1
|
Chiu YF, Ponlachantra K, Sugden B. How Epstein Barr Virus Causes Lymphomas. Viruses 2024; 16:1744. [PMID: 39599857 PMCID: PMC11599019 DOI: 10.3390/v16111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Since Epstein-Barr Virus (EBV) was isolated 60 years ago, it has been studied clinically, epidemiologically, immunologically, and molecularly in the ensuing years. These combined studies allow a broad mechanistic understanding of how this ubiquitous human pathogen which infects more than 90% of adults can rarely cause multiple types of lymphomas. We survey these findings to provide a coherent description of its oncogenesis.
Collapse
Affiliation(s)
- Ya-Fang Chiu
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan 33302, Taiwan;
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Infectious Diseases, Department of Medicine, New Taipei Municipal Tucheng Hospital, New Taipei City 236017, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
| | - Khongpon Ponlachantra
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand;
| | - Bill Sugden
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
2
|
Marti Z, Ruder J, Thomas OG, Bronge M, De La Parra Soto L, Grönlund H, Olsson T, Martin R. Enhanced and cross-reactive in vitro memory B cell response against Epstein-Barr virus nuclear antigen 1 in multiple sclerosis. Front Immunol 2024; 15:1334720. [PMID: 39257578 PMCID: PMC11385009 DOI: 10.3389/fimmu.2024.1334720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/04/2024] [Indexed: 09/12/2024] Open
Abstract
Multiple sclerosis (MS) is a prototypical autoimmune disease of the central nervous system (CNS). In addition to CD4+ T cells, memory B cells are now recognized as a critical cell type in the disease. This is underlined by the fact that the best-characterized environmental risk factor for MS is the Epstein-Barr virus (EBV), which can infect and persist in memory B cells throughout life. Several studies have identified changes in anti-EBV immunity in patients with MS. Examples include elevated titers of anti-EBV nuclear antigen 1 (EBNA1) antibodies, interactions of these with the MS-associated HLA-DR15 haplotype, and molecular mimicry with MS autoantigens like myelin basic protein (MBP), anoctamin-2 (ANO2), glial cell adhesion molecule (GlialCAM), and alpha-crystallin B (CRYAB). In this study, we employ a simple in vitro assay to examine the memory B cell antibody repertoire in MS patients and healthy controls. We replicate previous serological data from MS patients demonstrating an increased secretion of anti-EBNA1380-641 IgG in cell culture supernatants, as well as a positive correlation of these levels with autoantibodies against GlialCAM262-416 and ANO21-275. For EBNA1380-641 and ANO21-275, we provide additional evidence suggesting antibody cross-reactivity between the two targets. Further, we show that two efficacious MS treatments - natalizumab (NAT) and autologous hematopoietic stem cell transplantation (aHSCT) - are associated with distinct changes in the EBNA1-directed B cell response and that these alterations can be attributed to the unique mechanisms of action of these therapies. Using an in vitro system, our study confirms MS-associated changes in the anti-EBNA1 memory B cell response, EBNA1380-641 antibody cross-reactivity with ANO21-275, and reveals treatment-associated changes in the immunoglobulin repertoire in MS.
Collapse
Affiliation(s)
- Zoe Marti
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Research and Development, Cellerys, Schlieren, Switzerland
- Department of Neuroimmunology and Multiple Sclerosis Research, University Hospital Zurich, Zurich, Switzerland
| | - Josefine Ruder
- Department of Neuroimmunology and Multiple Sclerosis Research, University Hospital Zurich, Zurich, Switzerland
| | - Olivia G Thomas
- Therapeutic Immune Design Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Bronge
- Therapeutic Immune Design Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo De La Parra Soto
- Therapeutic Immune Design Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Hans Grönlund
- Therapeutic Immune Design Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neurocience, Karolinska Institutet, Stockholm, Sweden
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Research and Development, Cellerys, Schlieren, Switzerland
- Department of Neuroimmunology and Multiple Sclerosis Research, University Hospital Zurich, Zurich, Switzerland
- Therapeutic Immune Design Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Baiu DC, Sharma A, Schehr JL, Basu J, Smith KA, Ohashi M, Johannsen EC, Kenney SC, Gumperz JE. Human CD4 + iNKT cell adoptive immunotherapy induces anti-tumour responses against CD1d-negative EBV-driven B lymphoma. Immunology 2024; 172:627-640. [PMID: 38736328 PMCID: PMC11223969 DOI: 10.1111/imm.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are a conserved population of innate T lymphocytes that are uniquely suitable as off-the-shelf cellular immunotherapies due to their lack of alloreactivity. Two major subpopulations of human iNKT cells have been delineated, a CD4- subset that has a TH1/cytolytic profile, and a CD4+ subset that appears polyfunctional and can produce both regulatory and immunostimulatory cytokines. Whether these two subsets differ in anti-tumour effects is not known. Using live cell imaging, we found that CD4- iNKT cells limited growth of CD1d+ Epstein-Barr virus (EBV)-infected B-lymphoblastoid spheroids in vitro, whereas CD4+ iNKT cells showed little or no direct anti-tumour activity. However, the effects of the two subsets were reversed when we tested them as adoptive immunotherapies in vivo using a xenograft model of EBV-driven human B cell lymphoma. We found that EBV-infected B cells down-regulated CD1d in vivo, and administering CD4- iNKT cells had no discernable impact on tumour mass. In contrast, xenotransplanted mice bearing lymphomas showed rapid reduction in tumour mass after administering CD4+ iNKT cells. Immunotherapeutic CD4+ iNKT cells trafficked to both spleen and tumour and were associated with subsequently enhanced responses of xenotransplanted human T cells against EBV. CD4+ iNKT cells also had adjuvant-like effects on monocyte-derived DCs and promoted antigen-dependent responses of human T cells in vitro. These results show that allogeneic CD4+ iNKT cellular immunotherapy leads to marked anti-tumour activity through indirect pathways that do not require tumour cell CD1d expression and that are associated with enhanced activity of antigen-specific T cells.
Collapse
Affiliation(s)
- Dana C. Baiu
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Akshat Sharma
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Jennifer L. Schehr
- Carbone Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Jayati Basu
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kelsey A. Smith
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Makoto Ohashi
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Eric C. Johannsen
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Shannon C. Kenney
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jenny E. Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
4
|
Ruiz-Pablos M, Paiva B, Zabaleta A. Hypocortisolemic ASIA: a vaccine- and chronic infection-induced syndrome behind the origin of long COVID and myalgic encephalomyelitis. Front Immunol 2024; 15:1422940. [PMID: 39044822 PMCID: PMC11263040 DOI: 10.3389/fimmu.2024.1422940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
Myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS), long COVID (LC) and post-COVID-19 vaccine syndrome show similarities in their pathophysiology and clinical manifestations. These disorders are related to viral or adjuvant persistence, immunological alterations, autoimmune diseases and hormonal imbalances. A developmental model is postulated that involves the interaction between immune hyperactivation, autoimmune hypophysitis or pituitary hypophysitis, and immune depletion. This process might begin with a deficient CD4 T-cell response to viral infections in genetically predisposed individuals (HLA-DRB1), followed by an uncontrolled immune response with CD8 T-cell hyperactivation and elevated antibody production, some of which may be directed against autoantigens, which can trigger autoimmune hypophysitis or direct damage to the pituitary, resulting in decreased production of pituitary hormones, such as ACTH. As the disease progresses, prolonged exposure to viral antigens can lead to exhaustion of the immune system, exacerbating symptoms and pathology. It is suggested that these disorders could be included in the autoimmune/adjuvant-induced inflammatory syndrome (ASIA) because of their similar clinical manifestations and possible relationship to genetic factors, such as polymorphisms in the HLA-DRB1 gene. In addition, it is proposed that treatment with antivirals, corticosteroids/ginseng, antioxidants, and metabolic precursors could improve symptoms by modulating the immune response, pituitary function, inflammation and oxidative stress. Therefore, the purpose of this review is to suggest a possible autoimmune origin against the adenohypophysis and a possible improvement of symptoms after treatment with corticosteroid replacement therapy.
Collapse
Affiliation(s)
- Manuel Ruiz-Pablos
- Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
| | - Bruno Paiva
- Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Clinica Universidad de Navarra, Pamplona, Spain
| | - Aintzane Zabaleta
- Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Clinica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
5
|
Münz C. Altered EBV specific immune control in multiple sclerosis. J Neuroimmunol 2024; 390:578343. [PMID: 38615370 DOI: 10.1016/j.jneuroim.2024.578343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Since the 1980s it is known that immune responses to the Epstein-Barr virus (EBV) are elevated in multiple sclerosis (MS) patients. Recent seroepidemiologial data have shown that this alteration after primary EBV infection identifies individuals with a more than 30-fold increased risk to develop MS. The mechanisms by which EBV infection might erode tolerance for the central nervous system (CNS) in these individuals, years prior to clinical MS onset, remain unclear. In this review I will discuss altered frequencies of EBV life cycle stages and their tissue distribution, EBV with CNS autoantigen cross-reactive immune responses and loss of immune control for autoreactive B and T cells as possible mechanisms. This discussion is intended to stimulate future studies into these mechanisms with the aim to identify candidates for interventions that might correct EBV specific immune control and/or resulting cross-reactivities with CNS autoantigens in MS patients and thereby ameliorate disease activity.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Switzerland.
| |
Collapse
|
6
|
Wang C, Chen J, Li J, Xu Z, Huang L, Zhao Q, Chen L, Liang X, Hu H, Li G, Xiong C, Wu B, You H, Du D, Wang X, Li H, Wang Z, Chen L. An EBV-related CD4 TCR immunotherapy inhibits tumor growth in an HLA-DP5+ nasopharyngeal cancer mouse model. J Clin Invest 2024; 134:e172092. [PMID: 38412034 PMCID: PMC11014665 DOI: 10.1172/jci172092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/24/2024] [Indexed: 02/29/2024] Open
Abstract
Adoptive transfer of T cell receptor-engineered T cells (TCR-T) is a promising strategy for immunotherapy against solid tumors. However, the potential of CD4+ T cells in mediating tumor regression has been neglected. Nasopharyngeal cancer is consistently associated with EBV. Here, to evaluate the therapeutic potential of CD4 TCR-T in nasopharyngeal cancer, we screened for CD4 TCRs recognizing EBV nuclear antigen 1 (EBNA1) presented by HLA-DP5. Using mass spectrometry, we identified EBNA1567-581, a peptide naturally processed and presented by HLA-DP5. We isolated TCR135, a CD4 TCR with high functional avidity, that can function in both CD4+ and CD8+ T cells and recognizes HLA-DP5-restricted EBNA1567-581. TCR135-transduced T cells functioned in two ways: directly killing HLA-DP5+EBNA1+ tumor cells after recognizing EBNA1 presented by tumor cells and indirectly killing HLA-DP5-negative tumor cells after recognizing EBNA1 presented by antigen-presenting cells. TCR135-transduced T cells preferentially infiltrated into the tumor microenvironment and significantly inhibited tumor growth in xenograft nasopharyngeal tumor models. Additionally, we found that 62% of nasopharyngeal cancer patients showed 50%-100% expression of HLA-DP on tumor cells, indicating that nasopharyngeal cancer is well suited for CD4 TCR-T therapy. These findings suggest that TCR135 may provide a new strategy for EBV-related nasopharyngeal cancer immunotherapy in HLA-DP5+ patients.
Collapse
Affiliation(s)
- Chenwei Wang
- Guangzhou Medical University–Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences and Guangdong–Hong Kong–Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiewen Chen
- Guangzhou Medical University–Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences and Guangdong–Hong Kong–Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jingyao Li
- Guangzhou Medical University–Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences and Guangdong–Hong Kong–Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhihong Xu
- Guangzhou Medical University–Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences and Guangdong–Hong Kong–Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lihong Huang
- Guangzhou Medical University–Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences and Guangdong–Hong Kong–Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qian Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Lei Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong, China
| | - Xiaolong Liang
- Guangzhou Medical University–Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences and Guangdong–Hong Kong–Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hai Hu
- Department of Pathology, Air Force Hospital of Southern Theater Command, Guangzhou, Guangdong, China
| | - Gang Li
- Department of Otolaryngology–Head and Neck Surgery, Huiqiao Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chengjie Xiong
- Guangzhou Medical University–Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences and Guangdong–Hong Kong–Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bin Wu
- Guangzhou Medical University–Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences and Guangdong–Hong Kong–Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hua You
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Pediatric Hematology and Oncology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Danyi Du
- Department of Otolaryngology–Head and Neck Surgery, Precision Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoling Wang
- Guangzhou Medical University–Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences and Guangdong–Hong Kong–Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hongle Li
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Zibing Wang
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Lin Chen
- Guangzhou Medical University–Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences and Guangdong–Hong Kong–Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Liu M, Huang C, Zhou X, Jiang C, Liu S, Gao Y, Kuang L, Lei Z, Jia R, Xu J, Legembre P, Liang X. Membrane-bound CD95 ligand modulates CD19-mediated B cell receptor signaling and EBV activation. J Med Virol 2024; 96:e29440. [PMID: 38299675 DOI: 10.1002/jmv.29440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/02/2024]
Abstract
Post-transplant lymphoproliferative disorders (PTLDs) are associated with Epstein-Barr virus (EBV) infection in transplant recipients. Most of lymphoblastoid cell lines (LCLs) derived from EBV-immortalized B cells or PTLDs are sensitive to CD95-mediated apoptosis and cytotoxic T cell (CTL) killing. CD95 ligand (CD95L) exists as a transmembrane ligand (mCD95L) or a soluble form (sCD95L). Using recombinant mCD95L and sCD95L, we observed that sCD95L does not affect LCLs. While high expression of mCD95L in CTLs promotes apoptosis of LCLs, low expression induces clathrin-dependent CD19 internalization, caspase-dependent CD19 cleavage, and proteasomal/lysosomal-dependent CD19 degradation. The CD95L/CD95-mediated CD19 degradation impairs B cell receptor (BCR) signaling and inhibits BCR-mediated EBV activation. Interestingly, although inhibition of the caspase activity restores CD19 expression and CD19-mediated BCR activation, it fails to rescue BCR-mediated EBV lytic gene expression. EBV-specific CTLs engineered to overexpress mCD95L exhibit a stronger killing activity against LCLs. This study highlights that engineering EBV-specific CTLs to express a higher level of mCD95L could represent an attractive therapeutic approach to improve T cell immunotherapy for PTLDs.
Collapse
Affiliation(s)
- Mu Liu
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chenxu Huang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xingchen Zhou
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Congwei Jiang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shuai Liu
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ying Gao
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Linlin Kuang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhangmengxue Lei
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ran Jia
- Department of Clinical Laboratory, Children's Hospital of Fudan University, Shanghai, China
| | - Jin Xu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, Shanghai, China
| | - Patrick Legembre
- UMR CNRS 7276, INSERM U1262, University of Limoges, Limoges, France
| | - Xiaozhen Liang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
8
|
Sausen DG, Poirier MC, Spiers LM, Smith EN. Mechanisms of T cell evasion by Epstein-Barr virus and implications for tumor survival. Front Immunol 2023; 14:1289313. [PMID: 38179040 PMCID: PMC10764432 DOI: 10.3389/fimmu.2023.1289313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Epstein-Barr virus (EBV) is a prevalent oncogenic virus estimated to infect greater than 90% of the world's population. Following initial infection, it establishes latency in host B cells. EBV has developed a multitude of techniques to avoid detection by the host immune system and establish lifelong infection. T cells, as important contributors to cell-mediated immunity, make an attractive target for these immunoevasive strategies. Indeed, EBV has evolved numerous mechanisms to modulate T cell responses. For example, it can augment expression of programmed cell death ligand-1 (PD-L1), which inhibits T cell function, and downregulates the interferon response, which has a strong impact on T cell regulation. It also modulates interleukin secretion and can influence major histocompatibility complex (MHC) expression and presentation. In addition to facilitating persistent EBV infection, these immunoregulatory mechanisms have significant implications for evasion of the immune response by tumor cells. This review dissects the mechanisms through which EBV avoids detection by host T cells and discusses how these mechanisms play into tumor survival. It concludes with an overview of cancer treatments targeting T cells in the setting of EBV-associated malignancy.
Collapse
Affiliation(s)
- D. G. Sausen
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | | | | |
Collapse
|
9
|
Dinh VT, Loaëc N, Quillévéré A, Le Sénéchal R, Keruzoré M, Martins RP, Granzhan A, Blondel M. The hide-and-seek game of the oncogenic Epstein-Barr virus-encoded EBNA1 protein with the immune system: An RNA G-quadruplex tale. Biochimie 2023; 214:57-68. [PMID: 37473831 DOI: 10.1016/j.biochi.2023.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
The Epstein-Barr virus (EBV) is the first oncogenic virus described in human. EBV infects more than 90% of the human population worldwide, but most EBV infections are asymptomatic. After the primary infection, the virus persists lifelong in the memory B cells of the infected individuals. Under certain conditions the virus can cause several human cancers, that include lymphoproliferative disorders such as Burkitt and Hodgkin lymphomas and non-lymphoid malignancies such as 100% of nasopharyngeal carcinoma and 10% of gastric cancers. Each year, about 200,000 EBV-related cancers emerge, hence accounting for at least 1% of worldwide cancers. Like all gammaherpesviruses, EBV has evolved a strategy to escape the host immune system. This strategy is mainly based on the tight control of the expression of its Epstein-Barr nuclear antigen-1 (EBNA1) protein, the EBV-encoded genome maintenance protein. Indeed, EBNA1 is essential for viral genome replication and maintenance but, at the same time, is also highly antigenic and T cells raised against EBNA1 exist in infected individuals. For this reason, EBNA1 is considered as the Achilles heel of EBV and the virus has seemingly evolved a strategy that employs the binding of nucleolin, a host cell factor, to RNA G-quadruplex (rG4) within EBNA1 mRNA to limit its expression to the minimal level required for function while minimizing immune recognition. This review recapitulates in a historical way the knowledge accumulated on EBNA1 immune evasion and discusses how this rG4-dependent mechanism can be exploited as an intervention point to unveil EBV-related cancers to the immune system.
Collapse
Affiliation(s)
- Van-Trang Dinh
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France.
| | - Nadège Loaëc
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Alicia Quillévéré
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Ronan Le Sénéchal
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Marc Keruzoré
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | | | - Anton Granzhan
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Marc Blondel
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France.
| |
Collapse
|
10
|
Xiang Y, Tian M, Huang J, Li Y, Li G, Li X, Jiang Z, Song X, Ma X. LMP2-mRNA lipid nanoparticle sensitizes EBV-related tumors to anti-PD-1 therapy by reversing T cell exhaustion. J Nanobiotechnology 2023; 21:324. [PMID: 37679769 PMCID: PMC10486025 DOI: 10.1186/s12951-023-02069-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Targeting EBV-proteins with mRNA vaccines is a promising way to treat EBV-related tumors like nasopharyngeal carcinoma (NPC). We assume that it may sensitize tumors to immune checkpoint inhibitors. RESULTS We developed an LMP2-mRNA lipid nanoparticle (C2@mLMP2) that can be delivered to tumor-draining lymph nodes. C2@mLMP2 exhibited high transfection efficiency and lysosomal escape ability and induced an increased proportion of CD8 + central memory T cells and CD8 + effective memory T cells in the spleen of the mice model. A strong synergistic anti-tumor effect of C2@mLMP2 in combination with αPD-1 was observed in tumor-bearing mice. The mechanism was identified to be associated with a reverse of CD8 + T cell exhaustion in the tumor microenvironment. The pathological analysis further proved the safety of the vaccine and the combined therapy. CONCLUSIONS This is the first study proving the synergistic effect of the EBV-mRNA vaccine and PD-1 inhibitors for EBV-related tumors. This study provides theoretical evidence for further clinical trials that may expand the application scenario and efficacy of immunotherapy in NPC.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Miaomiao Tian
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Juan Huang
- Department of Hematology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yueyi Li
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guangqi Li
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xue Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zedong Jiang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiangrong Song
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
11
|
Huang H, Yao Y, Deng X, Weng H, Chen Z, Yu L, Wang Z, Fang X, Hong H, Huang H, Lin T. Characteristics of immunotherapy trials for nasopharyngeal carcinoma over a 15-year period. Front Immunol 2023; 14:1195659. [PMID: 37622113 PMCID: PMC10445486 DOI: 10.3389/fimmu.2023.1195659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Background Immunotherapy has been a hotspot in nasopharyngeal carcinoma (NPC) in recent years. This study aimed to provide a comprehensive landscape of the characteristics of immunotherapy clinical trials in NPC and to determine whether contemporary studies are of sufficient quality to demonstrate therapeutic value. Methods This is a cross-sectional analysis of NPC trials registered on ClinicalTrials.gov in the last 15 years (Jan 1, 2008-Nov 20, 2022). Only interventional trials with a primary purpose of treatment were included in the final analysis. Characteristics of immunotherapy trials were compared with those of other NPC trials. Chronological shifts in NPC immunotherapy trials were also analyzed. Results Of the 440 NPC studies selected, 161 (36.6%) were immunotherapy trials and 279 (63.4%) were other NPC trials. NPC immunotherapy trials were more likely than other NPC trials to be phase 1-2 (82.6% vs. 66.7%, P < 0.001), single-arm (51.3% vs. 39.6%, P = 0.020), non-randomized (64.8% vs. 44.4%, P < 0.001), and enroll fewer than 50 participants (46.3% vs. 34.4%, P = 0.015). Blinding was used in 8.8% of NPC immunotherapy trials. Also, 90.7% of NPC immunotherapy trials were recruited nationally and 82.6% were Asia-centric. Although academic institutions and governments (72.7%) were the major sponsors of NPC trials, immunotherapy trials were more likely to be industry-funded than other NPC trials (34.2% vs. 11.5%, P < 0.001). The number of NPC immunotherapy trials increased exponentially after 2017, attributed to the exploration of immune checkpoint inhibitors. Immunotherapy combined with chemotherapy was the most commonly investigated regimen. Conclusion NPC immunotherapy trials over a 15-year period were predominantly exploratory. To generate high-quality evidence and advance the clinical application of immunotherapy in NPC, more attention and concerted efforts are needed.
Collapse
Affiliation(s)
- Huageng Huang
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yuyi Yao
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xinyi Deng
- Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huawei Weng
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Zegeng Chen
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Le Yu
- Department of Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhao Wang
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiaojie Fang
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Huangming Hong
- Department of Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - He Huang
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Tongyu Lin
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Department of Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
12
|
Huang H, Yao Y, Deng X, Huang Z, Chen Y, Wang Z, Hong H, Huang H, Lin T. Immunotherapy for nasopharyngeal carcinoma: Current status and prospects (Review). Int J Oncol 2023; 63:97. [PMID: 37417358 PMCID: PMC10367053 DOI: 10.3892/ijo.2023.5545] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial tumor located in the nasopharynx and is highly associated with Epstein‑Barr virus (EBV) infection. Although radiotherapy alone can cure ~90% of patients with early‑stage disease, >70% of patients with NPC have locoregionally advanced or metastatic disease at the first diagnosis due to the insidious and aggressive nature of NPC. After comprehensive radiochemotherapy, 20‑30% of patients with advanced NPC still fail treatment, mainly due to recurrence and/or metastasis (R/M). Conventional salvage treatments, such as radiotherapy, chemotherapy and surgery, are suboptimal and frequently accompanied by severe adverse effects and limited efficacy. In recent years, immunotherapy has emerged as a promising treatment modality for R/M NPC. An increasing number of clinical studies have investigated the safety and efficacy of immunotherapy for advanced NPC and have shown considerable progress. In the present review, the rationale for the use of immunotherapy to treat NPC was summarized and the current status, progress and challenges of NPC clinical research on different immunotherapeutic approaches were highlighted, including immune checkpoint inhibitors, vaccines, immunomodulators, adoptive cell transfer and EBV‑specific monoclonal antibodies. The comprehensive overview of immunotherapy in NPC may provide insight for clinical practice and future investigation.
Collapse
Affiliation(s)
- Huageng Huang
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong 510060
| | - Yuyi Yao
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong 510060
| | - Xinyi Deng
- Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120
| | - Zongyao Huang
- Department of Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| | - Yungchang Chen
- Department of Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| | - Zhao Wang
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong 510060
| | - Huangming Hong
- Department of Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| | - He Huang
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong 510060
| | - Tongyu Lin
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong 510060
- Department of Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
13
|
Huang Y, Zhu X, Guo X, Zhou Y, Liu D, Mao J, Xiong Y, Deng Y, Gao X. Advances in mRNA vaccines for viral diseases. J Med Virol 2023; 95:e28924. [PMID: 37417396 DOI: 10.1002/jmv.28924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/25/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023]
Abstract
Since the onset of the pandemic caused by severe acute respiratory syndrome coronavirus 2, messenger RNA (mRNA) vaccines have demonstrated outstanding performance. mRNA vaccines offer significant advantages over conventional vaccines in production speed and cost-effectiveness, making them an attractive option against other viral diseases. This article reviewed recent advances in viral mRNA vaccines and their delivery systems to provide references and guidance for developing mRNA vaccines for new viral diseases.
Collapse
Affiliation(s)
- Yukai Huang
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xuerui Zhu
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiao Guo
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuancheng Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Dongying Liu
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingrui Mao
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yongai Xiong
- Department of Pharmaceutics, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Youcai Deng
- Department of Hematology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xinghong Gao
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Provincial Department of Education, Key Laboratory of Infectious Disease & Bio-Safety, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
14
|
Liu M, Wang R, Xie Z. T cell-mediated immunity during Epstein-Barr virus infections in children. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 112:105443. [PMID: 37201619 DOI: 10.1016/j.meegid.2023.105443] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Epstein-Barr virus (EBV) infection is extremely common worldwide, with approximately 90% of adults testing positive for EBV antibodies. Human are susceptible to EBV infection, and primary EBV infection typically occurs early in life. EBV infection can cause infectious mononucleosis (IM) as well as some severe non-neoplastic diseases, such as chronic active EBV infection (CAEBV) and EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH), which can have a heavy disease burden. After primary EBV infection, individuals develop robust EBV-specific T cell immune responses, with EBV-specific CD8+ and part of CD4+ T cells functioning as cytotoxic T cells, defending against virus. Different proteins expressed during EBV's lytic replication and latent proliferation can cause varying degrees of cellular immune responses. Strong T cell immunity plays a key role in controlling infection by decreasing viral load and eliminating infected cells. However, the virus persists as latent infection in EBV healthy carriers even with robust T cell immune response. When reactivated, it undergoes lytic replication and then transmits virions to a new host. Currently, the relationship between the pathogenesis of lymphoproliferative diseases and the adaptive immune system is still not fully clarified and needs to be explored in the future. Investigating the T cell immune responses evoked by EBV and utilizing this knowledge to design promising prophylactic vaccines are urgent issues for future research due to the importance of T cell immunity.
Collapse
Affiliation(s)
- Mengjia Liu
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Ran Wang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China.
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China.
| |
Collapse
|
15
|
Zhang Y, Lyu H, Guo R, Cao X, Feng J, Jin X, Lu W, Zhao M. Epstein‒Barr virus-associated cellular immunotherapy. Cytotherapy 2023:S1465-3249(23)00099-3. [PMID: 37149797 DOI: 10.1016/j.jcyt.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/08/2023]
Abstract
Epstein‒Barr virus (EBV) is a human herpes virus that is saliva-transmissible and universally asymptomatic. It has been confirmed that more than 90% of the population is latently infected with EBV for life. EBV can cause a variety of related cancers, such as nasopharyngeal carcinoma, diffuse large B-cell lymphoma, and Burkitt lymphoma. Currently, many clinical studies have demonstrated that EBV-specific cytotoxic T lymphocytes and other cell therapies can be safely and effectively transfused to prevent and treat some diseases caused by EBV. This review will mainly focus on discussing EBV-specific cytotoxic T lymphocytes and will touch on therapeutic EBV vaccines and chimeric antigen receptor T-cell therapy briefly.
Collapse
Affiliation(s)
- Yi Zhang
- First Center Clinic College of Tianjin Medical University, Tianjin, China.
| | - Hairong Lyu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Ruiting Guo
- First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Xinping Cao
- First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Juan Feng
- Tianjin Jizhou District People's Hospital, Tianjin, China
| | - Xin Jin
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Wenyi Lu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China.
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China.
| |
Collapse
|
16
|
Perri F, Sabbatino F, Ottaiano A, Fusco R, Caraglia M, Cascella M, Longo F, Rega RA, Salzano G, Pontone M, Marciano ML, Piccirillo A, Montano M, Fasano M, Ciardiello F, Della Vittoria Scarpati G, Ionna F. Impact of Epstein Barr Virus Infection on Treatment Opportunities in Patients with Nasopharyngeal Cancer. Cancers (Basel) 2023; 15:1626. [PMID: 36900413 PMCID: PMC10000842 DOI: 10.3390/cancers15051626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Chemical, physical, and infectious agents may induce carcinogenesis, and in the latter case, viruses are involved in most cases. The occurrence of virus-induced carcinogenesis is a complex process caused by an interaction across multiple genes, mainly depending by the type of the virus. Molecular mechanisms at the basis of viral carcinogenesis, mainly suggest the involvement of a dysregulation of the cell cycle. Among the virus-inducing carcinogenesis, Epstein Barr Virus (EBV) plays a major role in the development of both hematological and oncological malignancies and importantly, several lines of evidence demonstrated that nasopharyngeal carcinoma (NPC) is consistently associated with EBV infection. Cancerogenesis in NPC may be induced by the activation of different EBV "oncoproteins" which are produced during the so called "latency phase" of EBV in the host cells. Moreover, EBV presence in NPC does affect the tumor microenvironment (TME) leading to a strongly immunosuppressed status. Translational implications of the above-mentioned statements are that EBV-infected NPC cells can express proteins potentially recognized by immune cells in order to elicit a host immune response (tumor associated antigens). Three immunotherapeutic approaches have been implemented for the treatment of NPC including active, adoptive immunotherapy, and modulation of immune regulatory molecules by use of the so-called checkpoint inhibitors. In this review, we will highlight the role of EBV infection in NPC development and analyze its possible implications on therapy strategies.
Collapse
Affiliation(s)
- Francesco Perri
- Medical and Experimental Head and Neck Oncology Unit, INT IRCCS Foundation G. Pascale, 80131 Napoli, Italy
| | | | - Alessandro Ottaiano
- SSD Innovative Therapies for Abdominal Metastases, Department of Abdominal Oncology, INT IRCCS Foundation G. Pascale, 80131 Napoli, Italy
| | - Roberta Fusco
- Medical Oncology Division, IGEA SPA, 41012 Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Marco Cascella
- Division of Anesthesia and Pain Medicine, INT IRCCS Foundation G Pascale, 80131 Napoli, Italy
| | - Francesco Longo
- Otolaryngology and Maxillofacial Surgery Surgery Unit, INT IRCCS Foundation G Pascale, 80131 Napoli, Italy
| | - Rosalia Anna Rega
- Medical and Experimental Head and Neck Oncology Unit, INT IRCCS Foundation G. Pascale, 80131 Napoli, Italy
| | - Giovanni Salzano
- Maxillofacial Surgery Surgery Unit, Reproductive and Odontostomatological Science, University of Naples Federico II, 80138 Napoli, Italy
| | - Monica Pontone
- Medical and Experimental Head and Neck Oncology Unit, INT IRCCS Foundation G. Pascale, 80131 Napoli, Italy
| | - Maria Luisa Marciano
- Medical and Experimental Head and Neck Oncology Unit, INT IRCCS Foundation G. Pascale, 80131 Napoli, Italy
| | - Arianna Piccirillo
- Medical and Experimental Head and Neck Oncology Unit, INT IRCCS Foundation G. Pascale, 80131 Napoli, Italy
| | - Massimo Montano
- Medical and Experimental Head and Neck Oncology Unit, INT IRCCS Foundation G. Pascale, 80131 Napoli, Italy
| | - Morena Fasano
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | | | - Franco Ionna
- Division of Anesthesia and Pain Medicine, INT IRCCS Foundation G Pascale, 80131 Napoli, Italy
| |
Collapse
|
17
|
Li W, Duan X, Chen X, Zhan M, Peng H, Meng Y, Li X, Li XY, Pang G, Dou X. Immunotherapeutic approaches in EBV-associated nasopharyngeal carcinoma. Front Immunol 2023; 13:1079515. [PMID: 36713430 PMCID: PMC9875085 DOI: 10.3389/fimmu.2022.1079515] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Epstein-Barr virus (EBV) was the first tumor virus in humans. Nasopharyngeal carcinoma (NPC) accounts for approximately 60% of the 200,000 new tumor cases caused by EBV infection worldwide each year. NPC has an insidious onset and is highly malignant, with more than 70% of patients having intermediate to advanced disease at the time of initial diagnosis, and is strongly implicated in epithelial cancers as well as malignant lymphoid and natural killer/T cell lymphomas. Over 90% of patients with confirmed undifferentiated NPC are infected with EBV. In recent decades, much progress has been made in understanding the molecular mechanisms of NPC and developing therapeutic approaches. Radiotherapy and chemotherapy are the main treatment options for NPC; however, they have a limited efficacy in patients with locally advanced or distant metastatic tumors. Tumor immunotherapy, including vaccination, adoptive cell therapy, and immune checkpoint blockade, represents a promising therapeutic approach for NPC. Significant breakthroughs have recently been made in the application of immunotherapy for patients with recurrent or metastatic NPC (RM-NPC), indicating a broad prospect for NPC immunotherapy. Here, we review important research findings regarding immunotherapy for NPC patients and provide insights for future research.
Collapse
Affiliation(s)
- Wenting Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Xiaobing Duan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Xingxing Chen
- Department of Urology, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Haichuan Peng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Ya Meng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
| | - Xiaobin Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Xian-Yang Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,Department of R&D, OriCell Therapeutics Co. Ltd, Pudong, Shanghai, China,*Correspondence: Xiaohui Dou, ; Guofu Pang, ; Xian-Yang Li,
| | - Guofu Pang
- Department of Urology, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,*Correspondence: Xiaohui Dou, ; Guofu Pang, ; Xian-Yang Li,
| | - Xiaohui Dou
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,Health Management Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,*Correspondence: Xiaohui Dou, ; Guofu Pang, ; Xian-Yang Li,
| |
Collapse
|
18
|
Münz C. Immune checkpoints in T cells during oncogenic γ-herpesvirus infections. J Med Virol 2023; 95:e27840. [PMID: 35524342 PMCID: PMC9790391 DOI: 10.1002/jmv.27840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 01/11/2023]
Abstract
Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) are two persistent oncogenic γ-herpesviruses with an exclusive tropism for humans. They cause cancers of lymphocyte, epithelial and endothelial cell origin, such as Burkitt's and Hodgkin's lymphoma, primary effusion lymphoma, nasopharyngeal carcinoma, and Kaposi sarcoma. Mutations in immune-related genes but also adverse events during immune checkpoint inhibition in cancer patients have revealed molecular requirements for immune control of EBV and KSHV. These include costimulatory and coinhibitory receptors on T cells that are currently explored or already therapeutically targeted in tumor patients. This review discusses these co-receptors and their influence on EBV- and KSHV-associated diseases. The respective studies reveal surprising specificities of some of these receptors for immunity to these tumor viruses, benefits of their blockade for some but not other virus-associated diseases, and that EBV- and KSHV-specific immune control should be monitored during immune checkpoint inhibition to prevent adverse events that might be associated with their reactivation during treatment.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology Department, Institute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| |
Collapse
|
19
|
Boeren M, Meysman P, Laukens K, Ponsaerts P, Ogunjimi B, Delputte P. T cell immunity in HSV-1- and VZV-infected neural ganglia. Trends Microbiol 2023; 31:51-61. [PMID: 35987880 DOI: 10.1016/j.tim.2022.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Herpesviruses hijack the MHC class I (MHC I) and class II (MHC II) antigen-presentation pathways to manipulate immune recognition by T cells. First, we illustrate herpes simplex virus-1 (HSV-1) and varicella-zoster virus (VZV) MHC immune evasion strategies. Next, we describe MHC-T cell interactions in HSV-1- and VZV- infected neural ganglia. Although studies on the topic are scarce, and use different models, most reports indicate that neuronal HSV-1 infection is mainly controlled by CD8+ T cells through noncytolytic mechanisms, whereas VZV seems to be largely controlled through CD4+ T cell-specific immune responses. Autologous human stem-cell-derived in vitro models could substantially aid in elucidating these neuroimmune interactions and are fit for studies on both herpesviruses.
Collapse
Affiliation(s)
- Marlies Boeren
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium; Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium; Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Pieter Meysman
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), Antwerp, Belgium; Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium; Biomedical Informatics Research Network Antwerp (biomina), University of Antwerp, Antwerp, Belgium
| | - Kris Laukens
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), Antwerp, Belgium; Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium; Biomedical Informatics Research Network Antwerp (biomina), University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Benson Ogunjimi
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium; Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), Antwerp, Belgium; Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium; Department of Paediatrics, Antwerp University Hospital, Antwerp, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium; Infla-med, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
20
|
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human lymphotropic herpesvirus with a well-established causal role in several cancers. Recent studies have provided compelling epidemiological and mechanistic evidence for a causal role of EBV in multiple sclerosis (MS). MS is the most prevalent chronic inflammatory and neurodegenerative disease of the central nervous system and is thought to be triggered in genetically predisposed individuals by an infectious agent, with EBV as the lead candidate. How a ubiquitous virus that typically leads to benign latent infections can promote cancer and autoimmune disease in at-risk populations is not fully understood. Here we review the evidence that EBV is a causal agent for MS and how various risk factors may affect EBV infection and immune control. We focus on EBV contributing to MS through reprogramming of latently infected B lymphocytes and the chronic presentation of viral antigens as a potential source of autoreactivity through molecular mimicry. We consider how knowledge of EBV-associated cancers may be instructive for understanding the role of EBV in MS and discuss the potential for therapies that target EBV to treat MS.
Collapse
Affiliation(s)
- Samantha S. Soldan
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| | - Paul M. Lieberman
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| |
Collapse
|
21
|
López C, Burkhardt B, Chan JKC, Leoncini L, Mbulaiteye SM, Ogwang MD, Orem J, Rochford R, Roschewski M, Siebert R. Burkitt lymphoma. Nat Rev Dis Primers 2022; 8:78. [PMID: 36522349 DOI: 10.1038/s41572-022-00404-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 12/16/2022]
Abstract
Burkitt lymphoma (BL) is an aggressive form of B cell lymphoma that can affect children and adults. The study of BL led to the identification of the first recurrent chromosomal aberration in lymphoma, t(8;14)(q24;q32), and subsequent discovery of the central role of MYC and Epstein-Barr virus (EBV) in tumorigenesis. Most patients with BL are cured with chemotherapy but those with relapsed or refractory disease usually die of lymphoma. Historically, endemic BL, non-endemic sporadic BL and the immunodeficiency-associated BL have been recognized, but differentiation of these epidemiological variants is confounded by the frequency of EBV positivity. Subtyping into EBV+ and EBV- BL might better describe the biological heterogeneity of the disease. Phenotypically resembling germinal centre B cells, all types of BL are characterized by dysregulation of MYC due to enhancer activation via juxtaposition with one of the three immunoglobulin loci. Additional molecular changes commonly affect B cell receptor and sphingosine-1-phosphate signalling, proliferation, survival and SWI-SNF chromatin remodelling. BL is diagnosed on the basis of morphology and high expression of MYC. BL can be effectively treated in children and adolescents with short durations of high dose-intensity multiagent chemotherapy regimens. Adults are more susceptible to toxic effects but are effectively treated with chemotherapy, including modified versions of paediatric regimens. The outcomes in patients with BL are good in high-income countries with low mortality and few late effects, but in low-income and middle-income countries, BL is diagnosed late and is usually treated with less-effective regimens affecting the overall good outcomes in patients with this lymphoma.
Collapse
Affiliation(s)
- Cristina López
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Birgit Burkhardt
- Non-Hodgkin's Lymphoma Berlin-Frankfurt-Münster (NHL-BFM) Study Center and Paediatric Hematology, Oncology and BMT, University Hospital Muenster, Muenster, Germany
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Lorenzo Leoncini
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | | | | | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
22
|
Zhong L, Krummenacher C, Zhang W, Hong J, Feng Q, Chen Y, Zhao Q, Zeng MS, Zeng YX, Xu M, Zhang X. Urgency and necessity of Epstein-Barr virus prophylactic vaccines. NPJ Vaccines 2022; 7:159. [PMID: 36494369 PMCID: PMC9734748 DOI: 10.1038/s41541-022-00587-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV), a γ-herpesvirus, is the first identified oncogenic virus, which establishes permanent infection in humans. EBV causes infectious mononucleosis and is also tightly linked to many malignant diseases. Various vaccine formulations underwent testing in different animals or in humans. However, none of them was able to prevent EBV infection and no vaccine has been approved to date. Current efforts focus on antigen selection, combination, and design to improve the efficacy of vaccines. EBV glycoproteins such as gH/gL, gp42, and gB show excellent immunogenicity in preclinical studies compared to the previously favored gp350 antigen. Combinations of multiple EBV proteins in various vaccine designs become more attractive approaches considering the complex life cycle and complicated infection mechanisms of EBV. Besides, rationally designed vaccines such as virus-like particles (VLPs) and protein scaffold-based vaccines elicited more potent immune responses than soluble antigens. In addition, humanized mice, rabbits, as well as nonhuman primates that can be infected by EBV significantly aid vaccine development. Innovative vaccine design approaches, including polymer-based nanoparticles, the development of effective adjuvants, and antibody-guided vaccine design, will further enhance the immunogenicity of vaccine candidates. In this review, we will summarize (i) the disease burden caused by EBV and the necessity of developing an EBV vaccine; (ii) previous EBV vaccine studies and available animal models; (iii) future trends of EBV vaccines, including activation of cellular immune responses, novel immunogen design, heterologous prime-boost approach, induction of mucosal immunity, application of nanoparticle delivery system, and modern adjuvant development.
Collapse
Affiliation(s)
- Ling Zhong
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Claude Krummenacher
- grid.262671.60000 0000 8828 4546Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ USA
| | - Wanlin Zhang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Junping Hong
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian PR China
| | - Qisheng Feng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Yixin Chen
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian PR China
| | - Qinjian Zhao
- grid.203458.80000 0000 8653 0555College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Mu-Sheng Zeng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Yi-Xin Zeng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Miao Xu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Xiao Zhang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China ,grid.203458.80000 0000 8653 0555College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
23
|
Co-Infection of the Epstein-Barr Virus and the Kaposi Sarcoma-Associated Herpesvirus. Viruses 2022; 14:v14122709. [PMID: 36560713 PMCID: PMC9782805 DOI: 10.3390/v14122709] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
The two human tumor viruses, Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV), have been mostly studied in isolation. Recent studies suggest that co-infection with both viruses as observed in one of their associated malignancies, namely primary effusion lymphoma (PEL), might also be required for KSHV persistence. In this review, we discuss how EBV and KSHV might support each other for persistence and lymphomagenesis. Moreover, we summarize what is known about their innate and adaptive immune control which both seem to be required to ensure asymptomatic persistent co-infection with these two human tumor viruses. A better understanding of this immune control might allow us to prepare for vaccination against EBV and KSHV in the future.
Collapse
|
24
|
Bellmann L, Strandt H, Zelle‐Rieser C, Ortner D, Tripp CH, Schmid S, Rühl J, Cappellano G, Schaffenrath S, Prokopi A, Spoeck S, Seretis A, Del Frari B, Sigl S, Krapf J, Heufler C, Keler T, Münz C, Romani N, Stoitzner P. Targeted delivery of a vaccine protein to Langerhans cells in the human skin via the C-type lectin receptor Langerin. Eur J Immunol 2022; 52:1829-1841. [PMID: 34932821 PMCID: PMC9788233 DOI: 10.1002/eji.202149670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/26/2021] [Indexed: 12/30/2022]
Abstract
Human skin is a preferred vaccination site as it harbors multiple dendritic cell (DC) subsets, which display distinct C-type lectin receptors (CLR) that recognize pathogens. Antigens can be delivered to CLR by antibodies or ligands to boost antigen-specific immune responses. This concept has been established in mouse models but detailed insights into the functional consequences of antigen delivery to human skin DC in situ are sparse. In this study, we cloned and produced an anti-human Langerin antibody conjugated to the EBV nuclear antigen 1 (EBNA1). We confirmed specific binding of anti-Langerin-EBNA1 to Langerhans cells (LC). This novel LC-based vaccine was then compared to an existing anti-DEC-205-EBNA1 fusion protein by loading LC in epidermal cell suspensions before coculturing them with autologous T cells. After restimulation with EBNA1-peptides, we detected elevated levels of IFN-γ- and TNF-α-positive CD4+ T cells with both vaccines. When we injected the fusion proteins intradermally into human skin explants, emigrated skin DC targeted via DEC-205-induced cytokine production by T cells, whereas the Langerin-based vaccine failed to do so. In summary, we demonstrate that antibody-targeting approaches via the skin are promising vaccination strategies, however, further optimizations of vaccines are required to induce potent immune responses.
Collapse
Affiliation(s)
- Lydia Bellmann
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Helen Strandt
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Claudia Zelle‐Rieser
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Daniela Ortner
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Christoph H. Tripp
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Sandra Schmid
- Institute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| | - Julia Rühl
- Institute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| | - Giuseppe Cappellano
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria,Department of Health SciencesInterdisciplinary Research Center of Autoimmune DiseasesCenter for Translational Research on Autoimmune and Allergic Disease‐CAADUniversità del Piemonte OrientaleNovaraItaly
| | - Sandra Schaffenrath
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Anastasia Prokopi
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Sarah Spoeck
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Athanasios Seretis
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria,Research Institute for Biomedical Aging ResearchUniversity of InnsbruckAustria
| | - Barbara Del Frari
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Stephan Sigl
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Johanna Krapf
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Christine Heufler
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | | | - Christian Münz
- Institute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| | - Nikolaus Romani
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Patrizia Stoitzner
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
25
|
CD4+ Cytotoxic T Cells Involved in the Development of EBV-Associated Diseases. Pathogens 2022; 11:pathogens11080831. [PMID: 35894054 PMCID: PMC9330826 DOI: 10.3390/pathogens11080831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Activated cytotoxic CD4 T cells (HLA-DR+) play an important role in the control of EBV infection, especially in cells with latency I (EBNA-1). One of the evasion mechanisms of these latency cells is generated by gp42, which, via peripherally binding to the β1 domain of the β chain of MHC class II (HLA-DQ, -DR, and -DP) of the infected B lymphocyte, can block/alter the HLA class II/T-cell receptor (TCR) interaction, and confer an increased level of susceptibility towards the development of EBV-associated autoimmune diseases or cancer in genetically predisposed individuals (HLA-DRB1* and DQB1* alleles). The main developments predisposing the factors of these diseases are: EBV infection; HLA class II risk alleles; sex; and tissue that is infiltrated with EBV-latent cells, forming ectopic lymphoid structures. Therefore, there is a need to identify treatments for eliminating cells with EBV latency, because the current treatments (e.g., antivirals and rituximab) are ineffective.
Collapse
|
26
|
Immunosuppressive Tumor Microenvironment and Immunotherapy of Epstein–Barr Virus-Associated Malignancies. Viruses 2022; 14:v14051017. [PMID: 35632758 PMCID: PMC9146158 DOI: 10.3390/v14051017] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023] Open
Abstract
The Epstein–Barr virus (EBV) can cause different types of cancer in human beings when the virus infects different cell types with various latent patterns. EBV shapes a distinct and immunosuppressive tumor microenvironment (TME) to its benefit by influencing and interacting with different components in the TME. Different EBV-associated malignancies adopt similar but slightly specific immunosuppressive mechanisms by encoding different EBV products to escape both innate and adaptive immune responses. Strategies reversing the immunosuppressive TME of EBV-associated malignancies have been under evaluation in clinical practice. As the interactions among EBV, tumor cells, and TME are intricate, in this review, we mainly discuss the epidemiology of EBV, the life cycle of EBV, the cellular and molecular composition of TME, and a landscape of different EBV-associated malignancies and immunotherapy by targeting the TME.
Collapse
|
27
|
Characterization of an immune-evading doxycycline-inducible lentiviral vector for gene therapy in the spinal cord. Exp Neurol 2022; 355:114120. [DOI: 10.1016/j.expneurol.2022.114120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
|
28
|
Pursell T, Spencer Clinton JL, Tan J, Peng R, Ling PD. Modified vaccinia Ankara expressing EEHV1A glycoprotein B elicits humoral and cell-mediated immune responses in mice. PLoS One 2022; 17:e0265424. [PMID: 35312707 PMCID: PMC8936464 DOI: 10.1371/journal.pone.0265424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
Elephant endotheliotropic herpesvirus (EEHV) can cause lethal hemorrhagic disease (EEHV-HD) in Asian elephants and is the largest cause of death in captive juvenile Asian elephants in North America and Europe. EEHV-HD also has been documented in captive and wild elephants in their natural range countries. A safe and effective vaccine to prevent lethal EEHV infection would significantly improve conservation efforts for this endangered species. Recent studies from our laboratory suggest that EEHV morbidity and mortality are often associated with primary infection. Therefore, we aim to generate a vaccine, particularly for EEHV1 naïve animals, with the goal of preventing lethal EEHV-HD. To address this goal, we generated a Modified Vaccinia Ankara (MVA) recombinant virus expressing a truncated form of glycoprotein B (gBΔfur731) from EEHV1A, the strain associated with the majority of lethal EEHV cases. Vaccination of CD-1 mice with this recombinant virus induced robust antibody and polyfunctional T cell responses significantly above mice inoculated with wild-type MVA. Although the vaccine-induced T cell response was mainly observed in CD8+ T cell populations, the CD4+ T cell response was also polyfunctional. No adverse responses to vaccination were observed. Overall, our data demonstrates that MVA-gBΔfur731 stimulates robust humoral and cell-mediated responses, supporting its potential translation for use in elephants.
Collapse
Affiliation(s)
- Taylor Pursell
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jennifer L. Spencer Clinton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jie Tan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rongsheng Peng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Paul D. Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
29
|
Wen Y, Xu H, Han J, Jin R, Chen H. How Does Epstein–Barr Virus Interact With Other Microbiomes in EBV-Driven Cancers? Front Cell Infect Microbiol 2022; 12:852066. [PMID: 35281433 PMCID: PMC8904896 DOI: 10.3389/fcimb.2022.852066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
The commensal microbiome refers to a large spectrum of microorganisms which mainly consists of viruses and bacteria, as well as some other components such as protozoa and fungi. Epstein–Barr virus (EBV) is considered as a common component of the human commensal microbiome due to its spread worldwide in about 95% of the adult population. As the first oncogenic virus recognized in human, numerous studies have reported the involvement of other components of the commensal microbiome in the increasing incidence of EBV-driven cancers. Additionally, recent advances have also defined the involvement of host–microbiota interactions in the regulation of the host immune system in EBV-driven cancers as well as other circumstances. The regulation of the host immune system by the commensal microbiome coinfects with EBV could be the implications for how we understand the persistence and reactivation of EBV, as well as the progression of EBV-associated cancers, since majority of the EBV persist as asymptomatic carrier. In this review, we attempt to summarize the possible mechanisms for EBV latency, reactivation, and EBV-driven tumorigenesis, as well as casting light on the role of other components of the microbiome in EBV infection and reactivation. Besides, whether novel microbiome targeting strategies could be applied for curing of EBV-driven cancer is discussed as well.
Collapse
Affiliation(s)
| | | | | | - Runming Jin
- *Correspondence: Hongbo Chen, ; Runming Jin,
| | - Hongbo Chen
- *Correspondence: Hongbo Chen, ; Runming Jin,
| |
Collapse
|
30
|
Granai M, Lazzi S, Mancini V, Akarca A, Santi R, Vergoni F, Sorrentino E, Guazzo R, Mundo L, Cevenini G, Tripodo C, Di Stefano G, Puccini B, Ponzoni M, Sabattini E, Agostinelli C, Bassüllü N, Tecimer T, Demiroz AS, Mnango L, Dirnhofer S, Quintanilla‐Martinez L, Marafioti T, Fend F, Leoncini L. Burkitt lymphoma with a granulomatous reaction: an M1/Th1-polarised microenvironment is associated with controlled growth and spontaneous regression. Histopathology 2022; 80:430-442. [PMID: 33948980 PMCID: PMC9291779 DOI: 10.1111/his.14391] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 03/15/2021] [Accepted: 04/15/2021] [Indexed: 11/30/2022]
Abstract
AIMS Burkitt lymphoma (BL) is an aggressive B-cell lymphoma that, in some instances, may show a granulomatous reaction associated with a favourable prognosis and occasional spontaneous regression. In the present study, we aimed to define the tumour microenvironment (TME) in four such cases, two of which regressed spontaneously. METHODS AND RESULTS All cases showed aggregates of tumour cells with the typical morphology, molecular cytogenetics and immunophenotype of BL surrounded by a florid epithelioid granulomatous reaction. All four cases were Epstein-Barr virus (EBV)-positive with type I latency. Investigation of the TME showed similar features in all four cases. The analysis revealed a proinflammatory response triggered by Th1 lymphocytes and M1 polarised macrophages encircling the neoplastic cells with a peculiar topographic distribution. CONCLUSIONS Our data provide an in-vivo picture of the role that specific immune cell subsets might play during the early phase of BL, which may be capable of maintaining the tumour in a self-limited state or inducing its regression. These novel results may provide insights into new potential therapeutic avenues in EBV-positive BL patients in the era of cellular immunotherapy.
Collapse
Affiliation(s)
- Massimo Granai
- Department of Medical BiotechnologiesUniversity of SienaSienaItaly
- Institute of PathologyUniversity of TübingenTübingenGermany
| | - Stefano Lazzi
- Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| | - Virginia Mancini
- Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| | - Ayse Akarca
- Department of Cellular PathologyUniversity College LondonLondonUK
| | | | | | - Ester Sorrentino
- Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| | - Raffaella Guazzo
- Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| | - Lucia Mundo
- Department of Medical BiotechnologiesUniversity of SienaSienaItaly
- Health Research InstituteUniversity of LimerickLimerickIreland
| | | | - Claudio Tripodo
- Department of Human PathologyUniversity of PalermoPalermoItaly
| | | | | | - Maurilio Ponzoni
- Department of PathologyUniversity Vita‐Salute San RaffaeleMilanoItaly
| | - Elena Sabattini
- Haemolymphopathology Unit ‐ IRCCS ‐ Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Claudio Agostinelli
- Haemolymphopathology Unit ‐ IRCCS ‐ Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | | | - Tülay Tecimer
- Department of PathologyAcibadem UniversityİstanbulTurkey
| | | | - Leah Mnango
- Department of PathologyMuhimbili National Hospital and University for Healthcare and Allied SciencesDar‐es‐SalaamTanzania
| | | | | | - Teresa Marafioti
- Department of Cellular PathologyUniversity College LondonLondonUK
| | - Falko Fend
- Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| | - Lorenzo Leoncini
- Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| |
Collapse
|
31
|
Münz C. Modification of EBV-Associated Pathologies and Immune Control by Coinfections. Front Oncol 2021; 11:756480. [PMID: 34778072 PMCID: PMC8581224 DOI: 10.3389/fonc.2021.756480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022] Open
Abstract
The oncogenic Epstein–Barr virus (EBV) persistently infects more than 95% of the human adult population. Even so it can readily transform human B cells after infection in vitro, it only rarely causes tumors in patients. A substantial proportion of the 1% of all human cancers that are associated with EBV occurs during coinfections, including those with the malaria parasite Plasmodium falciparum, the human immunodeficiency virus (HIV), and the also oncogenic and closely EBV-related Kaposi sarcoma-associated herpesvirus (KSHV). In this review, I will discuss how these infections interact with EBV, modify its immune control, and shape its tumorigenesis. The underlying mechanisms reveal new aspects of EBV-associated pathologies and point toward treatment possibilities for their prevention by the human immune system.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
32
|
Cui X, Snapper CM. Epstein Barr Virus: Development of Vaccines and Immune Cell Therapy for EBV-Associated Diseases. Front Immunol 2021; 12:734471. [PMID: 34691042 PMCID: PMC8532523 DOI: 10.3389/fimmu.2021.734471] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is the first human tumor virus discovered and is strongly implicated in the etiology of multiple lymphoid and epithelial cancers. Each year EBV associated cancers account for over 200,000 new cases of cancer and cause 150,000 deaths world-wide. EBV is also the primary cause of infectious mononucleosis, and up to 70% of adolescents and young adults in developed countries suffer from infectious mononucleosis. In addition, EBV has been shown to play a critical role in the pathogenesis of multiple sclerosis. An EBV prophylactic vaccine that induces neutralizing antibodies holds great promise for prevention of EBV associated diseases. EBV envelope proteins including gH/gL, gB and gp350 play key roles in EBV entry and infection of target cells, and neutralizing antibodies elicited by each of these proteins have shown to prevent EBV infection of target cells and markedly decrease EBV titers in the peripheral blood of humanized mice challenged with lethal dose EBV. Recent studies demonstrated that immunization with the combination of gH/gL, gB and/or gp350 induced markedly increased synergistic EBV neutralizing activity compared to immunization with individual proteins. As previous clinical trials focused on gp350 alone were partially successful, the inclusion of gH/gL and gB in a vaccine formulation with gp350 represents a promising approach of EBV prophylactic vaccine development. Therapeutic EBV vaccines have also been tested clinically with encouraging results. Immunization with various vaccine platforms expressing the EBV latent proteins EBNA1, LMP1, and/or LMP2 promoted specific CD4+ and CD8+ cytotoxic responses with anti-tumor activity. The addition of EBV envelope proteins gH/gL, gB and gp350 has the potential to increase the efficacy of a therapeutic EBV vaccine. The immune system plays a critical role in the control of tumors, and immune cell therapy has emerged as a promising treatment of cancers. Adoptive T-cell therapy has been successfully used in the prevention and treatment of post-transplant lymphoproliferative disorder. Chimeric antigen receptor T cell therapy and T cell receptor engineered T cell therapy targeting EBV latent proteins LMP1, LMP2 and/or EBNA1 have been in development, with the goal to increase the specificity and efficacy of treatment of EBV associated cancers.
Collapse
Affiliation(s)
- Xinle Cui
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.,The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Clifford M Snapper
- The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Citranvi Biosciences LLC, Chapel Hill, NC, United States
| |
Collapse
|
33
|
Deng Y, Münz C. Roles of Lytic Viral Replication and Co-Infections in the Oncogenesis and Immune Control of the Epstein-Barr Virus. Cancers (Basel) 2021; 13:2275. [PMID: 34068598 PMCID: PMC8126045 DOI: 10.3390/cancers13092275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
Epstein-Barr virus (EBV) is the prototypic human tumor virus whose continuous lifelong immune control is required to prevent lymphomagenesis in the more than 90% of the human adult population that are healthy carriers of the virus. Here, we review recent evidence that this immune control has not only to target latent oncogenes, but also lytic replication of EBV. Furthermore, genetic variations identify the molecular machinery of cytotoxic lymphocytes as essential for this immune control and recent studies in mice with reconstituted human immune system components (humanized mice) have begun to provide insights into the mechanistic role of these molecules during EBV infection. Finally, EBV often does not act in isolation to cause disease. Some of EBV infection-modulating co-infections, including human immunodeficiency virus (HIV) and Kaposi sarcoma-associated herpesvirus (KSHV), have been modeled in humanized mice. These preclinical in vivo models for EBV infection, lymphomagenesis, and cell-mediated immune control do not only promise a better understanding of the biology of this human tumor virus, but also the possibility to explore vaccine candidates against it.
Collapse
Affiliation(s)
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland;
| |
Collapse
|
34
|
Liu H, Chen H, Liu Z, Le Z, Nie T, Qiao D, Su Y, Mai H, Chen Y, Liu L. Therapeutic nanovaccines sensitize EBV-associated tumors to checkpoint blockade therapy. Biomaterials 2020; 255:120158. [DOI: 10.1016/j.biomaterials.2020.120158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/10/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
|
35
|
The Epstein-Barr Virus Major Tegument Protein BNRF1 Is a Common Target of Cytotoxic CD4 + T Cells. J Virol 2020; 94:JVI.00284-20. [PMID: 32461311 DOI: 10.1128/jvi.00284-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/18/2020] [Indexed: 01/14/2023] Open
Abstract
Cellular immunotherapy is a proven approach against Epstein-Barr virus (EBV)-driven lymphoproliferation in recipients of hematopoietic stem cells. Extending the applicability and improving the response rates of such therapy demands improving the knowledge base. We studied 23 healthy donors for specific CD4+ T cell responses against the viral tegument protein BNRF1 and found such T cells in all seropositive donors, establishing BNRF1 as an important immune target in EBV. We identified 18 novel immune epitopes from BNRF1, all of them generated by natural processing of the full-length protein from virus-transformed lymphoblastoid cell lines (LCL). BNRF1-specific CD4+ T cells were measured directly ex vivo by a cytokine-based method, thus providing a tool to study the interaction between immunity and infection in health and disease. T cells of the cytotoxic Th1 type inhibited the proliferation of autologous LCL as well as virus-driven transformation. We infer that they are important in limiting reactivations to subclinical levels during health and reducing virus propagation during disease. The information obtained from this work will feed into data sets that are indispensable in the design of patient-tailored immunotherapeutic approaches, thereby enabling the stride toward broader application of T cell therapy and improving clinical response rates.IMPORTANCE Epstein-Barr virus is carried by most humans and can cause life-threatening diseases. Virus-specific T cells have been used in different clinical settings with variable success rates. One way to improve immunotherapy is to better suit T cell generation protocols to viral targets available in different diseases. BNRF1 is present in viral particles and therefore likely available as a target for T cells in diseases with virus amplification. Here, we studied healthy Epstein-Barr virus (EBV) carriers for BNRF1 immunogenicity and report our results indicating BNRF1 to be a dominant target of the EBV-specific CD4+ T cell response. BNRF1-specific CD4+ T cells were found to be cytotoxic and capable of limiting EBV-driven B cell transformation in vitro The findings of this work contribute to forwarding our understanding of host-virus interactions during health and disease and are expected to find direct application in the generation of specific T cells for immunotherapy.
Collapse
|
36
|
Prognostic Significance of Granuloma and Amyloid Deposition in Nasopharyngeal Carcinoma. Head Neck Pathol 2020; 15:153-162. [PMID: 32562216 PMCID: PMC8010042 DOI: 10.1007/s12105-020-01194-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/12/2020] [Indexed: 10/24/2022]
Abstract
The significance of granuloma and amyloid deposition in primary nasopharyngeal carcinoma (NPC) has yet to be investigated. This study aimed to evaluate their clinicopathologic associations. The histopathologic findings of 747 consecutive patients with primary NPC were retrospectively reviewed between January 2001 and December 2015. The presence of granulomas and amyloid deposits was observed in 68 (9.1%) and 62 (8.3%) patients, respectively. Granulomas were significantly associated with lower T classification, N classification, and overall TNM stage (p = 0.014, p = 0.006, and p = 0.001, respectively). Their presence was an independent predictor of overall survival (p = 0.033), disease-free survival (p = 0.034), and recurrence-free survival (p = 0.040). Conversely, amyloid deposition was not a predictor in any survival analyses. The present study demonstrated the prevalence of granuloma and amyloid deposition in the largest single institution cohort of primary NPC patients so far. Our results provide evidence that granulomas are significantly associated with better prognosis and treatment outcome. Further studies are needed to elucidate the mechanism of action of granuloma formation on the anti-tumor immunity of NPC.
Collapse
|
37
|
Münz C. Redirecting T Cells against Epstein-Barr Virus Infection and Associated Oncogenesis. Cells 2020; 9:cells9061400. [PMID: 32512847 PMCID: PMC7349826 DOI: 10.3390/cells9061400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) is associated with lymphomas and carcinomas. For some of these, the adoptive transfer of EBV specific T cells has been therapeutically explored, with clinical success. In order to avoid naturally occurring EBV specific autologous T cell selection from every patient, the transgenic expression of latent and early lytic viral antigen specific T cell receptors (TCRs) to redirect T cells, to target the respective tumors, is being developed. Recent evidence suggests that not only TCRs against transforming latent EBV antigens, but also against early lytic viral gene products, might be protective for the control of EBV infection and associated oncogenesis. At the same time, these approaches might be more selective and cause less collateral damage than targeting general B cell markers with chimeric antigen receptors (CARs). Thus, EBV specific TCR transgenic T cells constitute a promising therapeutic strategy against EBV associated malignancies.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
38
|
Immune Control and Vaccination against the Epstein-Barr Virus in Humanized Mice. Vaccines (Basel) 2019; 7:vaccines7040217. [PMID: 31861045 PMCID: PMC6963577 DOI: 10.3390/vaccines7040217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/12/2022] Open
Abstract
Mice with reconstituted human immune system components (humanized mice) offer the unique opportunity to test vaccines preclinically in the context of vaccine adjuvant sensing by human antigen presenting cells and priming of human cytotoxic lymphocyte populations. These features are particularly attractive for immune control of the Epstein–Barr virus (EBV), which represents the most potent growth-transforming pathogen in man and exclusively relies on cytotoxic lymphocytes for its asymptomatic persistence in the vast majority of healthy virus carriers. This immune control is particularly impressive because EBV infects more than 95% of the human adult population and persists without pathology for more than 50 years in most of them. This review will discuss the pathologies that EBV elicits in humanized mice, which immune responses control it in this model, as well as which passive and active vaccination schemes with adoptive T cell transfer and with virus-like particles or individual antigens, respectively, have been explored in this model so far. EBV-specific CD8+ T cell priming in humanized mice could provide crucial insights into how cytotoxic lymphocytes against other viruses and tumors might be elicited by vaccination in humans.
Collapse
|
39
|
Marcucci SB, Obeidat AZ. EBNA1, EBNA2, and EBNA3 link Epstein-Barr virus and hypovitaminosis D in multiple sclerosis pathogenesis. J Neuroimmunol 2019; 339:577116. [PMID: 31805475 DOI: 10.1016/j.jneuroim.2019.577116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 01/12/2023]
Abstract
A strong north-to-south gradient is observed in the distribution of multiple sclerosis (MS), hinting toward an environmental etiology. Vitamin D has been associated with a decreased incidence of MS and may explain, in part, the lower prevalence in tropical climates. However, the existence of MS epidemics implies the possibility of an infectious etiology. Epstein-Barr virus (EBV) infection precedes MS presentation in nearly all affected individuals. While the individual contribution of EBV, vitamin D deficiency, and specific risk genes to MS etiology is possible, their potential interaction is of great interest and may have a synergistic effect on the development of MS.
Collapse
Affiliation(s)
- Samuel B Marcucci
- University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH 45267, United States of America.
| | - Ahmed Z Obeidat
- Department of Neurology, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, United States of America.
| |
Collapse
|
40
|
Dasari V, Sinha D, Neller MA, Smith C, Khanna R. Prophylactic and therapeutic strategies for Epstein-Barr virus-associated diseases: emerging strategies for clinical development. Expert Rev Vaccines 2019; 18:457-474. [PMID: 30987475 DOI: 10.1080/14760584.2019.1605906] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Epstein-Barr virus (EBV) infects more than 95% of the world's population and is associated with infectious mononucleosis as well as a number of cancers in various geographical locations. Despite its significant health burden, no licenced prophylactic or therapeutic vaccines are available. Areas covered: Over the last two decades, our understanding of the role of EBV infection in the pathogenesis and immune regulation of EBV-associated diseases has provided new lines of research to conceptualize various novel prophylactic and therapeutic approaches to control EBV-associated disease. In this review, we evaluate the prophylactic and therapeutic vaccine approaches against EBV and various immunotherapeutic strategies against a number of EBV-associated malignancies. This review also describes the existing and future prospects of improved EBV-targeted therapeutic strategies. Expert opinion: It is anticipated that these emerging strategies will provide answers for the major challenges in EBV vaccine development and help improve the efficacy of novel therapeutic strategies.
Collapse
Affiliation(s)
- Vijayendra Dasari
- a QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Debottam Sinha
- a QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Michelle A Neller
- a QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Corey Smith
- a QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Rajiv Khanna
- a QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| |
Collapse
|
41
|
Rühl J, Citterio C, Engelmann C, Haigh T, Dzionek A, Dreyer J, Khanna R, Taylor GS, Wilson JB, Leung CS, Münz C. Heterologous prime-boost vaccination protects against EBV antigen-expressing lymphomas. J Clin Invest 2019; 129:2071-2087. [PMID: 31042161 DOI: 10.1172/jci125364] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/05/2019] [Indexed: 02/06/2023] Open
Abstract
The Epstein-Barr virus (EBV) is one of the predominant tumor viruses in humans, but so far no therapeutic or prophylactic vaccination against this transforming pathogen is available. We demonstrated that heterologous prime-boost vaccination with the nuclear antigen 1 of EBV (EBNA1), either targeted to the DEC205 receptor on DCs or expressed from a recombinant modified vaccinia virus Ankara (MVA) vector, improved priming of antigen-specific CD4+ T cell help. This help supported the expansion and maintenance of EBNA1-specific CD8+ T cells that are most efficiently primed by recombinant adenoviruses that encode EBNA1. These combined CD4+ and CD8+ T cell responses protected against EBNA1-expressing T and B cell lymphomas, including lymphoproliferations that emerged spontaneously after EBNA1 expression. In particular, the heterologous EBNA1-expressing adenovirus, boosted by EBNA1-encoding MVA vaccination, demonstrated protection as a prophylactic and therapeutic treatment for the respective lymphoma challenges. Our study shows that such heterologous prime-boost vaccinations against EBV-associated malignancies as well as symptomatic primary EBV infection should be further explored for clinical development.
Collapse
Affiliation(s)
- Julia Rühl
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Carmen Citterio
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Christine Engelmann
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Tracey Haigh
- Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, United Kingdom
| | | | - Johannes Dreyer
- Institute for Pathology, Unfallkrankenhaus Berlin, Berlin, Germany
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Graham S Taylor
- Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, United Kingdom
| | - Joanna B Wilson
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Carol S Leung
- University of Oxford, Nuffield Department of Medicine, Ludwig Institute for Cancer Research, Oxford, United Kingdom
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Sharma S, Rouce RH. Are we there yet? The never-ending quest for an Epstein-Barr virus vaccine. J Clin Invest 2019; 129:1836-1838. [PMID: 30985295 DOI: 10.1172/jci128370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Epstein-Barr virus (EBV) is estimated to infect a large part of the population and is associated with a variety of human tumors; therefore, EBV is an important target for vaccine development. In this issue of the JCI, Rühl et al. developed a promising heterologous prime-boost vaccination strategy for EBV-associated malignancies and symptomatic primary infection. The authors show that two prime-boost regimens, using either dendritic cells or an adenovirus approach targeting nuclear antigen EBNA1 followed by a modified vaccinia virus Ankara (MVA) booster, induced significant T cell-mediated, EBV-specific immune control and Ab production. These findings suggest that administration of heterologous prime-boost vaccinations targeting EBNA1 may result in potent CD4+ and CD8+ T cell-mediated EBV immune control and may be a promising clinical approach.
Collapse
|
43
|
Abstract
Infectious myocarditis is the result of an immune response to a microbial infection of the heart. The blood vessels of the heart, both the intramyocardial microvasculature and the large epicardial coronary arteries, play an important role in the pathogenesis of infectious myocarditis. First of all, in addition to cardiomyocytes, endothelial cells of the cardiac (micro)vasculature are direct targets for infection. Moreover, through the expression of adhesion molecules and antigen presenting Major Histocompatibility Complex molecules, the blood vessels assist in shaping the cellular immune response in infectious myocarditis. In addition, damage and dysfunction of the cardiac (micro)vasculature are associated with thrombus formation as well as aberrant regulation of vascular tone including coronary vasospasm. These in turn can cause cardiac perfusion abnormalities and even myocardial infarction. In this review, we will discuss the role of the cardiac (micro)vasculature in the pathogenesis of infectious myocarditis.
Collapse
|
44
|
van Zyl DG, Tsai MH, Shumilov A, Schneidt V, Poirey R, Schlehe B, Fluhr H, Mautner J, Delecluse HJ. Immunogenic particles with a broad antigenic spectrum stimulate cytolytic T cells and offer increased protection against EBV infection ex vivo and in mice. PLoS Pathog 2018; 14:e1007464. [PMID: 30521644 PMCID: PMC6298685 DOI: 10.1371/journal.ppat.1007464] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/18/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
The ubiquitous Epstein-Barr virus (EBV) is the primary cause of infectious mononucleosis and is etiologically linked to the development of several malignancies and autoimmune diseases. EBV has a multifaceted life cycle that comprises virus lytic replication and latency programs. Considering EBV infection holistically, we rationalized that prophylactic EBV vaccines should ideally prime the immune system against lytic and latent proteins. To this end, we generated highly immunogenic particles that contain antigens from both these cycles. In addition to stimulating EBV-specific T cells that recognize lytic or latent proteins, we show that the immunogenic particles enable the ex vivo expansion of cytolytic EBV-specific T cells that efficiently control EBV-infected B cells, preventing their outgrowth. Lastly, we show that immunogenic particles containing the latent protein EBNA1 afford significant protection against wild-type EBV in a humanized mouse model. Vaccines that include antigens which predominate throughout the EBV life cycle are likely to enhance their ability to protect against EBV infection. Human herpesviruses are tremendously successful pathogens that establish lifelong infection in a substantial proportion of the population. The oncogenic γ-herpesvirus EBV, like other herpesviruses, expresses a plethora of open-reading frames throughout its multifaceted life cycle. We have developed a prophylactic vaccine candidate in the form of immunogenic particles that contain several EBV antigens. This is in stark contrast to the vast majority of EBV vaccines candidates that contain only one or two EBV antigens. Our immunogenic particles were shown capable of stimulating several EBV-specific T-cell clones in vitro. The immunogenic particles were also capable of expanding cytolytic EBV-specific T cells ex vivo and provided a protective benefit in vivo when used as a prophylactic vaccine.
Collapse
Affiliation(s)
- Dwain G. van Zyl
- German Cancer Research Center (DKFZ) Unit F100, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit U1074, Heidelberg, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Ming-Han Tsai
- German Cancer Research Center (DKFZ) Unit F100, Heidelberg, Germany
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit U1074, Heidelberg, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Anatoliy Shumilov
- German Cancer Research Center (DKFZ) Unit F100, Heidelberg, Germany
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit U1074, Heidelberg, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Viktor Schneidt
- German Cancer Research Center (DKFZ) Unit F100, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit U1074, Heidelberg, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Rémy Poirey
- German Cancer Research Center (DKFZ) Unit F100, Heidelberg, Germany
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit U1074, Heidelberg, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Bettina Schlehe
- Frauenklinik, University Hospital Heidelberg, Heidelberg, Germany
| | - Herbert Fluhr
- Frauenklinik, University Hospital Heidelberg, Heidelberg, Germany
| | - Josef Mautner
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Children’s Hospital, Technische Universität München, & Helmholtz Zentrum München, Munich, Germany
| | - Henri-Jacques Delecluse
- German Cancer Research Center (DKFZ) Unit F100, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit U1074, Heidelberg, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- * E-mail:
| |
Collapse
|
45
|
Cellular-based immunotherapy in Epstein-Barr virus induced nasopharyngeal cancer. Oral Oncol 2018; 84:61-70. [DOI: 10.1016/j.oraloncology.2018.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/06/2018] [Accepted: 07/18/2018] [Indexed: 12/27/2022]
|
46
|
Fernandes Q, Merhi M, Raza A, Inchakalody VP, Abdelouahab N, Zar Gul AR, Uddin S, Dermime S. Role of Epstein-Barr Virus in the Pathogenesis of Head and Neck Cancers and Its Potential as an Immunotherapeutic Target. Front Oncol 2018; 8:257. [PMID: 30035101 PMCID: PMC6043647 DOI: 10.3389/fonc.2018.00257] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022] Open
Abstract
The role of Epstein-Barr virus (EBV) infection in the development and progression of tumor cells has been described in various cancers. Etiologically, EBV is a causative agent in certain variants of head and neck cancers such as nasopharyngeal cancer. Proteins expressed by the EVB genome are involved in invoking and perpetuating the oncogenic properties of the virus. However, these protein products were also identified as important targets for therapeutic research in the past decades, particularly within the context of immunotherapy. The adoptive transfer of EBV-targeted T-cells as well as the development of EBV vaccines has opened newer lines of research to conceptualize novel therapeutic approaches toward the disease. This review addresses the most important aspects of the association of EBV with head and neck cancers from an immunological perspective. It also aims to highlight the current and future prospects of enhanced EBV-targeted immunotherapies.
Collapse
Affiliation(s)
- Queenie Fernandes
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Afsheen Raza
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Philipose Inchakalody
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Nassima Abdelouahab
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Rehman Zar Gul
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
47
|
Langenhorst D, Haack S, Göb S, Uri A, Lühder F, Vanhove B, Hünig T, Beyersdorf N. CD28 Costimulation of T Helper 1 Cells Enhances Cytokine Release In Vivo. Front Immunol 2018; 9:1060. [PMID: 29868020 PMCID: PMC5964139 DOI: 10.3389/fimmu.2018.01060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/27/2018] [Indexed: 12/22/2022] Open
Abstract
Compared to naive T cells, differentiated T cells are thought to be less dependent on CD28 costimulation for full activation. To revisit the role of CD28 costimulation in mouse T cell recall responses, we adoptively transferred in vitro generated OT-II T helper (Th) 1 cells into C57BL/6 mice (Thy1.2+) and then either blocked CD28–ligand interactions with Fab fragments of the anti-CD28 monoclonal antibody (mAb) E18 or deleted CD28 expression using inducible CD28 knock-out OT-II mice as T cell donors. After injection of ovalbumin protein in adjuvant into the recipient mice we observed that systemic interferon (IFN)γ release strongly depended on CD28 costimulation of the Th1 cells, while secondary clonal expansion was not reduced in the absence of CD28 costimulation. For human memory CD4+ T cell responses we also noted that cytokine release was reduced upon inhibition of CD28 costimulation. Together, our data highlight the so far underestimated role of CD28 costimulation for the reactivation of fully differentiated CD4+ T cells.
Collapse
Affiliation(s)
- Daniela Langenhorst
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Stephanie Haack
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Selina Göb
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Anna Uri
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Fred Lühder
- Institute for Multiple Sclerosis Research and Neuroimmunology, University Medical Centre Göttingen, Göttingen, Germany
| | - Bernard Vanhove
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,OSE Immunotherapeutics S.A., Nantes, France
| | - Thomas Hünig
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
48
|
Nordén R, Magnusson J, Lundin A, Tang KW, Nilsson S, Lindh M, Andersson LM, Riise GC, Westin J. Quantification of Torque Teno Virus and Epstein-Barr Virus Is of Limited Value for Predicting the Net State of Immunosuppression After Lung Transplantation. Open Forum Infect Dis 2018; 5:ofy050. [PMID: 29644247 PMCID: PMC5888719 DOI: 10.1093/ofid/ofy050] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/02/2018] [Indexed: 12/13/2022] Open
Abstract
Background Major hurdles for survival after lung transplantation are rejections and infectious complications. Adequate methods for monitoring immune suppression status are lacking. Here, we evaluated quantification of torque teno virus (TTV) and Epstein-Barr virus (EBV) as biomarkers for defining the net state of immunosuppression in lung-transplanted patients. Methods This prospective single-center study included 98 patients followed for 2 years after transplantation. Bacterial infections, fungal infections, viral respiratory infections (VRTI), cytomegalovirus (CMV) viremia, and acute rejections, as well as TTV and EBV levels, were monitored. Results The levels of torque teno virus DNA increased rapidly after transplantation, likely due to immunosuppressive treatment. A modest increase in levels of Epstein-Barr virus DNA was also observed after transplantation. There were no associations between either TTV or EBV and infectious events or acute rejection, respectively, during follow-up. When Tacrolimus was the main immunosuppressive treatment, TTV DNA levels were significantly elevated 6–24 months after transplantation as compared with Cyclosporine treatment. Conclusions Although replication of TTV, but not EBV, appears to reflect the functionality of the immune system, depending on the type of immunosuppressive treatment, quantification of TTV or EBV as biomarkers has limited potential for defining the net state of immune suppression.
Collapse
Affiliation(s)
- Rickard Nordén
- Department of Infectious Diseases/Clinical Virology, Institute of Biomedicine, Gothenburg, Sweden
| | - Jesper Magnusson
- Department of Internal Medicine/Respiratory Medicine and Allergology, Institute of Medicine, Gothenburg, Sweden
| | - Anna Lundin
- Department of Infectious Diseases/Clinical Virology, Institute of Biomedicine, Gothenburg, Sweden
| | - Ka-Wei Tang
- Department of Infectious Diseases/Clinical Virology, Institute of Biomedicine, Gothenburg, Sweden
| | - Staffan Nilsson
- Department of Pathology and Genetics, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology, Sweden
| | - Magnus Lindh
- Department of Infectious Diseases/Clinical Virology, Institute of Biomedicine, Gothenburg, Sweden
| | - Lars-Magnus Andersson
- Department of Infectious Diseases/Clinical Virology, Institute of Biomedicine, Gothenburg, Sweden
| | - Gerdt C Riise
- Department of Internal Medicine/Respiratory Medicine and Allergology, Institute of Medicine, Gothenburg, Sweden
| | - Johan Westin
- Department of Infectious Diseases/Clinical Virology, Institute of Biomedicine, Gothenburg, Sweden
| |
Collapse
|
49
|
Asian Elephant T Cell Responses to Elephant Endotheliotropic Herpesvirus. J Virol 2018; 92:JVI.01951-17. [PMID: 29263271 PMCID: PMC5827410 DOI: 10.1128/jvi.01951-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022] Open
Abstract
Elephant endotheliotropic herpesvirus (EEHV) can cause lethal hemorrhagic disease in juvenile Asian elephants, an endangered species. One hypothesis to explain this vulnerability of some juvenile elephants is that they fail to mount an effective T cell response to the virus. To our knowledge, there have been no studies of Asian elephant T cell responses to EEHV. To address this deficiency, we validated the gamma interferon (IFN-γ) enzyme-linked immunospot assay for tracking antigen-directed T cell activity by monitoring rabies-specific responses in vaccinated elephants. In addition, we generated monoclonal antibodies to Asian elephant CD4 and CD8 to facilitate phenotypic T cell profiling. Using these tools, we screened healthy elephants with a history of EEHV infection for reactivity against nine EEHV proteins whose counterparts in other herpesviruses are known to induce T cell responses in their natural hosts. We identified glycoprotein B (gB) and the putative regulatory protein E40 as the most immunogenic T cell targets (IFN-γ responses in five of seven elephants), followed by the major capsid protein (IFN-γ responses in three of seven elephants). We also observed that IFN-γ responses were largely from CD4+ T cells. We detected no activity against the predicted major immediate early (E44) and large tegument (E34) proteins, both immunodominant T cell targets in humans latently infected with cytomegalovirus. These studies identified EEHV-specific T cells in Asian elephants for the first time, lending insight into the T cell priming that might be required to protect against EEHV disease, and will guide the design of effective vaccine strategies. IMPORTANCE Endangered Asian elephants are facing many threats, including lethal hemorrhagic disease from elephant endotheliotropic herpesvirus (EEHV). EEHV usually establishes chronic, benign infections in mature Asian elephants but can be lethal to juvenile elephants in captivity and the wild. It is the leading cause of death in captive Asian elephants in North America and Europe. Despite the availability of sensitive tests and protocols for treating EEHV-associated illness, these measures are not always effective. The best line of defense would be a preventative vaccine. We interrogated normal healthy elephants previously infected with EEHV for T cell responses to nine EEHV proteins predicted to induce cellular immune responses. Three proteins elicited IFN-γ responses, suggesting their potential usefulness as vaccine candidates. Our work is the first to describe T cell responses to a member of the proposed fourth subfamily of mammalian herpesviruses, the Deltaherpesvirinae, within a host species in the clade Afrotheria. An EEHV vaccine would greatly contribute to the health care of Asian and African elephants that are also susceptible to this disease.
Collapse
|
50
|
Can NT, Grenert JP, Vohra P. Concomitant Epstein-Barr Virus-associated smooth muscle tumor and granulomatous inflammation of the liver. Pathol Res Pract 2017; 213:1306-1309. [PMID: 28756985 DOI: 10.1016/j.prp.2017.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/12/2017] [Accepted: 07/02/2017] [Indexed: 11/17/2022]
Abstract
Epstein-Barr Virus-associated smooth muscle tumor (EBV-SMT) is a rare mesenchymal tumor typically seen in immunocompromised patients. Here, we report a case of EBV-SMT and associated granulomatous inflammation in the liver of a 32-year-old man with history of human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS). To our knowledge, an association of these two lesions has not been previously reported. We review the literature and discuss pathogenesis, differential diagnosis and immunohistochemical (IHC) stains helpful for the diagnosis of this rare entity. Finally, we consider possible explanations for the concomitant presence of these lesions.
Collapse
Affiliation(s)
- Nhu Thuy Can
- Department of Pathology, University of California, San Francisco, CA, USA
| | - James P Grenert
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Poonam Vohra
- Department of Pathology, University of California, San Francisco, CA, USA.
| |
Collapse
|