1
|
Toribio ML, González-García S. Notch Partners in the Long Journey of T-ALL Pathogenesis. Int J Mol Sci 2023; 24:1383. [PMID: 36674902 PMCID: PMC9866461 DOI: 10.3390/ijms24021383] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disease that arises from the oncogenic transformation of developing T cells during T-lymphopoiesis. Although T-ALL prognosis has improved markedly in recent years, relapsing and refractory patients with dismal outcomes still represent a major clinical issue. Consequently, understanding the pathological mechanisms that lead to the appearance of this malignancy and developing novel and more effective targeted therapies is an urgent need. Since the discovery in 2004 that a major proportion of T-ALL patients carry activating mutations that turn NOTCH1 into an oncogene, great efforts have been made to decipher the mechanisms underlying constitutive NOTCH1 activation, with the aim of understanding how NOTCH1 dysregulation converts the physiological NOTCH1-dependent T-cell developmental program into a pathological T-cell transformation process. Several molecular players have so far been shown to cooperate with NOTCH1 in this oncogenic process, and different therapeutic strategies have been developed to specifically target NOTCH1-dependent T-ALLs. Here, we comprehensively analyze the molecular bases of the cross-talk between NOTCH1 and cooperating partners critically involved in the generation and/or maintenance and progression of T-ALL and discuss novel opportunities and therapeutic approaches that current knowledge may open for future treatment of T-ALL patients.
Collapse
Affiliation(s)
- María Luisa Toribio
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | | |
Collapse
|
2
|
Zhang H, Li HS, Hillmer EJ, Zhao Y, Chrisikos TT, Hu H, Wu X, Thompson EJ, Clise-Dwyer K, Millerchip KA, Wei Y, Puebla-Osorio N, Kaushik S, Santos MA, Wang B, Garcia-Manero G, Wang J, Sun SC, Watowich SS. Genetic rescue of lineage-balanced blood cell production reveals a crucial role for STAT3 antiinflammatory activity in hematopoiesis. Proc Natl Acad Sci U S A 2018; 115:E2311-E2319. [PMID: 29463696 PMCID: PMC5878002 DOI: 10.1073/pnas.1713889115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Blood cell formation must be appropriately maintained throughout life to provide robust immune function, hemostasis, and oxygen delivery to tissues, and to prevent disorders that result from over- or underproduction of critical lineages. Persistent inflammation deregulates hematopoiesis by damaging hematopoietic stem and progenitor cells (HSPCs), leading to elevated myeloid cell output and eventual bone marrow failure. Nonetheless, antiinflammatory mechanisms that protect the hematopoietic system are understudied. The transcriptional regulator STAT3 has myriad roles in HSPC-derived populations and nonhematopoietic tissues, including a potent antiinflammatory function in differentiated myeloid cells. STAT3 antiinflammatory activity is facilitated by STAT3-mediated transcriptional repression of Ube2n, which encodes the E2 ubiquitin-conjugating enzyme Ubc13 involved in proinflammatory signaling. Here we demonstrate a crucial role for STAT3 antiinflammatory activity in preservation of HSPCs and lineage-balanced hematopoiesis. Conditional Stat3 removal from the hematopoietic system led to depletion of the bone marrow lineage- Sca-1+ c-Kit+ CD150+ CD48- HSPC subset (LSK CD150+ CD48- cells), myeloid-skewed hematopoiesis, and accrual of DNA damage in HSPCs. These responses were accompanied by intrinsic transcriptional alterations in HSPCs, including deregulation of inflammatory, survival and developmental pathways. Concomitant Ube2n/Ubc13 deletion from Stat3-deficient hematopoietic cells enabled lineage-balanced hematopoiesis, mitigated depletion of bone marrow LSK CD150+ CD48- cells, alleviated HSPC DNA damage, and corrected a majority of aberrant transcriptional responses. These results indicate an intrinsic protective role for STAT3 in the hematopoietic system, and suggest that this is mediated by STAT3-dependent restraint of excessive proinflammatory signaling via Ubc13 modulation.
Collapse
Affiliation(s)
- Huiyuan Zhang
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Haiyan S Li
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Emily J Hillmer
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Yang Zhao
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Taylor T Chrisikos
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030
| | - Hongbo Hu
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Xiao Wu
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Erika J Thompson
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Karen A Millerchip
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Yue Wei
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Nahum Puebla-Osorio
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Saakshi Kaushik
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Margarida A Santos
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Bin Wang
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | | | - Jing Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Shao-Cong Sun
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030
| | - Stephanie S Watowich
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030;
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030
| |
Collapse
|
3
|
Regulated intramembrane proteolysis: emergent role in cell signalling pathways. Biochem Soc Trans 2017; 45:1185-1202. [PMID: 29079648 DOI: 10.1042/bst20170002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/27/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022]
Abstract
Receptor signalling events including those initiated following activation of cytokine and growth factor receptors and the well-characterised death receptors (tumour necrosis factor receptor, type 1, FasR and TRAIL-R1/2) are initiated at the cell surface through the recruitment and formation of intracellular multiprotein signalling complexes that activate divergent signalling pathways. Over the past decade, research studies reveal that many of these receptor-initiated signalling events involve the sequential proteolysis of specific receptors by membrane-bound proteases and the γ-secretase protease complexes. Proteolysis enables the liberation of soluble receptor ectodomains and the generation of intracellular receptor cytoplasmic domain fragments. The combined and sequential enzymatic activity has been defined as regulated intramembrane proteolysis and is now a fundamental signal transduction process involved in the termination or propagation of receptor signalling events. In this review, we discuss emerging evidence for a role of the γ-secretase protease complexes and regulated intramembrane proteolysis in cell- and immune-signalling pathways.
Collapse
|
4
|
Dashtsoodol N, Shigeura T, Aihara M, Ozawa R, Kojo S, Harada M, Endo TA, Watanabe T, Ohara O, Taniguchi M. Alternative pathway for the development of Vα14+ NKT cells directly from CD4–CD8– thymocytes that bypasses the CD4+CD8+ stage. Nat Immunol 2017; 18:274-282. [DOI: 10.1038/ni.3668] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022]
|
5
|
P. Hurst T, Coleman-Vaughan C, Patwal I, V. McCarthy J. Regulated intramembrane proteolysis, innate immunity and therapeutic targets in Alzheimer’s disease. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.2.138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
6
|
Shah DK, Zúñiga-Pflücker JC. An overview of the intrathymic intricacies of T cell development. THE JOURNAL OF IMMUNOLOGY 2014; 192:4017-23. [PMID: 24748636 DOI: 10.4049/jimmunol.1302259] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The generation of a functional and diverse repertoire of T cells occurs in the thymus from precursors arriving from the bone marrow. In this article, we introduce the various stages of mouse thymocyte development and highlight recent work using various in vivo, and, where appropriate, in vitro models of T cell development that led to discoveries in the regulation afforded by transcription factors and receptor-ligand signaling pathways in specifying, maintaining, and promoting the T cell lineage and the production of T cells. This review also discusses the role of the thymic microenvironment in providing a niche for the successful development of T cells. In particular, we focus on advances in Notch signaling and developments in Notch ligand interactions in this process.
Collapse
Affiliation(s)
- Divya K Shah
- Anthony Nolan Research Institute, Royal Free Hospital, London NW3 2QG, United Kingdom
| | | |
Collapse
|
7
|
Jurisch-Yaksi N, Sannerud R, Annaert W. A fast growing spectrum of biological functions of γ-secretase in development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2815-27. [PMID: 24099003 DOI: 10.1016/j.bbamem.2013.04.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/03/2013] [Accepted: 04/11/2013] [Indexed: 12/17/2022]
Abstract
γ-secretase, which assembles as a tetrameric complex, is an aspartyl protease that proteolytically cleaves substrate proteins within their membrane-spanning domain; a process also known as regulated intramembrane proteolysis (RIP). RIP regulates signaling pathways by abrogating or releasing signaling molecules. Since the discovery, already >15 years ago, of its catalytic component, presenilin, and even much earlier with the identification of amyloid precursor protein as its first substrate, γ-secretase has been commonly associated with Alzheimer's disease. However, starting with Notch and thereafter a continuously increasing number of novel substrates, γ-secretase is becoming linked to an equally broader range of biological processes. This review presents an updated overview of the current knowledge on the diverse molecular mechanisms and signaling pathways controlled by γ-secretase, with a focus on organ development, homeostasis and dysfunction. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Nathalie Jurisch-Yaksi
- Laboratory for Membrane Trafficking, VIB-Center for the Biology of Disease & Department for Human Genetics (KU Leuven), Leuven, Belgium
| | | | | |
Collapse
|
8
|
Abstract
During thymic development, thymocytes expressing a T cell receptor consisting of an alpha and beta chain (TCRαβ), commit to either the cytotoxic- or T helper-lineage fate. This lineage dichotomy is controlled by key transcription factors, including the T helper (Th) lineage master regulator, the Th-inducing BTB/POZ domain-containing Kruppel-like zinc-finger transcription factor, ThPOK, (formally cKrox or Zfp67; encoded by Zbtb7b), which suppresses the cytolytic program in major histocompatibility complex (MHC) class II-restricted CD4(+) thymocytes and the Runt related transcription factor 3 (Runx3), which counteracts ThPOK in MHC class I restricted precursor cells and promotes the lineage commitment of CD8αβ(+) cytolytic T lymphocytes (CTL). ThPOK continues to repress the CTL gene program in mature CD4(+) T cells, even as they differentiate into effector Th cell subsets. The Th cell fate however is not fixed and two recent studies showed that mature, antigen-stimulated CD4(+) T cells have the flexibility to terminate the expression of ThPOK and functionally reprogram to cytotoxic effector cells. This unexpected plasticity of CD4(+) T cells results in the post-thymic termination of the Th lineage fate and the functional differentiation of distinct MHC class II-restricted CD4(+) CTL. The recognition of CD4 CTL as a defined separate subset of effector cells and the identification of the mechanisms and factors that drive their reprogramming finally create new opportunities to explore the physiological relevance of these effector cells in vivo and to determine their pivotal roles in both, protective immunity as well as in immune-related pathology.
Collapse
Affiliation(s)
- Hilde Cheroutre
- Division of Developmental Immunology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA.
| | | |
Collapse
|
9
|
Dervovic DD, Liang HCY, Cannons JL, Elford AR, Mohtashami M, Ohashi PS, Schwartzberg PL, Zúñiga-Pflücker JC. Cellular and molecular requirements for the selection of in vitro-generated CD8 T cells reveal a role for Notch. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:1704-15. [PMID: 23851691 PMCID: PMC3801448 DOI: 10.4049/jimmunol.1300417] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Differentiation of CD8 single-positive (SP) T cells is predicated by the ability of lymphocyte progenitors to integrate multiple signaling cues provided by the thymic microenvironment. In the thymus and the OP9-DL1 system for T cell development, Notch signals are required for progenitors to commit to the T cell lineage and necessary for their progression to the CD4(+)CD8(+) double-positive (DP) stage of T cell development. However, it remains unclear whether Notch is a prerequisite for the differentiation of DP cells to the CD8 SP stage of development. In this study, we demonstrate that Notch receptor-ligand interactions allow for efficient differentiation and selection of conventional CD8 T cells from bone marrow-derived hematopoietic stem cells. However, bone marrow-derived hematopoietic stem cells isolated from Itk(-/-)Rlk(-/-) mice gave rise to T cells with decreased IFN-γ production, but gained the ability to produce IL-17. We further reveal that positive and negative selection in vitro are constrained by peptide-MHC class I expressed on OP9 cells. Finally, using an MHC class I-restricted TCR-transgenic model, we show that the commitment of DP precursors to the CD8 T cell lineage is dependent on Notch signaling. Our findings further establish the requirement for Notch receptor-ligand interactions throughout T cell differentiation, including the final step of CD8 SP selection.
Collapse
MESH Headings
- Actins/immunology
- Animals
- Antigens, Viral/immunology
- CD4 Antigens/analysis
- CD8 Antigens/analysis
- CD8-Positive T-Lymphocytes/immunology
- Calcium-Binding Proteins
- Cell Lineage
- Cells, Cultured
- Cellular Microenvironment
- Clonal Selection, Antigen-Mediated
- Coculture Techniques
- Crosses, Genetic
- H-2 Antigens/immunology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Histocompatibility Antigen H-2D/immunology
- Intercellular Signaling Peptides and Proteins/immunology
- Lymphopoiesis/immunology
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/immunology
- Receptors, Notch/physiology
- Signal Transduction/immunology
- Specific Pathogen-Free Organisms
- Stromal Cells/cytology
- Stromal Cells/immunology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Dzana D. Dervovic
- Department of Immunology, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Haydn C-Y. Liang
- Department of Immunology, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Jennifer L. Cannons
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Alisha R. Elford
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON, M5G 2C1, Canada
| | - Mahmood Mohtashami
- Department of Immunology, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Pamela S. Ohashi
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON, M5G 2C1, Canada
| | - Pamela L. Schwartzberg
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
10
|
Shah DK, Zúñiga-Pflücker JC. Notch receptor-ligand interactions during T cell development, a ligand endocytosis-driven mechanism. Curr Top Microbiol Immunol 2012; 360:19-46. [PMID: 22581027 DOI: 10.1007/82_2012_225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Notch signaling plays an important role during the development of different cell types and tissues. The role of Notch signaling in lymphocyte development, in particular in the development and commitment to the T cell lineage, has been the focus of research for many years. Notch signaling is absolutely required during the commitment and early stages of T cell development. Activation of the Notch signaling pathway is initiated by ligand-receptor interactions and appears to require active endocytosis of Notch ligands. Studies addressing the mechanism underlying endocytosis of Notch ligands have helped to identify the main players important and necessary for this process. Here, we review the Notch ligands, and the proposed models of Notch activation by Notch ligand endocytosis, highlighting key molecules involved. In particular, we discuss recent studies on Notch ligands involved in T cell development, current studies aimed at elucidating the relevance of Notch ligand endocytosis during T cell development and the identification of key players necessary for ligand endocytosis in the thymus and during T cell development.
Collapse
Affiliation(s)
- Divya K Shah
- Department of Immunology, Sunnybrook Research Institute, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4 N 3M5, Canada.
| | | |
Collapse
|
11
|
Thompson PK, Zúñiga-Pflücker JC. On becoming a T cell, a convergence of factors kick it up a Notch along the way. Semin Immunol 2011; 23:350-9. [PMID: 21981947 DOI: 10.1016/j.smim.2011.08.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 08/19/2011] [Indexed: 12/18/2022]
Abstract
The thymus is seeded by bone marrow-derived progenitors, which undergo a series of differentiation and proliferation events in order to generate functional T lymphocytes. The Notch signaling pathway, together with multiple transcription factors, act in concert to commit progenitors to a T-lineage fate, extinguishing non-T cell potential, inducing thymocyte differentiation and supporting proliferation and survival along the way to becoming a mature T cell. This review focuses on recent evidence regarding the complex interplay between the Notch pathway and other key transcription factors at specific lineage-decision points during the program of T cell development.
Collapse
Affiliation(s)
- Patrycja K Thompson
- Department of Immunology, University of Toronto, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | | |
Collapse
|
12
|
An J, Golech S, Klaewsongkram J, Zhang Y, Subedi K, Huston GE, Wood WH, Wersto RP, Becker KG, Swain SL, Weng N. Krüppel-like factor 4 (KLF4) directly regulates proliferation in thymocyte development and IL-17 expression during Th17 differentiation. FASEB J 2011; 25:3634-45. [PMID: 21685331 PMCID: PMC3177573 DOI: 10.1096/fj.11-186924] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/02/2011] [Indexed: 11/11/2022]
Abstract
Krüppel-like factor 4 (KLF4), a transcription factor, plays a key role in the pluripotency of stem cells. We sought to determine the function of KLF4 in T-cell development and differentiation by using T-cell-specific Klf4-knockout (KO) mice. We found that KLF4 was highly expressed in thymocytes and mature T cells and was rapidly down-regulated in mature T cells after activation. In Klf4-KO mice, we observed a modest reduction of thymocytes (27%) due to the reduced proliferation of double-negative (DN) thymocytes. We demonstrated that a direct repression of Cdkn1b by KLF4 was a cause of decreased DN proliferation. During in vitro T-cell differentiation, we observed significant reduction of IL-17-expressing CD4(+) T cells (Th17; 24%) but not in other types of Th differentiation. The reduction of Th17 cells resulted in a significant attenuation of the severity (35%) of experimental autoimmune encephalomyelitis in vivo in Klf4-KO mice as compared with the Klf4 wild-type littermates. Finally, we demonstrated that KLF4 directly binds to the promoter of Il17a and positively regulates its expression. In summary, these findings identify KLF4 as a critical regulator in T-cell development and Th17 differentiation.
Collapse
Affiliation(s)
- Jie An
- Laboratory of Molecular Biology and Immunology
| | | | | | | | | | - Gail E. Huston
- Trudeau Institute, Saranac Lake, New York, New York, USA; and
| | | | - Robert P. Wersto
- Flow Cytometry Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | | | - Susan L. Swain
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
13
|
Hall JA, Cannons JL, Grainger JR, Dos Santos LM, Hand TW, Naik S, Wohlfert EA, Chou DB, Oldenhove G, Robinson M, Grigg ME, Kastenmayer R, Schwartzberg PL, Belkaid Y. Essential role for retinoic acid in the promotion of CD4(+) T cell effector responses via retinoic acid receptor alpha. Immunity 2011; 34:435-47. [PMID: 21419664 DOI: 10.1016/j.immuni.2011.03.003] [Citation(s) in RCA: 297] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 12/14/2010] [Accepted: 12/29/2010] [Indexed: 12/17/2022]
Abstract
Vitamin A and its metabolite, retinoic acid (RA) are implicated in the regulation of immune homeostasis via the peripheral induction of regulatory T cells. Here we showed RA was also required to elicit proinflammatory CD4(+) helper T cell responses to infection and mucosal vaccination. Retinoic acid receptor alpha (RARα) was the critical mediator of these effects. Antagonism of RAR signaling and deficiency in RARα (Rara(-/-)) resulted in a cell-autonomous CD4(+) T cell activation defect, which impaired intermediate signaling events, including calcium mobilization. Altogether, these findings reveal a fundamental role for the RA-RARα axis in the development of both regulatory and inflammatory arms of adaptive immunity and establish nutritional status as a broad regulator of adaptive T cell responses.
Collapse
Affiliation(s)
- Jason A Hall
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
In the mouse stomach epithelium, Notch signaling influences homeostasis and tumorigenesis in a cell type– and context-specific manner. The mammalian adult gastric epithelium self-renews continually through the activity of stem cells located in the isthmus of individual gland units. Mechanisms facilitating stomach stem and progenitor cell homeostasis are unknown. Here, we show that Notch signaling occurs in the mouse stomach epithelium during development and becomes restricted mainly to the isthmus in adult glands, akin to its known localization in the proliferative compartment of intestinal villi. Using genetic and chemical inhibition, we demonstrate that Notch signaling is required to maintain the gastric stem cell compartment. Activation of Notch signaling in lineage-committed stomach epithelial cells is sufficient to induce dedifferentiation into stem and/or multipotential progenitors that populate the mucosa with all major cell types. Prolonged Notch activation within dedifferentiated parietal cells eventually enhances cell proliferation and induces adenomas that show focal Wnt signaling. In contrast, Notch activation within native antral stomach stem cells does not affect cell proliferation. These results establish a role for Notch activity in the foregut and highlight the importance of cellular context in gastric tumorigenesis.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | |
Collapse
|
15
|
Wang L, Xiong Y, Bosselut R. Tenuous paths in unexplored territory: From T cell receptor signaling to effector gene expression during thymocyte selection. Semin Immunol 2010; 22:294-302. [PMID: 20537906 DOI: 10.1016/j.smim.2010.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 04/23/2010] [Indexed: 11/17/2022]
Abstract
During the last step of alphabeta T cell development, thymocytes that have rearranged genes encoding TCR chains and express CD4 and CD8 coreceptors are selected on the basis of their TCR reactivity to escape programmed cell death and become mature CD4 or CD8 T cells. This process is triggered by intrathymic TCR signaling, that activates 'sensor' transcription factors 'constitutively' expressed in DP thymocytes. Eventually, TCR-signaled thymocytes evolve effector transcriptional circuits that control basal metabolism, migration, survival and initiation of lineage-specific gene expression. This review examines how components of the 'sensing' transcription apparatus responds to positive selection signals, and highlights important differences with mature T cell responses. In a second part, we evaluate current observations and hypotheses on the connections between sensing transcription factors and effector circuitries.
Collapse
Affiliation(s)
- Lie Wang
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4259, USA
| | | | | |
Collapse
|
16
|
Abstract
The development of T cells in the thymus involves several differentiation and proliferation events, during which hematopoietic precursors give rise to T cells ready to respond to antigen stimulation and undergo effector differentiation. This review addresses signaling and transcriptional checkpoints that control the intrathymic journey of T cell precursors. We focus on the divergence of alphabeta and gammadelta lineage cells and the elaboration of the alphabeta T cell repertoire, with special emphasis on the emergence of transcriptional programs that direct lineage decisions.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Lineage
- Gene Expression Regulation/immunology
- Humans
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
- Transcription, Genetic/genetics
- Transcription, Genetic/immunology
Collapse
Affiliation(s)
- Andrea C Carpenter
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
17
|
Chari S, Umetsu SE, Winandy S. Notch target gene deregulation and maintenance of the leukemogenic phenotype do not require RBP-J kappa in Ikaros null mice. THE JOURNAL OF IMMUNOLOGY 2010; 185:410-7. [PMID: 20511547 DOI: 10.4049/jimmunol.0903688] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ikaros and Notch are transcriptional regulators essential for normal T cell development. Aberrant activation of Notch target genes is observed in Ikaros-deficient thymocytes as well as leukemia cell lines. However, it is not known whether Notch deregulation plays a preferential or obligatory role in the leukemia that arise in Ikaros null (Ik(-/-)) mice. To answer this question, the expression of the DNA-binding Notch target gene activator RBP-Jkappa was abrogated in Ik(-/-) double-positive thymocytes. This was accomplished through conditional inactivation using CD4-Cre transgenic mice containing floxed RBP-Jkappa alleles (RBPJ(fl/fl)). Ik(-/-) x RBPJ(fl/fl) x CD4-Cre(+) transgenic mice develop clonal T cell populations in the thymus that escape to the periphery, with similar kinetics and penetrance as their CD4-Cre(-) counterparts. The clonal populations do not display increased RBP-Jkappa expression compared with nontransformed thymocytes, suggesting there is no selection for clones that have not fully deleted RBP-Jkappa. However, RBPJ-deficient clonal populations do not expand as aggressively as their RBPJ-sufficient counterparts, suggesting a qualitative role for deregulated Notch target gene activation in the leukemogenic process. Finally, these studies show that RBP-Jkappa plays no role in Notch target gene repression in double-positive thymocytes but rather that it is Ikaros that is required for the repression of these genes at this critical stage of T cell development.
Collapse
Affiliation(s)
- Sheila Chari
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | |
Collapse
|
18
|
Saura CA. Presenilin/gamma-Secretase and Inflammation. Front Aging Neurosci 2010; 2:16. [PMID: 20559464 PMCID: PMC2887037 DOI: 10.3389/fnagi.2010.00016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 04/08/2010] [Indexed: 01/02/2023] Open
Abstract
Presenilins (PS) are the catalytic components of γ-secretase, an aspartyl protease that regulates through proteolytic processing the function of multiple signaling proteins. Specially relevant is the γ-secretase-dependent cleavage of the β-amyloid precursor protein (APP) since generates the β-amyloid (Aβ) peptides that aggregate and accumulate in the brain of Alzheimer's disease (AD) patients. Abnormal processing and/or accumulation of Aβ disrupt synaptic and metabolic processes leading to neuron dysfunction and neurodegeneration. Studies in presenilin conditional knockout mice have revealed that presenilin-1 is essential for age-dependent Aβ accumulation and inflammation. By contrast, mutations in the presenilin genes responsible for early onset familial AD cause rapid disease progression and accentuate clinical and pathological features including inflammation. In addition, a number of loss of function mutations in presenilin-1 have been recently associated to non-Alzheimer's dementias including frontotemporal dementia and dementia with Lewy bodies. In agreement, total loss of presenilin function in the brain results in striking neurodegeneration and inflammation, which includes activation of glial cells and induction of proinflammatory genes, besides altered inflammatory responses in the periphery. Interestingly, some non-steroidal anti-inflammatory drugs that slow cognitive decline and reduce the risk of AD, decrease amyloidogenic Aβ42 levels by modulating allosterically PS/γ-secretase. In this review, I present current evidence supporting a role of presenilin/γ-secretase signaling on gliogenesis and gliosis in normal and pathological conditions. Understanding the cellular mechanisms regulated by presenilin/γ-secretase during chronic inflammatory processes may provide new approaches for the development of effective therapeutic strategies for AD.
Collapse
Affiliation(s)
- Carlos A Saura
- Institut de Neurociències, Departament Bioquímica i Biologia Molecular, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona Bellaterra, Spain
| |
Collapse
|
19
|
Yuan JS, Kousis PC, Suliman S, Visan I, Guidos CJ. Functions of Notch Signaling in the Immune System: Consensus and Controversies. Annu Rev Immunol 2010; 28:343-65. [DOI: 10.1146/annurev.immunol.021908.132719] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Julie S. Yuan
- Program in Stem Cell and Developmental Biology, Hospital for Sick Children Research Institute, and Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada;
| | - Philaretos C. Kousis
- Program in Stem Cell and Developmental Biology, Hospital for Sick Children Research Institute, and Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada;
| | - Sara Suliman
- Program in Stem Cell and Developmental Biology, Hospital for Sick Children Research Institute, and Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada;
| | - Ioana Visan
- Program in Stem Cell and Developmental Biology, Hospital for Sick Children Research Institute, and Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada;
| | - Cynthia J. Guidos
- Program in Stem Cell and Developmental Biology, Hospital for Sick Children Research Institute, and Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada;
| |
Collapse
|
20
|
Stanley P, Guidos CJ. Regulation of Notch signaling during T- and B-cell development by O-fucose glycans. Immunol Rev 2009; 230:201-15. [PMID: 19594638 DOI: 10.1111/j.1600-065x.2009.00791.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Notch signaling is required for the development of all T cells and marginal zone (MZ) B cells. Specific roles in T- and B-cell differentiation have been identified for different Notch receptors, the canonical Delta-like (Dll) and Jagged (Jag) Notch ligands, and downstream effectors of Notch signaling. Notch receptors and ligands are post-translationally modified by the addition of glycans to extracellular domain epidermal growth factor-like (EGF) repeats. The O-fucose glycans of Notch cell-autonomously modulate Notch-ligand interactions and the strength of Notch signaling. These glycans are initiated by protein O-fucosyltransferase 1 (Pofut1), and elongated by the transfer of N-acetylglucosamine (GlcNAc) to the fucose by beta1,3GlcNAc-transferases termed lunatic, manic, or radical fringe. This review discusses T- and B-cell development from progenitors deficient in O-fucose glycans. The combined data show that Lfng and Mfng regulate T-cell development by enhancing the interactions of Notch1 in T-cell progenitors with Dll4 on thymic epithelial cells. In the spleen, Lfng and Mfng cooperate to modify Notch2 in MZ B progenitors, enhancing their interaction with Dll1 on endothelial cells and regulating MZ B-cell production. Removal of O-fucose affects Notch signaling in myelopoiesis and lymphopoiesis, and the O-fucose glycan in the Notch1 ligand-binding domain is required for optimal T-cell development.
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10461, USA.
| | | |
Collapse
|
21
|
Wang L, Bosselut R. CD4-CD8 lineage differentiation: Thpok-ing into the nucleus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:2903-10. [PMID: 19696430 PMCID: PMC3387994 DOI: 10.4049/jimmunol.0901041] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The mature alphabeta T cell population is divided into two main lineages that are defined by the mutually exclusive expression of CD4 and CD8 surface molecules (coreceptors) and that differ in their MHC restriction and function. CD4 T cells are typically MHC-II restricted and helper (or regulatory), whereas CD8 T cells are typically cytotoxic. Several transcription factors are known to control the emergence of CD4 and CD8 lineages, including the zinc finger proteins Thpok and Gata3, which are required for CD4 lineage differentiation, and the Runx factors Runx1 and Runx3, which contribute to CD8 lineage differentiation. This review summarizes recent advances on the function of these transcription factors in lineage differentiation. We also discuss how the "circuitry" connecting these factors could operate to match the expression of the lineage-committing factors Thpok and Runx3, and therefore lineage differentiation, to MHC specificity.
Collapse
Affiliation(s)
- Lie Wang
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4259, USA
| | | |
Collapse
|
22
|
Kovalovsky D, Yu Y, Dose M, Emmanouilidou A, Konstantinou T, Germar K, Aghajani K, Guo Z, Mandal M, Gounari F. Beta-catenin/Tcf determines the outcome of thymic selection in response to alphabetaTCR signaling. THE JOURNAL OF IMMUNOLOGY 2009; 183:3873-84. [PMID: 19717519 DOI: 10.4049/jimmunol.0901369] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thymic maturation of T cells depends on the intracellular interpretation of alphabetaTCR signals by processes that are poorly understood. In this study, we report that beta-catenin/Tcf signaling was activated in double-positive thymocytes in response to alphabetaTCR engagement and impacted thymocyte selection. TCR engagement combined with activation of beta-catenin signaled thymocyte deletion, whereas Tcf-1 deficiency rescued from negative selection. Survival/apoptotis mediators including Bim, Bcl-2, and Bcl-x(L) were alternatively influenced by stabilization of beta-catenin or ablation of Tcf-1, and Bim-mediated beta-catenin induced thymocyte deletion. TCR activation in double-positive cells with stabilized beta-catenin triggered signaling associated with negative selection, including sustained overactivation of Lat and Jnk and a transient activation of Erk. These observations are consistent with beta-catenin/Tcf signaling acting as a switch that determines the outcome of thymic selection downstream the alphabetaTCR cascade.
Collapse
Affiliation(s)
- Damian Kovalovsky
- Molecular Oncology Research Institute, Tufts New England Medical Center, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hager-Theodorides AL, Furmanski AL, Ross SE, Outram SV, Rowbotham NJ, Crompton T. The Gli3 transcription factor expressed in the thymus stroma controls thymocyte negative selection via Hedgehog-dependent and -independent mechanisms. THE JOURNAL OF IMMUNOLOGY 2009; 183:3023-32. [PMID: 19667090 DOI: 10.4049/jimmunol.0900152] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Hedgehog (Hh) responsive transcription factor Gli3 is required for efficient thymocyte development in the fetus. In this study we show that Gli3, not detected in adult thymocytes, is expressed in the murine fetal and adult thymus stroma. PCR array analysis revealed Cxcl9, Rbp1, and Nos2 as novel target genes of Gli3. We show that Gli3 positively regulates the expression of these genes, most likely by suppressing an intermediate repressor. Deletion of autoreactive thymocytes depends on their interactions with the thymus stroma. Repression of the proapoptotic gene Nos2 in Gli3 mutants coincides with reduced apoptosis of double positive thymocytes undergoing negative selection in vitro and in vivo, and the production of autoreactive thymocytes. Taken together these data indicate that Gli3 controls thymocyte apoptosis and negative selection possibly via the regulation of Nos2. Defective Gli3 expression in the thymus stroma also resulted in decreased CD5 expression on mature thymocytes and inappropriate production of MHC class I-selected CD4(+) cells, both consistent with reduced TCR signal strength. Overall our data indicate that Gli3 expressed in the thymus stroma regulates negative selection and TCR signal strength via Hh-dependent and -independent mechanisms, with implications for autoimmunity.
Collapse
|
24
|
Perdue KA, Copeland MK, Karjala Z, Cheng LI, Ward JM, Elkins WR. Suboptimal ability of dirty-bedding sentinels to detect Spironucleus muris in a colony of mice with genetic manipulations of the adaptive immune system. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2008; 47:10-17. [PMID: 18947164 PMCID: PMC2691546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/09/2008] [Accepted: 04/25/2008] [Indexed: 05/27/2023]
Abstract
Spironucleus muris is an unacceptable infectious agent for most rodent colonies. Exposure of sentinel mice to dirty bedding and examination of sentinel intestinal smears was not sufficient for identification of the extent of spironucleosis within 1 mouse room. Clinical abnormalities were not reported in the animals housed in the room despite extensive breeding and a preponderance of mice genetically engineered to have nonfunctional T and B cells. In addition, researchers reported that the infection had not altered their research data. During investigation of the outbreak, direct intestinal smears performed on related animals (conspecifics, offspring, or siblings) revealed that immunodeficient mice often tested negative whereas the immunocompetent cohort tested positive. In this study, we used culled colony animals and compared direct intestinal exam test results with histologic results. The comparison showed the extent of false negatives that may occur when direct intestinal exam alone is used to detect this protozoon. Sensitivity of the direct intestinal exam for detection of S. muris was calculated to be 71%, while histology sensitivity was 91%. In light of the study results and an extensive literature review, we revised our health surveillance plan so that the age and duration of exposure to dirty bedding among sentinel mice is varied at the time of testing.
Collapse
Affiliation(s)
- Kathy A Perdue
- Comparative Medicine Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases/NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Notch and presenilin regulate cellular expansion and cytokine secretion but cannot instruct Th1/Th2 fate acquisition. PLoS One 2008; 3:e2823. [PMID: 18665263 PMCID: PMC2474705 DOI: 10.1371/journal.pone.0002823] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 06/25/2008] [Indexed: 12/22/2022] Open
Abstract
Recent reports suggested that Delta1, 4 and Jagged1, 2 possessed the ability to instruct CD4+ T cell into selection of Th1 or Th2 fates, respectively, although the underlying mechanism endowing the cleaved Notch receptor with memory of ligand involved in its activation remains elusive. To examine this, we prepared artificial antigen-presenting cells expressing either DLL1 or Jag1. Although both ligands were efficient in inducing Notch2 cleavage and activation in CD4+ T or reporter cells, the presence of Lunatic Fringe in CD4+ T cells inhibited Jag1 activation of Notch1 receptor. Neither ligand could induce Th1 or Th2 fate choice independently of cytokines or redirect cytokine-driven Th1 or Th2 development. Instead, we find that Notch ligands only augment cytokine production during T cell differentiation in the presence of polarizing IL-12 and IL-4. Moreover, the differentiation choices of naïve CD4+ T cells lacking γ-secretase, RBP-J, or both in response to polarizing cytokines revealed that neither presenilin proteins nor RBP-J were required for cytokine-induced Th1/Th2 fate selection. However, presenilins facilitate cellular proliferation and cytokine secretion in an RBP-J (and thus, Notch) independent manner. The controversies surrounding the role of Notch and presenilins in Th1/Th2 polarization may reflect their role as genetic modifiers of T-helper cells differentiation.
Collapse
|
26
|
Laky K, Fowlkes BJ. Notch signaling in CD4 and CD8 T cell development. Curr Opin Immunol 2008; 20:197-202. [PMID: 18434124 DOI: 10.1016/j.coi.2008.03.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 03/11/2008] [Indexed: 12/16/2022]
Abstract
Because Notch often acts in concert with other signaling pathways, it is able to regulate a diverse set of biological processes in a cell-context dependent manner. In lymphocytes, Notch is essential for specifying the T cell fate and for promoting early stages of T cell differentiation. At later stages of development, Notch signaling is proposed to direct CD4 versus CD8 T lineage commitment. This hypothesis has been challenged by recent studies of conditional Presenilin-deficient mice showing that Notch promotes the selection and maturation of CD4 and CD8 T cells by potentiating TCR signal transduction in immature thymocytes. While similar conclusions have not been reported with conditional mutation of other downstream mediators of Notch activation, it appears that functional inhibition may not have been achieved at a comparable stage of development and/or analogous issues have not been addressed. The differences also question whether in thymocytes Notch signals only through the canonical pathway. Further study of conditional mutants, signaling intermediates, and transcriptional regulators are needed to elucidate how Notch facilitates TCR signaling in generating mature T cells.
Collapse
Affiliation(s)
- Karen Laky
- Laboratory of Cellular and Molecular Immunology, NIAID, National Institutes of Health, Bethesda, MD 20892-0420, USA.
| | | |
Collapse
|
27
|
The O-fucose glycan in the ligand-binding domain of Notch1 regulates embryogenesis and T cell development. Proc Natl Acad Sci U S A 2008; 105:1539-44. [PMID: 18227520 DOI: 10.1073/pnas.0702846105] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mechanisms by which the extracellular domain of Notch1 controls Notch1 signaling are not well defined. Here, we show that the O-fucose glycan in the Notch1 ligand-binding domain regulates the strength of Notch1 signaling during embryogenesis, postweaning growth, and T cell development in the mouse. Heterozygotes carrying a Notch1(12f) allele and an inactive Notch1 allele die at approximately embryonic day (E)12 with a typical Notch1 null phenotype. Homozygous Notch1(12f/12f) mice are viable and fertile but grow somewhat more slowly than littermates after weaning. Notch1(12f/12f) thymocytes bind less Delta1 and exhibit reduced Notch1 signaling. The number of double-positive (DP) and single-positive (SP) T cells are decreased in Notch1(12f/12f) thymus, and DP T cells are more apoptotic. By contrast, proportionately more SP cells have matured, and SP-to-DP ratios are increased in mutant thymus. Thus, the O-fucose glycan in EGF12 of mouse Notch1 is required for optimal Notch1 signaling and T cell development in mammals.
Collapse
|
28
|
Yagi T, Giallourakis C, Mohanty S, Scheidig C, Shen J, Zheng H, Xavier RJ, Shaw AC. Defective signal transduction in B lymphocytes lacking presenilin proteins. Proc Natl Acad Sci U S A 2008; 105:979-84. [PMID: 18195359 PMCID: PMC2242696 DOI: 10.1073/pnas.0707755105] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Indexed: 11/18/2022] Open
Abstract
The mammalian presenilin (PS) proteins mediate the posttranslational cleavage of several protein substrates, including amyloid precursor protein, Notch family members, and CD44, but they have also been suggested to function in diverse cellular processes, including calcium-dependent signaling and apoptosis. We carried out an integrative computational study of multiple genomic datasets, including RNA expression, protein interaction, and pathway analyses, which implicated PS proteins in Toll-like receptor signaling. To test these computational predictions, we analyzed mice carrying a conditional allele of PS1 and a germ line-inactivating allele of PS2, together with Cre site-specific recombinase expression under the influence of CD19 control sequences. Notably, B cells deficient in both PS1 and PS2 function have an unexpected and substantial deficit in both lipopolysaccharide and B cell antigen receptor-induced proliferation and signal transduction events, including a defect in anti-IgM-mediated calcium flux. Taken together, these results demonstrate a fundamental and unanticipated role for PS proteins in B cell function and emphasize the potency of (systems level) integrative analysis of whole-genome datasets in identifying novel biologic signal transduction relationships. Our findings also suggest that pharmacologic inhibition of PS for the treatment of conditions such as Alzheimer's disease may have potential consequences for immune system function.
Collapse
Affiliation(s)
- Tomohito Yagi
- *Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
| | | | - Subhasis Mohanty
- *Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Christina Scheidig
- *Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Jie Shen
- Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115; and
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Ramnik J. Xavier
- Gastrointestinal Unit and
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115
| | - Albert C. Shaw
- *Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
29
|
Laky K, Fowlkes B. Presenilins regulate αβ T cell development by modulating TCR signaling. J Biophys Biochem Cytol 2007. [DOI: 10.1083/jcb1785oia9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|