliation(s)
- Shaun-Paul Cordoba
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
26
|
Borger JG, Filby A, Zamoyska R. Differential polarization of C-terminal Src kinase between naive and antigen-experienced CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:3089-99. [PMID: 23427257 DOI: 10.4049/jimmunol.1202408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In CD8(+) T cells, engagement of the TCR with agonist peptide:MHC molecules causes dynamic redistribution of surface molecules including the CD8 coreceptor to the immunological synapse. CD8 associates with the Src-family kinase (SFK) Lck, which, in turn, initiates the rapid tyrosine phosphorylation events that drive cellular activation. Compared with naive T cells, Ag-experienced CD8(+) T cells make shorter contacts with APC, are less dependent on costimulation, and are triggered by lower concentrations of Ag, yet the molecular basis of this more efficient response of memory T cells is not fully understood. In this article, we show differences between naive and Ag-experienced CD8(+) T cells in colocalization of the SFKs and their negative regulator, C-terminal Src kinase (Csk). In naive CD8(+) T cells, there was pronounced colocalization of SFKs and Csk at the site of TCR triggering, whereas in Ag-experienced cells, Csk displayed a bipolar distribution with a proportion of the molecules sequestered within a cytosolic area in the distal pole of the cell. The data show that there is differential redistribution of a key negative regulator away from the site of TCR engagement in Ag-experienced CD8(+) T cells, which might be associated with the more efficient responses of these cells on re-exposure to Ag.
Collapse
Affiliation(s)
- Jessica G Borger
- Institute of Immunology and Infection Research, The University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | | | | |
Collapse
|
27
|
Generation of functional CLL-specific cord blood CTL using CD40-ligated CLL APC. PLoS One 2012; 7:e51390. [PMID: 23284688 PMCID: PMC3526610 DOI: 10.1371/journal.pone.0051390] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/05/2012] [Indexed: 12/17/2022] Open
Abstract
Though remissions have been observed following allo-HSCT for the treatment of CLL, many CLL patients are ineligible for transplant due to the lack of HLA-compatible donors. The use of umbilical cord blood (UCB) permits transplantation of many patients who lack HLA-compatible donors due to reduced requirements for stringent HLA matching between graft and recipient; however, disease relapse remains a concern with this modality. The generation of CLL-specific CTL from UCB T-cells, primed and expanded against the leukemic clone, might enhance the GVL effect and improve outcomes with UCB transplantation. Here we report the generation of functional, CLL-specific CTL using CD40-ligated CLL cells to prime partially-HLA matched UCB T-cells. Functionality and specificity were demonstrated by immune synapse assay, IFN-γ ELISpot, multi-parametric intracellular cytokine flow cytometry, and 51Cr release assay. The use of patient-specific, non-CLL controls demonstrated the generation of both alloantigen and CLL-specific responses. Subsequently, we developed a clinically-applicable procedure permitting separation of alloreactive CTL from leukemia-specific CTL. Leukemia-specific CTL were able to mediate in vivo killing of CLL in humanized mice without concurrent or subsequent development of xenoGVHD. Our results demonstrate that generation of CLL-specific effectors from UCB is feasible and practical, and the results support further exploration of this strategy as a treatment modality for CLL.
Collapse
|
28
|
La Gruta N, Kelso A, Brown LE, Chen W, Jackson DC, Turner SJ. Role of CD8(+) T-cell immunity in influenza infection: potential use in future vaccine development. Expert Rev Respir Med 2012; 3:523-37. [PMID: 20477341 DOI: 10.1586/ers.09.44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Continued circulation of the highly pathogenic avian H5N1 influenza A virus has many people worried that an influenza pandemic is imminent. Compounding this is the realization that H5N1 vaccines based on current influenza vaccine technology (designed to generate protective antibody responses) may be suboptimal at providing protection. As a consequence, there is recent interest in vaccine strategies that elicit cellular immunity, particularly the cytotoxic T lymphocyte response, in an effort to provide protection against a potential pandemic. A major issue is the lack of information about the precise role that these 'hitmen' of the immune system have in protecting against both pandemic and seasonal influenza. We need to know more about how the induction and maintenance of cytotoxic T lymphocytes after influenza infection can impact protection from further infection. The challenge is then to use this information in the design of vaccines that will protect against pandemic influenza and will help optimize CD8(+) killer T-cell responses in other infections.
Collapse
Affiliation(s)
- Nicole La Gruta
- Department of Microbiology and Immunology, The University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
29
|
Kannan A, Huang W, Huang F, August A. Signal transduction via the T cell antigen receptor in naïve and effector/memory T cells. Int J Biochem Cell Biol 2012; 44:2129-34. [PMID: 22981631 DOI: 10.1016/j.biocel.2012.08.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 10/27/2022]
Abstract
T cells play an indispensable role in immune defense against infectious agents, but can also be pathogenic. These T cells develop in the thymus, are exported into the periphery as naïve cells and participate in immune responses. Upon recognition of antigen, they are activated and differentiate into effector and memory T cells. While effector T cells carry out the function of the immune response, memory T cells can last up to the life time of the individual, and are activated by subsequent antigenic exposure. Throughout this life cycle, the T cell uses the same receptor for antigen, the T cell Receptor, a complex multi-subunit receptor. Recognition of antigen presented by peptide/MHC complexes on antigen presenting cells unleashes signaling pathways that control T cell activation at each stage. In this review, we discuss the signals regulated by the T cell receptor in naïve and effector/memory T cells.
Collapse
Affiliation(s)
- Arun Kannan
- The Department of Microbiology & Immunology, Cornell University, Ithaca, NY, USA
| | | | | | | |
Collapse
|
30
|
Smyth K, Garcia K, Sun Z, Tuo W, Xiao Z. Repetitive peptide boosting progressively enhances functional memory CTLs. Biochem Biophys Res Commun 2012; 424:635-40. [PMID: 22809501 DOI: 10.1016/j.bbrc.2012.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/07/2012] [Indexed: 12/22/2022]
Abstract
Cytotoxic T lymphocytes (CTLs) play a critical role in controlling intracellular pathogens and cancer cells, and induction of memory CTLs holds promise for developing effective vaccines against critical virus infections. However, generating memory CTLs remains a major challenge for conventional vector-based, prime-boost vaccinations. Thus, it is imperative that we explore nonconventional alternatives, such as boosting without vectors. We show here that repetitive intravenous boosting with peptide and adjuvant generates memory CD8 T cells of sufficient quality and quantity to protect against infection in mice. The resulting memory CTLs possess a unique and long-lasting effector memory phenotype, characterized by decreased interferon-γ but increased granzyme B production. These results are observed in both transgenic and endogenous models. Overall, our findings have important implications for future vaccine development, as they suggest that intravenous peptide boosting with adjuvant following priming can induce long-term functional memory CTLs.
Collapse
Affiliation(s)
- Kendra Smyth
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
31
|
Mechanisms behind functional avidity maturation in T cells. Clin Dev Immunol 2012; 2012:163453. [PMID: 22611418 PMCID: PMC3351025 DOI: 10.1155/2012/163453] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 01/26/2012] [Indexed: 12/22/2022]
Abstract
During an immune response antigen-primed B-cells increase their antigen responsiveness by affinity maturation mediated by somatic hypermutation of the genes encoding the antigen-specific B-cell receptor (BCR) and by selection of higher-affinity B cell clones. Unlike the BCR, the T-cell receptor (TCR) cannot undergo affinity maturation. Nevertheless, antigen-primed T cells significantly increase their antigen responsiveness compared to antigen-inexperienced (naïve) T cells in a process called functional avidity maturation. This paper covers studies that describe differences in T-cell antigen responsiveness during T-cell differentiation along with examples of the mechanisms behind functional avidity maturation in T cells.
Collapse
|
32
|
Krummey SM, Ford ML. Heterogeneity within T Cell Memory: Implications for Transplant Tolerance. Front Immunol 2012; 3:36. [PMID: 22566919 PMCID: PMC3342058 DOI: 10.3389/fimmu.2012.00036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 02/15/2012] [Indexed: 12/16/2022] Open
Abstract
Adaptive immunity in both mouse and man results in the generation of immunological memory. Memory T cells are both friend and foe to transplant recipients, as they are intimately involved and in many cases absolutely required for the maintenance of protective immunity in the face immunosuppression, yet from the evidence presented herein they clearly constitute a formidable barrier for the successful implementation of tolerance induction strategies in transplantation. This review describes the experimental evidence demonstrating the increased resistance of memory T cells to many distinct tolerance induction strategies, and outlines recent advances in our knowledge of the ways in which alloreactive memory T cells arise in previously untransplanted individuals. Understanding the impact of alloreactive memory T cell specificity, frequency, and quality might allow for better donor selection in order to minimize the donor-reactive memory T cell barrier in an individual transplant recipient, thus allowing stratification of relative risk of alloreactive memory T cell mediated rejection, and conversely increase the likelihood of successful establishment of tolerance. However, further research into the molecular and cellular pathways involved in alloreactive memory T cell-mediated rejection is required in order to design new strategies to overcome the memory T cell barrier, without critically impairing protective immunity.
Collapse
Affiliation(s)
- Scott M Krummey
- Department of Surgery, Emory Transplant Center, Emory University Atlanta, GA, USA
| | | |
Collapse
|
33
|
Blair DA, Turner DL, Bose TO, Pham QM, Bouchard KR, Williams KJ, McAleer JP, Cauley LS, Vella AT, Lefrançois L. Duration of antigen availability influences the expansion and memory differentiation of T cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:2310-21. [PMID: 21775679 DOI: 10.4049/jimmunol.1100363] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The initial engagement of the TCR through interaction with cognate peptide-MHC is a requisite for T cell activation and confers Ag specificity. Although this is a key event in T cell activation, the duration of these interactions may affect the proliferative capacity and differentiation of the activated cells. In this study, we developed a system to evaluate the temporal requirements for antigenic stimulation during an immune response in vivo. Using Abs that target specific Ags in the context of MHC, we were able to manipulate the duration of Ag availability to both CD4 and CD8 T cells during an active infection. During the primary immune response, the magnitude of the CD4 and CD8 T cell response was dependent on the duration of Ag availability. Both CD4 and CD8 T cells required sustained antigenic stimulation for maximal expansion. Memory cell differentiation was also dependent on the duration of Ag exposure, albeit to a lesser extent. However, memory development did not correlate with the magnitude of the primary response, suggesting that the requirements for continued expansion of T cells and memory differentiation are distinct. Finally, a shortened period of Ag exposure was sufficient to achieve optimal expansion of both CD4 and CD8 T cells during a recall response. It was also revealed that limiting exposure to Ag late during the response may enhance the CD4 T cell memory pool. Collectively, these data indicated that Ag remains a critical component of the T cell response after the initial APC-T cell interaction.
Collapse
Affiliation(s)
- David A Blair
- Department of Immunology, Center for Integrated Immunology and Vaccine Research, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hervas-Stubbs S, Riezu-Boj JI, Gonzalez I, Mancheño U, Dubrot J, Azpilicueta A, Gabari I, Palazon A, Aranguren A, Ruiz J, Prieto J, Larrea E, Melero I. Effects of IFN-α as a signal-3 cytokine on human naïve and antigen-experienced CD8(+) T cells. Eur J Immunol 2011; 40:3389-402. [PMID: 21108462 DOI: 10.1002/eji.201040664] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
IFN-α/β link innate and adaptive immune responses by directly acting on naïve CD8(+) T cells. This concept unveiled in mice remains unexplored in humans. To investigate that, human CD8(+) CD45RO(-) cells were stimulated with beads coated with anti-CD3 and anti-CD28 mAb, mimicking Ag (type-1) and co-stimulatory (type-2) signals, in the presence or absence of IFN-α and their transcriptional profiles were defined by cDNA-microarrays. We show that IFN-α provides a strong third signal directly to human CD8(+) T cells resulting in regulation of critical genes for their overall activation. This transcriptional effect was substantiated at the protein level and verified by functional assays. Interestingly, the biological effects derived from this stimulation vary depending on the CD8(+) T-cell population. Thus, whereas IFN-α increases the proliferative capacity of naïve CD8(+) T cells, it inhibits or does not affect the proliferation of Ag-experienced cells, such as memory and effector CTL, including CMV-specific lymphocytes. Cytolysis and IFN-γ-secretion of all these populations are enhanced by IFN-α-derived signals, which are critical in naïve CD8(+) T cells for acquisition of effector functions. Our findings in human CD8(+) T cells are informative to understand and improve IFN-α-based therapies for viral and malignant diseases.
Collapse
Affiliation(s)
- Sandra Hervas-Stubbs
- Division of Gene Therapy and Hepatology, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Dalai SK, Khoruzhenko S, Drake CG, Jie CC, Sadegh-Nasseri S. Resolution of infection promotes a state of dormancy and long survival of CD4 memory T cells. Immunol Cell Biol 2011; 89:870-81. [PMID: 21358746 PMCID: PMC3131418 DOI: 10.1038/icb.2011.2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Memory T cells survive throughout the lifetime of an individual and are protective upon recall. It is not clear how memory T cells can live so long. Here, we demonstrate that at the resolution of a viral infection, low levels of antigen are captured by B cells and presented to specific CD4+ memory T cells to render a state of unresponsiveness. We demonstrate in two systems that this process occurs naturally during the fall of antigen and is associated with a global gene expression program initiated with the clearance of antigen. Our study suggests that in the absence of antigen, a state of dormancy associated with low energy utilization and proliferation can help memory CD4+ T cells to survive nearly throughout the lifetime of mice. The dormant CD4+ memory T cells become activated by stimulatory signals generated by a subsequent infection. We propose that quiescence might be a mechanism necessary to regulate long-term survival of CD4 memory T cells and to prevent cross-reactivity to self, hence autoimmunity.
Collapse
Affiliation(s)
- Sarat K Dalai
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
36
|
Floyd TL, Koehn BH, Kitchens WH, Robertson JM, Cheeseman JA, Stempora L, Larsen CP, Ford ML. Limiting the amount and duration of antigen exposure during priming increases memory T cell requirement for costimulation during recall. THE JOURNAL OF IMMUNOLOGY 2011; 186:2033-41. [PMID: 21257960 DOI: 10.4049/jimmunol.1003015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Donor-reactive memory T cells (Tmem) can play an important role in mediating graft rejection after transplantation. Transplant recipients acquire donor-reactive Tmem not only through prior sensitization with alloantigens but also through previous exposure to environmental pathogens that are cross-reactive with allogeneic peptide-MHC complexes. Current dogma suggests that most, if not all, Tmem responses are independent of the requirement for CD28 and/or CD154/CD40-mediated costimulation to mount a recall response. However, heterogeneity among Tmem is increasingly being appreciated, and one important factor known to impact the function and phenotype of Ag-specific T cell responses is the amount/duration of Ag exposure. Importantly, the impact of Ag exposure on development of costimulation independence is currently unknown. In this study, we interrogated the effect of decreased Ag amount/duration during priming on the ability of donor-reactive Tmem to mediate costimulation blockade-resistant rejection during a recall response after transplantation in a murine model. Recipients possessing donor-reactive Tmem responses that were generated under conditions of reduced Ag exposure exhibited similar frequencies of Ag-specific T cells at day 30 postinfection, but, strikingly, failed to mediate costimulation blockade-resistant rejection after challenge with an OVA-expressing skin graft. Thus, these data demonstrate the amount/duration of Ag exposure is a critical factor in determining Tmem's relative requirement for costimulation during the recall response after transplantation.
Collapse
Affiliation(s)
- Tamara L Floyd
- Department of Surgery and Emory Transplant Center, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Irvine K, Bennink J. Factors influencing immunodominance hierarchies in TCD8+ -mediated antiviral responses. Expert Rev Clin Immunol 2010; 2:135-47. [PMID: 20477094 DOI: 10.1586/1744666x.2.1.135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CD8(+) T-lymphocytes (T(CD8+)) perform a critical role in immunity against tumors and virus infections. A central feature of T(CD8+) immune responses is immunodominance: the observation that T(CD8+) responses consist of a limited collection of specificities with a structured hierarchy. These immunodominance hierarchies result from a complex combination of factors. Major roles are played by peptide binding affinity, T-cell repertoire, and antigen processing and presentation. While the bulk of our information comes from mouse model systems, an increasing number of human studies suggest that immunodominance will be even more complicated. This review outlines current knowledge of T(CD8+ )immunodominance to viral antigens and discusses the relevance and importance of a thorough understanding for the rational design of vaccines that elicit effective T(CD8+) responses.
Collapse
Affiliation(s)
- Kari Irvine
- National Institute for Allergy & Infectious Diseases, Cell Biology Section/Viral Immunology Section, Laboratory of Viral Diseases, Room 209, Building 44 Center Drive, Bethesda, MD 20892-0440, USA.
| | | |
Collapse
|
38
|
Tsai S, Shameli A, Yamanouchi J, Clemente-Casares X, Wang J, Serra P, Yang Y, Medarova Z, Moore A, Santamaria P. Reversal of Autoimmunity by Boosting Memory-like Autoregulatory T Cells. Immunity 2010; 32:568-80. [DOI: 10.1016/j.immuni.2010.03.015] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 12/18/2009] [Accepted: 02/09/2010] [Indexed: 10/19/2022]
|
39
|
Sadegh-Nasseri S, Dalai SK, Korb Ferris LC, Mirshahidi S. Suboptimal engagement of the T-cell receptor by a variety of peptide-MHC ligands triggers T-cell anergy. Immunology 2009; 129:1-7. [PMID: 20002785 DOI: 10.1111/j.1365-2567.2009.03206.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
T cells recognize antigen via the T-cell receptor (TCR) and produce a spectrum of responses that range from activation to anergy or cell death. The variety of outcomes may be dictated by the strength of the signals transmitted upon cognate recognition of the TCR. The physiological outcome of TCR engagement is determined by several factors, including the avidity of the ligand for TCR, the duration of engagement, and the presence and nature of accessory molecules present on antigen-presenting cells (APCs). In this review, we discuss a model of anergy induced by presentation of low densities of peptide-major histocompatibility complex (MHC) ligand in CD4(+) T cells and compare it to anergy induced by altered peptide ligands in an effort to identify a unifying mechanism. We suggest that altered peptide ligand (APL) and low densities of agonist ligands induce anergy by engaging less than optimal numbers of TCRs. The physiological impacts of anergy in memory CD4(+) T cells are discussed.
Collapse
|
40
|
The EVER proteins as a natural barrier against papillomaviruses: a new insight into the pathogenesis of human papillomavirus infections. Microbiol Mol Biol Rev 2009; 73:348-70. [PMID: 19487731 DOI: 10.1128/mmbr.00033-08] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Infections by human papillomaviruses (HPVs) are the most frequently occurring sexually transmitted diseases. The crucial role of genital oncogenic HPV in cervical carcinoma development is now well established. In contrast, the role of cutaneous HPV in skin cancer development remains a matter of debate. Cutaneous beta-HPV strains show an amazing ubiquity. The fact that a few oncogenic genotypes cause cancers in patients suffering from epidermodysplasia verruciformis is in sharp contrast to the unapparent course of infection in the general population. Our recent investigations revealed that a natural barrier exists in humans, which protects them against infection with these papillomaviruses. A central role in the function of this HPV-specific barrier is played by a complex of the zinc-transporting proteins EVER1, EVER2, and ZnT-1, which maintain cellular zinc homeostasis. Apparently, the deregulation of the cellular zinc balance emerges as an important step in the life cycles not only of cutaneous but also of genital HPVs, although the latter viruses have developed a mechanism by which they can break the barrier and impose a zinc imbalance. Herein, we present a previously unpublished list of the cellular partners of EVER proteins, which points to future directions concerning investigations of the mechanisms of action of the EVER/ZnT-1 complex. We also present a general overview of the pathogenesis of HPV infections, taking into account the latest discoveries regarding the role of cellular zinc homeostasis in the HPV life cycle. We propose a potential model for the mechanism of function of the anti-HPV barrier.
Collapse
|
41
|
Raué HP, Slifka MK. CD8+ T cell immunodominance shifts during the early stages of acute LCMV infection independently from functional avidity maturation. Virology 2009; 390:197-204. [PMID: 19539966 DOI: 10.1016/j.virol.2009.05.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 05/14/2009] [Accepted: 05/16/2009] [Indexed: 02/01/2023]
Abstract
Virus-specific T cell responses are often directed to a small subset of possible epitopes and their relative magnitude defines their hierarchy. We determined the size and functional avidity of 4 representative peptide-specific CD8(+) T cell populations in C57BL/6 mice at different time points after lymphocytic choriomeningitis virus (LCMV) infection. We found that the frequency of different peptide-specific T cell populations in the spleen changed independently over the first 8 days after infection. These changes were not associated with a larger or more rapid increase in functional avidity and yet still resulted in a shift in the final immunodominance hierarchy. Thus, the immunodominance observed at the peak of an antiviral T cell response is not necessarily determined by the initial size or rate of functional avidity maturation of peptide-specific T cell populations.
Collapse
Affiliation(s)
- Hans-Peter Raué
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | | |
Collapse
|
42
|
Kameda H. [Imatinib]. NIHON RINSHO MEN'EKI GAKKAI KAISHI = JAPANESE JOURNAL OF CLINICAL IMMUNOLOGY 2009; 32:77-84. [PMID: 19404005 DOI: 10.2177/jsci.32.77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The progress in molecular targeting therapy includes two tides, namely, small molecule compounds and large molecule biological agents. Although the latter prevails in the field of clinical immunology, the former attracts more and more attention in these few years. Most of molecular targeting small compounds are the inhibitors of tyrosine kinases, including pioneering imatinib which inhibits the receptor for platelet-derived growth factor (PDGF), c-Abl, etc. The therapeutic concentrations of imatinib almost completely abrogated the morphological alteration and proliferation of fibroblastic cells induced by PDGF stimulation in 3-dimensional culture system in vitro. Indeed, imatinib has been shown to be effective in various animal disease models for arthritis, interstitial pneumonia, glomerulonephritis, and pulmonary hypertension. Furthermore, its efficacy in patients with systemic sclerosis has been recently reported from several institutes. Since established treatments had not been found for fibrotic lesion before, imatinib, a dual inhibitor of both transforming growth factor beta-, and PDGF-signaling, is likely to be a potent drug against fibrosis. Its efficacy and safety in fibrotic and immune-mediated diseases, such as systemic sclerosis, are currently under investigation throughout the world.
Collapse
Affiliation(s)
- Hideto Kameda
- Department of Rheumatology/Clinical Immunology, Saitama Medical Center, Saitama Medical University
| |
Collapse
|
43
|
WIESEL MELANIE, WALTON SENTA, RICHTER KIRSTEN, OXENIUS ANNETTE. Virus-specific CD8 T cells: activation, differentiation and memory formation. APMIS 2009; 117:356-81. [DOI: 10.1111/j.1600-0463.2009.02459.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Boesteanu AC, Katsikis PD. Memory T cells need CD28 costimulation to remember. Semin Immunol 2009; 21:69-77. [PMID: 19268606 DOI: 10.1016/j.smim.2009.02.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 02/04/2009] [Indexed: 01/01/2023]
Abstract
The activation and expansion of naïve T cells require costimulatory signals provided by CD28 and TNF family members. In contrast, for many years it was believed that memory T cells do not require CD28 costimulation for expansion during secondary responses. This was based on in vitro experiments that suggested the re-activation of memory T cells is somewhat independent of costimulation. Recent in vivo evidence, however, has challenged this and shown that both CD4+ and CD8+ memory T cells require CD28 costimulation for maximal expansion and pathogen clearance. This requirement has important implications for host immunity, vaccine development and immunotherapeutics.
Collapse
Affiliation(s)
- Alina C Boesteanu
- Drexel University College of Medicine, Department of Microbiology and Immunology, 2900 Queen Lane, Philadelphia, PA 19129, United States.
| | | |
Collapse
|
45
|
NEW INSIGHTS INTO CLASSICAL COSTIMULATION OF CD8+ T CELL RESPONSES. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 633:91-111. [DOI: 10.1007/978-0-387-79311-5_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Masson F, Mount AM, Wilson NS, Belz GT. Dendritic cells: driving the differentiation programme of T cells in viral infections. Immunol Cell Biol 2008; 86:333-42. [PMID: 18347609 DOI: 10.1038/icb.2008.15] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Protective immunity against viral pathogens depends on the generation and maintenance of a small population of memory CD8(+) T cells. Successful memory cell generation begins with early interactions between naïve T cell and dendritic cells (DCs) within the inflammatory milieu of the secondary lymphoid tissues. Recent insights into the role of different populations of DCs, and kinetics of antigen presentation, during viral infections have helped to understand how DCs can shape the immune response. Here, we review the recent progress that has been made towards defining how specific DC subsets drive effector CD8(+) T-cell expansion and differentiation into memory cells. Further, we endeavour to examine how the molecular signals imparted by DCs coordinate to generate protective CD8(+) T-cell immunity.
Collapse
Affiliation(s)
- Frederick Masson
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
47
|
Kursar M, Jänner N, Pfeffer K, Brinkmann V, Kaufmann SHE, Mittrücker HW. Requirement of secondary lymphoid tissues for the induction of primary and secondary T cell responses against Listeria monocytogenes. Eur J Immunol 2008; 38:127-38. [PMID: 18050270 DOI: 10.1002/eji.200737142] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Activation of naive T cells is tightly controlled and depends on cognate interactions with professional antigen-presenting cells. We analyzed dependency on secondary lymphoid tissues for the activation of naive and memory CD4(+) and CD8(+) T cells following primary and secondary Listeria monocytogenes infection, respectively. In splenectomized lymphotoxin-beta receptor-deficient mice, lacking all secondary lymphoid tissues, oral infection with L. monocytogenes failed to induce bacteria-specific CD4(+) and CD8(+) T cell responses. Treatment of splenectomized wild-type mice with FTY720, a drug that prevents egress of T cells from lymph nodes, also reduced T cell responses after oral L. monocytogenes infection and blocked T cell responses after intravenous infection. FTY720-treated wild-type and lymphotoxin-beta receptor-deficient mice show only slightly impaired recall responses. However, T cell responses were profoundly inhibited when mice were splenectomized subsequently to recovery from primary infection. T cell transfer experiments demonstrated that the impaired secondary T cell response was not simply due to removal of a large fraction of memory T cells by splenectomy. Overall, these results indicate that not only primary T cell responses, but also secondary T cell responses, highly depend on the lymphoid environment for effective activation.
Collapse
Affiliation(s)
- Mischo Kursar
- Max-Planck-Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Borowski AB, Boesteanu AC, Mueller YM, Carafides C, Topham DJ, Altman JD, Jennings SR, Katsikis PD. Memory CD8+ T cells require CD28 costimulation. THE JOURNAL OF IMMUNOLOGY 2007; 179:6494-503. [PMID: 17982038 DOI: 10.4049/jimmunol.179.10.6494] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8(+) T cells are a critical component of the adaptive immune response against infections and tumors. A current paradigm in immunology is that naive CD8(+) T cells require CD28 costimulation, whereas memory CD8(+) T cells do not. We show here, however, that during viral infections of mice, costimulation is required in vivo for the reactivation of memory CD8(+) T cells. In the absence of CD28 costimulation, secondary CD8(+) T cell responses are greatly reduced and this impairs viral clearance. The failure of CD8(+) T cells to expand in the absence of CD28 costimulation is CD4(+) T cell help independent and is accompanied by a failure to down-regulate Bcl-2 and by cell cycle arrest. This requirement for CD28 costimulation was shown in both influenza A and HSV infections. Thus, contrary to current dogma, memory CD8(+) T cells require CD28 costimulation to generate maximal secondary responses against pathogens. Importantly, this CD28 requirement was shown in the context of real infections were multiple other cytokines and costimulators may be up-regulated. Our findings have important implications for pathogens, such as HIV and measles virus, and tumors that evade the immune response by failing to provide CD28 costimulation. These findings also raise questions about the efficacy of CD8(+) T cell-based vaccines against such pathogens and tumors.
Collapse
Affiliation(s)
- Annie B Borowski
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Belz GT, Wilson NS, Kupresanin F, Mount AM, Smith CM. Shaping Naive and Memory Cd8+ T Cell Responses in Pathogen Infections Through Antigen Presentation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 590:31-42. [PMID: 17191375 DOI: 10.1007/978-0-387-34814-8_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Gabrielle T Belz
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3050 Australia.
| | | | | | | | | |
Collapse
|
50
|
McNicol AM, Bendle G, Holler A, Matjeka T, Dalton E, Rettig L, Zamoyska R, Uckert W, Xue SA, Stauss HJ. CD8alpha/alpha homodimers fail to function as co-receptor for a CD8-dependent TCR. Eur J Immunol 2007; 37:1634-41. [PMID: 17506031 DOI: 10.1002/eji.200636900] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this study, we have started to dissect the molecular basis of CD8 dependence of a high and low avidity CTL clone specific for the same peptide epitope. Using anti-CD8alpha and anti-CD8beta antibodies, we found that cytotoxicity and IFN-gamma production by high but not by low avidity CTL was strongly CD8 dependent. We isolated the TCR genes of both types of CTL clones and used retroviral gene transfer to analyse the function of these TCR in primary T cells of wild-type and CD8beta-deficient mice. Both TCR triggered antigen-specific killing in wild-type T cells, and blocking experiments showed that CD8 dependence/independence co-transferred with the TCR into primary T cells, indicating that it was dictated by the TCR itself. Gene transfer experiments into CD8beta-deficient T cells revealed that only the TCR derived from the CD8-independent CTL clone elicited antigen-specific cytotoxicity, while the CD8-dependent TCR was non-functional in the absence of the CD8beta-chain. These data indicate a striking difference between CD8alpha/beta heterodimers and CD8alpha/alpha homodimers as only the former were able to provide co-receptor function for the CD8-dependent TCR.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- CD3 Complex/immunology
- CD8 Antigens/genetics
- CD8 Antigens/immunology
- Cell Line, Tumor
- Cytotoxicity, Immunologic/drug effects
- Cytotoxicity, Immunologic/immunology
- Interferon-gamma/metabolism
- Interleukin-4/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Peptides/immunology
- Protein Subunits/immunology
- Protein Subunits/metabolism
- Proto-Oncogene Proteins c-mdm2/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Spleen/cytology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Transfection
Collapse
Affiliation(s)
- Anne-Marie McNicol
- Department of Immunology and Molecular Pathology, University College London, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|