1
|
Proudhon C, Hao B, Raviram R, Chaumeil J, Skok JA. Long-Range Regulation of V(D)J Recombination. Adv Immunol 2015; 128:123-82. [PMID: 26477367 DOI: 10.1016/bs.ai.2015.07.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Given their essential role in adaptive immunity, antigen receptor loci have been the focus of analysis for many years and are among a handful of the most well-studied genes in the genome. Their investigation led initially to a detailed knowledge of linear structure and characterization of regulatory elements that confer control of their rearrangement and expression. However, advances in DNA FISH and imaging combined with new molecular approaches that interrogate chromosome conformation have led to a growing appreciation that linear structure is only one aspect of gene regulation and in more recent years, the focus has switched to analyzing the impact of locus conformation and nuclear organization on control of recombination. Despite decades of work and intense effort from numerous labs, we are still left with an incomplete picture of how the assembly of antigen receptor loci is regulated. This chapter summarizes our advances to date and points to areas that need further investigation.
Collapse
Affiliation(s)
- Charlotte Proudhon
- Department of Pathology, New York University School of Medicine, New York, USA
| | - Bingtao Hao
- Department of Pathology, New York University School of Medicine, New York, USA
| | - Ramya Raviram
- Department of Pathology, New York University School of Medicine, New York, USA
| | - Julie Chaumeil
- Institut Curie, CNRS UMR3215, INSERM U934, Paris, France
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York, USA.
| |
Collapse
|
2
|
The proximal J kappa germline-transcript promoter facilitates receptor editing through control of ordered recombination. PLoS One 2015; 10:e0113824. [PMID: 25559567 PMCID: PMC4283955 DOI: 10.1371/journal.pone.0113824] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/31/2014] [Indexed: 12/31/2022] Open
Abstract
V(D)J recombination creates antibody light chain diversity by joining a Vκ gene segment with one of four Jκ segments. Two Jκ germline-transcript (GT) promoters control Vκ-Jκ joining, but the mechanisms that govern Jκ choice are unclear. Here, we show in gene-targeted mice that the proximal GT promoter helps targeting rearrangements to Jκ1 by preventing premature DNA breaks at Jκ2. Consequently, cells lacking the proximal GT promoter show a biased utilization of downstream Jκ segments, resulting in a diminished potential for receptor editing. Surprisingly, the proximal—in contrast to the distal—GT promoter is transcriptionally inactive prior to Igκ recombination, indicating that its role in Jκ choice is independent of classical promoter function. Removal of the proximal GT promoter increases H3K4me3 levels at Jκ segments, suggesting that this promoter could act as a suppressor of recombination by limiting chromatin accessibility to RAG. Our findings identify the first cis-element critical for Jκ choice and demonstrate that ordered Igκ recombination facilitates receptor editing.
Collapse
|
3
|
de Almeida CR, Hendriks RW, Stadhouders R. Dynamic Control of Long-Range Genomic Interactions at the Immunoglobulin κ Light-Chain Locus. Adv Immunol 2015; 128:183-271. [DOI: 10.1016/bs.ai.2015.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Xiang Y, Park SK, Garrard WT. A major deletion in the Vκ-Jκ intervening region results in hyperelevated transcription of proximal Vκ genes and a severely restricted repertoire. THE JOURNAL OF IMMUNOLOGY 2014; 193:3746-54. [PMID: 25187654 DOI: 10.4049/jimmunol.1401574] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Our previous studies have shown that DNase I hypersensitive sites 1 and 2 (HS1-2) and HS3-6 within the mouse Vκ-Jκ intervening region are essential for controlling locus contraction and creating a diverse Ab repertoire. In this article, we demonstrate that a 6.3-kb deletion encompassing HS1-6 altogether not only leads to the predictable sums of these phenotypes, but also results in a novel hyperelevation of transcription of proximal Vκ genes, in both pre-B and splenic B cells. These findings reveal previously unrecognized additional functions for cis-elements within the Vκ-Jκ intervening region, namely, prevention of the production of massive levels of noncoding RNA species by silencing transcription of germline proximal Vκ genes in both developing and mature B cells.
Collapse
Affiliation(s)
- Yougui Xiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and Tianjin Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Sung-Kyun Park
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - William T Garrard
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| |
Collapse
|
5
|
Xiang Y, Park SK, Garrard WT. Vκ gene repertoire and locus contraction are specified by critical DNase I hypersensitive sites within the Vκ-Jκ intervening region. THE JOURNAL OF IMMUNOLOGY 2013; 190:1819-26. [PMID: 23296705 DOI: 10.4049/jimmunol.1203127] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The processes of Ig gene locus contraction and looping during V(D)J-recombination are essential for creating a diverse Ab repertoire. However, no cis-acting sequence that plays a major role in specifying locus contraction has been uncovered within the Igκ gene locus. In this article, we demonstrate that a 650-bp sequence corresponding to DNase I hypersensitive sites HS1-2 within the mouse Igκ gene V-J intervening region binds CCCTC-binding factor and specifies locus contraction and long-range Vκ gene usage spanning 3.2 Mb in pre-B cells. We call this novel element Cer (for "contracting element for recombination"). Targeted deletion of Cer caused markedly increased proximal and greatly diminished upstream Vκ gene usage, higher allele usage, more splenic Igκ(+) B cells, and nonlineage-specific Igκ rearrangement in T cells. Relative to wild-type mice, Cer-deletion mice exhibited similar levels of Vκ gene germline transcription and H3K4me3 epigenetic marks but displayed a dramatic decrease in locus contraction in pre-B cells. Thus, our studies demonstrate that DNase I hypersensitive sites HS1-2 within the Vκ-Jκ intervening region are essential for controlling locus contraction and creating a diverse Ab repertoire.
Collapse
Affiliation(s)
- Yougui Xiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | | | | |
Collapse
|
6
|
Xiang Y, Zhou X, Hewitt SL, Skok JA, Garrard WT. A multifunctional element in the mouse Igκ locus that specifies repertoire and Ig loci subnuclear location. THE JOURNAL OF IMMUNOLOGY 2011; 186:5356-66. [PMID: 21441452 DOI: 10.4049/jimmunol.1003794] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nonbiased V gene usage for V(D)J joining is essential for providing an optimal immune system, but no cis-acting sequence with this function has been uncovered. We previously identified a recombination silencer and heterochromatin targeting element in the Vκ-Jκ intervening sequence of germline Igκ transgenes, which we termed Sis. We now have generated Sis knockout mice in the endogenous locus. Intriguingly, Sis(-/-) mice exhibit a skewed Igκ repertoire with markedly decreased distal and enhanced proximal Vκ gene usage for primary rearrangement, which is associated with reduced occupancy of Ikaros and CCCTC-binding factor in the Vκ-Jκ intervening sequence in pre-B cells, proteins believed to be responsible for dampening the recombination of nearby Vκ genes and altering higher-order chromatin looping. Furthermore, monoallelic heterochromatin localization is significantly reduced in Sis(-/-) mice for Igκ in cis and IgH loci in trans in pre-B cells. Because Sis(-/-) mice still allelically excluded Igκ and IgH loci and still exhibited IgL isotype exclusion, we concluded that stable localization at pericentromeric heterochromatin is neither necessary nor sufficient for the establishment or maintenance of allelic exclusion. Hence, Sis is a novel multifunctional element that specifies repertoire and heterochromatin localization to Ig genes.
Collapse
Affiliation(s)
- Yougui Xiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
7
|
Zhou X, Xiang Y, Garrard WT. The Igκ gene enhancers, E3' and Ed, are essential for triggering transcription. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:7544-52. [PMID: 21076060 PMCID: PMC3059262 DOI: 10.4049/jimmunol.1002665] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mouse Igκ gene locus has three known transcriptional enhancers: an intronic enhancer (Ei), a 3' enhancer (E3'), and a further downstream enhancer (Ed). Previous studies on B lymphocytes derived from mutant embryonic stem cells have shown that deletion of either Ei or E3' significantly reduces Igκ gene rearrangement, whereas the combined deletion of both Ei and E3' eliminates such recombination. Furthermore, deletion of either E3' or Ed significantly reduces rearranged Igκ gene transcription. To determine whether the combined presence of both E3' and Ed are essential for Igκ gene expression, we generated homozygous double knockout (DKO) mice with targeted deletions in both elements. Significantly, homozygous DKO mice were unable to generate κ(+) B cells both in bone marrow and the periphery and exhibited surface expression almost exclusively of Igλ-chains, despite the fact that they possessed potentially functional rearranged Igκ genes. Compared with their single-enhancer-deleted counterparts, Igκ loci in homozygous DKO mice exhibited dramatically reduced germline and rearranged gene transcription, lower levels of gene rearrangement and histone H3 acetylation, and markedly increased DNA methylation. This contributed to a partial developmental block at the pre-B cell stage of development. We conclude that the two downstream enhancers are essential in Igκ gene expression and that Ei in homozygous DKO mice is incapable of triggering Igκ gene transcription. Furthermore, these results reveal unexpected compensatory roles for Ed in E3' knockout mice in triggering germline transcription and Vκ gene rearrangements to both Jκ and RS elements.
Collapse
Affiliation(s)
- Xiaorong Zhou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148
- Department of Microbiology and Immunology, Medical School of Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, PR China
| | - Yougui Xiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148
| | - William T. Garrard
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148
| |
Collapse
|
8
|
Abstract
The allelic exclusion of immunoglobulin (Ig) genes is one of the most evolutionarily conserved features of the adaptive immune system and underlies the monospecificity of B cells. While much has been learned about how Ig allelic exclusion is established during B-cell development, the relevance of monospecificity to B-cell function remains enigmatic. Here, we review the theoretical models that have been proposed to explain the establishment of Ig allelic exclusion and focus on the molecular mechanisms utilized by developing B cells to ensure the monoallelic expression of Ig kappa and Ig lambda light chain genes. We also discuss the physiological consequences of Ig allelic exclusion and speculate on the importance of monospecificity of B cells for immune recognition.
Collapse
Affiliation(s)
- Christian Vettermann
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
9
|
Biallelic, ubiquitous transcription from the distal germline Ig{kappa} locus promoter during B cell development. Proc Natl Acad Sci U S A 2008; 106:522-7. [PMID: 19116268 DOI: 10.1073/pnas.0808895106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Allelic exclusion of Ig gene expression is necessary to limit the number of functional receptors to one per B cell. The mechanism underlying allelic exclusion is unknown. Because germline transcription of Ig and TCR loci is tightly correlated with rearrangement, we created two novel knock-in mice that report transcriptional activity of the Jkappa germline promoters in the Igkappa locus. Analysis of these mice revealed that germline transcription is biallelic and occurs in all pre-B cells. Moreover, we found that the two germline promoters in this region are not equivalent but that the distal promoter accounts for the vast majority of observed germline transcript in pre-B cells while the activity of the proximal promoter increases later in development. Allelic exclusion of the Igkappa locus thus occurs at the level of rearrangement, but not germline transcription.
Collapse
|
10
|
A reappraisal of evidence for probabilistic models of allelic exclusion. Proc Natl Acad Sci U S A 2008; 106:516-21. [PMID: 19116266 DOI: 10.1073/pnas.0808764105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
B cell development requires the coordinated rearrangement of Ig heavy (IgH) and light chain loci (IgL). Most mature B cells express a single B cell receptor of unique specificity, and a central question in immunology concerns the mechanisms that prevent the productive rearrangement of >1 IgH and IgL allele per cell. Probabilistic models of allelic exclusion maintain that simultaneous rearrangement of both alleles is rare, because the likelihood of undergoing rearrangement is low for a given Ig allele. Strong support for this idea came from studies in which a GFP marker was inserted into the Igk locus. In this system, the probability of high-level germ-line transcription and subsequent locus rearrangement appeared to be low in pre-B cells. Readdressing the validity of GFP expression as a reporter for the level of germ-line transcription, we found a striking discordance between GFP transcript and protein levels at the pre-B cell stage, which is explained at least in part by the developmentally regulated usage of 2 alternative Igk-J germ-line promoters. These results question the validity of the kappa-GFP system as evidence for probabilistic models of allelic exclusion.
Collapse
|
11
|
Xiang Y, Garrard WT. The Downstream Transcriptional Enhancer, Ed, positively regulates mouse Ig kappa gene expression and somatic hypermutation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:6725-32. [PMID: 18453592 PMCID: PMC2424255 DOI: 10.4049/jimmunol.180.10.6725] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The mouse Igkappa locus has three known transcriptional enhancers: the matrix association region/intronic enhancer, the 3' enhancer (E3'), and the further downstream enhancer (Ed). Previous studies have shown that both matrix association region/intronic and E3' enhancers are required for maximal gene rearrangement of the locus, and that E3' is also required for maximal expression and somatic hypermutation (SHM). To functionally elucidate Ed in vivo, we generated knockout mice with a targeted germline deletion of Ed. Ed deleted homozygous mice (Ed-/-) have moderately reduced numbers of Igkappa expressing B cells and correspondingly increased numbers of Iglambda expressing B cells in spleen. Ed-/- mice also have decreased Igkappa mRNA expression in resting and T cell-dependent activated splenic B cells and reduced Igkappa chains in sera. However, our analysis indicates that Igkappa gene rearrangement is normal in Ed-/- mice. In addition, our results show that Ed-/- mice exhibit reduced SHM in the Igkappa gene J-C intronic region in germinal center B cells from Peyer's patches. We conclude that Ed positively regulates Igkappa gene expression and SHM, but not gene rearrangement.
Collapse
Affiliation(s)
- Yougui Xiang
- Department of Molecular Biology University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
12
|
Inlay MA, Lin T, Gao HH, Xu Y. Critical roles of the immunoglobulin intronic enhancers in maintaining the sequential rearrangement of IgH and Igk loci. ACTA ACUST UNITED AC 2006; 203:1721-32. [PMID: 16785310 PMCID: PMC2118354 DOI: 10.1084/jem.20052310] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
V(D)J recombination of immunoglobulin (Ig) heavy (IgH) and light chain genes occurs sequentially in the pro– and pre–B cells. To identify cis-elements that dictate this order of rearrangement, we replaced the endogenous matrix attachment region/Igk intronic enhancer (MiEκ) with its heavy chain counterpart (Eμ) in mice. This replacement, denoted EμR, substantially increases the accessibility of both Vκ and Jκ loci to V(D)J recombinase in pro–B cells and induces Igk rearrangement in these cells. However, EμR does not support Igk rearrangement in pre–B cells. Similar to that in MiEκ−/− pre–B cells, the accessibility of Vκ segments to V(D)J recombinase is considerably reduced in EμR pre–B cells when compared with wild-type pre–B cells. Therefore, Eμ and MiEκ play developmental stage-specific roles in maintaining the sequential rearrangement of IgH and Igk loci by promoting the accessibility of V, D, and J loci to the V(D)J recombinase.
Collapse
Affiliation(s)
- Matthew A Inlay
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
13
|
Liu Z, Widlak P, Zou Y, Xiao F, Oh M, Li S, Chang MY, Shay JW, Garrard WT. A recombination silencer that specifies heterochromatin positioning and ikaros association in the immunoglobulin kappa locus. Immunity 2006; 24:405-15. [PMID: 16618599 DOI: 10.1016/j.immuni.2006.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 01/05/2006] [Accepted: 02/01/2006] [Indexed: 01/03/2023]
Abstract
Allelic exclusion ensures that individual B lymphocytes produce only one kind of antibody molecule. Previous studies have shown that allelic exclusion of the mouse Igkappa locus occurs by the combination of monoallelic silencing and a low level of monoallelic activation for rearrangement combined with a negative feedback loop blocking additional functional rearrangements. Using yeast artificial chromosome-based single-copy isotransgenic mice, we have identified a cis-acting element that negatively regulates rearrangement in this locus, specifically in B cells. The element, termed Sis, resides in the V-J intervening sequence. Sis specifies the targeting of Igkappa transgenes in pre-B and B cells to centromeric heterochromatin and associates with Ikaros, a repressor protein that also colocalizes with centromeric heterochromatin. Significantly, these are hallmarks of silenced endogenous germline Igkappa genes in B cells. These results lead us to propose that Sis participates in the monoallelic silencing aspect of allelic exclusion regulation.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lazorchak AS, Schlissel MS, Zhuang Y. E2A and IRF-4/Pip promote chromatin modification and transcription of the immunoglobulin kappa locus in pre-B cells. Mol Cell Biol 2006; 26:810-21. [PMID: 16428437 PMCID: PMC1347029 DOI: 10.1128/mcb.26.3.810-821.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The immunoglobulin kappa light chain (Igkappa) locus is regulated in a lineage- and stage-specific manner during B-cell development. The highly restricted timing of V to J gene recombination at the pre-B-cell stage is under the control of two enhancers, the intronic enhancer (kappaEi) and the 3' enhancer (kappaE3'), flanking the constant exon. E2A transcription factors have been indicated to be directly involved in the regulation of Igkappa locus activation. In this study, we utilize E2A-deficient pre-B cells to directly investigate the mechanism of E2A-mediated Igkappa activation. We demonstrate that Igkappa germ line transcription is severely impaired and recombination is blocked in the absence of E2A. Reconstitution of E2A-/- pre-B cells with inducible human E2A (E47R) is sufficient to promote chromatin modification of Igkappa and rescue Igkappa germ line transcription and Jkappa gene recombinase accessibility. Furthermore, we show that increased E2A recruitment to kappaEi and kappaE3' correlates with activation of Igkappa in pre-B cells and that recruitment of E2A to kappaE3' is in part dependent on the transcription factor IRF-4. Inhibition of IRF-4 expression in pre-B cells leads to a significant reduction of Igkappa germ line transcription and enhancer acetylation. In the absence of E2A, increased IRF-4 expression is not sufficient to promote Igkappa enhancer chromatin modification or transcription, suggesting that the sequential involvement of IRF-4 and E2A is necessary for the activation of the Igkappa locus. Finally, we provide genetic evidence in the mouse that E2A gene dosage can influence the development of pre-B cells during the phase of Igkappa gene activation.
Collapse
Affiliation(s)
- Adam S Lazorchak
- Department of Immunology, Duke University Medical Center, Box 3010, 328 Jones Building, Research Drive, Durham, NC 27710, USA
| | | | | |
Collapse
|
15
|
Abstract
After the demonstration that surrogate JCkappa polypeptides could covalently bind mu heavy chain and upon the characterization of the Vkappa-like component of the kappa-like pre-B cell receptor, it became evident that germline transcription is not sterile. The present review discusses the concept of the alternative usage of kappa-like pre-B cell receptors and classical pre-B cell receptors utilizing the lambda-like surrogate light chain composed of lambda5 and VpreB. We propose that both kappa-like and lambda-like pre-B cell receptors work in concert in a fail-safe mechanism to promote light chain rearrangement, heavy chain allelic exclusion and B-lymphocyte maturation.
Collapse
Affiliation(s)
- Morgan R McKeller
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, P.O. Box 301402, Unit # 902, Houston, TX 77030, USA
| | | |
Collapse
|
16
|
Rangel R, McKeller MR, Sims-Mourtada JC, Kashi C, Cain K, Wieder ED, Molldrem JJ, Pham LV, Ford RJ, Yotnda P, Guret C, Francés V, Martinez-Valdez H. Assembly of the kappa preB receptor requires a V kappa-like protein encoded by a germline transcript. J Biol Chem 2005; 280:17807-14. [PMID: 15757909 DOI: 10.1074/jbc.m409479200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
By confining germline transcription as a byproduct of the mechanisms inherent to genetic rearrangements, the translation of respective mRNAs and their biological relevance might have been overlooked. Here we report the identification, cloning, and biochemical characterization of a human Vkappa-like protein that is encoded by a germline transcript. This surrogate protein assembles with the immunoglobulin mu heavy chain at the surface of B cell progenitors and precursors to form a kappa-like antigen receptor. These findings support the notion that germline transcription is not futile and stress the flexibility in eukaryotic gene usage and expression. In addition, the present study confirms the co-existence of surrogate lambda and kappa receptors that are proposed to work in concert to promote B lymphocyte maturation.
Collapse
Affiliation(s)
- Roberto Rangel
- Department of Immunology, M. D. Anderson Cancer Center, The University of Texas, Houston, Texas 77054, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The development of mature B and T cells in the lymphoid system involves a series of molecular decisions that culminate in the expression of a single antigen receptor on the cell surface, a phenomenon termed allelic exclusion. While feedback inhibition of the recombinase-activation gene proteins evidently plays an important role in the maintenance of allelic exclusion, the initial restriction of rearrangement to only one allele in each cell seems to be achieved through monoallelic epigenetic changes. Epigenetic mechanisms involved in the establishment of allelic exclusion also play a central role in other types of monoallelic expression, including X-chromosome inactivation in female cells, and parental imprinting. In all three systems, the inequality of the two alleles seems to be achieved mainly by differential DNA methylation, asynchronous DNA replication, differential chromatin modifications, unequal nuclear localization, and non-coding RNA. In this review, we discuss the unifying features among these monoallelically expressed systems and the unique characteristics displayed by each of them.
Collapse
Affiliation(s)
- Maya Goldmit
- Department of Experimental Medicine and Cancer Research, The Hebrew University Medical School, Jerusalem, Israel
| | | |
Collapse
|
18
|
Abstract
The murine immunoglobulin (Ig) kappa locus has been intensively studied in an attempt to understand its developmentally regulated activation for both transcription and V(D)J recombination. A variety of signaling proteins, cis-acting DNA elements, and trans-acting DNA-binding proteins have been discovered and shown to be involved in the regulated changes in chromatin structure, which are associated with recombinase accessibility. In addition, key roles have been suggested for DNA methylation and replication in kappa-locus expression and rearrangement. This review summarizes data in this area and considers what studies of the murine kappa locus have revealed about the lineage specificity, order, and allelic exclusion of lymphoid V(D)J recombination.
Collapse
|
19
|
Abstract
In the mammalian immune system, V(D)J rearrangement of immunoglobulin (Ig) and T-cell receptor (TCR) genes is regulated in a lineage- and stage-specific fashion. Because each of the seven loci capable of rearrangement utilizes the same recombination machinery, it is thought that V(D)J recombination of each antigen receptor locus is regulated through the differential accessibility of each locus to the V(D)J recombination machinery. Accumulating evidence indicates that chromatin remodeling mediated by DNA methylation and demethylation plays important roles in regulating V(D)J recombination and germline transcription through the Ig and TCR loci. DNA demethylation within the antigen receptor loci appears to be regulated by cis-elements also required for coordinated V(D)J recombination and germline transcription. In this paper, we critically examine the relationship between demethylation and V(D)J recombination as well as the mechanism to regulate DNA demethylation within the antigen receptor loci.
Collapse
Affiliation(s)
- Matthew Inlay
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0322, USA
| | | |
Collapse
|
20
|
Bertocci B, De Smet A, Berek C, Weill JC, Reynaud CA. Immunoglobulin kappa light chain gene rearrangement is impaired in mice deficient for DNA polymerase mu. Immunity 2003; 19:203-11. [PMID: 12932354 DOI: 10.1016/s1074-7613(03)00203-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
DNA polymerase mu (pol mu) is a template-dependent polymerase closely related to the lymphoid-specific enzyme terminal deoxynucleotidyl transferase (TdT). We report here the phenotype of pol mu-deficient mice. Such animals display an abnormal B cell differentiation, with a specific alteration in the IgM- to IgM+ transition in bone marrow. In all mice, Ig light chain gene rearrangement is impaired at the level of the Vkappa-Jkappa and Vlambda-Jlambda junctions, which show extensive nibbling of both coding extremities. These alterations lead to a profound defect in the peripheral B cell compartment which, although variable between animals, results in an average 40% reduction in the splenic B cell fraction. Pol mu appears, therefore, as a key element contributing to the relative homogeneity in size of light chain CDR3 and taking part in Ig gene rearrangement at a stage where TdT is no longer expressed.
Collapse
Affiliation(s)
- Barbara Bertocci
- Institut National Français de Recherche Médicale U373, Faculté de Médecine Necker-Enfants Malades, 156 rue de Vaugirard, 75730 Paris 15, France
| | | | | | | | | |
Collapse
|
21
|
Liu ZM, George-Raizen JB, Li S, Meyers KC, Chang MY, Garrard WT. Chromatin structural analyses of the mouse Igkappa gene locus reveal new hypersensitive sites specifying a transcriptional silencer and enhancer. J Biol Chem 2002; 277:32640-9. [PMID: 12080064 DOI: 10.1074/jbc.m204065200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify new regulatory elements within the mouse Igkappa locus, we have mapped DNase I hypersensitive sites (HSs) in the chromatin of B cell lines arrested at different stages of differentiation. We have focused on two regions encompassing 50 kilobases suspected to contain new regulatory elements based on our previous high level expression results with yeast artificial chromosome-based mouse Igkappa transgenes. This approach has revealed a cluster of HSs within the 18-kilobase intervening sequence, which we cloned and sequenced in its entirety, between the Vkappa gene closest to the Jkappa region. These HSs exhibit pro/pre-B cell-specific transcriptional silencing of a Vkappa gene promoter in transient transfection assays. We also identified a plasmacytoma cell-specific HS in the far downstream region of the locus, which in analogous transient transfection assays proved to be a powerful transcriptional enhancer. Deletional analyses reveal that for each element multiple DNA segments cooperate to achieve either silencing or enhancement. The enhancer sequence is conserved in the human Igkappa gene locus, including NF-kappaB and E-box sites that are important for the activity. In summary, our results pinpoint the locations of presumptive regulatory elements for future knockout studies to define their functional roles in the native locus.
Collapse
Affiliation(s)
- Zhi-Mei Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA
| | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- D G Hesslein
- Department of Cell Biology and Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA.
| | | |
Collapse
|
23
|
Engel H, Rühl H, Benham CJ, Bode J, Weiss S. Germ-line transcripts of the immunoglobulin lambda J-C clusters in the mouse: characterization of the initiation sites and regulatory elements. Mol Immunol 2001; 38:289-302. [PMID: 11566322 DOI: 10.1016/s0161-5890(01)00056-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transcription of unrearranged immunoglobulin gene segments strongly correlates with their accessibility to the V(D)J recombination machinery. The regulatory mechanisms governing this germ-line transcription are still poorly defined. In order to identify new regulatory elements, we first carried out a detailed characterization of the transcription initiation sites for the J-C germ-line transcripts, using rapid amplification of 5' cDNA ends, assisted by a template switching mechanism at the 5'-end of the RNA. Transcripts were observed that initiated heterogeneously, starting up to 293 (lambda1), 116 bp (lambda2) and 79 bp (lambda3) upstream from the respective Jlambda gene segment. Additional RT-PCR analysis revealed the existence of germ-line transcripts of lambda and also of kappa that initiate even more upstream of these transcription initiation sites, although their frequencies were low. Promoter activity was detected in vitro 5' of Jlambda2, with the minimal promoter activity mapping to the region between positions -35 and -120. In addition, computer analysis allowed the prediction of a nuclear scaffold/matrix attachment (S/MAR) region between the two J-C gene clusters at each hemi-locus. This region between the lambda1/lambda3 clusters binds to the nuclear matrix in vitro, and J-C lambda1 germ-line transcription initiates a short distance downstream from this S/MAR element.
Collapse
Affiliation(s)
- H Engel
- Department of Cellbiology and Immunobiology, GBF, German Research Centre for Biotechnology, Mascheroder Weg 1, 38124, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
24
|
Nitschke L, Kestler J, Tallone T, Pelkonen S, Pelkonen J. Deletion of the DQ52 element within the Ig heavy chain locus leads to a selective reduction in VDJ recombination and altered D gene usage. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2540-52. [PMID: 11160315 DOI: 10.4049/jimmunol.166.4.2540] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The process of V(D)J recombination that leads to the assembly of Ig gene segments is tightly controlled during B cell differentiation. Two germline transcripts, one of which (mu(0)) originates from the promoter region of DQ52, may control the accessibility of the heavy chain locus. Here, we present the analysis of a mouse line in which the DQ52 gene together with its regulatory sequences is deleted by a Cre/loxP-based strategy. In F(1) (DQ52(+/-)) mice, the use of the JH3 and JH4 elements in DJ or VDJ junctions of the DQ52(-) allele was strongly reduced in both the bone marrow pre-B and spleen cells, while the JH1 and JH2 elements were used with normal frequencies. In addition, IgM(+) B cells of bone marrow and spleen used the DQ52(-) allele less frequently. On DJ joints of the DQ52(-) allele, there was 2 times less processing of JH3 ends, which resulted in clearly increased addition of P nucleotides. Although the use of D elements in DJ joints was quite similar, an altered D repertoire was found in VDJ joints of the DQ52(-) allele. In splenic B cells of the DQ52(-/-) mouse the amino acid distribution of the CDR3 was skewed, probably to compensate for the altered processing of JH3 ends. Thus, we have shown an interesting selective effect of the DQ52 region on controlling accessibility to 3' JH elements on the Ig locus, which also seems to influence the processing of DJ joints. We propose a model in which the DQ52 promoter region enhances the induction of secondary DJ rearrangements.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Amino Acids/analysis
- Animals
- Antibody Diversity/genetics
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/pathology
- Base Sequence
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/metabolism
- DNA, Complementary/isolation & purification
- Gene Deletion
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Gene Targeting
- Genes, Immunoglobulin
- Genetic Markers/immunology
- Immunoglobulin Heavy Chains/biosynthesis
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/metabolism
- Immunoglobulin Joining Region/biosynthesis
- Immunoglobulin Joining Region/genetics
- Immunoglobulin Joining Region/metabolism
- Immunoglobulin Variable Region/biosynthesis
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/metabolism
- Immunoglobulin mu-Chains/genetics
- Immunoglobulin mu-Chains/isolation & purification
- Lymphocyte Count
- Lymphopenia/genetics
- Lymphopenia/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Protein Processing, Post-Translational/genetics
- Protein Processing, Post-Translational/immunology
- Regulatory Sequences, Nucleic Acid/immunology
- Transcription, Genetic/immunology
Collapse
Affiliation(s)
- L Nitschke
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany.
| | | | | | | | | |
Collapse
|
25
|
Abstract
DNA targeting by homologous recombination in mouse embryonic stem (ES) cells has become a widely used method for manipulating the mouse genome and for studying the role of specific genes in mammalian development. For certain studies, it is necessary to target two or more DNA sequences residing on a particular chromosome. In these situations, it would be important to distinguish whether two sequential gene targeting events in the ES cells have occurred in cis or in trans. We report here a new application of fluorescence in situ hybridization to RNA molecules present at sites of transcription that allows the identification of cis and trans gene targeting events in ES cells. The method is based on detection of transcripts from commonly used selectable marker genes inserted during homologous recombination. Transcripts are detected in interphase nuclei, making the preparation of mitotic cells unnecessary and obviating the necessity for the more technically demanding DNA detection of genes. The method is applicable to any chromosomal locus, and compared with other methods (e.g., genetic linkage testing in chimeric mice), it will greatly shorten the time required for distinguishing cis and trans gene targeting events in ES cells. The method also may be useful for detecting changes in ploidy of individual chromosomes and loss of heterozygosity of genes in single cells in culture and also in animals, for example, during processes such as tumorigenesis.
Collapse
Affiliation(s)
- Y Fan
- Departments of Cell Biology and Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
26
|
Leduc I, Hempel WM, Mathieu N, Verthuy C, Bouvier G, Watrin F, Ferrier P. T cell development in TCR beta enhancer-deleted mice: implications for alpha beta T cell lineage commitment and differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1364-73. [PMID: 10903739 DOI: 10.4049/jimmunol.165.3.1364] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
T cell differentiation in the mouse thymus is an intricate, highly coordinated process that requires the assembly of TCR complexes from individual components, including those produced by the precisely timed V(D)J recombination of TCR genes. Mice carrying a homozygous deletion of the TCR beta transcriptional enhancer (E beta) demonstrate an inhibition of V(D)J recombination at the targeted TCR beta locus and a block in alpha beta T cell differentiation. In this study, we have characterized the T cell developmental defects resulting from the E beta-/- mutation, in light of previously reported results of the analyses of TCR beta-deficient (TCR beta-/-) mice. Similar to the latter mice, production of TCR beta-chains is abolished in the E beta-/- animals, and under these conditions differentiation into cell-surface TCR-, CD4+CD8+ double positive (DP) thymocytes depends essentially on the cell-autonomous expression of TCR delta-chains and, most likely, TCR gamma-chains. However, contrary to previous reports using TCR beta-/- mice, a minor population of TCR gamma delta+ DP thymocytes was found within the E beta-/- thymi, which differ in terms of T cell-specific gene expression and V(D)J recombinase activity, from the majority of TCR-, alpha beta lineage-committed DP thymocytes. We discuss these data with respect to the functional role of E beta in driving alpha beta T cell differentiation and the mechanism of alpha beta T lineage commitment.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Lineage/genetics
- Cell Lineage/immunology
- Enhancer Elements, Genetic/genetics
- Enhancer Elements, Genetic/immunology
- Flow Cytometry
- Gene Deletion
- Gene Expression Regulation/genetics
- Gene Expression Regulation/immunology
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor/genetics
- Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor/genetics
- Genes, T-Cell Receptor beta/genetics
- Genes, T-Cell Receptor delta/genetics
- Genes, T-Cell Receptor gamma/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- I Leduc
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale-Centre National de la Recherche Scientifique, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Li S, Hammer RE, George-Raizen JB, Meyers KC, Garrard WT. High-level rearrangement and transcription of yeast artificial chromosome-based mouse Ig kappa transgenes containing distal regions of the contig. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:812-24. [PMID: 10623827 DOI: 10.4049/jimmunol.164.2.812] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mouse Ig kappa L chain gene locus has been extensively studied, but to date high-level expression of germline transgenes has not been achieved. Reasoning that each end of the locus may contain regulatory elements because these regions are not deleted upon V kappa-J kappa joining, we used yeast artificial chromosome-based techniques to fuse distal regions of the contig to create transgene miniloci. The largest minilocus (290 kb) possessed all members of the upstream V kappa 2 gene family including their entire 5' and 3' flanking sequences, along with one member of a downstream V kappa 21 gene family. In addition, again using yeast artificial chromosome-based technology, we created Ig kappa miniloci that contained differing lengths of sequences 5' of the most distal V kappa 2 gene family member. In transgenic mice, Ig kappa miniloci exhibited position-independent and copy number-dependent germline transcription. Ig kappa miniloci were rearranged in tissue and developmental stage-specific manners. The levels of rearrangement and transcription of the distal and proximal V kappa gene families were similar to their endogenous counterparts and appeared to be responsive to allelic exclusion, but were differentially sensitive to numerous position effects. The minilocus that contained the longest 5' region exhibited significantly greater recombination of the upstream V kappa 2 genes but not the downstream V kappa 21 gene, providing evidence for a local recombination stimulating element. These results provide evidence that our miniloci contain nearly all regulatory elements required for bona fide Ig kappa gene expression, making them useful substrates for functional analyses of cis-acting sequences in the future.
Collapse
MESH Headings
- Alleles
- Animals
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Chromosomes, Artificial, Yeast/genetics
- Chromosomes, Artificial, Yeast/immunology
- Contig Mapping
- Crosses, Genetic
- Gene Dosage
- Gene Rearrangement, B-Lymphocyte, Light Chain/genetics
- Genes, Immunoglobulin/genetics
- Genetic Markers/immunology
- Germ Cells/immunology
- Germ Cells/metabolism
- Immunoglobulin Joining Region/genetics
- Immunoglobulin Variable Region/genetics
- Immunoglobulin kappa-Chains/chemistry
- Immunoglobulin kappa-Chains/genetics
- Mice
- Mice, Transgenic
- Multigene Family/immunology
- Reproducibility of Results
- Transcription, Genetic/immunology
- Transgenes/immunology
Collapse
Affiliation(s)
- S Li
- Department of Molecular Biology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | | | | | | | | |
Collapse
|