1
|
Nagata Y, Suzuki R. FcεRI: A Master Regulator of Mast Cell Functions. Cells 2022; 11:cells11040622. [PMID: 35203273 PMCID: PMC8870323 DOI: 10.3390/cells11040622] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Mast cells (MCs) perform multiple functions thought to underlie different manifestations of allergies. Various aspects of antigens (Ags) and their interactions with immunoglobulin E (IgE) cause diverse responses in MCs. FcεRI, a high-affinity IgE receptor, deciphers the Ag–IgE interaction and drives allergic responses. FcεRI clustering is essential for signal transduction and, therefore, determines the quality of MC responses. Ag properties precisely regulate FcεRI dynamics, which consequently initiates differential outcomes by switching the intracellular-signaling pathway, suggesting that Ag properties can control MC responses, both qualitatively and quantitatively. Thus, the therapeutic benefits of FcεRI-targeting strategies have long been examined. Disrupting IgE–FcεRI interactions is a potential therapeutic strategy because the binding affinity between IgE and FcεRI is extremely high. Specifically, FcεRI desensitization, due to internalization, is also a potential therapeutic target that is involved in the mechanisms of allergen-specific immunotherapy. Several recent findings have suggested that silent internalization is strongly associated with FcεRI dynamics. A comprehensive understanding of the role of FcεRI may lead to the development of novel therapies for allergies. Here, we review the qualitatively diverse responses of MCs that impact the attenuation/development of allergies with a focus on the role of FcεRI toward Ag exposure.
Collapse
|
2
|
Tanaka S, Furuta K. Roles of IgE and Histamine in Mast Cell Maturation. Cells 2021; 10:cells10082170. [PMID: 34440939 PMCID: PMC8392195 DOI: 10.3390/cells10082170] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Mast cells are activated upon immunoglobulin E (IgE)-mediated antigen stimulation, and release a wide variety of mediators, including histamine to trigger inflammatory responses. The surface expression levels of Fcε receptor I (FcεRI), a high affinity receptor of IgE, were found to be positively regulated by IgE. IgE could protect murine cultured mast cells from apoptotic cell death induced by the deprivation of interleukin-3 and a certain kind of IgE could activate immature mast cells in the absence of antigens, leading to the release of pro-inflammatory cytokines and a transient increase in histamine synthesis. Histamine synthesis in mast cells was found to be required for the maturation of murine connective tissue-type mast cells, raising the possibility that IgE indirectly modulates local mast cell maturation. Although it remains controversial to what extent this concept of "monomeric IgE effects" could have relevance in the modulation of human mast cell functions, the therapeutic effects of anti-IgE antibodies might be accounted for in terms of the decreased serum IgE concentrations. Because drastic increases in serum IgE concentrations are often observed in patients with atopic dermatitis and chronic urticaria, a close investigation of the roles of IgE in mast cell maturation should contribute to development of novel therapeutic approaches for these inflammatory diseases.
Collapse
Affiliation(s)
- Satoshi Tanaka
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Misasagi Nakauchi-cho 5, Yamashina-ku, Kyoto 607-8414, Japan
- Correspondence: ; Tel.: +81-75-595-4667
| | - Kazuyuki Furuta
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan;
| |
Collapse
|
3
|
Kanagaratham C, El Ansari YS, Lewis OL, Oettgen HC. IgE and IgG Antibodies as Regulators of Mast Cell and Basophil Functions in Food Allergy. Front Immunol 2020; 11:603050. [PMID: 33362785 PMCID: PMC7759531 DOI: 10.3389/fimmu.2020.603050] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Food allergy is a major health issue, affecting the lives of 8% of U.S. children and their families. There is an urgent need to identify the environmental and endogenous signals that induce and sustain allergic responses to ingested allergens. Acute reactions to foods are triggered by the activation of mast cells and basophils, both of which release inflammatory mediators that lead to a range of clinical manifestations, including gastrointestinal, cutaneous, and respiratory reactions as well as systemic anaphylaxis. Both of these innate effector cell types express the high affinity IgE receptor, FcϵRI, on their surface and are armed for adaptive antigen recognition by very-tightly bound IgE antibodies which, when cross-linked by polyvalent allergen, trigger degranulation. These cells also express inhibitory receptors, including the IgG Fc receptor, FcγRIIb, that suppress their IgE-mediated activation. Recent studies have shown that natural resolution of food allergies is associated with increasing food-specific IgG levels. Furthermore, oral immunotherapy, the sequential administration of incrementally increasing doses of food allergen, is accompanied by the strong induction of allergen-specific IgG antibodies in both human subjects and murine models. These can deliver inhibitory signals via FcγRIIb that block IgE-induced immediate food reactions. In addition to their role in mediating immediate hypersensitivity reactions, mast cells and basophils serve separate but critical functions as adjuvants for type 2 immunity in food allergy. Mast cells and basophils, activated by IgE, are key sources of IL-4 that tilts the immune balance away from tolerance and towards type 2 immunity by promoting the induction of Th2 cells along with the innate effectors of type 2 immunity, ILC2s, while suppressing the development of regulatory T cells and driving their subversion to a pathogenic pro-Th2 phenotype. This adjuvant effect of mast cells and basophils is suppressed when inhibitory signals are delivered by IgG antibodies signaling via FcγRIIb. This review summarizes current understanding of the immunoregulatory effects of mast cells and basophils and how these functions are modulated by IgE and IgG antibodies. Understanding these pathways could provide important insights into innovative strategies for preventing and/or reversing food allergy in patients.
Collapse
Affiliation(s)
- Cynthia Kanagaratham
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Yasmeen S. El Ansari
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Owen L. Lewis
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Hans C. Oettgen
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Natsume C, Aoki N, Aoyama T, Senda K, Matsui M, Ikegami A, Tanaka K, Azuma YT, Fujita T. Fucoxanthin Ameliorates Atopic Dermatitis Symptoms by Regulating Keratinocytes and Regulatory Innate Lymphoid Cells. Int J Mol Sci 2020; 21:ijms21062180. [PMID: 32235696 PMCID: PMC7139773 DOI: 10.3390/ijms21062180] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/14/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Fucoxanthin (FX) is a xanthophyll that is contained abundantly in marine plants. The biological action of FX includes its antioxidant and anti-lipogenic activities, while the precise action of its mechanisms on skin cells has not yet been clarified. The current study examined the effect of FX in comparison with tacrolimus (TAC) on NC/Nga mice, which are an atopic dermatitis (AD) model. FX topical treatment dramatically ameliorated itching behavior over the TAC treatment, which was insufficient for improvement of AD symptoms. In Nc/Nga mice, FX or TAC applied to the skin inhibited eosinophil infiltration with decreased expression of Il-33. FX also stimulated Il-2, Il-5, Il-13, Il-10, and TGF-β expression levels, and Sca1+Il-10+TGF-β+ regulatory innate lymphoid cells (ILCreg) were dominantly observed in FX treated skin epidermal keratinocytes and dermal layers. This combined evidence demonstrated that FX exerts anti-inflammatory effects on keratinocytes and ameliorates AD symptoms by regulating ILCreg to normalize immune responses in an atopic dermatitis model.
Collapse
Affiliation(s)
- Chika Natsume
- Molecular Toxicology Lab., Ritsumeikan University, Shiga 525-8577, Japan; (C.N.); (N.A.); (T.A.); (K.S.); (M.M.); (A.I.); (K.T.)
| | - Nao Aoki
- Molecular Toxicology Lab., Ritsumeikan University, Shiga 525-8577, Japan; (C.N.); (N.A.); (T.A.); (K.S.); (M.M.); (A.I.); (K.T.)
| | - Tomoko Aoyama
- Molecular Toxicology Lab., Ritsumeikan University, Shiga 525-8577, Japan; (C.N.); (N.A.); (T.A.); (K.S.); (M.M.); (A.I.); (K.T.)
| | - Keisuke Senda
- Molecular Toxicology Lab., Ritsumeikan University, Shiga 525-8577, Japan; (C.N.); (N.A.); (T.A.); (K.S.); (M.M.); (A.I.); (K.T.)
| | - Mio Matsui
- Molecular Toxicology Lab., Ritsumeikan University, Shiga 525-8577, Japan; (C.N.); (N.A.); (T.A.); (K.S.); (M.M.); (A.I.); (K.T.)
| | - Airi Ikegami
- Molecular Toxicology Lab., Ritsumeikan University, Shiga 525-8577, Japan; (C.N.); (N.A.); (T.A.); (K.S.); (M.M.); (A.I.); (K.T.)
| | - Kosuke Tanaka
- Molecular Toxicology Lab., Ritsumeikan University, Shiga 525-8577, Japan; (C.N.); (N.A.); (T.A.); (K.S.); (M.M.); (A.I.); (K.T.)
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University, Graduate School of Life and Environmental Science, Izumisano, Osaka 598-8531, Japan;
| | - Takashi Fujita
- Molecular Toxicology Lab., Ritsumeikan University, Shiga 525-8577, Japan; (C.N.); (N.A.); (T.A.); (K.S.); (M.M.); (A.I.); (K.T.)
- Correspondence: ; Tel.: +81-77-561-2848
| |
Collapse
|
5
|
Kakinoki A, Kameo T, Yamashita S, Furuta K, Tanaka S. Establishment and Characterization of a Murine Mucosal Mast Cell Culture Model. Int J Mol Sci 2019; 21:ijms21010236. [PMID: 31905768 PMCID: PMC6982154 DOI: 10.3390/ijms21010236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 01/08/2023] Open
Abstract
Accumulating evidence suggests that mast cells play critical roles in disruption and maintenance of intestinal homeostasis, although it remains unknown how they affect the local microenvironment. Interleukin-9 (IL-9) was found to play critical roles in intestinal mast cell accumulation induced in various pathological conditions, such as parasite infection and oral allergen-induced anaphylaxis. Newly recruited intestinal mast cells trigger inflammatory responses and damage epithelial integrity through release of a wide variety of mediators including mast cell proteases. We established a novel culture model (IL-9-modified mast cells, MCs/IL-9), in which murine IL-3-dependent bone-marrow-derived cultured mast cells (BMMCs) were further cultured in the presence of stem cell factor and IL-9. In MCs/IL-9, drastic upregulation of Mcpt1 and Mcpt2 was found. Although histamine storage and tryptase activity were significantly downregulated in the presence of SCF and IL-9, this was entirely reversed when mast cells were cocultured with a murine fibroblastic cell line, Swiss 3T3. MCs/IL-9 underwent degranulation upon IgE-mediated antigen stimulation, which was found to less sensitive to lower concentrations of IgE in comparison with BMMCs. This model might be useful for investigation of the spatiotemporal changes of newly recruited intestinal mast cells.
Collapse
Affiliation(s)
- Aya Kakinoki
- Department of Immunobiology, Faculty of Pharmacy and Pharmaceutical Sciences, Okayama University, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Tsuyoshi Kameo
- Department of Immunobiology, Faculty of Pharmacy and Pharmaceutical Sciences, Okayama University, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Shoko Yamashita
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan (K.F.)
| | - Kazuyuki Furuta
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan (K.F.)
| | - Satoshi Tanaka
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Misasagi Nakauchi-cho 5, Yamashina-ku, Kyoto 607-8414, Japan
- Correspondence: ; Tel.: +81-75-595-4667
| |
Collapse
|
6
|
Hirasawa N. Expression of Histidine Decarboxylase and Its Roles in Inflammation. Int J Mol Sci 2019; 20:ijms20020376. [PMID: 30654600 PMCID: PMC6359378 DOI: 10.3390/ijms20020376] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/04/2019] [Accepted: 01/10/2019] [Indexed: 12/26/2022] Open
Abstract
Histamine is a well-known mediator of inflammation that is released from mast cells and basophils. To date, many studies using histamine receptor antagonists have shown that histamine acts through four types of receptors: H1, H2, H3, and H4. Thus, histamine plays more roles in various diseases than had been predicted. However, our knowledge about histamine-producing cells and the molecular mechanisms underlying histamine production at inflammatory sites is still incomplete. The histamine producing enzyme, histidine decarboxylase (HDC), is commonly induced at inflammatory sites during the late and chronic phases of both allergic and non-allergic inflammation. Thus, histamine levels in tissues are maintained at effective concentrations for hours, enabling the regulation of various functions through the production of cytokines/chemokines/growth factors. Understanding the regulation of histamine production will allow the development of a new strategy of using histamine antagonists to treat inflammatory diseases.
Collapse
Affiliation(s)
- Noriyasu Hirasawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
7
|
Han NR, Moon PD, Ryu KJ, Jang JB, Kim HM, Jeong HJ. β-eudesmol suppresses allergic reactions via inhibiting mast cell degranulation. Clin Exp Pharmacol Physiol 2017; 44:257-265. [PMID: 27862161 DOI: 10.1111/1440-1681.12698] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 12/16/2022]
Abstract
The regulatory effect of β-eudesmol, which is an active constituent of Pyeongwee-San (KMP6), is evaluated for allergic reactions induced by mast cell degranulation. Phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore A23187-stimulated human mast cell line, HMC-1 cells, and compound 48/80-stimulated rat peritoneal mast cells (RPMCs) are used as the in vitro models; mice models of systemic anaphylaxis, ear swelling, and IgE-dependent passive cutaneous anaphylaxis (PCA) are used as the in vivo allergic models. The results demonstrate that β-eudesmol suppressed the histamine and tryptase releases from the PMA plus calcium ionophore A23187-stimulated HMC-1 cells. β-eudesmol inhibits the expression and activity of histidine decarboxylase in the activated HMC-1 cells. In addition, β-eudesmol inhibits the levels of histamine and tryptase released from the compound 48/80-stimulated RPMCs. Furthermore, β-eudesmol decreases the intracellular calcium level in the activated RPMCs. β-eudesmol also decreases the compound 48/80-induced mortality and ear swelling response. β-eudesmol suppresses the serum levels of histamine, IgE, interleukin (IL)-1β, IL-4, IL-5, IL-6, IL-13, and vascular endothelial growth factor (VEGF) under PCA mice as well as PCA reactions. Therefore, the results from this study indicate the potential of β-eudesmol as an anti-allergic drug with respect to its pharmacological properties against mast cell-mediated allergic reactions.
Collapse
Affiliation(s)
- Na-Ra Han
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Phil-Dong Moon
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Ka-Jung Ryu
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jae-Bum Jang
- Department of Pharmaceutical Engineering and Inflammatory Disease Research Centre, Hoseo University, Asan, Chungnam, Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Hyun-Ja Jeong
- Department of Food Science & Technology and Research Institute for Basic Science, Hoseo University, Asan, Chungnam, Korea
| |
Collapse
|
8
|
Oettgen HC. Fifty years later: Emerging functions of IgE antibodies in host defense, immune regulation, and allergic diseases. J Allergy Clin Immunol 2017; 137:1631-1645. [PMID: 27263999 DOI: 10.1016/j.jaci.2016.04.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 04/22/2016] [Accepted: 04/22/2016] [Indexed: 01/15/2023]
Abstract
Fifty years ago, after a long search, IgE emerged as the circulating factor responsible for triggering allergic reactions. Its extremely low concentration in plasma created significant hurdles for scientists working to reveal its identity. We now know that IgE levels are invariably increased in patients affected by atopic conditions and that IgE provides the critical link between the antigen recognition role of the adaptive immune system and the effector functions of mast cells and basophils at mucosal and cutaneous sites of environmental exposure. This review discusses the established mechanisms of action of IgE in pathologic immediate hypersensitivity, as well as its multifaceted roles in protective immunity, control of mast cell homeostasis, and its more recently revealed immunomodulatory functions.
Collapse
Affiliation(s)
- Hans C Oettgen
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
9
|
Manabe Y, Yoshimura M, Sakamaki K, Inoue A, Kakinoki A, Hokari S, Sakanaka M, Aoki J, Miyachi H, Furuta K, Tanaka S. 1-Fluoro-2,4-dinitrobenzene and its derivatives act as secretagogues on rodent mast cells. Eur J Immunol 2016; 47:60-67. [PMID: 27748951 DOI: 10.1002/eji.201646536] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/06/2016] [Accepted: 10/12/2016] [Indexed: 12/21/2022]
Abstract
Accumulating evidence suggests that activated mast cells are involved in contact hypersensitivity, although the precise mechanisms of their activation are still not completely understood. We investigated the potential of common experimental allergens to induce mast cell activation using murine bone marrow-derived cultured mast cells and rat peritoneal mast cells. Among these allergens, 1-chloro-2,4-dinitrobenzene and 1-fluoro-2,4-dinirobenzene (DNFB) were found to induce degranulation of rat peritoneal mast cells. DNFB-induced degranulation is accompanied by cytosolic Ca2+ mobilization and is significantly inhibited by pertussis toxin, U73122 (a phospholipase C inhibitor), and BAPTA (a Ca2+ chelator), raising the possibility that DNFB acts on the G protein-coupled receptors and activates Gi , which induces activation of phospholipase C, as well as known mast cell secretagogues, such as compound 48/80. DNFB could induce mast cell degranulation in the absence of serum proteins and IgE. Structure-activity relationship analyses revealed an inverse correlation between the degree of degranulation and the electron density of the C1 carbon of the DNFB derivatives. These findings raise a possibility that DNFB functions as a potent contact allergen through induction of cutaneous mast cell degranulation.
Collapse
Affiliation(s)
- Yohei Manabe
- Department of Immunobiology, Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Marie Yoshimura
- Department of Immunobiology, Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuma Sakamaki
- Department of Immunobiology, Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Asuka Inoue
- Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Aya Kakinoki
- Department of Immunobiology, Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Hokari
- Department of Immunobiology, Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Mariko Sakanaka
- Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo, Japan
| | - Junken Aoki
- Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Hiroyuki Miyachi
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazuyuki Furuta
- Department of Immunobiology, Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Tanaka
- Department of Immunobiology, Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
10
|
Sakanaka M, Kurimune Y, Yamada K, Hyodo N, Natsuhara M, Ichikawa A, Furuta K, Tanaka S. Down-modulation of antigen-induced activation of murine cultured mast cells sensitized with a highly cytokinergic IgE clone. Immunol Lett 2016; 174:1-8. [PMID: 27060497 DOI: 10.1016/j.imlet.2016.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 01/18/2023]
Abstract
Accumulating evidence suggests that several IgE clones can activate mast cells during the sensitization phase even in the absence of antigen. They were found to induce pro-inflammatory cytokine release, histamine synthesis, chemotaxis, adhesion, and accelerated maturation of mast cells, although it remains unknown whether antigen-induced responses can be affected by differences of IgE clones. We compared two IgE clones, which were different in the capacity to activate mast cells during sensitization, in terms of potentials to affect antigen-induced degranulation and cytokine releases using IL-3-dependent murine bone marrow-derived cultured mast cells (BMMCs). Antigen-induced degranulation and pro-inflammatory cytokine release were augmented, when BMMCs were sensitized with elevated concentrations of a clone IgE-3, which did not induce phosphorylation of JNK and cytokine release in the absence of antigen, whereas those were significantly rather decreased, when BMMCs were sensitized with elevated concentrations of a clone SPE-7, one of the most potent cytokinergic IgE clones, which intensively induced phosphorylation of JNK. This attenuated response with SPE-7 was accompanied by decreased tyrosine phosphorylation of the cellular proteins including Syk upon antigen stimulation. SP600125, which is known to inhibit JNK, restored the levels of antigen-induced degranulation and phosphorylation of Syk in BMMCs sensitized with higher concentrations of a clone SPE-7 when it was added before sensitization. Treatment with anisomycin, a potent activator of JNK, before IgE sensitization significantly suppressed antigen-induced degranulation. These findings suggest that differences of sensitizing IgE clones can affect antigen-induced responses and activation of JNK during sensitization might suppress antigen-induced activation of mast cells.
Collapse
Affiliation(s)
- Mariko Sakanaka
- Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Yuki Kurimune
- Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Keiko Yamada
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Nao Hyodo
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Mayuko Natsuhara
- Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Atsushi Ichikawa
- Institute for Biosciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Kazuyuki Furuta
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Satoshi Tanaka
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
11
|
Hallgren J, Gurish MF. Granule maturation in mast cells: histamine in control. Eur J Immunol 2014; 44:33-6. [PMID: 24319003 DOI: 10.1002/eji.201344262] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 11/22/2013] [Accepted: 12/05/2013] [Indexed: 01/05/2023]
Abstract
Mast cells are derived from committed progenitors that originate in the BM. They mature into histochemically distinguishable, metachromatic mast cells containing numerous cytoplasmic secretory granules. Accumulating evidence demonstrates that mast cell granule maturation is very tightly regulated by many factors including different granule components such as proteoglycans. In this issue of the European Journal of Immunology, Nakazawa et al. [Eur. J. Immunol. 2014. 44: 204-214] highlight a role for mast cell derived histamine as another factor critical for mast cell maturation. Using histidine decarboxylase (HDC) deficient mice that are unable to make histamine, they show poorly formed secretory granules and decreased secretory granule protease expression in peritoneal mast cells. Co-culturing BM-derived mast cells with fibroblasts normally drives granule maturation, but HDC-deficient BM-derived mast cells fail to do so. Exogenously provided histamine partly restores granule differentiation as evidenced by increased tryptase and chymase activity, and this is histamine receptor type H4 -dependent. However, H4 -deficient mice have intact granule formation in peritoneal mast cells, suggesting that when HDC is functional, the intrinsic histamine production is sufficient for most granule maturation processes and H4 is dispensable. This study highlights the role of histamine in the regulation of mast cell maturation, although the cytosolic target remains unknown.
Collapse
Affiliation(s)
- Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
12
|
Morimoto K, Shirata N, Taketomi Y, Tsuchiya S, Segi-Nishida E, Inazumi T, Kabashima K, Tanaka S, Murakami M, Narumiya S, Sugimoto Y. Prostaglandin E2–EP3 Signaling Induces Inflammatory Swelling by Mast Cell Activation. THE JOURNAL OF IMMUNOLOGY 2013; 192:1130-7. [DOI: 10.4049/jimmunol.1300290] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Słodka A, Wiktorska M, Brzezińska-Błaszczyk E. IgE by Itself Affects Mature Rat Mast Cell Preformed and De Novo-Synthesized Mediator Release and Amplifies Mast Cell Migratory Response. PLoS One 2013; 8:e79286. [PMID: 24205379 PMCID: PMC3813586 DOI: 10.1371/journal.pone.0079286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/24/2013] [Indexed: 11/18/2022] Open
Abstract
Background Immunoglobulin E (IgE) binds to high affinity receptor FcεRI numerously expressed on mast cells. Recent findings have revealed that IgE by itself may regulate various aspects of mast cell biology, however, detailed data is still limited. Methodology/Findings Here, we have examined the influence of IgE alone, used at different concentrations, on mast cell activity and releasability. For the study we have employed in vivo differentiated mature tissue mast cells isolated from rat peritoneal cavity. Mast cells were exposed to IgE alone and then the release of preformed and de novo-synthesized mediators, surface FcεRI expression and mast cell migratory response were assessed. IgE by itself was found to up-regulate FcεRI expression and activate mast cells to degranulation, as well as de novo synthesis and release of cysteinyl leukotrienes and TNF. We have provided evidence that IgE alone also amplified spontaneous and CCL5- or TNF-induced migration of mast cells. Importantly, IgE was effective only at concentrations ≥ 3 µg/mL. A molecular basis investigation using an array of specific inhibitors showed that Src kinases, PLC/PLA2, MAP kinases (ERK and p38) and PI3K were entirely or partially involved in IgE-induced mast cell response. Furthermore, IgE alone stimulated the phosphorylation of MAP kinases and PI3K in rat mast cells. Conclusion Our results clearly demonstrated that IgE by itself, at higher concentrations, influences mast cell activity and releasability. As there are different conditions when the IgE level is raised it might be supposed that in vivo IgE is one of the important factors modulating mast cell biology within tissues.
Collapse
Affiliation(s)
- Aleksandra Słodka
- Department of Experimental Immunology, Medical University of Łódź, Łódź, Poland
| | - Magdalena Wiktorska
- Department of Molecular and Medical Biophysics, Medical University of Łódź, Łódź, Poland
| | | |
Collapse
|
14
|
Nakazawa S, Sakanaka M, Furuta K, Natsuhara M, Takano H, Tsuchiya S, Okuno Y, Ohtsu H, Nishibori M, Thurmond RL, Hirasawa N, Nakayama K, Ichikawa A, Sugimoto Y, Tanaka S. Histamine synthesis is required for granule maturation in murine mast cells. Eur J Immunol 2013; 44:204-14. [PMID: 24002822 DOI: 10.1002/eji.201343838] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/01/2013] [Accepted: 08/29/2013] [Indexed: 02/01/2023]
Abstract
Mast cells are the major sources of histamine, which is released in response to immunological stimulations. The synthesis of histamine is catalyzed by histidine decarboxylase (HDC). Previous studies have shown that Hdc(-/-) mast cells exhibit aberrant granule morphology with severely decreased granule content. Here, we investigated whether the histamine synthesized in mast cells regulates the granule maturation of murine mast cells. Several genes, including those encoding granule proteases and enzymes involved in heparin biosynthesis, were downregulated in Hdc(-/-) peritoneal mast cells. Impaired granule maturation was also found in Hdc(-/-) BM-derived cultured mast cells when they were cocultured with fibroblasts in the presence of c-kit ligand. Exogenous application of histamine and several H4 receptor agonists restored the granule maturation of Hdc(-/-) cultured mast cells. However, the maturation of granules was largely normal in Hrh4(-/-) peritoneal mast cells. Depletion of cellular histamine with tetrabenazine, an inhibitor of vesicular monoamine transporter-2, did not affect granule maturation. In vivo experiments with mast cell deficient Kit(W) /Kit(W-v) mice indicated that the expression of the Hdc gene in mast cells is required for granule maturation. These results suggest that histamine promotes granule maturation in mast cells and acts as an proinflammatory mediator.
Collapse
Affiliation(s)
- Shunsuke Nakazawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kawakami T, Kashiwakura JI, Kawakami Y. Histamine-releasing factor and immunoglobulins in asthma and allergy. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2013; 6:6-12. [PMID: 24404387 PMCID: PMC3881402 DOI: 10.4168/aair.2014.6.1.6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/27/2012] [Accepted: 01/15/2013] [Indexed: 01/24/2023]
Abstract
Factors that can induce the release of histamine from basophils have been studied for more than 30 years. A protein termed histamine-releasing factor (HRF) was purified and molecularly cloned in 1995. HRF can stimulate histamine release and IL-4 and IL-13 production from IgE-sensitized basophils and mast cells. HRF-like activities were found in bodily fluids during the late phase of allergic reactions, implicating HRF in allergic diseases. However, definitive evidence for the role of HRF in allergic diseases has remained elusive. On the other hand, we found effects of monomeric IgE on the survival and activation of mast cells without the involvement of a specific antigen, as well as heterogeneity of IgEs in their ability to cause such effects. The latter property of IgE molecules seemed to be similar to the heterogeneity of IgEs in their ability to prime basophils in response to HRF. This similarity led to our recent finding that ~30% of IgE molecules can bind to HRF via their Fab interactions with two binding sites within the HRF molecule. The use of peptide inhibitors that block HRF-IgE interactions revealed an essential role of HRF to promote skin hypersensitivity and airway inflammation. This review summarizes this and more recent findings and provides a perspective on how they impact our understanding of allergy pathogenesis and potentially change the treatment of allergic diseases.
Collapse
Affiliation(s)
- Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA. ; Laboratory of Allergic Disease, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama, Kanagawa, Japan
| | - Jun-Ichi Kashiwakura
- Laboratory of Allergic Disease, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama, Kanagawa, Japan
| | - Yuko Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| |
Collapse
|
16
|
Kashiwakura JI, Okayama Y, Furue M, Kabashima K, Shimada S, Ra C, Siraganian RP, Kawakami Y, Kawakami T. Most Highly Cytokinergic IgEs Have Polyreactivity to Autoantigens. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2012; 4:332-40. [PMID: 23115729 PMCID: PMC3479226 DOI: 10.4168/aair.2012.4.6.332] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/13/2012] [Accepted: 05/02/2012] [Indexed: 12/02/2022]
Abstract
Purpose Monomeric IgE molecules, when bound to the high-affinity receptor, exhibit a vast heterogeneity in their ability to induce survival promotion and cytokine production in mast cells. At one end of this spectrum, highly cytokinergic (HC) IgEs can induce potent survival promotion, degranulation, cytokine production, migration, etc., whereas at the other end, poorly cytokinergic (PC) IgEs can do so inefficiently. In this study, we investigated whether IgEs recognize autoantigens and whether IgEs' binding of autoantigens correlates with difference s in HC versus PC properties. Methods Enzyme-linked immunosorbent assays were performed to test whether IgEs bind antigens. Histamine-releasing factor in human sera was quantified by western blotting. Cultured mast cells derived from human cord blood were used to test the effects of human sera on cytokine production. Results Most (7/8) of mouse monoclonal HC IgEs exhibited polyreactivity to double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), β-galactosidase, thyroglobulin and/or histamine-releasing factor. By contrast, mouse PC IgEs failed to react with these antigens. A human monoclonal HC IgE also showed polyreactivity to histamine-releasing factor, dsDNA and ssDNA. Interestingly, sera from atopic dermatitis patients showed increased reactivity to ssDNA and β-galactosidase and increased levels of histamine-releasing factor. Some atopic dermatitis patients, but not healthy individuals, had substantial serum levels of HRF-reactive IgE. Sera from atopic dermatitis patients with high titers of DNA-reactive IgE could induce several fold more IL-8 secretion in human mast cells than sera from healthy individuals. Conclusions The results show that most HC, but not PC, IgEs exhibit polyreactivity to autoantigens, supporting the autoimmune mechanism in the pathogenesis of atopic dermatitis.
Collapse
Affiliation(s)
- Jun-Ichi Kashiwakura
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA. ; Division of Molecular Cell Immunology and Allergology, Advanced Medical Research Center, Nihon University Graduate School of Medical Science, Itabashi-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kashiwakura JI, Otani IM, Kawakami T. Monomeric IgE and mast cell development, survival and function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 716:29-46. [PMID: 21713650 DOI: 10.1007/978-1-4419-9533-9_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mast cells play a major role in allergy and anaphylaxis, as well as a protective role in immunity against bacteria and venoms (innate immunity) and T-cell activation (acquired immunity).1,2 It was long thought that two steps are essential to mast cell activation. The first step (sensitization) occurs when antigen-specific IgE binds to its high-affinity IgE receptor (FcεRI) expressed on the surface of mast cells. The second step occurs when antigen (Ag) or anti-IgE binds antigen-specific IgE antibodies bound to FcεRI present on the mast cell surface (this mode of stimulation hereafter referred to as IgE+Ag or IgE+anti-IgE stimulation, respectively).Conventional wisdom has been that monomeric IgE plays only an initial, passive role in mast cell activation. However, recent findings have shown that IgE binding to its receptor FcεRI can mediate mast cell activation events even in the absence of antigen (this mode of stimulation hereafter referred to as IgE(-Ag) stimulation). Different subtypes of monomeric IgEs act via IgE(-Ag) stimulation to elicit varied effects on mast cells function, survival and differentiation. This chapter will describe the role of monomeric IgE molecules in allergic reaction, the various effects and mechanisms of action of IgE(-Ag) stimulation on mast cells and what possible developments may arise from this knowledge in the future. Since mast cells are involved in a variety of pathologic and protective responses, understanding the role that monomeric IgE plays in mast cell function, survival and differentiation will hopefully lead to better understanding and treatment of asthma and other allergic diseases, as well as improved understanding of host response to infections.
Collapse
Affiliation(s)
- Jun-Ichi Kashiwakura
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | | |
Collapse
|
18
|
Walter M, Kottke T, Stark H. The histamine H₄ receptor: targeting inflammatory disorders. Eur J Pharmacol 2011; 668:1-5. [PMID: 21741967 DOI: 10.1016/j.ejphar.2011.06.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/07/2011] [Accepted: 06/15/2011] [Indexed: 01/14/2023]
Abstract
The discovery of the histamine H(4) receptor has added a new chapter to the century of extensive biogenic amine research. The human histamine H(4) receptor is mainly expressed in cells of the human immune system (e.g. mast cells, eosinophils, monocytes, dendritic cells, T cells) and mediates several effects on chemotaxis with numerous cell types. The distinct expression pattern and the immunomodulatory role highlight its physiological relevance in inflammatory and immunological processes. Inflammatory conditions, e.g. allergy, asthma and autoimmune diseases, were for a long time thought to be mainly mediated by activation of the histamine H(1) receptor subtype. However, in the treatment of diseases as chronic pruritus, asthma and allergic rhinitis the use of histamine H(1) receptor antagonists is unsatisfying. Selective H(4) receptor ligands and/or synergism of histamine H(1) and H(4) receptor modulation may be more effective in such pathophysiological conditions. Promising preclinical studies underline its role as an attractive target in the treatment of inflammatory and autoimmune disorders. Meanwhile, first histamine H(4) receptor antagonist has reached clinical phases for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Miriam Walter
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biocenter, ZAFES/LiFF/CMP/ICNF, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | | | | |
Collapse
|
19
|
Ichikawa A, Sugimoto Y, Tanaka S. Molecular biology of histidine decarboxylase and prostaglandin receptors. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:848-66. [PMID: 20948178 PMCID: PMC3037517 DOI: 10.2183/pjab.86.848] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Histamine and prostaglandins (PGs) play a variety of physiological roles as autacoids, which function in the vicinity of their sources and maintain local homeostasis in the body. They stimulate target cells by acting on their specific receptors, which are coupled to trimeric G proteins. For the precise understanding of the physiological roles of histamine and PGs, it is necessary to clarify the molecular mechanisms involved in their synthesis as well as their receptor-mediated responses. We cloned the cDNAs for mouse L-histidine decarboxylase (HDC) and 6 mouse prostanoid receptors (4 PGE(2) receptors, PGF receptor, and PGI receptor). We then characterized the expression patterns and functions of these genes. Furthermore, we established gene-targeted mouse strains for HDC and PG receptors to explore the novel pathophysiological roles of histamine and PGs. We have here summarized our research, which should contribute to progress in the molecular biology of HDC and PG receptors.
Collapse
MESH Headings
- Animals
- Cloning, Molecular
- DNA, Complementary/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Enzymologic
- Histamine/chemistry
- Histidine Decarboxylase/genetics
- Histidine Decarboxylase/metabolism
- Homeostasis
- Humans
- Mice
- Models, Biological
- Receptors, Prostaglandin/genetics
- Receptors, Prostaglandin/metabolism
- Receptors, Prostaglandin E, EP3 Subtype/genetics
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
Collapse
Affiliation(s)
- Atsushi Ichikawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| | | | | |
Collapse
|
20
|
Jutel M, Akdis M, Akdis CA. Histamine, histamine receptors and their role in immune pathology. Clin Exp Allergy 2009; 39:1786-800. [DOI: 10.1111/j.1365-2222.2009.03374.x] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Salinas E, Quintanar JL, Ramírez-Celis NA, Quintanar-Stephano A. Allergen-sensitization in vivo enhances mast cell-induced inflammatory responses and supports innate immunity. Immunol Lett 2009; 127:48-54. [DOI: 10.1016/j.imlet.2009.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 08/13/2009] [Accepted: 08/30/2009] [Indexed: 02/05/2023]
|
22
|
Takano H, Nakazawa S, Shirata N, Tamba S, Furuta K, Tsuchiya S, Morimoto K, Itano N, Irie A, Ichikawa A, Kimata K, Nakayama K, Sugimoto Y, Tanaka S. Involvement of CD44 in mast cell proliferation during terminal differentiation. J Transl Med 2009; 89:446-55. [PMID: 19204665 DOI: 10.1038/labinvest.2008.159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
By using the recently established culture system that reproduces the terminal differentiation process of connective tissue-type mast cells, we found significant transcriptional induction of CD44. As CD44 is a primary receptor for hyaluronan (HA), which is one of the major extracellular matrix components, we investigated the role of CD44 in cutaneous mast cells. When co-cultured with fibroblasts, mouse bone marrow-derived cultured mast cells (BMMCs) were found to form clusters in an HA-dependent manner. As compared with BMMCs derived from the wild-type mice, those from the CD44(-/-) mice exhibited impaired growth during the co-cultured period. Furthermore, in the peritoneal cavities and ear tissues, mature mast cells were fewer in number in the CD44(-/-) mice than in the wild-type mice. We investigated roles of CD44 in mast cell proliferation by reconstituting BMMCs into the tissues of mast cell-deficient, Kit(W)/Kit(W-v) mice, and found that the number of metachromatic cells upon acidic toluidine blue staining in the tissues transplanted with CD44(-/-) BMMCs was not significantly changed for 10 weeks, whereas that in the tissues transplanted with the CD44(+/+) BMMCs was significantly increased. These results suggest that CD44 plays a crucial role in the regulation of the cutaneous mast cell number.
Collapse
Affiliation(s)
- Hirotsugu Takano
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tsuchiya S, Tachida Y, Segi-Nishida E, Okuno Y, Tamba S, Tsujimoto G, Tanaka S, Sugimoto Y. Characterization of gene expression profiles for different types of mast cells pooled from mouse stomach subregions by an RNA amplification method. BMC Genomics 2009; 10:35. [PMID: 19154611 PMCID: PMC2639374 DOI: 10.1186/1471-2164-10-35] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 01/20/2009] [Indexed: 01/28/2023] Open
Abstract
Background Mast cells (MCs) play pivotal roles in allergy and innate immunity and consist of heterogenous subclasses. However, the molecular basis determining the different characteristics of these multiple MC subclasses remains unclear. Results To approach this, we developed a method of RNA extraction/amplification for intact in vivo MCs pooled from frozen tissue sections, which enabled us to obtain the global gene expression pattern of pooled MCs belonging to the same subclass. MCs were isolated from the submucosa (sMCs) and mucosa (mMCs) of mouse stomach sections, respectively, 15 cells were pooled, and their RNA was extracted, amplified and subjected to microarray analysis. Known marker genes specific for mMCs and sMCs showed expected expression trends, indicating accuracy of the analysis. We identified 1,272 genes showing significantly different expression levels between sMCs and mMCs, and classified them into clusters on the basis of similarity of their expression profiles compared with bone marrow-derived MCs, which are the cultured MCs with so-called 'immature' properties. Among them, we found that several key genes such as Notch4 had sMC-biased expression and Ptgr1 had mMC-biased expression. Furthermore, there is a difference in the expression of several genes including extracellular matrix protein components, adhesion molecules, and cytoskeletal proteins between the two MC subclasses, which may reflect functional adaptation of each MC to the mucosal or submucosal environment in the stomach. Conclusion By using the method of RNA amplification from pooled intact MCs, we characterized the distinct gene expression profiles of sMCs and mMCs in the mouse stomach. Our findings offer insight into possible unidentified properties specific for each MC subclass.
Collapse
Affiliation(s)
- Soken Tsuchiya
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Sly LM, Kalesnikoff J, Lam V, Wong D, Song C, Omeis S, Chan K, Lee CWK, Siraganian RP, Rivera J, Krystal G. IgE-induced mast cell survival requires the prolonged generation of reactive oxygen species. THE JOURNAL OF IMMUNOLOGY 2008; 181:3850-60. [PMID: 18768839 DOI: 10.4049/jimmunol.181.6.3850] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We show in this study that the ability of five different monomeric IgEs to enhance murine bone marrow-derived mast cell (BMMC) survival correlates with their ability to stimulate extracellular calcium (Ca(2+)) entry. However, whereas IgE+Ag more potently stimulates Ca(2+) entry, it does not enhance survival under our conditions. Exploring this further, we found that whereas all five monomeric IgEs stimulate a less robust Ca(2+) entry than IgE+Ag initially, they all trigger a more prolonged Ca(2+) influx, generation of reactive oxygen species (ROS), and ERK phosphorylation. These prolonged signaling events correlate with their survival-enhancing ability and positively feedback on each other to generate the prosurvival cytokine, IL-3. Interestingly, the prolonged ERK phosphorylation induced by IgE appears to be regulated by a MAPK phosphatase rather than MEK. IgE-induced ROS generation, unlike that triggered by IgE+Ag, is not mediated by 5-lipoxygenase. Moreover, ROS inhibitors, which block both IgE-induced ROS production and Ca(2+) influx, convert the prolonged ERK phosphorylation induced by IgE into the abbreviated phosphorylation pattern observed with IgE+Ag and prevent IL-3 generation. In support of the essential role that IgE-induced ROS plays in IgE-enhanced BMMC survival, we found the addition of H(2)O(2) to IgE+Ag-stimulated BMMCs leads to IL-3 secretion.
Collapse
Affiliation(s)
- Laura M Sly
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sakanaka M, Tanaka S, Sugimoto Y, Ichikawa A. Essential role of EP3 subtype in prostaglandin E2-induced adhesion of mouse cultured and peritoneal mast cells to the Arg-Gly-Asp-enriched matrix. Am J Physiol Cell Physiol 2008; 295:C1427-33. [DOI: 10.1152/ajpcell.00218.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Accumulating evidence has indicated that mast cells can modulate a wide variety of immune responses. Migration and adhesion play a critical role in regulation of tissue mast cell function, in particular, under inflammatory conditions. We previously demonstrated that prostaglandin (PG) E2 stimulates adhesion of a mouse mastocytoma cell line, P-815, to the Arg-Gly-Asp (RGD)-enriched matrix through cooperation between two PGE2 receptor subtypes: EP3 and EP4 (Hatae N, Kita A, Tanaka S, Sugimoto Y, Ichikawa A. J Biol Chem 278: 17977–17981, 2003). We here investigated PGE2-induced adhesion of IL-3-dependent bone marrow-derived cultured mast cells (BMMCs). In contrast to the elevated cAMP-dependent adhesion of P-815 cells, EP3-mediated Ca2+ mobilization plays a pivotal role in PGE2-induced adhesion of BMMCs. Adhesion and Ca2+ mobilization induced by PGE2 were abolished in the Ptger3−/− BMMCs and were significantly suppressed by treatment with pertussis toxin, a phospholipase C inhibitor, U-73122, and a store-operated Ca2+ channel inhibitor, SKF 36965, indicating the involvement of Gi-mediated Ca2+ influx. We then investigated PGE2-induced adhesion of peritoneal mast cells to the RGD-enriched matrix. EP3 subtype was found to be the dominant PGE receptor that expresses in mouse peritoneal mast cells. PGE2 induced adhesion of the peritoneal mast cells of the Ptger3+/+ mice, but not that of the Ptger3−/− mice. In rat peritoneal mast cells, PGE2 or an EP3 agonist stimulated both Ca2+ mobilization and adhesion to the RGD-enriched matrix. These results suggested that the EP3 subtype plays a pivotal role in PGE2-induced adhesion of murine mast cells to the RGD-enriched matrix through Ca2+ mobilization.
Collapse
|
26
|
Takano H, Nakazawa S, Okuno Y, Shirata N, Tsuchiya S, Kainoh T, Takamatsu S, Furuta K, Taketomi Y, Naito Y, Takematsu H, Kozutsumi Y, Tsujimoto G, Murakami M, Kudo I, Ichikawa A, Nakayama K, Sugimoto Y, Tanaka S. Establishment of the culture model system that reflects the process of terminal differentiation of connective tissue-type mast cells. FEBS Lett 2008; 582:1444-50. [DOI: 10.1016/j.febslet.2008.03.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/11/2008] [Accepted: 03/20/2008] [Indexed: 12/22/2022]
|
27
|
Kraft S, Kinet JP. New developments in FcepsilonRI regulation, function and inhibition. Nat Rev Immunol 2007; 7:365-78. [PMID: 17438574 DOI: 10.1038/nri2072] [Citation(s) in RCA: 428] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The high-affinity Fc receptor for IgE (FcepsilonRI), a multimeric immune receptor, is a crucial structure for IgE-mediated allergic reactions. In recent years, advances have been made in several important areas of the study of FcepsilonRI. The first area relates to FcepsilonRI-mediated biological responses that are antigen independent. The second area encompasses the biological relevance of the distinct signalling pathways that are activated by FcepsilonRI; and the third area relates to the accumulated evidence for the tight control of FcepsilonRI signalling through a broad array of inhibitory mechanisms, which are being developed into promising therapeutic approaches.
Collapse
Affiliation(s)
- Stefan Kraft
- Laboratory of Allergy and Immunology, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine 945, 71 Avenue Louis Pasteur, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
28
|
Chang TW, Wu PC, Hsu CL, Hung AF. Anti-IgE antibodies for the treatment of IgE-mediated allergic diseases. Adv Immunol 2007; 93:63-119. [PMID: 17383539 DOI: 10.1016/s0065-2776(06)93002-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The pharmacological purposes of the anti-IgE therapy are to neutralize IgE and to inhibit its production to attenuate type I hypersensitivity reactions. The therapy is based on humanized IgG1 antibodies that bind to free IgE and to membrane-bound IgE on B cells, but not to IgE bound by the high-affinity IgE.Fc receptors on basophils and mast cells or by the low-affinity IgE.Fc receptors on B cells. After nearly 20 years since inception, therapeutic anti-IgE antibodies (anti-IgE) have been studied in about 30 Phase II and III clinical trials in many allergy indications, and a lead antibody, omalizumab, has been approved for treating patients (12 years and older) with moderate-to-severe allergic asthma. Anti-IgE has confirmed the roles of IgE in the pathogenesis of asthma and helped define the concept "allergic asthma" in clinical practice. It has been shown to be safe and efficacious in treating pediatric allergic asthma and treating allergic rhinitis and is being investigated for treating peanut allergy, atopic dermatitis, latex allergy, and others. It has potential for use to combine with specific and rush immunotherapy for increased safety and efficacy. Anti-IgE thus appears to provide a prophylactic and therapeutic option for moderate to severe cases of many allergic diseases and conditions in which IgE plays a significant role. This chapter reviews the evolution of the anti-IgE concept and the clinical studies of anti-IgE on various disease indications, and presents a comprehensive analysis on the multiple intricate immunoregulatory pharmacological effects of anti-IgE. Finally, it reviews other approaches that target IgE or IgE-expressing B cells.
Collapse
Affiliation(s)
- Tse Wen Chang
- Genomics Research Center, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | | | |
Collapse
|
29
|
Deng X, Wu X, Yu Z, Arai I, Sasano T, Sugawara S, Endo Y. Inductions of histidine decarboxylase in mouse tissues following systemic antigen challenge: contributions made by mast cells, non-mast cells and IL-1. Int Arch Allergy Immunol 2007; 144:69-78. [PMID: 17505141 DOI: 10.1159/000102617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Accepted: 01/10/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Previous findings suggest that antigen challenge (AC) may induce histidine decarboxylase (HDC) in cells other than mast cells (MCs) via MC-derived IL-1. We examined this hypothesis. METHODS Mice were sensitized to ovalbumin. After the sensitization, an AC was delivered intravenously. RESULTS In control mice, AC markedly induced HDC at a postanaphylactic time in the liver, lung, spleen, and ears. In MC-deficient W/W(v) mice, AC also induced HDC, although the effect was weaker than in control mice. AC increased IL-1 in the tissues, the pattern being similar in W/W(v) and control mice. AC induced HDC similarly in IL-1-deficient and control mice. In control mice, AC decreased histamine in the tissues (except the liver) for several hours. CONCLUSION (1) AC induces HDC in both MC-dependent and MC-independent ways. (2) AC induces IL-1 mostly in non-MCs, but this IL-1 is not a prerequisite for the induction of HDC by AC. (3) HDC induction may contribute to the replenishment of the reduced pool of MC histamine in the anaphylactic period. (4) In the case of MC-dependent HDC induction, AC may stimulate MCs in such a way as to induce HDC within the MCs themselves, and/or AC-stimulated MCs may stimulate HDC induction in other cells, which will need to be directly identified in future studies.
Collapse
Affiliation(s)
- Xue Deng
- Department of Molecular Regulation, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Furuta K, Nakayama K, Sugimoto Y, Ichikawa A, Tanaka S. Activation of histidine decarboxylase through post-translational cleavage by caspase-9 in a mouse mastocytoma P-815. J Biol Chem 2007; 282:13438-46. [PMID: 17360717 DOI: 10.1074/jbc.m609943200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
L-Histidine decarboxylase (HDC) is the rate-limiting enzyme for histamine synthesis in mammals. Although accumulating evidence has indicated the post-translational processing of HDC, it remains unknown what kinds of proteases are involved. We investigated the processing of HDC in a mouse mastocytoma, P-815, using a lentiviral expression system. HDC was expressed as a 74-kDa precursor form, which is cleaved to yield the 55- and 60-kDa forms upon treatment with butyrate. Alanine-scanning mutations revealed that two tandem aspartate residues (Asp(517)-Asp(518), Asp(550)-Asp(551)) are critical for the processing. Treatment with butyrate caused an increase in the enzyme activity of the cells expressing the wild type HDC, but not in the cells expressing the processing-incompetent mutant. An increase in histamine synthesis by butyrate was accompanied by formation of the 55- and 60-kDa form of HDC. In addition, the in vitro translated 74-kDa form of HDC was found to undergo a limited cleavage by purified human caspase-9, whereas the alanine-substituted mutants were not. Processing and enzymatic activation of HDC in P-815 cells was enhanced in the presence of a Zn(2+) chelator, TPEN. Although treatment with butyrate and TPEN drastically augmented the protease activity of caspase-3, and -9, no apoptotic cell death was observed. Both enzymatic activation and processing of HDC were completely suppressed by a pan-caspase inhibitor, partially but significantly by a specific inhibitor for caspase-9, but not by a caspase-3 inhibitor. These results suggest that, in P-815 cells, histamine synthesis is augmented through the post-translational cleavage of HDC, which is mediated by caspase-9.
Collapse
Affiliation(s)
- Kazuyuki Furuta
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
31
|
Deng X, Yu Z, Funayama H, Yamaguchi K, Sasano T, Sugawara S, Endo Y. Histidine decarboxylase-stimulating and inflammatory effects of alendronate in mice: Involvement of mevalonate pathway, TNFα, macrophages, and T-cells. Int Immunopharmacol 2007; 7:152-61. [PMID: 17178381 DOI: 10.1016/j.intimp.2006.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 09/07/2006] [Accepted: 09/07/2006] [Indexed: 12/31/2022]
Abstract
Nitrogen-containing bisphosphonates (NBPs) are powerful anti-bone-resorptive drugs, but they frequently induce various inflammatory side effects. Recent clinical applications have disclosed an unexpected new side effect, jaw-bone necrosis and exposure. In vitro studies suggest that the inflammatory effects of NBPs are due to Vgamma2Vdelta2 T-cells, stimulated directly and/or indirectly [the latter via isopentenylpyrophosphate (IPP) in the mevalonate pathway]. Rats and mice, however, lack Vgamma2Vdelta2 T-cells, yet NBPs still induce necrotic and inflammatory reactions. In mice, NBPs induce IL-1-dependent inflammatory reactions, such as inductions of histidine decarboxylase (HDC, the histamine-forming enzyme) in the liver, lung, spleen, and bone marrow, an increase in granulocytic cells in the peritoneal cavity, pleural exudation, and splenomegaly. Here, we examined the involvement of IPP, TNF, macrophages, and T-cells in the inflammatory actions of alendronate (a typical NBP) in mice. Various statins (mevalonate-synthesis inhibitors) suppressed the alendronate-induced HDC inductions, while mevalonate itself augmented such inductions. IPP injection also induced HDC. Like IL-1-deficient mice, TNF-deficient mice were resistant to alendronate-stimulated HDC induction. Alendronate-stimulated HDC inductions were significantly weaker in macrophage-depleted mice and in nude mice than in control mice. Similar, though generally less clear-cut, results were obtained when other alendronate-induced inflammatory reactions were examined. These results suggest that (i) inhibition of the mevalonate pathway causes and/or modifies at least some inflammatory actions of alendronate in mice, (ii) in addition to IL-1, TNF is also involved in the inflammatory actions of alendronate, and (iii) alendronate may act on a variety of cells, including macrophages and T-cells.
Collapse
Affiliation(s)
- Xue Deng
- Department of Molecular Regulation, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-Machi, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Hirasawa N, Torigoe M, Ohgawara R, Murakami A, Ohuchi K. Involvement of MAP kinases in lipopolysaccharide-induced histamine production in RAW 264 cells. Life Sci 2006; 80:36-42. [PMID: 16978663 DOI: 10.1016/j.lfs.2006.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 08/08/2006] [Accepted: 08/16/2006] [Indexed: 01/16/2023]
Abstract
Roles of mitogen-activated protein (MAP) kinases in lipopolysaccharide (LPS)-induced production of histamine in the mouse macrophage-like cell line RAW 264 were analyzed. Incubation of RAW 264 cells in the presence of LPS increased histamine levels in the conditioned medium in a concentration- and time-dependent manner. The levels of histidine decarboxylase (HDC) mRNA and the 74-kDa HDC protein were also increased at 4 to 8 h and 8 to 12 h, respectively. LPS elicited the phosphorylation of p44/42 MAP kinase, p38 MAP kinase, and c-Jun N-terminal kinase (JNK). The MAP kinase-Erk kinase 1 inhibitor U0126 (0.1-10 microM) suppressed the LPS-induced phosphorylation of p44/42 MAP kinase, and inhibited the LPS-induced production of histamine and expression of the HDC mRNA and 74-kDa HDC protein in a concentration-dependent manner. The JNK inhibitor SP600125 (3-30 microM) suppressed the LPS-induced phosphorylation of c-Jun, and inhibited the LPS-induced production of histamine and expression of the HDC mRNA and 74-kDa protein in a concentration-dependent manner. Combined treatment with U0126 (0.3 microM) and SP600125 (10 microM) inhibited the LPS-induced production of histamine additively. The p38 MAP kinase inhibitor SB203580 (0.1-10 microM) partially inhibited the LPS-induced production of histamine. These findings suggest that LPS increases histamine production in RAW 264 cells by inducing the expression of the 74-kDa HDC protein, and that the LPS-induced expression of HDC is up-regulated at the transcriptional level by MAP kinases, especially p44 MAP kinase and JNK.
Collapse
Affiliation(s)
- Noriyasu Hirasawa
- Laboratory of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| | | | | | | | | |
Collapse
|
33
|
Bae JS, Kim SH, Ye YM, Yoon HJ, Suh CH, Nahm DH, Park HS. Significant association of FcepsilonRIalpha promoter polymorphisms with aspirin-intolerant chronic urticaria. J Allergy Clin Immunol 2006; 119:449-56. [PMID: 17125826 DOI: 10.1016/j.jaci.2006.10.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 09/27/2006] [Accepted: 10/03/2006] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although the mechanism that underlies aspirin hypersensitivity is not completely understood, an IgE-mediated response was reported for a patient with aspirin-intolerant chronic urticaria (AICU). OBJECTIVE We investigated whether genetic polymorphisms on the alpha-chain of the high-affinity IgE receptor (FcepsilonRIalpha) gene were associated with the AICU phenotype. METHODS We genotyped 2 promoter polymorphisms (-344C>T and -95T>C) of FcepsilonRIalpha gene in the Korean population, and the functional effect of the -344C>T polymorphism was analyzed by using a luciferase reporter assay and an electrophoretic mobility shift assay. RESULTS The rare allele frequency of the -344C>T polymorphism was significantly higher in the patients with AICU compared with the other subjects (P= .008 for AICU vs aspirin-tolerant chronic urticaria; P= .03 for AICU vs controls). This polymorphism was also significantly associated with total serum IgE concentrations and a higher rate of atopy in the patients with AICU (P= .01 and .05, respectively). The reporter plasmid that carried the -344T allele exhibited significantly higher promoter activity in a rat mast cell line (RBL-2H3) compared with the promoter activity of the -344C allele (P< .001). We found that transcription factor Myc-associated zinc finger protein preferentially bound the -344C promoter. Moreover, patients with AICU with the heterozygous CT genotype of the -344C>T polymorphism exhibited greater anti-IgE-mediated histamine release compared with those with the homozygous CC genotype. CONCLUSION These results suggest that the -344C>T polymorphism of the FcepsilonRIalpha promoter may be associated with increased expression of FcepsilonRIalpha on mast cells and enhanced release of histamine. CLINICAL IMPLICATIONS The FcepsilonRIalpha -344C>T polymorphism may contribute to the development of AICU.
Collapse
Affiliation(s)
- Jin-Sik Bae
- Department of Allergy and Rheumatology, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Jutel M, Blaser K, Akdis CA. Histamine receptors in immune regulation and allergen-specific immunotherapy. Immunol Allergy Clin North Am 2006; 26:245-59, vii. [PMID: 16701143 DOI: 10.1016/j.iac.2006.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The cells involved in the regulation of immune responses and hematopoiesis express histamine receptors and secrete histamine. Histamine acting through four types of its receptors has been shown not only to affect chronic inflammatory responses but also to regulate several essential events in the immune response. Histamine signals have a role in the mechanisms of tolerance induced during allergen-specific immunotherapy (SIT), acting mainly through its receptor (HR) type 2. It positively interferes with the peripheral antigen tolerance induced by T regulatory cells in several pathways. The rationale for the concomitant use of H1 antihistamines during SIT is diverse and includes reduction of its immediate side effects as well as enhancement of mechanisms of specific tolerance and anti-inflammatory effects of vaccination.
Collapse
Affiliation(s)
- Marek Jutel
- Department of Internal Medicine and Allergy, Wroclaw Medical University, Traugutta 57, Wroclaw 50-417, Poland.
| | | | | |
Collapse
|
35
|
Ai W, Takaishi S, Wang TC, Fleming JV. Regulation of l‐Histidine Decarboxylase and Its Role in Carcinogenesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2006; 81:231-70. [PMID: 16891173 DOI: 10.1016/s0079-6603(06)81006-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Wandong Ai
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, Irving Cancer Research Center, New York, New York 10032, USA
| | | | | | | |
Collapse
|
36
|
Kawakami T, Kitaura J. Mast cell survival and activation by IgE in the absence of antigen: a consideration of the biologic mechanisms and relevance. THE JOURNAL OF IMMUNOLOGY 2005; 175:4167-73. [PMID: 16177053 PMCID: PMC1415266 DOI: 10.4049/jimmunol.175.7.4167] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells are not only major effector cells in allergy and host defense against parasites and bacteria but also important cellular components in other immune responses. Recent studies on the effects of monomeric IgE on mast cell survival and activation have made an impact on our view of the IgE binding to its high-affinity receptors, Fc epsilonRI. Traditionally, IgE binding to Fc epsilonRI has been considered as a passive action of "sensitization" before receptor aggregation by Ag. However, recent studies indicate that at high concentrations some monoclonal IgEs have effects on mast cells similar to or identical to those induced by IgE+Ag stimulation. These effects may be due to induction of Fc epsilonRI aggregation by these IgEs in the absence of Ag. This review will synthesize recent findings of the heterogeneity of IgEs in their ability to induce survival and activation events, their mechanisms, the potential in vivo significance of IgE-Fc epsilonRI interactions, and the implications of the mouse studies to human diseases.
Collapse
Affiliation(s)
- Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA.
| | | |
Collapse
|
37
|
Liu Y, Furuta K, Teshima R, Shirata N, Sugimoto Y, Ichikawa A, Tanaka S. Critical Role of Protein Kinase C βII in Activation of Mast Cells by Monomeric IgE. J Biol Chem 2005; 280:38976-81. [PMID: 16183638 DOI: 10.1074/jbc.m506351200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence suggests that IgE-mediated activation of mast cells occurs even in the absence of antigen, which is referred to as "monomeric IgE" responses. Although monomeric IgE was found to induce a wide variety of responses, such as up-regulation of the FcepsilonRI, survival, cytokine production, histamine synthesis, and adhesion to fibronectin, it remains to be clarified how mast cells are activated in the absence of antigen. It has been controversial whether monomeric IgE responses are mediated by a similar signaling mechanism to antigen stimulation, although recent studies suggest that IgE can induce the FcepsilonRI aggregation even in the absence of antigen. In this study, we focused on the role of conventional protein kinase C (cPKC), since this response is suppressed by a specific inhibitor for cPKC. Monomeric IgE-induced Ca(2+) influx was not observed in a mouse mastocytoma cell line, which lacks the expression of PKCbetaII, although Ca(2+) influx induced by cross-linking of the FcepsilonRI was intact. Transfection of PKCbetaII cDNA was found to restore the Ca(2+) influx induced by monomeric IgE in this cell line. Furthermore, the dominant negative form of PKCbetaII (PKCbetaII/T500V) significantly suppressed the Ca(2+) influx, histamine synthesis, and interleukin-6 production in another mouse mast cell line, which is highly sensitive to monomeric IgE. Expression of PKCbetaII/T500V was found not to affect the antigen-induced responses. These results suggest that PKCbetaII plays a critical role in monomeric IgE responses, but not in antigen responses.
Collapse
Affiliation(s)
- Ying Liu
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Galli SJ, Kalesnikoff J, Grimbaldeston MA, Piliponsky AM, Williams CMM, Tsai M. Mast cells as "tunable" effector and immunoregulatory cells: recent advances. Annu Rev Immunol 2005; 23:749-86. [PMID: 15771585 DOI: 10.1146/annurev.immunol.21.120601.141025] [Citation(s) in RCA: 931] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focuses on recent progress in our understanding of how mast cells can contribute to the initiation, development, expression, and regulation of acquired immune responses, both those associated with IgE and those that are apparently expressed independently of this class of Ig. We emphasize findings derived from in vivo studies in mice, particularly those employing genetic approaches to influence mast cell numbers and/or to alter or delete components of pathways that can regulate mast cell development, signaling, or function. We advance the hypothesis that mast cells not only can function as proinflammatory effector cells and drivers of tissue remodeling in established acquired immune responses, but also may contribute to the initiation and regulation of such responses. That is, we propose that mast cells can also function as immunoregulatory cells. Finally, we show that the notion that mast cells have primarily two functional configurations, off (or resting) or on (or activated for extensive mediator release), markedly oversimplifies reality. Instead, we propose that mast cells are "tunable," by both genetic and environmental factors, such that, depending on the circumstances, the cell can be positioned phenotypically to express a wide spectrum of variation in the types, kinetics, and/or magnitude of its secretory functions.
Collapse
Affiliation(s)
- Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Nunomura S, Gon Y, Yoshimaru T, Suzuki Y, Nishimoto H, Kawakami T, Ra C. Role of the FcepsilonRI beta-chain ITAM as a signal regulator for mast cell activation with monomeric IgE. Int Immunol 2005; 17:685-94. [PMID: 15944196 DOI: 10.1093/intimm/dxh248] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The beta-chain of the high-affinity receptor for IgE (FcepsilonRI) plays a crucial role for amplification of the intracellular signaling in mast cells upon FcepsilonRI cross-linking by IgE*antigen complexes (IgE*Ag). Some monomeric IgE as well as IgE*Ag stimulate FcepsilonRI-signaling pathways, leading to cell activation, whereas the biological functions of the beta-chain in the monomeric IgE-mediated mast cell signaling and responses are largely unknown. In the present study, FcepsilonRI is reconstituted with either wild-type beta-chain or mutated beta-chain immunoreceptor tyrosine-based activation motif (ITAM) employing retrovirus-mediated gene transfer into the FcepsilonRI beta-chain-/- mast cells. We demonstrated that the transfectants with mutated beta-chain ITAM stimulated with monomeric IgE sufficiently produce inflammatory cytokines, although degranulation, intracellular Ca(2+) mobilization and leukotriene C(4) synthesis are significantly reduced. Furthermore, analyses of molecular mechanisms of the signaling revealed that the expression of cytokine genes and activation of extracellular signal-regulated kinase 1/2 and protein kinase C were significantly delayed in the beta-chain ITAM mutant cells stimulated with monomeric IgE, suggesting that the beta-chain ITAM regulates kinetics of gene transcriptions and signaling pathways for cytokine production. These findings for the first time revealed the unique functions of the beta-chain ITAM in both chemical mediator release and cytokine production of mast cells upon monomeric IgE stimulation.
Collapse
Affiliation(s)
- Satoshi Nunomura
- Division of Molecular Cell Immunology and Allergology, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8910, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Kitaura J, Kinoshita T, Matsumoto M, Chung S, Kawakami Y, Leitges M, Wu D, Lowell CA, Kawakami T. IgE- and IgE+Ag-mediated mast cell migration in an autocrine/paracrine fashion. Blood 2005; 105:3222-9. [PMID: 15637135 PMCID: PMC1464406 DOI: 10.1182/blood-2004-11-4205] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mast cells are the major effector cells for immediate hypersensitivity and chronic allergic reactions. These cells accumulate in mucosal tissues of allergic reactions, where immunoglobulin E (IgE) is produced locally. Here we provide evidence that, in addition to antigen that can attract IgE-bound mast cells, the type of IgE molecules that efficiently activate mast cells can promote the migration of mast cells in the absence of antigen. IgE- and IgE+Ag-mediated migration involves an autocrine/paracrine secretion of soluble factors including adenosine, leukotriene B4, and several chemokines. Their secretion depends on 2 tyrosine kinases, Lyn and Syk, and they are agonists of G-protein-coupled receptors and signal through phosphatidylinositol 3-kinase gamma, leading to mast cell migration. In mouse experiments, naive mast cells are attracted to IgE, and IgE-sensitized mast cells are attracted to antigen. Therefore, IgE and antigen are implicated in mast cell accumulation at allergic tissue sites with local high IgE levels.
Collapse
Affiliation(s)
- Jiro Kitaura
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 10 355 Science Center Dr, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tanaka S, Mikura S, Hashimoto E, Sugimoto Y, Ichikawa A. Ca2+ influx-mediated histamine synthesis and IL-6 release in mast cells activated by monomeric IgE. Eur J Immunol 2005; 35:460-8. [PMID: 15668925 DOI: 10.1002/eji.200425622] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We previously demonstrated that histamine synthesis is drastically induced upon sensitization with an anti-DNP IgE clone, SPE-7, in IL-3-dependent mouse bone marrow derived mast cells (BMMC). We found that Ca2+ mobilization induced by SPE-7 exhibited a similar profile to the capacitative Ca2+ entry evoked by thapsigargin. Potentials for activation of mast cells were found to vary between different IgE clones, and a monovalent hapten, DNP-lysine, suppressed the activation induced by SPE-7. Ca2+ mobilization induced by SPE-7 was suppressed potently by the specific store-operated Ca2+ channel inhibitor, SK&F 96365, but not at all by Ca2+ channel inhibitors with more broad spectrum, La3+ and Gd3+, whereas the Ca2+ mobilization induced by Ag stimulation was suppressed by these inhibitors. Ca2+ mobilization was also induced by SPE-7 in in vitro differentiated mast cells, although the increases in histamine synthesis and IL-6 release were smaller than those in BMMC. These results suggest that Ca2+ influx operated by a distinct mechanism from that in Ag stimulation is essential for increased histamine synthesis and IL-6 release in mast cells.
Collapse
Affiliation(s)
- Satoshi Tanaka
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
42
|
Marone G, Triggiani M, Genovese A, De Paulis A. Role of human mast cells and basophils in bronchial asthma. Adv Immunol 2005; 88:97-160. [PMID: 16227089 DOI: 10.1016/s0065-2776(05)88004-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mast cells and basophils are the only cells expressing the tetrameric (alphabetagamma2) structure of the high affinity receptor for IgE (FcepsilonRI) and synthesizing histamine in humans. Human FcepsilonRI+ cells are conventionally considered primary effector cells of bronchial asthma. There is now compelling evidence that these cells differ immunologically, biochemically, and pharmacologically, which suggests that they might play distinct roles in the appearance and fluctuation of the asthma phenotype. Recent data have revealed the complexity of the involvement of human mast cells and basophils in asthma and have shed light on the control of recruitment and activation of these cells in different lung compartments. Preliminary evidence suggests that these cells might not always be detrimental in asthma but, under some circumstances, they might exert a protective effect by modulating certain aspects of innate and acquired immunity and allergic inflammation.
Collapse
Affiliation(s)
- Gianni Marone
- Division of Clinical Immunology and Allergy, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, I-80131 Naples, Italy
| | | | | | | |
Collapse
|
43
|
Furuno T, Ma D, van der Kleij HPM, Nakanishi M, Bienenstock J. Bone marrow-derived mast cells in mice respond in co-culture to scorpion venom activation of superior cervical ganglion neurites according to level of expression of NK-1 receptors. Neurosci Lett 2004; 372:185-9. [PMID: 15542237 DOI: 10.1016/j.neulet.2004.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 07/30/2004] [Accepted: 08/06/2004] [Indexed: 11/26/2022]
Abstract
In virtually all tissues of the body, mast cells are closely associated with nerve fibers, mostly of sensory origin. While mast cells can be activated by substance P, evidence for the involvement of NK-1 receptors is very limited. To study functional interactions between mast cells and peripheral nerves, bone marrow-derived mast cells (BMMC) and superior cervical ganglia (SCG) were co-cultured. Murine bone marrow-derived mast cells are homologues for mucosal mast cells and have recently been shown to express NK-1 receptors. Bi-directional interaction was studied using a fluorescent calcium indicator as an index of cellular activation. Scorpion venom, not affecting BMMC by itself, caused a rapid increase in neurite fluorescence subsequently followed by activation of the mast cell. The latter was inhibited by the NK-1 receptor antagonist SR140333, showing the direct involvement of substance P and its receptor in this co-culture system. Activation of BMMC seemed to be directly correlated with extent of NK-1 receptor expression. Immature c-kit positive cells not expressing NK-1 gave a negligible response to neurite activation. In addition, there was a maximum stimulation occurring when NK-1 expression exceeded 16% on BMMC after cytokine stimulation. Our findings show that the expression of NK-1 receptors appears to be important for nerve-mast cell communication.
Collapse
Affiliation(s)
- Tadahide Furuno
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | | | | | | | | |
Collapse
|
44
|
Kitaura J, Xiao W, Maeda-Yamamoto M, Kawakami Y, Lowell CA, Kawakami T. Early divergence of Fc epsilon receptor I signals for receptor up-regulation and internalization from degranulation, cytokine production, and survival. THE JOURNAL OF IMMUNOLOGY 2004; 173:4317-23. [PMID: 15383560 DOI: 10.4049/jimmunol.173.7.4317] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cells play a critical role in IgE-dependent immediate hypersensitivity. Monomeric IgE binding to its high affinity receptor (FcepsilonRI) results in a number of biological outcomes in mouse mast cells, including increased surface expression of FcepsilonRI and enhanced survival. IgE molecules display heterogeneity in inducing cytokine production; highly cytokinergic IgEs cause extensive FcepsilonRI aggregation, leading to potent enhancement of survival and other activation events, whereas poorly cytokinergic IgEs can do so less efficiently. In this study, we demonstrate that IgE-induced receptor up-regulation is not sensitive to monovalent hapten, which can prevent receptor aggregation induced by IgE, whereas other activation events such as receptor internalization, degranulation, IL-6 production, and survival are sensitive to monovalent hapten. IgE-induced receptor up-regulation is also unique in that no Src family kinases, Syk, or Btk are required for it. By contrast, highly cytokinergic IgE-induced receptor internalization is dependent on Lyn, but not other Src family kinases, Syk, or Btk, whereas degranulation, IL-6 production, and survival require Syk. Weak to moderate stimulation with IgE plus anti-IgE or IgE plus Ag enhances survival, while stronger signals are required for degranulation and IL-6 production. Collectively, signals emanated from IgE-bound FcepsilonRI for receptor up-regulation and internalization are shown to diverge at the receptor or receptor-proximal levels from those for other biological outcomes.
Collapse
Affiliation(s)
- Jiro Kitaura
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA
| | | | | | | | | | | |
Collapse
|
45
|
Kohno M, Yamasaki S, Tybulewicz VLJ, Saito T. Rapid and large amount of autocrine IL-3 production is responsible for mast cell survival by IgE in the absence of antigen. Blood 2004; 105:2059-65. [PMID: 15542585 DOI: 10.1182/blood-2004-07-2639] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cross-linking FcepsilonRI on mast cells by immunoglobulin E (IgE) and antigen (Ag) initiates cascades leading to antiparasitic or allergic responses. It was recently reported that IgE without antigen, IgE(-Ag), actively promotes mast cell survival. Although we have demonstrated that the immunoreceptor tyrosine-based activation motif within FcRgamma is essential for IgE(-Ag)-induced mast cell survival, the underlying mechanism remains still unclear. Here, we investigated the mechanism of IgE(-Ag)-induced survival using mast cells lacking several downstream molecules. Lyn and Syk were essential, whereas Fyn, Gab2, and the phosphoinositide 3-kinase-Akt pathway were not critical for survival. Failure of survival in FcRgamma-/- bone marrow mast cells (BMMCs) was rescued by coculture with IgE-treated wild-type BMMCs, suggesting that survival is induced not directly through FcepsilonRI signals. We found that the survival is predominantly mediated by high production of interleukin 3 (IL-3), evidenced by severe impairment of survival by anti-IL-3 and in IL-3-/- BMMCs. The up-regulation of Bcl-xL/Bcl-2 by IgE was abrogated in IL-3-/- BMMCs, whereas the expression of histidine decarboxylase was normally induced. These results indicate that IL-3 plays a crucial role for IgE(-Ag)-induced mast cell survival, functioning in an autocrine manner by inducing the Bcl-xL/Bcl-2 via signal transducer and activator of transduction 5. We further suggest that IgE(-Ag)-mediated gene expression in mast cells is regulated at least 2 mechanisms: autocrine IL-3 dependent and independent.
Collapse
Affiliation(s)
- Masayuki Kohno
- Department of Molecular Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | |
Collapse
|
46
|
Charles N, Monteiro RC, Benhamou M. p28, a novel IgE receptor-associated protein, is a sensor of receptor occupation by its ligand in mast cells. J Biol Chem 2004; 279:12312-8. [PMID: 14715661 DOI: 10.1074/jbc.m309456200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mast cells express the high affinity receptor for IgE (FcepsilonRI). Aggregation of this receptor by IgE and antigen leads to a signaling cascade resulting in the secretion of histamine, in the synthesis of other pro-inflammatory mediators such as leukotrienes and prostaglandins, and in the production of various cytokines, all of which participate in the development of the allergic reaction. In the last years, growing evidence accumulated that binding of IgEs to FcepsilonRI in itself induces active signals leading to mast cell survival, increased expression of FcepsilonRI, transient induction of histidine decarboxylase synthesis, and increased cell adhesion. The mechanisms underlying monomeric IgE signaling in the absence of receptor aggregation are still poorly understood. Here, we show that a protein of 28 kDa (p28) is physically and constitutively associated with FcepsilonRI in mast cells. Coimmunoprecipitation studies from (125)I surface-labeled cells demonstrated that this association involves at least 50% of membrane-expressed FcepsilonRI. After the addition of monomeric IgE to the cells, the p28.FcepsilonRI complex dissociates almost completely in less than 2 min. This dissociation is temperature-sensitive and is not due to the recruitment of additional proteins to the complex. Stripping bound IgE from the cells by acidic treatment promotes a rapid reassociation between p28 and FcepsilonRI. Altogether, these data are consistent with a conformational regulation of the complex. Thus, p28 is a sensor for FcepsilonRI occupation by IgE on mast cells, and its dissociation from the receptor could represent an early step of monomeric IgE signaling.
Collapse
Affiliation(s)
- Nicolas Charles
- INSERM EMI-0225, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, 75870 Paris Cedex 18, France
| | | | | |
Collapse
|
47
|
Chu SC, Yang SF, Lue KH, Hsieh YS, Wu CL, Lu KH. Regulation of gelatinases expression by cytokines, endotoxin, and pharmacological agents in the human osteoarthritic knee. Connect Tissue Res 2004; 45:142-50. [PMID: 15512768 DOI: 10.1080/03008200490506058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We examined the amount of gelatinases (matrix metalloproteinase-2 and -9 [MMP-2 and MMP-9] in a series of chondral, meniscal, and synovial cultures of early osteoarthritis (OA) after treatment with or without catabolic cytokines. These included interleukin-1alpha (IL-1alpha) and tumor necrosis factor-alpha (TNF-alpha), lipopolysaccharide (LPS), and pharmacological agents, including plasmin/serine proteinase antagonist aprotinin, protein synthesis inhibitor cycloheximide, and protein kinase C (PKC) inhibitors staurosporine, H7, and Gö6976 for investigation of their effects on MMP-2 and -9 production in OA. Gelatin zymography revealed that IL-alpha, TNF-alpha, and LPS could elevate MMP-2 secretion in all tissue cultures and also increase MMP-9 production in all synovial and some meniscal cultures. In contrast, aprotinin, cycloheximide, staurosporine, H7, and Gö6976 could suppress MMP-2 secretion in all tissue cultures and also decrease MMP-9 production in all synovial and some meniscal cultures. Our data indicate that catabolic cytokines and LPS may promote tissue destruction and disintegration of extracellular matrix in early OA. Agents that target on the PKC pathway, plasmin/serine proteinase or protein synthesis for MMP-2 and -9 in early OA may inhibit the production of MMPs. These findings might contribute to the design of more efficacious therapies.
Collapse
Affiliation(s)
- Shu-Chen Chu
- Department of Food Science, Chungtai Institute of Health Sciences and Technology, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
48
|
Gilchrest H, Cheewatrakoolpong B, Billah M, Egan RW, Anthes JC, Greenfeder S. Human cord blood-derived mast cells synthesize and release I-309 in response to IgE. Life Sci 2003; 73:2571-81. [PMID: 12967681 DOI: 10.1016/s0024-3205(03)00607-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mast cells are the central mediating cells of allergic reactions. Binding of allergen specific IgE to high affinity IgE receptor (Fcepsilon RI) and subsequent binding of allergen by the IgE causes receptor cross-linking and activation. In a study examining the differential gene expression in human cord blood-derived mast cells (CBMCs) mediated by activation of Fcepsilon RI both with IgE and IgE followed by cross-linking with alpha-IgE, the chemokine I-309 was found to be upregulated. I-309 is the ligand for the CCR8 receptor and is responsible for chemoattraction of TH2 type T-cells. Interestingly, I-309 RNA and protein levels were elevated not only in response to IgE/alpha-IgE activation but also by IgE alone. In addition, the I-309 levels were augmented by growth of the CBMCs in the presence of the proinflammatory cytokine IL-4. GM-CSF and MIP-1alpha secretion was also induced by IgE. These results suggest that IgE, through the production and release of cytokines such as I-309, GM-CSF and MIP-1alpha could promote an inflammatory reaction in the absence of antigen stimulation of mast cells.
Collapse
Affiliation(s)
- Helen Gilchrest
- Schering-Plough Research Institute, 2015 Galloping Hill Rd. MS-1600, Kenilworth, NJ 07033, USA
| | | | | | | | | | | |
Collapse
|
49
|
Oka T, Hori M, Tanaka A, Matsuda H, Karaki H, Ozaki H. IgE alone-induced actin assembly modifies calcium signaling and degranulation in RBL-2H3 mast cells. Am J Physiol Cell Physiol 2003; 286:C256-63. [PMID: 13679305 DOI: 10.1152/ajpcell.00197.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the mast cell signaling pathways, the binding of immunoglobulin E (IgE) to FcepsilonRI, its high-affinity receptor, is generally thought to be a passive step. In this study, we examined the effect of IgE alone, that is, without antigen stimulation, on the degranulation in mast cells. Monomeric IgE (500-5,000 ng/ml) alone increased cytosolic Ca2+ level ([Ca2+]i) and induced degranulation in rat basophilic leukemia (RBL)-2H3 mast cells. Monomeric IgE (5,000 ng/ml) alone also increased [Ca2+]i and induced degranulation in bone marrow-derived mast cells. Interestingly, monomeric IgE (5-50 ng/ml) alone, in concentrations too low to induce degranulation, increased filamentous actin content in RBL-2H3 mast cells. We next examined whether actin dynamics affect the IgE alone-induced RBL-2H3 mast cell activation pathways. Cytochalasin D inhibited the ability of IgE alone (50 ng/ml) to induce de novo actin assembly. In cytochalasin D-treated cells, IgE (50 ng/ml) alone increased [Ca2+]i and induced degranulation. We have summarized the current findings into two points. First, IgE alone increases [Ca2+]i and induces degranulation in mast cells. Second, IgE, at concentrations too low to increase either [Ca2+]i or degranulation, significantly induces actin assembly, which serves as a negative feedback control in the mast cell Ca2+ signaling and degranulation.
Collapse
Affiliation(s)
- Tatsuya Oka
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Histamine was the first mediator implicated in mechanisms of allergy, asthma, and anaphylactic shock because it has been discovered to mimic several features of these diseases. In addition to its well-characterized effects in the acute inflammatory and allergic responses, it was recently demonstrated that histamine regulates several essential events in the immune response. Histamine affects the maturation of immune system cells and alters their activation, polarization, chemotaxis, and effector functions. Histamine also regulates antigen-specific T(H)1 and T(H)2 cells, as well as related antibody isotype responses. Histamine binds to 4 different G protein-coupled receptors that transduce signals to cells through distinct pathways. The expression of these receptors on different cells and cell subsets is regulated, and apparently, the diverse effects of histamine on immune regulation are due to differential expression of 4 histamine receptors and their distinct intracellular signals. This article highlights novel discoveries in histamine immunobiology and discusses clinical findings or disease models that indicate immune regulation by histamine.
Collapse
Affiliation(s)
- Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Davos
| | | |
Collapse
|