1
|
Perego J, Mendes A, Bourbon C, Camosseto V, Combes A, Liu H, Manh TPV, Dalet A, Chasson L, Spinelli L, Bardin N, Chiche L, Santos MAS, Gatti E, Pierre P. Guanabenz inhibits TLR9 signaling through a pathway that is independent of eIF2α dephosphorylation by the GADD34/PP1c complex. Sci Signal 2018; 11:11/514/eaam8104. [PMID: 29363586 DOI: 10.1126/scisignal.aam8104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endoplasmic reticulum (ER) stress triggers or amplifies inflammatory signals and cytokine production in immune cells. Upon the resolution of ER stress, the inducible phosphatase 1 cofactor GADD34 promotes the dephosphorylation of the initiation factor eIF2α, thereby enabling protein translation to resume. Several aminoguanidine compounds, such as guanabenz, perturb the eIF2α phosphorylation-dephosphorylation cycle and protect different cell or tissue types from protein misfolding and degeneration. We investigated how pharmacological interference with the eIF2α pathway could be beneficial to treat autoinflammatory diseases dependent on proinflammatory cytokines and type I interferons (IFNs), the production of which is regulated by GADD34 in dendritic cells (DCs). In mouse and human DCs and B cells, guanabenz prevented the activation of Toll-like receptor 9 (TLR9) by CpG oligodeoxynucleotides or DNA-immunoglobulin complexes in endosomes. In vivo, guanabenz protected mice from CpG oligonucleotide-dependent cytokine shock and decreased autoimmune symptom severity in a chemically induced model of systemic lupus erythematosus. However, we found that guanabenz exerted its inhibitory effect independently of GADD34 activity on eIF2α and instead decreased the abundance of CH25H, a cholesterol hydroxylase linked to antiviral immunity. Our results therefore suggest that guanabenz and similar compounds could be used to treat type I IFN-dependent pathologies and that CH25H could be a therapeutic target to control these diseases.
Collapse
Affiliation(s)
- Jessica Perego
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13008 Marseille, France
| | - Andreia Mendes
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13008 Marseille, France.,International Associated Laboratory (LIA) CNRS "Mistra," 13008 Marseille, France
| | - Clarisse Bourbon
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13008 Marseille, France
| | - Voahirana Camosseto
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13008 Marseille, France.,International Associated Laboratory (LIA) CNRS "Mistra," 13008 Marseille, France
| | - Alexis Combes
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13008 Marseille, France
| | - Hong Liu
- Sanofi, Cambridge, MA 02139, USA
| | - Thien-Phong Vu Manh
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13008 Marseille, France
| | - Alexandre Dalet
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13008 Marseille, France
| | - Lionel Chasson
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13008 Marseille, France
| | - Lionel Spinelli
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13008 Marseille, France
| | - Nathalie Bardin
- Laboratoire d'Immunologie, Hôpital de la Conception, 13005 Marseille, France.,Aix Marseille Université, INSERM, VRCM, 13005 Marseille, France
| | | | - Manuel A S Santos
- International Associated Laboratory (LIA) CNRS "Mistra," 13008 Marseille, France.,Institute for Research in Biomedicine (iBiMED) and Aveiro Health Sciences Program University of Aveiro, 3810-193 Aveiro, Portugal
| | - Evelina Gatti
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13008 Marseille, France. .,International Associated Laboratory (LIA) CNRS "Mistra," 13008 Marseille, France.,Institute for Research in Biomedicine (iBiMED) and Aveiro Health Sciences Program University of Aveiro, 3810-193 Aveiro, Portugal
| | - Philippe Pierre
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13008 Marseille, France. .,International Associated Laboratory (LIA) CNRS "Mistra," 13008 Marseille, France.,Institute for Research in Biomedicine (iBiMED) and Aveiro Health Sciences Program University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
2
|
Fortin JS, Cloutier M, Thibodeau J. Exposing the Specific Roles of the Invariant Chain Isoforms in Shaping the MHC Class II Peptidome. Front Immunol 2013; 4:443. [PMID: 24379812 PMCID: PMC3861868 DOI: 10.3389/fimmu.2013.00443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/26/2013] [Indexed: 11/26/2022] Open
Abstract
The peptide repertoire (peptidome) associated with MHC class II molecules (MHCIIs) is influenced by the polymorphic nature of the peptide binding groove but also by cell-intrinsic factors. The invariant chain (Ii) chaperones MHCIIs, affecting their folding and trafficking. Recent discoveries relating to Ii functions have provided insights as to how it edits the MHCII peptidome. In humans, the Ii gene encodes four different isoforms for which structure-function analyses have highlighted common properties but also some non-redundant roles. Another layer of complexity arises from the fact that Ii heterotrimerizes, a characteristic that has the potential to affect the maturation of associated MHCIIs in many different ways, depending on the isoform combinations. Here, we emphasize the peptide editing properties of Ii and discuss the impact of the various isoforms on the MHCII peptidome.
Collapse
Affiliation(s)
- Jean-Simon Fortin
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal , Montréal, QC , Canada
| | - Maryse Cloutier
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal , Montréal, QC , Canada
| | - Jacques Thibodeau
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal , Montréal, QC , Canada
| |
Collapse
|
3
|
Abstract
T cell recognition of antigen-presenting cells depends on their expression of a spectrum of peptides bound to major histocompatibility complex class I (MHC-I) and class II (MHC-II) molecules. Conversion of antigens from pathogens or transformed cells into MHC-I- and MHC-II-bound peptides is critical for mounting protective T cell responses, and similar processing of self proteins is necessary to establish and maintain tolerance. Cells use a variety of mechanisms to acquire protein antigens, from translation in the cytosol to variations on the theme of endocytosis, and to degrade them once acquired. In this review, we highlight the aspects of MHC-I and MHC-II biosynthesis and assembly that have evolved to intersect these pathways and sample the peptides that are produced.
Collapse
Affiliation(s)
- Janice S Blum
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | |
Collapse
|
4
|
Genève L, Ménard C, Labrecque N, Thibodeau J. The p35 human invariant chain in transgenic mice restores mature B cells in the absence of endogenous CD74. Int Immunol 2012; 24:645-60. [PMID: 22966065 DOI: 10.1093/intimm/dxs066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The invariant chain (Ii; CD74) has pleiotropic functions and Ii-deficient mice show defects in MHC class II (MHC II) transport and B cell maturation. In humans, but not in mice, a minor Iip35 isoform of unknown function includes an endoplasmic reticulum-retention motif that is masked upon binding of MHC II molecules. To gain further insight into the roles of Ii in B cell homeostasis, we generated Iip35 transgenic mice (Tgp35) and bred these with mice deficient for Ii (Tgp35/mIiKO). Iip35 was shown to compete with mIi for the binding to I-A(b) . In addition, classical endosomal degradation products (p20/p10) and the class II-associated invariant chain peptide (CLIP) fragment were detected. Moreover, Iip35 favored the formation of compact peptide-MHC II complexes in the Tgp35/mIiKO mice. I-A(b) levels were restored at the plasma membrane of mature B cells but Iip35 affected the fine conformation of MHC II molecules as judged by the increased reactivity of the AF6-120.1 antibody in permeabilized cells. However, the human Iip35 cannot fully replace the endogenous Ii. Indeed, most immature B cells in the bone marrow and spleen of transgenic mice had reduced surface expression of MHC II molecules, demonstrating a dominant-negative effect of Iip35 in Tgp35 mice. Interestingly, while maturation to follicular B cells was normal, Iip35 expression appeared to reduce the proportions of marginal zone B cells. These results emphasize the importance of Ii in B cell homeostasis and suggest that Iip35 could have regulatory functions.
Collapse
Affiliation(s)
- Laetitia Genève
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie et Immunologie, Université de Montréal, Montréal, Québec H3T1J4, Canada
| | | | | | | |
Collapse
|
5
|
Olex AL, Hiltbold EM, Leng X, Fetrow JS. Dynamics of dendritic cell maturation are identified through a novel filtering strategy applied to biological time-course microarray replicates. BMC Immunol 2010; 11:41. [PMID: 20682054 PMCID: PMC2928180 DOI: 10.1186/1471-2172-11-41] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Accepted: 08/03/2010] [Indexed: 01/04/2023] Open
Abstract
Background Dendritic cells (DC) play a central role in primary immune responses and become potent stimulators of the adaptive immune response after undergoing the critical process of maturation. Understanding the dynamics of DC maturation would provide key insights into this important process. Time course microarray experiments can provide unique insights into DC maturation dynamics. Replicate experiments are necessary to address the issues of experimental and biological variability. Statistical methods and averaging are often used to identify significant signals. Here a novel strategy for filtering of replicate time course microarray data, which identifies consistent signals between the replicates, is presented and applied to a DC time course microarray experiment. Results The temporal dynamics of DC maturation were studied by stimulating DC with poly(I:C) and following gene expression at 5 time points from 1 to 24 hours. The novel filtering strategy uses standard statistical and fold change techniques, along with the consistency of replicate temporal profiles, to identify those differentially expressed genes that were consistent in two biological replicate experiments. To address the issue of cluster reproducibility a consensus clustering method, which identifies clusters of genes whose expression varies consistently between replicates, was also developed and applied. Analysis of the resulting clusters revealed many known and novel characteristics of DC maturation, such as the up-regulation of specific immune response pathways. Intriguingly, more genes were down-regulated than up-regulated. Results identify a more comprehensive program of down-regulation, including many genes involved in protein synthesis, metabolism, and housekeeping needed for maintenance of cellular integrity and metabolism. Conclusions The new filtering strategy emphasizes the importance of consistent and reproducible results when analyzing microarray data and utilizes consistency between replicate experiments as a criterion in both feature selection and clustering, without averaging or otherwise combining replicate data. Observation of a significant down-regulation program during DC maturation indicates that DC are preparing for cell death and provides a path to better understand the process. This new filtering strategy can be adapted for use in analyzing other large-scale time course data sets with replicates.
Collapse
Affiliation(s)
- Amy L Olex
- Department of Computer Science, Wake Forest University, Winston-Salem, NC 27109, USA
| | | | | | | |
Collapse
|
6
|
Wang N, Weber E, Blum JS. Diminished intracellular invariant chain expression after vaccinia virus infection. THE JOURNAL OF IMMUNOLOGY 2009; 183:1542-50. [PMID: 19592662 DOI: 10.4049/jimmunol.0802741] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vaccinia virus (VV) has been used as a vaccine to eradicate smallpox and as a vaccine for HIV and tumors. However, the immunoevasive properties of VV have raised safety concerns. VV infection of APCs perturbs MHC class II-mediated Ag presentation. Exposure of human B cell lines to VV induced a substantial reduction in cellular expression of the class II chaperone, invariant chain (Ii), during the late stages (i.e., 8-10 h) of infection. Yet, cell viability and surface expression of MHC class II molecules were maintained up to 24 h after exposure to virus. Reductions in Ii and class II mRNA levels were detected as early as 6 h after VV infection of APCs. To examine whether VV was acting solely to disrupt host protein synthesis, B cells were treated with an inhibitor of translation, cycloheximide (CHX). Within 1 h of B cell CHX treatment, Ii protein expression decreased coupled with a loss of class II presentation. Analysis of Ii degradation in VV- or CHX-treated cells, revealed ongoing Ii proteolysis contributing to reduced steady-state Ii levels in these APC. Yet in contrast with CHX, VV infection of APCs altered lysosomal protease expression and Ii degradation. Virus infection induced cellular cathepsin L expression while reducing the levels of other lysosomal proteases. These results demonstrate that at late stages of VV infection, reductions in cellular Ii levels coupled with changes in lysosomal protease activity, contribute in part to defects in class II presentation.
Collapse
Affiliation(s)
- Nan Wang
- Department of Microbiology and Immunology, Center for Immunobiology, and Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
7
|
Busch R, Rinderknecht CH, Roh S, Lee AW, Harding JJ, Burster T, Hornell TMC, Mellins ED. Achieving stability through editing and chaperoning: regulation of MHC class II peptide binding and expression. Immunol Rev 2005; 207:242-60. [PMID: 16181341 DOI: 10.1111/j.0105-2896.2005.00306.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In antigen-presenting cells (APCs), loading of major histocompatibility complex class II (MHC II) molecules with peptides is regulated by invariant chain (Ii), which blocks MHC II antigen-binding sites in pre-endosomal compartments. Several molecules then act upon MHC II molecules in endosomes to facilitate peptide loading: Ii-degrading proteases, the peptide exchange factor, human leukocyte antigen-DM (HLA-DM), and its modulator, HLA-DO (DO). Here, we review our findings arguing that DM stabilizes a globally altered conformation of the antigen-binding groove by binding to a lateral surface of the MHC II molecule. Our data imply changes in the interactions between specificity pockets and peptide side chains, complementing data from others that suggest DM affects hydrogen bonds. Selective weakening of peptide/MHC interactions allows DM to alter the peptide repertoire. We also review our studies in cells that highlight the ability of several factors to modulate surface expression of MHC II molecules via post-Golgi mechanisms; these factors include MHC class II-associated Ii peptides (CLIP), DM, and microbial products that modulate MHC II traffic from endosomes to the plasma membrane. In this context, we discuss possible mechanisms by which the association of some MHC II alleles with autoimmune diseases may be linked to their low CLIP affinity.
Collapse
Affiliation(s)
- Robert Busch
- Division of Pediatric Immunology and Transplantation Biology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94705, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Kitamura H, Kamon H, Sawa SI, Park SJ, Katunuma N, Ishihara K, Murakami M, Hirano T. IL-6-STAT3 Controls Intracellular MHC Class II αβ Dimer Level through Cathepsin S Activity in Dendritic Cells. Immunity 2005; 23:491-502. [PMID: 16286017 DOI: 10.1016/j.immuni.2005.09.010] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2005] [Revised: 08/16/2005] [Accepted: 09/22/2005] [Indexed: 01/03/2023]
Abstract
We found IL-6-STAT3 pathway suppresses MHC class II (MHCII) expression on dendritic cells (DCs) and attenuates T cell activation. Here, we showed that IL-6-STAT3 signaling reduced intracellular MHCII alphabeta dimmer, Ii, and H2-DM levels in DCs. IL-6-mediated STAT3 activation decreased cystatin C level, an endogenous inhibitor of cathepsins, and enhanced cathepsin activities. Importantly, cathepsin S inhibitors blocked reduction of MHCII alphabeta dimer, Ii, and H2-DM in the IL-6-treated DCs. Overexpression of cystatin C suppressed IL-6-STAT3-mediated increase of cathepsin S activity and reduction of MHCII alphabeta dimer, Ii, and H2-DM levels in DCs. Cathepsin S overexpression in DCs decreased intracellular MHCII alphabeta dimer, Ii, and H2-DM levels, LPS-mediated surface expression of MHCII and suppressed CD4(+) T cell activation. IL-6-gp130-STAT3 signaling in vivo decreased cystatin C expression and MHCII alphabeta dimer level in DCs. Thus, IL-6-STAT3-mediated increase of cathepsin S activity reduces the MHCII alphabeta dimer, Ii, and H2-DM levels in DCs, and suppresses CD4(+) T cell-mediated immune responses.
Collapse
Affiliation(s)
- Hidemitsu Kitamura
- Laboratory for Cytokine Signaling, RIKEN Research Center for Allergy and Immunology, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Boes M, van der Wel N, Peperzak V, Kim YM, Peters PJ, Ploegh H. In vivo control of endosomal architecture by class II-associated invariant chain and cathepsin S. Eur J Immunol 2005; 35:2552-62. [PMID: 16094690 DOI: 10.1002/eji.200526323] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The invariant chain (Ii) is a chaperone that regulates assembly and transport of class II MHC molecules. In the absence of the lysosomal protease cathepsin S (CatS), degradation of Ii is impaired and an Ii remnant that extends from the N terminus to about residue 110 accumulates in class II MHC-positive endosomal compartments, which are enlarged in size and lack multivesicular morphology. In primary B cells examined in vitro and in lymph nodes examined by immuno-electron microscopy, CatS controls architecture of class II-positive endosomal compartments. In a compound mutant mouse that lacks both CatS and Ii, the normal size of endosomes in class II-positive cells is restored, although internal endosomal membranes are absent. Proper degradation of Ii is thus essential for normal endosomal morphology in antigen-presenting cells in vivo.
Collapse
Affiliation(s)
- Marianne Boes
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Neumann J. Novel antibody tags from the rat lysosomal protein RT1.DM for immunodetection of recombinant proteins. J Immunol Methods 2005; 301:66-76. [PMID: 15896798 DOI: 10.1016/j.jim.2005.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 01/14/2005] [Accepted: 03/18/2005] [Indexed: 10/25/2022]
Abstract
Previously, two mouse monoclonal antibodies (12B8 and 6D4) were raised against the alpha- and beta-subunits of the rat non-classical MHC class-II heterodimer RT1.DM. Here, I describe the epitope mapping of mAb 12B8 to amino acids alpha3-14 (EASPQAWWDESQ) and mAb 6D4 to amino acids beta35-44 (WDPEEGQIVP). Epitope mapping was conducted by preparing fusion proteins between the alpha and beta chain of RT1.DM for Western detection with mAb 12B8 and 6D4. By mutating non-conserved amino acids of the human orthologue of RT1.DM, the rat epitopes were introduced, thereby making the alpha and beta polypeptides sensitive for mAb 12B8 and 6D4 detection. The epitopes, designated as 12B8 and 6D4, were tested for protein tagging. They were appended to the N- or C-terminus of four human proteins, the tumour suppressor protein VHL (von Hippel-Lindau), SUMO4, MHC class-II DQbeta and -DPbeta for expression in mammalian cells. Western detection, immunoprecipitation and localisation of the tagged proteins were successfully demonstrated. Thus, the 12B8 and 6D4 epitope tag can be universally used for the immunodetection of recombinant proteins and to study protein-protein interactions.
Collapse
Affiliation(s)
- Jürgen Neumann
- Division of Immunobiology, Institute for Molecular Physiology, University of Bonn, Roemerstr. 164, D-53117 Bonn, Germany.
| |
Collapse
|
11
|
Koonce CH, Bikoff EK. Dissecting MHC class II export, B cell maturation, and DM stability defects in invariant chain mutant mice. THE JOURNAL OF IMMUNOLOGY 2004; 173:3271-80. [PMID: 15322189 DOI: 10.4049/jimmunol.173.5.3271] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Invariant (Ii) chain loss causes defective class II export, B cell maturation, and reduced DM stability. In this study, we compare Ii chain and class II mutant mouse phenotypes to dissect these disturbances. The present results demonstrate that ER retention of alphabeta complexes, and not beta-chain aggregates, disrupts B cell development. In contrast, we fail to detect class II aggregates in Ii chain mutant thymi. Ii chain loss in NOD mice leads to defective class II export and formation of alphabeta aggregates, but in this background, downstream signals are misregulated and mature B cells develop normally. Finally, Ii chain mutant strains all display reduced levels of DM, but mice expressing either p31 or p41 alone, and class II single chain mutants, are indistinguishable from wild type. We conclude that Ii chain contributions as a DM chaperone are independent of its role during class II export. This Ii chain/DM partnership favors class II peptide loading via conventional pathway(s).
Collapse
Affiliation(s)
- Chad H Koonce
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
12
|
Villalobo E, Moch C, Fryd-Versavel G, Fleury-Aubusson A, Morin L. Cysteine proteases and cell differentiation: excystment of the ciliated protist Sterkiella histriomuscorum. EUKARYOTIC CELL 2004; 2:1234-45. [PMID: 14665458 PMCID: PMC326638 DOI: 10.1128/ec.2.6.1234-1245.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The process of excystment of Sterkiella histriomuscorum (Ciliophora, Oxytrichidae) leads in a few hours, through a massive influx of water and the resorption of the cyst wall, from an undifferentiated resting cyst to a highly differentiated and dividing vegetative cell. While studying the nature of the genes involved in this process, we isolated three different cysteine proteases genes, namely, a cathepsin B gene, a cathepsin L-like gene, and a calpain-like gene. Excystation was selectively inhibited at a precise differentiating stage by cysteine proteases inhibitors, suggesting that these proteins are specifically required during the excystment process. Reverse transcription-PCR experiments showed that both genes display differential expression between the cyst and the vegetative cells. A phylogenetic analysis showed for the first time that the cathepsin B tree is paraphyletic and that the diverging S. histriomuscorum cathepsin B is closely related to its Giardia homologues, which take part in the cyst wall breakdown process. The deduced cathepsin L-like protein sequence displays the structural signatures and phylogenetic relationships of cathepsin H, a protein that is known only in plants and animals and that is involved in the degradation of extracellular matrix components in cancer diseases. The deduced calpain-like protein sequence does not display the calcium-binding domain of conventional calpains; it belongs to a diverging phylogenetic cluster that includes Aspergillus palB, a protein which is involved in a signal transduction pathway that is sensitive to ambient pH.
Collapse
Affiliation(s)
- Eduardo Villalobo
- Laboratoire de Biologie Cellulaire 4, Université de Paris-Sud, Orsay, France
| | | | | | | | | |
Collapse
|
13
|
Gatti E, Pierre P. Understanding the cell biology of antigen presentation: the dendritic cell contribution. Curr Opin Cell Biol 2003; 15:468-73. [PMID: 12892788 DOI: 10.1016/s0955-0674(03)00069-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The study of the cell biology of antigen processing and presentation has greatly contributed to our understanding of the immune response. The work of many immunologically inclined cell biologists has also permitted us to gain new insights on cellular mechanisms shared by many cell types. Dendritic cells are master regulators of the immune system and consequently have received a lot of attention in recent years. With the aim of controlling antigen processing and presentation, the solutions used by dendritic cells to respond to environmental changes are numerous and surprising. In the presence of pathogens, dendritic cells regulate strongly their endocytic pathway by interfering with uptake, proteolysis, membrane dynamics and transport in and out of the lysosome to become the most potent antigen-presenting cells known.
Collapse
Affiliation(s)
- Evelina Gatti
- Centre d'Immunologie de Marseille-Luminy, CNRS-INSERM-Université de la Méditerranée, Campus de Luminy, Case 906, 13288, Cedex 09, Marseille, France.
| | | |
Collapse
|
14
|
Rajagopalan G, Smart MK, Krco CJ, David CS. Expression and function of transgenic HLA-DQ molecules and lymphocyte development in mice lacking invariant chain. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:1774-83. [PMID: 12165499 DOI: 10.4049/jimmunol.169.4.1774] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Invariant chain (Ii) is a non-MHC-encoded molecule, which plays an accessory role in the proper assembly/expression of functional MHC class II molecules and there by plays an important role in Ag processing/presentation. The phenotype of mice lacking Ii depends on the allotype of the MHC class II molecule. In some mice strains, Ii deficiency results in reduction in expression of class II molecules accompanied by defective CD4(+) T cell development. Responses to conventional Ags/superantigens are also compromised. In this study, we describe for the first time the functionality of human class II molecules, HLA-DQ6 and HLA-DQ8, in transgenic mice lacking Ii. HLA transgenic Ii(-/-) mice expressed very low levels of surface DQ6 and DQ8 accompanied by severe reduction in CD4(+) T cells both in the thymus and periphery. In vitro proliferation and cytokine production to an exogenous superantigen, staphylococcal enterotoxin B (SEB) was diminished in HLA-transgenic Ii(-/-) mice. However, SEB-induced in vivo expansion of CD8(+) T cells expressing TCR Vbeta8 family in DQ8.Ii(-/-) mice was comparable with that of DQ8.Ii(+/+) mice. Systemic IFN-gamma production following in vivo challenge with SEB was reduced in DQ8.Ii(-/-) mice and were also protected from SEB-induced toxic shock. Although the T cell response to a known peptide Ag was diminished in DQ8.Ii(-/-) mice, DQ8.Ii(-/-) APCs were capable of presenting that peptide to primed T cells from wild-type DQ8 mice as well as to a specific T cell hybridoma. Differentiation of mature B cells was also affected to a certain extent in DQ8.Ii(-/-) mice.
Collapse
MESH Headings
- Animals
- Antigen Presentation
- Antigens/administration & dosage
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- Cell Differentiation
- Cytoskeletal Proteins
- Enterotoxins/immunology
- Enterotoxins/toxicity
- Gene Expression
- HLA-DQ Antigens/genetics
- HLA-DQ Antigens/metabolism
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Humans
- In Vitro Techniques
- Interferon-gamma/biosynthesis
- Lymphocyte Activation
- Lymphocyte Subsets/cytology
- Lymphocyte Subsets/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Shock, Septic/etiology
- Shock, Septic/genetics
- Shock, Septic/immunology
Collapse
|
15
|
Guermonprez P, Valladeau J, Zitvogel L, Théry C, Amigorena S. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 2002; 20:621-67. [PMID: 11861614 DOI: 10.1146/annurev.immunol.20.100301.064828] [Citation(s) in RCA: 1255] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dendritic cells take up antigens in peripheral tissues, process them into proteolytic peptides, and load these peptides onto major histocompatibility complex (MHC) class I and II molecules. Dendritic cells then migrate to secondary lymphoid organs and become competent to present antigens to T lymphocytes, thus initiating antigen-specific immune responses, or immunological tolerance. Antigen presentation in dendritic cells is finely regulated: antigen uptake, intracellular transport and degradation, and the traffic of MHC molecules are different in dendritic cells as compared to other antigen-presenting cells. These specializations account for dendritic cells' unique role in the initiation of immune responses and the induction of tolerance.
Collapse
|
16
|
Stumptner-Cuvelette P, Benaroch P. Multiple roles of the invariant chain in MHC class II function. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1542:1-13. [PMID: 11853874 DOI: 10.1016/s0167-4889(01)00166-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Kleijmeer M, Ramm G, Schuurhuis D, Griffith J, Rescigno M, Ricciardi-Castagnoli P, Rudensky AY, Ossendorp F, Melief CJ, Stoorvogel W, Geuze HJ. Reorganization of multivesicular bodies regulates MHC class II antigen presentation by dendritic cells. J Cell Biol 2001; 155:53-63. [PMID: 11581285 PMCID: PMC2150788 DOI: 10.1083/jcb.200103071] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Immature dendritic cells (DCs) sample their environment for antigens and after stimulation present peptide associated with major histocompatibility complex class II (MHC II) to naive T cells. We have studied the intracellular trafficking of MHC II in cultured DCs. In immature cells, the majority of MHC II was stored intracellularly at the internal vesicles of multivesicular bodies (MVBs). In contrast, DM, an accessory molecule required for peptide loading, was located predominantly at the limiting membrane of MVBs. After stimulation, the internal vesicles carrying MHC II were transferred to the limiting membrane of the MVB, bringing MHC II and DM to the same membrane domain. Concomitantly, the MVBs transformed into long tubular organelles that extended into the periphery of the cells. Vesicles that were formed at the tips of these tubules nonselectively incorporated MHC II and DM and presumably mediated transport to the plasma membrane. We propose that in maturing DCs, the reorganization of MVBs is fundamental for the timing of MHC II antigen loading and transport to the plasma membrane.
Collapse
Affiliation(s)
- M Kleijmeer
- Department of Cell Biology, University Medical Center, Institute of Biomembranes and Center for Biomedical Genetics, 3584 CX Utrecht, Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lennon-Duménil AM, Roberts RA, Valentijn K, Driessen C, Overkleeft HS, Erickson A, Peters PJ, Bikoff E, Ploegh HL, Wolf Bryant P. The p41 isoform of invariant chain is a chaperone for cathepsin L. EMBO J 2001; 20:4055-64. [PMID: 11483509 PMCID: PMC149174 DOI: 10.1093/emboj/20.15.4055] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The p41 splice variant of major histocompatibility complex (MHC) class II-associated invariant chain (Ii) contains a 65 aa segment that binds to the active site of cathepsin L (CatL), a lysosomal cysteine protease involved in MHC class II-restricted antigen presentation. This segment is absent from the predominant form of Ii, p31. Here we document the in vivo significance of the p41-CatL interaction. By biochemical means and electron microscopy, we demonstrate that the levels of active CatL are strongly reduced in bone marrow-derived antigen-presenting cells that lack p41. This defect mainly concerns the mature two-chain forms of CatL, which depend on p41 to be expressed at wild-type levels. Indeed, pulse-chase analysis suggests that these mature forms of CatL are degraded by endocytic proteases when p41 is absent. We conclude that p41 is required for activity of CatL by stabilizing the mature forms of the enzyme. This suggests that p41 is not merely an inhibitor of CatL enzymatic activity, but serves as a chaperone to help maintain a pool of mature enzyme in late-endocytic compartments of antigen-presenting cells.
Collapse
Affiliation(s)
- Ana-Maria Lennon-Duménil
- Department of Pathology, Harvard Medical School, Boston, MA 02115, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, Department of Microbiology, Ohio State University, Columbus, OH 43210, USA and Netherlands Cancer Institute, Amsterdam, The Netherlands Corresponding author e-mail:
| | - Rebecca A. Roberts
- Department of Pathology, Harvard Medical School, Boston, MA 02115, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, Department of Microbiology, Ohio State University, Columbus, OH 43210, USA and Netherlands Cancer Institute, Amsterdam, The Netherlands Corresponding author e-mail:
| | - Karine Valentijn
- Department of Pathology, Harvard Medical School, Boston, MA 02115, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, Department of Microbiology, Ohio State University, Columbus, OH 43210, USA and Netherlands Cancer Institute, Amsterdam, The Netherlands Corresponding author e-mail:
| | - Christoph Driessen
- Department of Pathology, Harvard Medical School, Boston, MA 02115, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, Department of Microbiology, Ohio State University, Columbus, OH 43210, USA and Netherlands Cancer Institute, Amsterdam, The Netherlands Corresponding author e-mail:
| | - Herman S. Overkleeft
- Department of Pathology, Harvard Medical School, Boston, MA 02115, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, Department of Microbiology, Ohio State University, Columbus, OH 43210, USA and Netherlands Cancer Institute, Amsterdam, The Netherlands Corresponding author e-mail:
| | - Ann Erickson
- Department of Pathology, Harvard Medical School, Boston, MA 02115, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, Department of Microbiology, Ohio State University, Columbus, OH 43210, USA and Netherlands Cancer Institute, Amsterdam, The Netherlands Corresponding author e-mail:
| | - Peter J. Peters
- Department of Pathology, Harvard Medical School, Boston, MA 02115, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, Department of Microbiology, Ohio State University, Columbus, OH 43210, USA and Netherlands Cancer Institute, Amsterdam, The Netherlands Corresponding author e-mail:
| | - Elizabeth Bikoff
- Department of Pathology, Harvard Medical School, Boston, MA 02115, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, Department of Microbiology, Ohio State University, Columbus, OH 43210, USA and Netherlands Cancer Institute, Amsterdam, The Netherlands Corresponding author e-mail:
| | - Hidde L. Ploegh
- Department of Pathology, Harvard Medical School, Boston, MA 02115, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, Department of Microbiology, Ohio State University, Columbus, OH 43210, USA and Netherlands Cancer Institute, Amsterdam, The Netherlands Corresponding author e-mail:
| | - Paula Wolf Bryant
- Department of Pathology, Harvard Medical School, Boston, MA 02115, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, Department of Microbiology, Ohio State University, Columbus, OH 43210, USA and Netherlands Cancer Institute, Amsterdam, The Netherlands Corresponding author e-mail:
| |
Collapse
|
19
|
Pierre P. [Proteases, natural protease inhibitors and activation of the machinery of antigen presentation in dendritic cells]. PATHOLOGIE-BIOLOGIE 2001; 49:494-5. [PMID: 11484610 DOI: 10.1016/s0369-8114(01)00174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dendritic cells play a central role in the immune response due to their exceptionally strong capacity for presenting antigens to naive T lymphocytes. Recent evidences have demonstrated that dendritic cells (DCs) exhibit a remarkable pattern of differentiation (maturation) that is accompanied by striking changes in morphology, organization and function. The hallmark of DC maturation is the major reorganization of the MHC class II molecule intracellular transport which is in part regulated by endosomal proteases activation. The central role of the endosomal proteases in generating antigenic peptides and controlling MHC class II traffic clearly defines these enzymes as an important area of investigation.
Collapse
Affiliation(s)
- P Pierre
- Centre d'immunologie de Marseille-Luminy, France
| |
Collapse
|
20
|
Honey K, Duff M, Beers C, Brissette WH, Elliott EA, Peters C, Maric M, Cresswell P, Rudensky A. Cathepsin S regulates the expression of cathepsin L and the turnover of gamma-interferon-inducible lysosomal thiol reductase in B lymphocytes. J Biol Chem 2001; 276:22573-8. [PMID: 11306582 DOI: 10.1074/jbc.m101851200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Loading of antigenic peptide fragments on major histocompatibility complex class II molecules is essential for generation of CD4(+) T cell responses and occurs after cathepsin-mediated degradation of the invariant chain chaperone molecule. Cathepsins are expressed differentially in antigen presenting cells, and mice deficient in cathepsin S or cathepsin L exhibit severely impaired antigen presentation in peripheral lymphoid organs and the thymus, respectively. To determine whether these defects are due solely to the block in invariant chain cleavage, we used cathepsin-deficient B cells to examine the role of cathepsins S and B in the degradation of other molecules important in the class II presentation pathway. Our data indicate that neither cathepsin S nor B is critical for H-2M degradation or processing of precursor gamma-interferon-inducible lysosomal thiol reductase (GILT) to a mature thiol reductase, but suggest a role for cathepsin S in the turnover of mature GILT and in regulating levels of mature cathepsin L protein in B cells. Despite the presence of mature cathepsin L protein, no enzyme activity could be detected in B cells or dendritic cells. These experiments suggest a novel mechanism by which these functionally important enzymes may be regulated.
Collapse
Affiliation(s)
- K Honey
- Department of Immunology and the Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zavasnik-Bergant V, Sekirnik A, Golouh R, Turk V, Kos J. Immunochemical localisation of cathepsin S, cathepsin L and MHC class II-associated p41 isoform of invariant chain in human lymph node tissue. Biol Chem 2001; 382:799-804. [PMID: 11517933 DOI: 10.1515/bc.2001.096] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Antigen presentation by MHC class II molecules requires cysteine proteases (CP) for two convergent proteolytic processes: stepwise degradation of the invariant chain (Ii) and generation of immunogenic peptides. Their activity is controlled by intracellular CP inhibitors, including presumably the p41 isoform of invariant chain (p41 Ii), which is in vitro a potent inhibitor of cathepsin L but not of cathepsin S. In order to evaluate the inhibitory potential of p41 Ii in antigen-presenting cells (APC), these three proteins were stained in lymph node tissue using specific monoclonal and polyclonal antibodies. The most abundant labelling was observed in subcapsular (cortical) and trabecular sinuses of the lymph node. In this area the most frequent APC were macrophages, as confirmed by the CD68 cell marker. Using confocal fluorescence microscopy, co-localisation of p41 Ii with cathepsin S, but not with cathepsin L was found in these cells. Our results are consistent with the hypothesis that cathepsin S participates in degradation of the invariant chain, but they do not support the association between cathepsin L and p41 Ii in APC.
Collapse
Affiliation(s)
- V Zavasnik-Bergant
- Department of Biochemistry and Molecular Biology, Jozef Stefan Institute, Jamova, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
22
|
Bikoff EK, Wutz G, Kenty GA, Koonce CH, Robertson EJ. Relaxed DM requirements during class II peptide loading and CD4+ T cell maturation in BALB/c mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:5087-98. [PMID: 11290790 DOI: 10.4049/jimmunol.166.8.5087] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Current ideas about DM actions have been strongly influenced by studies of mutant strains expressing the H-2(b) haplotype. To evaluate DM contributions to class II activities in BALB/c mice, we generated a novel mutation at the DMa locus via embryonic stem cell technology. Unlike long-lived A(b)/class II-associated invariant chain-derived peptide (CLIP) complexes, mature A(d) and E(d) molecules are loosely occupied by class II-associated invariant chain-derived peptide and are SDS unstable. BALB/c DM mutants weakly express BP107 conformational epitopes and toxic shock syndrome toxin-1 superantigen-binding capabilities, consistent with partial occupancy by wild-type ligands. Near normal numbers of mature CD4(+) T cells fail to undergo superantigen-mediated negative selection, as judged by TCR Vbeta usage. Ag presentation assays reveal consistent differences for A(d)- and E(d)-restricted T cells. Indeed, the mutation leads to decreased peptide capture by A(d) molecules, and in striking contrast causes enhanced peptide loading by E(d) molecules. Thus, DM requirements differ for class II structural variants coexpressed under physiological conditions in the intact animal.
Collapse
MESH Headings
- Alleles
- Animals
- Antigen Presentation/genetics
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line
- Clone Cells
- Crosses, Genetic
- Dimerization
- Female
- Gene Targeting
- Haplotypes
- Histocompatibility Antigens Class II/chemistry
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Lymphocyte Activation/genetics
- Male
- Mice
- Mice, Inbred BALB C/genetics
- Mice, Inbred BALB C/immunology
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Knockout
- Peptides/genetics
- Peptides/immunology
- Peptides/metabolism
- Protein Conformation
- Sequence Deletion
- Sodium Dodecyl Sulfate
Collapse
Affiliation(s)
- E K Bikoff
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | |
Collapse
|
23
|
Abstract
Proteolysis generates the peptides that bind to class II MHC molecules and, by destruction of the invariant chain, prepares the class II MHC molecule for capture of those peptides. A clearer picture is emerging of the proteases, protease inhibitors and other factors that together control the environment for class II MHC peptide loading. However, the details of invariant-chain processing and antigen processing may differ depending on the allele of class II and the antigen substrate under consideration.
Collapse
Affiliation(s)
- C Watts
- Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
24
|
Abstract
Dendritic cells are the most efficient antigen-presenting cells. They take up antigens and pathogens, generate MHC-peptide complexes, migrate from the sites of antigen acquisition to secondary lymphoid organs and, finally, they physically interact with and stimulate T lymphocytes. Indeed, dendritic cells are the only antigen-presenting cells that induce the activation of resting T cells, both in vitro and in vivo. Thus, dendritic cells initiate adaptive immune responses and determine tolerance. To do so, dendritic cells have developed unique membrane transport pathways. The molecular mechanisms responsible for the control of antigen uptake and processing, for the generation of MHC-peptide complexes and for their transport to the cell surface have been partially unraveled in the past two years.
Collapse
Affiliation(s)
- C Théry
- U520 Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Curie, Section Recherche, 12 Rue Lhomond, 75005 Paris, France.
| | | |
Collapse
|