1
|
Nai Y, Du L, Shen M, Li T, Huang J, Han X, Luo F, Wang W, Pang D, Jin A. TRAIL-R1-Targeted CAR-T Cells Exhibit Dual Antitumor Efficacy. Front Mol Biosci 2022; 8:756599. [PMID: 34988114 PMCID: PMC8721281 DOI: 10.3389/fmolb.2021.756599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/10/2021] [Accepted: 11/17/2021] [Indexed: 12/21/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1) has limited expression in normal tissues but was highly expressed in various types of tumors, making it an attractive target for cancer immunotherapy. Here, we utilized the single-chain variable fragment (scFv) from our previously identified TRAIL-R1-targeting monoclonal antibody (TR1419) with antitumor efficacy and produced the TR1419 chimeric antigen receptor (CAR) T cells. We characterized the phenotypes and functions of these CAR-T cells and found that the third-generation TR1419-28BBζ CAR-T cells exhibited greater target sensitivity and proliferative capability, with slightly higher PD-1 expression after antigen stimulation. Importantly, we found that the TR1419 CAR-T cells could induce TRAIL-R1-positive tumor cell death via a dual mechanism of the death receptor-dependent apoptosis as well as the T-cell-mediated cytotoxicity. Altogether, the TR1419 CAR-T cells could serve as a promising strategy for targeting the TRAIL-R1-positive tumors.
Collapse
Affiliation(s)
- Yaru Nai
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China.,Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Li Du
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China.,Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Meiying Shen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.,Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingting Li
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China.,Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Jingjing Huang
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China.,Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaojian Han
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China.,Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Feiyang Luo
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China.,Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Wang Wang
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China.,Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Aishun Jin
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China.,Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Gillespie A, Gervasi MG, Sathiyaseelan T, Connelley T, Telfer JC, Baldwin CL. Gamma Delta TCR and the WC1 Co-Receptor Interactions in Response to Leptospira Using Imaging Flow Cytometry and STORM. Front Immunol 2021; 12:712123. [PMID: 34394114 PMCID: PMC8356672 DOI: 10.3389/fimmu.2021.712123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2021] [Accepted: 07/06/2021] [Indexed: 01/04/2023] Open
Abstract
The WC1 cell surface family of molecules function as hybrid gamma delta (γδ) TCR co-receptors, augmenting cellular responses when cross-linked with the TCR, and as pattern recognition receptors, binding pathogens. It is known that following activation, key tyrosines are phosphorylated in the intracytoplasmic domains of WC1 molecules and that the cells fail to respond when WC1 is knocked down or, as shown here, when physically separated from the TCR. Based on these results we hypothesized that the colocalization of WC1 and TCR will occur following cellular activation thereby allowing signaling to ensue. We evaluated the spatio-temporal dynamics of their interaction using imaging flow cytometry and stochastic optical reconstruction microscopy. We found that in quiescent γδ T cells both WC1 and TCR existed in separate and spatially stable protein domains (protein islands) but after activation using Leptospira, our model system, that they concatenated. The association between WC1 and TCR was close enough for fluorescence resonance energy transfer. Prior to concatenating with the WC1 co-receptor, γδ T cells had clustering of TCR-CD3 complexes and exclusion of CD45. γδ T cells may individually express more than one variant of the WC1 family of molecules and we found that individual WC1 variants are clustered in separate protein islands in quiescent cells. However, the islands containing different variants merged following cell activation and before merging with the TCR islands. While WC1 was previously shown to bind Leptospira in solution, here we showed that Leptospira bound WC1 proteins on the surface of γδ T cells and that this could be blocked by anti-WC1 antibodies. In conclusion, γδ TCR, WC1 and Leptospira interact directly on the γδ T cell surface, further supporting the role of WC1 in γδ T cell pathogen recognition and cellular activation.
Collapse
Affiliation(s)
- Alexandria Gillespie
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Maria Gracia Gervasi
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | | | | | - Janice C Telfer
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, United States.,Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, MA, United States
| | - Cynthia L Baldwin
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, United States.,Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
3
|
Morath A, Schamel WW. αβ and γδ T cell receptors: Similar but different. J Leukoc Biol 2020; 107:1045-1055. [DOI: 10.1002/jlb.2mr1219-233r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2019] [Revised: 12/15/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Anna Morath
- Signalling Research Centres BIOSS and CIBSS University of Freiburg Freiburg Germany
- Institute of Biology III Faculty of Biology University of Freiburg Freiburg Germany
- Spemann Graduate School of Biology and Medicine (SGBM) University of Freiburg Freiburg Germany
| | - Wolfgang W. Schamel
- Signalling Research Centres BIOSS and CIBSS University of Freiburg Freiburg Germany
- Institute of Biology III Faculty of Biology University of Freiburg Freiburg Germany
- Center for Chronic Immunodeficiency (CCI) Medical Center Freiburg and Faculty of Medicine University of Freiburg Freiburg Germany
| |
Collapse
|
4
|
TCR signal strength controls thymic differentiation of discrete proinflammatory γδ T cell subsets. Nat Immunol 2016; 17:721-727. [PMID: 27043412 PMCID: PMC4875770 DOI: 10.1038/ni.3424] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/07/2015] [Accepted: 03/01/2016] [Indexed: 01/02/2023]
Abstract
The murine thymus produces discrete γδ T cell subsets making either interferon-γ (IFN--γ) or interleukin 17 (IL-17), but the role of the TCR in this developmental process remains controversial. Here we show that mice haploinsufficient for both Cd3g and Cd3d (CD3DH, for CD3 double haploinsufficient) have reduced TCR expression and signaling strength selectively on γδ T cells. CD3DH mice had normal numbers and phenotype of αβ thymocyte subsets but impaired differentiation of fetal Vγ6+ (but not Vγ4+) IL-17-producing γδ T cells and a marked depletion of IFN-γ-producing CD122+ NK1.1+ γδ T cells throughout ontogeny. Adult CD3DH mice showed reduced peripheral IFN-γ+ γδ T cells and were resistant to experimental cerebral malaria. Thus, TCR signal strength within specific thymic developmental windows is a major determinant of the generation of proinflammatory γδ T cell subsets and their impact on pathophysiology.
Collapse
|
5
|
CD3γ/δ in sea bass (Dicentrarchus labrax): Molecular characterization and expression analysis. RESULTS IN IMMUNOLOGY 2011; 1:31-5. [PMID: 24371550 DOI: 10.1016/j.rinim.2011.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/28/2011] [Revised: 08/25/2011] [Accepted: 08/25/2011] [Indexed: 11/24/2022]
Abstract
The CD3 complex is the common marker on the surface of both αβ and γδ T cells and is essential for formation of the T-cell receptor complex and for T-cell activation. In this paper, we report the gene cloning and molecular characterization of a CD3γ/δ homologue in sea bass (Dicentrarchus labrax), the analysis of transcription levels in lymphoid and non-lymphoid organs and the gene regulation after in vitro stimulation with LPS and PHA. Four cysteine residues in the extracellular domain, involved in the constitution of immunoglobulin-like domain, are present in sea bass CD3γ/δ sequence and they are conserved both in number and position from mammals to teleost sequences. Similar to other known CD3γ/δs, in sea bass CD3γ/δ there is also a conserved immunoreceptor tyrosine-based activation ITAM motif that could be responsible for its individual signal transduction capacity. The real time RT-PCR basal analysis shows the highest level of CD3γ/δ mRNA in thymus, followed by peripheral blood leucocytes, spleen, gills, gut, liver, head kidney, brain and muscle. The expression analysis under stimuli condition reveals a significant decrease of CD3γ/δ expression after LPS stimulation and a significant increase after PHA-L stimulation, in agreement with mammals results. In conclusion, these data allow us to affirm that sea bass CD3γ/δ can be used as a T cell marker and will help in adding new insight on the immune response mechanisms of sea bass.
Collapse
|
6
|
N-terminal negatively charged residues in CD3varepsilon chains as a phylogenetically conserved trait potentially yielding isoforms with different isoelectric points: analysis of human CD3varepsilon chains. Immunol Lett 2009; 126:8-15. [PMID: 19616027 DOI: 10.1016/j.imlet.2009.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2009] [Revised: 06/23/2009] [Accepted: 07/09/2009] [Indexed: 11/21/2022]
Abstract
CD3varepsilon chains are essential to the structure, expression and signaling of T cell receptors. Here, we extend to human CD3varepsilon our previous data in mouse CD3varepsilon showing that, in T cells, proteolytic processing of the acidic N-terminal sequence of CD3varepsilon chains generate distinct polypeptide species that can be identified by two-dimension (IEF-SDS PAGE) electrophoresis and immunoblot. This was shown first by showing the processing of a fusion protein of GFP and the extracellular domain of mouse CD3varepsilon (mCD3GFP) expressed in Jurkat cells. Secondly, pI heterogeneity was also found in human CD3varepsilon chains immunoprecipitated from the surface of Jurkat cells or PHA blasts of human blood T lymphocytes. Comparison of CD3varepsilon chains from 27 different species shows that their N-terminal sequences share a strong acidic nature, despite the large differences in terms of length and composition, even among closely related species. Our results suggest that generation of CD3varepsilon chain isoforms with different N-terminal sequence and pI is a general phenomenon. Thus, as previously observed in the mouse, the relative abundance of CD3varepsilon chain species might regulate TCR/CD3 structure and function, including the strength of the interactions between CD3 dimers and the TCR clonotypic receptors, as well as TCR/CD3 activation thresholds. Interestingly, CD3varepsilon chains from 7 out of 27 species studied have putative N-glycosylation (NxS or NxT) motifs in their Ig extracellular domain. Their location, plus the conservation of residues involved in domain organization, the interactions with other CD3 chains, or the TCR, and signal triggering add new data useful to establish a permissive topology for the interaction between CD3 dimers and the TCR chains.
Collapse
|
7
|
Rossi NE, Reine J, Pineda-Lezamit M, Pulgar M, Meza NW, Swamy M, Risueno R, Schamel WWA, Bonay P, Fernandez-Malave E, Regueiro JR. Differential antibody binding to the surface TCR{middle dot}CD3 complex of CD4+ and CD8+ T lymphocytes is conserved in mammals and associated with differential glycosylation. Int Immunol 2008; 20:1247-58. [DOI: 10.1093/intimm/dxn081] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
|
8
|
|
9
|
Siegers GM, Swamy M, Fernández-Malavé E, Minguet S, Rathmann S, Guardo AC, Pérez-Flores V, Regueiro JR, Alarcón B, Fisch P, Schamel WWA. Different composition of the human and the mouse gammadelta T cell receptor explains different phenotypes of CD3gamma and CD3delta immunodeficiencies. ACTA ACUST UNITED AC 2007; 204:2537-44. [PMID: 17923503 PMCID: PMC2118495 DOI: 10.1084/jem.20070782] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
The γδ T cell receptor for antigen (TCR) comprises the clonotypic TCRγδ, the CD3 (CD3γε and/or CD3δε), and the ζζ dimers. γδ T cells do not develop in CD3γ-deficient mice, whereas human patients lacking CD3γ have abundant peripheral blood γδ T cells expressing high γδ TCR levels. In an attempt to identify the molecular basis for these discordant phenotypes, we determined the stoichiometries of mouse and human γδ TCRs using blue native polyacrylamide gel electrophoresis and anti-TCR–specific antibodies. The γδ TCR isolated in digitonin from primary and cultured human γδ T cells includes CD3δ, with a TCRγδCD3ε2δγζ2 stoichiometry. In CD3γ-deficient patients, this may allow substitution of CD3γ by the CD3δ chain and thereby support γδ T cell development. In contrast, the mouse γδ TCR does not incorporate CD3δ and has a TCRγδCD3ε2γ2ζ2 stoichiometry. CD3γ-deficient mice exhibit a block in γδ T cell development. A human, but not a mouse, CD3δ transgene rescues γδ T cell development in mice lacking both mouse CD3δ and CD3γ chains. This suggests important structural and/or functional differences between human and mouse CD3δ chains during γδ T cell development. Collectively, our results indicate that the different γδ T cell phenotypes between CD3γ-deficient humans and mice can be explained by differences in their γδ TCR composition.
Collapse
Affiliation(s)
- Gabrielle M Siegers
- Max-Planck-Institute of Immunobiology and University of Freiburg, 79108 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bello R, Feito MJ, Ojeda G, Portolés P, Rojo JM. Loss of N-terminal charged residues of mouse CD3 epsilon chains generates isoforms modulating antigen T cell receptor-mediated signals and T cell receptor-CD3 interactions. J Biol Chem 2007; 282:22324-34. [PMID: 17561508 DOI: 10.1074/jbc.m701875200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
The antigen T cell receptor (TCR)-CD3 complexes present on the cell surface of CD4(+) T lymphocytes and T cell lines express CD3 epsilon chain isoforms with different isoelectric points (pI), with important structural and functional consequences. The pI values of the isoforms fit the predicted pI values of CD3 epsilon chains lacking one, two, and three negatively charged amino acid residues present in the N-terminal region. Different T cells have different ratios of CD3 epsilon chain isoforms. At a high pI, degraded CD3 epsilon isoforms can be better recognized by certain anti-CD3 monoclonal antibodies such as YCD3-1, the ability of which to bind to the TCR-CD3 complex is directly correlated with the pI of CD3 epsilon. The abundance of CD3 epsilon isoforms can be modified by treatment of T cells with the proteinase inhibitor phenanthroline. In addition, these CD3 epsilon isoforms have functional importance. This is shown, first, by the different structure of TCR-CD3 complexes in cells possessing different amounts of isoforms (as observed in surface biotinylation experiments), by their different antigen responses, and by the stronger interaction between low pI CD3 epsilon isoforms and the TCR. Second, incubation of cells with phenanthroline diminished the proportion of degraded high pI CD3 epsilon isoforms, but also the ability of the cells to deliver early TCR activation signals. Third, cells expressing mutant CD3 epsilon chains lacking N-terminal acid residues showed facilitated recognition by antibody YCD3-1 and enhanced TCR-mediated activation. Furthermore, the binding avidity of antibody YCD3-1 was different in distinct thymus populations. These results suggest that changes in CD3 epsilon N-terminal chains might help to fine-tune the response of the TCR to its ligands in distinct activation situations or in thymus selection.
Collapse
Affiliation(s)
- Raquel Bello
- Departamento de Fisiopatología Celular y Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, E-28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
11
|
Cruz F, Bradley DG, Lynn DJ. Evidence of positive selection on the Atlantic salmon CD3γδ gene. Immunogenetics 2007; 59:225-32. [PMID: 17211637 DOI: 10.1007/s00251-006-0188-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/16/2006] [Accepted: 12/12/2006] [Indexed: 11/29/2022]
Abstract
Atlantic salmon are typically anadromous, spending the majority of their lifetime in oceans and returning to fresh water to breed. This diversity of environments likely results in strong selective forces shaping their genome. In this paper, we present the first genomics approach to detect positive selection operating on the Salmo salar (salmon) lineage, an important aquaculture species. We identify a panel of candidate genes that may have been subject to adaptive evolution in this species. In particular, we identify a robust signature of positive selection operating on the salmon CD3gammadelta gene, which encodes one of the protein chains essential for formation of the T-cell receptor complex and for T-cell activation. Furthermore, we identified the particular codon sites that have been subject to positive selection in fish and highlight two sites flanking an important N-glycosylation site in this molecule.
Collapse
Affiliation(s)
- Fernando Cruz
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | | | | |
Collapse
|
12
|
Abstract
When T cells encounter antigens via the T cell antigen receptor (TCR), information about the quantity and quality of antigen engagement is relayed to the intracellular signal transduction machinery. This process is poorly understood. The TCR itself lacks a significant intracellular domain. Instead, it is associated with CD3 molecules that contain intracellular signaling domains that couple the TCR/CD3 complex to the downstream signaling machinery. The earliest events in TCR signaling must involve the transfer of information from the antigen binding TCR subunit to the CD3 signaling subunits of the TCR/CD3 complex. Elucidating the structural organization of the TCR with the associated CD3 signaling molecules is necessary for understanding the mechanism by which TCR engagement is coupled to activation. Here, we review the current state of our understanding of the structure and organization of the TCR/CD3 complex.
Collapse
Affiliation(s)
- Michael S Kuhns
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
13
|
Hayes SM, Love PE. Stoichiometry of the murine gammadelta T cell receptor. J Exp Med 2006; 203:47-52. [PMID: 16418397 PMCID: PMC2118071 DOI: 10.1084/jem.20051886] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2005] [Accepted: 12/20/2005] [Indexed: 11/24/2022] Open
Abstract
The T cell receptor for antigen (TCR) complex is organized into two functional domains: the antigen-binding clonotypic heterodimer and the signal-transducing invariant CD3 and TCRzeta chains. In most vertebrates, there are two different clonotypic heterodimers (TCRalphabeta and TCRgammadelta) that define the alphabeta and gammadelta T cell lineages, respectively. alphabeta- and gammadeltaTCRs also differ in their invariant chain subunit composition, in that alphabetaTCRs contain CD3gammaepsilon and CD3deltaepsilon dimers, whereas gammadeltaTCRs contain only CD3gammaepsilon dimers. This difference in subunit composition of the alphabeta- and gammadeltaTCRs raises the question of whether the stoichiometries of these receptor complexes are different. As the stoichiometry of the murine gammadeltaTCR has not been previously investigated, we used two quantitative immunofluorescent approaches to determine the valency of TCRgammadelta heterodimers and CD3gammaepsilon dimers in surface murine gammadeltaTCR complexes. Our results support a model of murine gammadeltaTCR stoichiometry in which there are two CD3gammaepsilon dimers for every TCRgammadelta heterodimer.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal
- CD3 Complex/genetics
- CD3 Complex/metabolism
- Cells, Cultured
- Immunoglobulin G/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/deficiency
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Sandra M Hayes
- Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
14
|
Fann M, Chiu WK, Wood WH, Levine BL, Becker KG, Weng NP. Gene expression characteristics of CD28null memory phenotype CD8+ T cells and its implication in T-cell aging. Immunol Rev 2005; 205:190-206. [PMID: 15882354 DOI: 10.1111/j.0105-2896.2005.00262.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/15/2023]
Abstract
Accumulation of CD28(null)CD8(+) T cells is considered as one of the hallmarks of aging in the human immune system. However, the precise changes of CD28(null)CD8(+) T cells, compared to those of the precursor CD28(+)CD8(+) memory T cells, have not been determined. In this study, we present an analysis of the global gene expression profiles of CD28(+) and CD28(null) memory phenotype CD8(+) T cells. These two CD8(+) T subsets exhibited an overall similar gene expression profile with only a few dozen genes that were differentially expressed. A wide range of functions, including co-stimulation, effector activity, signaling, and transcription, were possessed by these differentially expressed genes, reflecting significant functional changes of CD28(null) memory phenotype CD8(+) T cells from their CD28(+) counterparts. In addition, CD28(null) memory CD8(+) T cells expressed several natural killer cell receptors and high levels of granzymes, perforin, and FasL, indicating an increasing capacity for cytotoxicity during memory CD8(+) T-cell aging. Interestingly, in vitro culture of these two subsets with interleukin-15 showed that similar gene expression changes occurred in both subsets. Our analysis provides the gene expression portraits of CD28(null) memory phenotype CD8(+) T cells and alteration from their CD28(+) counterparts and suggests potential mechanisms of T-cell aging.
Collapse
Affiliation(s)
- Monchou Fann
- Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
15
|
Pan Q, Gollapudi AS, Dave VP. Biochemical evidence for the presence of a single CD3delta and CD3gamma chain in the surface T cell receptor/CD3 complex. J Biol Chem 2004; 279:51068-74. [PMID: 15459203 DOI: 10.1074/jbc.m406145200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/30/2023] Open
Abstract
The T cell antigen receptor (TCR) consists of an alphabeta heterodimer and associated invariant CD3gamma, delta, epsilon, and zeta chains (TCR/CD3 complex). The general stoichiometry of the receptor complex, which is believed to be one molecule each of TCRalpha, TCRbeta, CD3gamma, and CD3delta and two molecules each of CD3epsilon and CD3zeta, is not clearly understood. Although it has been shown that there are two chains of CD3epsilon and CD3zeta, the stoichiometry of CD3gamma or CD3delta chains in the surface antigen receptor complex has not been determined. In the present study, transgenic mice expressing an altered form of mouse CD3delta and CD3gamma were employed to show that the surface TCR complexes contain one molecule each of CD3delta and CD3gamma. Thymocytes from wild type and CD3 chain transgenic mice on the appropriate knockout background were surface-biotinylated and immunoprecipitated using a specific antibody. The immunoprecipitates were resolved in two dimensions under nonreducing/reducing conditions to determine the stoichiometry of CD3delta and CD3gamma in the surface antigen receptor complex. Our data clearly show the presence of one molecule each of CD3delta and CD3gamma in the surface TCR/CD3 complex.
Collapse
Affiliation(s)
- Qinghua Pan
- Institute de Recherche Clinique de Montreal (IRCM), Montreal, Quebec H2W 1R7, Canada
| | | | | |
Collapse
|
16
|
Zapata DA, Schamel WWA, Torres PS, Alarcón B, Rossi NE, Navarro MN, Toribio ML, Regueiro JR. Biochemical Differences in the αβ T Cell Receptor·CD3 Surface Complex between CD8+ and CD4+ Human Mature T Lymphocytes. J Biol Chem 2004; 279:24485-92. [PMID: 15060077 DOI: 10.1074/jbc.m311455200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023] Open
Abstract
We have reported the existence of biochemical and conformational differences in the alphabeta T cell receptor (TCR) complex between CD4(+) and CD8(+) CD3gamma-deficient (gamma(-)) mature T cells. In the present study, we have furthered our understanding and extended the observations to primary T lymphocytes from normal (gamma(+)) individuals. Surface TCR.CD3 components from CD4(+) gamma(-) T cells, other than CD3gamma, were detectable and similar in size to CD4(+) gamma(+) controls. Their native TCR.CD3 complex was also similar to CD4(+) gamma(+) controls, except for an alphabeta(deltaepsilon)(2)zeta(2) instead of an alphabetagammaepsilondeltaepsilonzeta(2) stoichiometry. In contrast, the surface TCRalpha, TCRbeta, and CD3delta chains of CD8(+) gamma(-) T cells did not possess their usual sizes. Using confocal immunofluorescence, TCRalpha was hardly detectable in CD8(+) gamma(-) T cells. Blue native gels (BN-PAGE) demonstrated the existence of a heterogeneous population of TCR.CD3 in these cells. Using primary peripheral blood T lymphocytes from normal (gamma(+)) donors, we performed a broad epitopic scan. In contrast to all other TCR.CD3-specific monoclonal antibodies, RW2-8C8 stained CD8(+) better than it did CD4(+) T cells, and the difference was dependent on glycosylation of the TCR.CD3 complex but independent of T cell activation or differentiation. RW2-8C8 staining of CD8(+) T cells was shown to be more dependent on lipid raft integrity than that of CD4(+) T cells. Finally, immunoprecipitation studies on purified primary CD4(+) and CD8(+) T cells revealed the existence of TCR glycosylation differences between the two. Collectively, these results are consistent with the existence of conformational or topological lineage-specific differences in the TCR.CD3 from CD4(+) and CD8(+) wild type T cells. The differences may be relevant for cis interactions during antigen recognition and signal transduction.
Collapse
MESH Headings
- Blotting, Western
- CD3 Complex/chemistry
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation
- Cell Line, Transformed
- Cell Membrane/metabolism
- Cells, Cultured
- Electrophoresis, Polyacrylamide Gel
- Flow Cytometry
- Glycosylation
- Humans
- Microscopy, Confocal
- Phenotype
- Precipitin Tests
- Protein Conformation
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- David A Zapata
- Inmunología, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Schrum AG, Turka LA, Palmer E. Surface T-cell antigen receptor expression and availability for long-term antigenic signaling. Immunol Rev 2003; 196:7-24. [PMID: 14617194 DOI: 10.1046/j.1600-065x.2003.00083.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/02/2023]
Abstract
It is important to understand how T-cell antigen receptor (TCR) engagement and signaling are regulated throughout an immune response. This review examines the dynamics of surface TCR expression and signaling capacity during thymic and effector T-cell development. Although the TCR can undergo vast changes in surface expression, T cells remain capable of sustaining TCR engagement for long periods of time. This may be achieved by a combination of mechanisms that involve (a) controlling the quantity of surface TCR available for ligand interaction and (b) controlling the quality of surface TCR expression during T-cell activation. TCR signaling itself appears to be one of the main quantitative modulators of surface TCR expression, and it can cause both downregulation and upregulation at different times of T-cell activation. Recent studies indicate that the degree of upregulation is tunable by the strength of antigenic stimulation. There is evidence that qualitatively distinct forms of the TCR exist, and their potential role in sustained antigenic signaling is also discussed. A goal of future studies will be to better characterize these modulations in surface TCR expression and to clarify their impact on the regulation of immune responses.
Collapse
Affiliation(s)
- Adam G Schrum
- Laboratory of Transplantation Immunology and Nephrology, Department of Research, University Hospital-Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | | | | |
Collapse
|
18
|
Torres PS, Alcover A, Zapata DA, Arnaud J, Pacheco A, Martín-Fernández JM, Villasevil EM, Sanal O, Regueiro JR. TCR dynamics in human mature T lymphocytes lacking CD3 gamma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5947-55. [PMID: 12794121 DOI: 10.4049/jimmunol.170.12.5947] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/27/2023]
Abstract
The contribution of CD3gamma to the surface expression, internalization, and intracellular trafficking of the TCR/CD3 complex (TCR) has not been completely defined. However, CD3gamma is believed to be crucial for constitutive as well as for phorbol ester-induced internalization. We have explored TCR dynamics in resting and stimulated mature T lymphocytes derived from two unrelated human congenital CD3gamma-deficient (gamma(-)) individuals. In contrast to gamma(-) mutants of the human T cell line Jurkat, which were selected for their lack of membrane TCR and are therefore constitutively surface TCR negative, these natural gamma(-) T cells constitutively expressed surface TCR, mainly through biosynthesis of new chains other than CD3gamma. However, surface (but not intracellular) TCR expression in these cells was less than wild-type cells, and normal surface expression was clearly CD3gamma-dependent, as it was restored by retroviral transduction of CD3gamma. The reduced surface TCR expression was likely caused by an impaired assembly or membrane transport step during recycling, whereas constitutive internalization and degradation were apparently normal. Ab binding to the mutant TCR, but not phorbol ester treatment, caused its down-modulation from the cell surface, albeit at a slower rate than in normal controls. Kinetic confocal analysis indicated that early ligand-induced endocytosis was impaired. After its complete down-modulation, TCR re-expression was also delayed. The results suggest that CD3gamma contributes to, but is not absolutely required for, the regulation of TCR trafficking in resting and Ag-stimulated mature T lymphocytes. The results also indicate that TCR internalization is regulated differently in each case.
Collapse
MESH Headings
- Adolescent
- Antibodies, Monoclonal/pharmacology
- CD3 Complex/biosynthesis
- CD3 Complex/genetics
- CD3 Complex/immunology
- CD3 Complex/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line, Transformed
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Down-Regulation/immunology
- Gene Deletion
- Humans
- Intracellular Fluid/immunology
- Intracellular Fluid/metabolism
- Jurkat Cells
- Ligands
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/genetics
- Protein Processing, Post-Translational/immunology
- Receptor-CD3 Complex, Antigen, T-Cell/antagonists & inhibitors
- Receptor-CD3 Complex, Antigen, T-Cell/biosynthesis
- Receptor-CD3 Complex, Antigen, T-Cell/deficiency
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Superantigens/pharmacology
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Tetradecanoylphorbol Acetate/pharmacology
Collapse
Affiliation(s)
- Pilar S Torres
- Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|