1
|
Vieira VA, Herbert N, Cromhout G, Adland E, Goulder P. Role of Early Life Cytotoxic T Lymphocyte and Natural Killer Cell Immunity in Paediatric HIV Cure/Remission in the Anti-Retroviral Therapy Era. Front Immunol 2022; 13:886562. [PMID: 35634290 PMCID: PMC9130627 DOI: 10.3389/fimmu.2022.886562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Only three well-characterised cases of functional cure have been described in paediatric HIV infection over the past decade. This underlines the fact that early initiation of combination antiretroviral therapy (cART), whilst minimising the size of the viral reservoir, is insufficient to achieve cure, unless other factors contribute. In this review, we consider these additional factors that may facilitate functional cure in paediatric infection. Among the early life immune activity, these include HIV-specific cytotoxic T-lymphocyte (CTL) and natural killer (NK) cell responses. The former have less potent antiviral efficacy in paediatric compared with adult infection, and indeed, in early life, NK responses have greater impact in suppressing viral replication than CTL. This fact may contribute to a greater potential for functional cure to be achieved in paediatric versus adult infection, since post-treatment control in adults is associated less with highly potent CTL activity, and more with effective antiviral NK cell responses. Nonetheless, antiviral CTL responses can play an increasingly effective role through childhood, especially in individuals expressing then 'protective' HLA-I molecules HLA-B*27/57/58:01/8101. The role of the innate system on preventing infection, in shaping the particular viruses transmitted, and influencing outcome is discussed. The susceptibility of female fetuses to in utero mother-to-child transmission, especially in the setting of recent maternal infection, is a curiosity that also provides clues to mechanisms by which cure may be achieved, since initial findings are that viral rebound is less frequent among males who interrupt cART. The potential of broadly neutralising antibody therapy to facilitate cure in children who have received early cART is discussed. Finally, we draw attention to the impact of the changing face of the paediatric HIV epidemic on cure potential. The effect of cART is not limited to preventing AIDS and reducing the risk of transmission. cART also affects which mothers transmit. No longer are mothers who transmit those who carry genes associated with poor immune control of HIV. In the cART era, a high proportion (>70% in our South African study) of transmitting mothers are those who seroconvert in pregnancy or who for social reasons are diagnosed late in pregnancy. As a result, now, genes associated with poor immune control of HIV are not enriched in mothers who transmit HIV to their child. These changes will likely influence the effectiveness of HLA-associated immune responses and therefore cure potential among children.
Collapse
Affiliation(s)
- Vinicius A. Vieira
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Nicholas Herbert
- Africa Health Research Institute (AHRI), Nelson R Mandela School of Medicine, Durban, South Africa
| | - Gabriela Cromhout
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom,Africa Health Research Institute (AHRI), Nelson R Mandela School of Medicine, Durban, South Africa,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa,*Correspondence: Philip Goulder,
| |
Collapse
|
2
|
Ojwach DBA, Madlala P, Gordon M, Ndung'u T, Mann JK. Vulnerable targets in HIV-1 Pol for attenuation-based vaccine design. Virology 2021; 554:1-8. [PMID: 33316731 PMCID: PMC7931244 DOI: 10.1016/j.virol.2020.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 11/24/2022]
Abstract
Identification of viral immune escape mutations that compromise HIV's ability to replicate may aid rational attenuation-based vaccine design. Previously we reported amino acids associated with altered viral replication capacity (RC) from a sequence-function analysis of 487 patient-derived RT-integrase sequences. In this study, site-directed mutagenesis experiments were performed to validate the effect of these mutations on RC. Viral reverse transcripts were measured by quantitative PCR and structural modelling was performed to gain further insight into the effect of reverse transcriptase (RT) mutations on reverse transcription. RT-integrase variants in or flanking cytotoxic T cell epitopes in the RT palm (158S), RT thumb (241I and 257V) and integrase catalytic core domain (124N) were confirmed to significantly reduce RC. RT mutants showed a delayed initiation of viral DNA synthesis. Structural models provide insight into how these attenuating RT mutations may affect amino acid interactions in the helix clamp, primer grip and catalytic site regions.
Collapse
Affiliation(s)
- Doty B A Ojwach
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Paradise Madlala
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Michelle Gordon
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Department of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA; Africa Health Research Institute, Durban, South Africa; Max Planck Institute for Infection Biology, Berlin, Germany; Division of Infection and Immunity, University College London, London, UK
| | - Jaclyn K Mann
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
3
|
Barton JP, Rajkoomar E, Mann JK, Murakowski DK, Toyoda M, Mahiti M, Mwimanzi P, Ueno T, Chakraborty AK, Ndung'u T. Modelling and in vitro testing of the HIV-1 Nef fitness landscape. Virus Evol 2019; 5:vez029. [PMID: 31392033 PMCID: PMC6680064 DOI: 10.1093/ve/vez029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
An effective vaccine is urgently required to curb the HIV-1 epidemic. We have previously described an approach to model the fitness landscape of several HIV-1 proteins, and have validated the results against experimental and clinical data. The fitness landscape may be used to identify mutation patterns harmful to virus viability, and consequently inform the design of immunogens that can target such regions for immunological control. Here we apply such an analysis and complementary experiments to HIV-1 Nef, a multifunctional protein which plays a key role in HIV-1 pathogenesis. We measured Nef-driven replication capacities as well as Nef-mediated CD4 and HLA-I down-modulation capacities of thirty-two different Nef mutants, and tested model predictions against these results. Furthermore, we evaluated the models using 448 patient-derived Nef sequences for which several Nef activities were previously measured. Model predictions correlated significantly with Nef-driven replication and CD4 down-modulation capacities, but not HLA-I down-modulation capacities, of the various Nef mutants. Similarly, in our analysis of patient-derived Nef sequences, CD4 down-modulation capacity correlated the most significantly with model predictions, suggesting that of the tested Nef functions, this is the most important in vivo. Overall, our results highlight how the fitness landscape inferred from patient-derived sequences captures, at least in part, the in vivo functional effects of mutations to Nef. However, the correlation between predictions of the fitness landscape and measured parameters of Nef function is not as accurate as the correlation observed in past studies for other proteins. This may be because of the additional complexity associated with inferring the cost of mutations on the diverse functions of Nef.
Collapse
Affiliation(s)
- John P Barton
- Departments of Chemical Engineering, Physics, and Chemistry, Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Erasha Rajkoomar
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Jaclyn K Mann
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Dariusz K Murakowski
- Departments of Chemical Engineering, Physics, and Chemistry, Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mako Toyoda
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | | | - Takamasa Ueno
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan.,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Arup K Chakraborty
- Departments of Chemical Engineering, Physics, and Chemistry, Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Thumbi Ndung'u
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA, USA.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Africa Health Research Institute, Durban, South Africa.,Max Planck Institute for Infection Biology, Chariteplatz, D-10117 Berlin, Germany
| |
Collapse
|
4
|
Naidoo L, Mzobe Z, Jin SW, Rajkoomar E, Reddy T, Brockman MA, Brumme ZL, Ndung'u T, Mann JK. Nef-mediated inhibition of NFAT following TCR stimulation differs between HIV-1 subtypes. Virology 2019; 531:192-202. [PMID: 30927712 DOI: 10.1016/j.virol.2019.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 01/11/2023]
Abstract
Functional characterisation of different HIV-1 subtypes may improve understanding of viral pathogenesis and spread. Here, we evaluated the ability of 345 unique HIV-1 Nef clones representing subtypes A, B, C and D to inhibit NFAT signalling following TCR stimulation. The contribution of this Nef function to disease progression was also assessed in 211 additional Nef clones isolated from unique subtype C infected individuals in early or chronic infection. On average, subtype A and C Nef clones exhibited significantly lower ability to inhibit TCR-mediated NFAT signalling compared to subtype B and D Nef clones. While this observation corroborates accumulating evidence supporting relative attenuation of subtypes A and C that may paradoxically contribute to their increased global prevalence and spread, no significant correlations between Nef-mediated NFAT inhibition activity and clinical markers of HIV-1 infection were observed, indicating that the relationship between Nef function and pathogenesis is complex.
Collapse
Affiliation(s)
- Lisa Naidoo
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Zinhle Mzobe
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Steven W Jin
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Erasha Rajkoomar
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Tarylee Reddy
- Medical Research Council, Biostatistics Unit, Durban 4001, South Africa
| | - Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6; Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada V6Z 1Y6
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada V6Z 1Y6
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA; Africa Health Research Institute, Durban 4001, South Africa; Max Planck Institute for Infection Biology, Chariteplatz, D-10117 Berlin, Germany
| | - Jaclyn K Mann
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa.
| |
Collapse
|
5
|
Pol-Driven Replicative Capacity Impacts Disease Progression in HIV-1 Subtype C Infection. J Virol 2018; 92:JVI.00811-18. [PMID: 29997209 DOI: 10.1128/jvi.00811-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/20/2018] [Indexed: 01/31/2023] Open
Abstract
CD8+ T cell-mediated escape mutations in Gag can reduce HIV-1 replication capacity (RC) and alter disease progression, but less is known about immune-mediated attenuation in other HIV-1 proteins. We generated 487 recombinant viruses encoding RT-integrase from individuals with chronic (n = 406) and recent (n = 81) HIV-1 subtype C infection and measured their in vitro RC using a green fluorescent protein (GFP) reporter T cell assay. In recently infected individuals, reverse transcriptase (RT)-integrase-driven RC correlated significantly with viral load set point (r = 0.25; P = 0.03) and CD4+ T cell decline (P = 0.013). Moreover, significant associations between RT integrase-driven RC and viral load (r = 0.28; P < 0.0001) and CD4+ T cell count (r = -0.29; P < 0.0001) remained in chronic infection. In early HIV infection, host expression of the protective HLA-B*81 allele was associated with lower RC (P = 0.05), as was expression of HLA-B*07 (P = 0.02), suggesting early immune-driven attenuation of RT-integrase by these alleles. In chronic infection, HLA-A*30:09 (in linkage disequilibrium with HLA-B*81) was significantly associated with lower RC (P = 0.05), and all 6 HLA-B alleles with the lowest RC measurements represented protective alleles, consistent with long-term effects of host immune pressures on lowering RT-integrase RC. The polymorphisms V241I, I257V, P272K, and E297K in reverse transcriptase and I201V in integrase, all relatively uncommon polymorphisms occurring in or adjacent to optimally described HLA-restricted cytotoxic T-lymphocyte epitopes, were associated with reduced RC. Together, our data suggest that RT-integrase-driven RC is clinically relevant and provide evidence that immune-driven selection of mutations in RT-integrase can compromise RC.IMPORTANCE Identification of viral mutations that compromise HIV's ability to replicate may aid rational vaccine design. However, while certain escape mutations in Gag have been shown to reduce HIV replication and influence clinical progression, less is known about the consequences of mutations that naturally arise in other HIV proteins. Pol is a highly conserved protein, but the impact of Pol function on HIV disease progression is not well defined. Here, we generated recombinant viruses using the RT-integrase region of Pol derived from HIV-1C-infected individuals with recent and chronic infection and measured their ability to replicate in vitro We demonstrate that RT-integrase-driven replication ability significantly impacts HIV disease progression. We further show evidence of immune-mediated attenuation in RT-integrase and identify specific polymorphisms in RT-integrase that significantly decrease HIV-1 replication ability, suggesting which Pol epitopes could be explored in vaccine development.
Collapse
|
6
|
Effects of Mutations on Replicative Fitness and Major Histocompatibility Complex Class I Binding Affinity Are Among the Determinants Underlying Cytotoxic-T-Lymphocyte Escape of HIV-1 Gag Epitopes. mBio 2017; 8:mBio.01050-17. [PMID: 29184023 PMCID: PMC5705913 DOI: 10.1128/mbio.01050-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain “protective” major histocompatibility complex class I (MHC-I) alleles, such as B*57 and B*27, are associated with long-term control of HIV-1 in vivo mediated by the CD8+ cytotoxic-T-lymphocyte (CTL) response. However, the mechanism of such superior protection is not fully understood. Here we combined high-throughput fitness profiling of mutations in HIV-1 Gag, in silico prediction of MHC-peptide binding affinity, and analysis of intraperson virus evolution to systematically compare differences with respect to CTL escape mutations between epitopes targeted by protective MHC-I alleles and those targeted by nonprotective MHC-I alleles. We observed that the effects of mutations on both viral replication and MHC-I binding affinity are among the determinants of CTL escape. Mutations in Gag epitopes presented by protective MHC-I alleles are associated with significantly higher fitness cost and lower reductions in binding affinity with respect to MHC-I. A linear regression model accounting for the effect of mutations on both viral replicative capacity and MHC-I binding can explain the protective efficacy of MHC-I alleles. Finally, we found a consistent pattern in the evolution of Gag epitopes in long-term nonprogressors versus progressors. Overall, our results suggest that certain protective MHC-I alleles allow superior control of HIV-1 by targeting epitopes where mutations typically incur high fitness costs and small reductions in MHC-I binding affinity. Understanding the mechanism of viral control achieved in long-term nonprogressors with protective HLA alleles provides insights for developing functional cure of HIV infection. Through the characterization of CTL escape mutations in infected persons, previous researchers hypothesized that protective alleles target epitopes where escape mutations significantly reduce viral replicative capacity. However, these studies were usually limited to a few mutations observed in vivo. Here we utilized our recently developed high-throughput fitness profiling method to quantitatively measure the fitness of mutations across the entirety of HIV-1 Gag. The data enabled us to integrate the results with in silico prediction of MHC-peptide binding affinity and analysis of intraperson virus evolution to systematically determine the differences in CTL escape mutations between epitopes targeted by protective HLA alleles and those targeted by nonprotective HLA alleles. We observed that the effects of Gag epitope mutations on HIV replicative fitness and MHC-I binding affinity are among the major determinants of CTL escape.
Collapse
|
7
|
Leitman EM, Thobakgale CF, Adland E, Ansari MA, Raghwani J, Prendergast AJ, Tudor-Williams G, Kiepiela P, Hemelaar J, Brener J, Tsai MH, Mori M, Riddell L, Luzzi G, Jooste P, Ndung'u T, Walker BD, Pybus OG, Kellam P, Naranbhai V, Matthews PC, Gall A, Goulder PJR. Role of HIV-specific CD8 + T cells in pediatric HIV cure strategies after widespread early viral escape. J Exp Med 2017; 214:3239-3261. [PMID: 28983013 PMCID: PMC5679167 DOI: 10.1084/jem.20162123] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/22/2017] [Accepted: 08/30/2017] [Indexed: 11/04/2022] Open
Abstract
Recent studies have suggested greater HIV cure potential among infected children than adults. A major obstacle to HIV eradication in adults is that the viral reservoir is largely comprised of HIV-specific cytotoxic T lymphocyte (CTL) escape variants. We here evaluate the potential for CTL in HIV-infected slow-progressor children to play an effective role in "shock-and-kill" cure strategies. Two distinct subgroups of children were identified on the basis of viral load. Unexpectedly, in both groups, as in adults, HIV-specific CTL drove the selection of escape variants across a range of epitopes within the first weeks of infection. However, in HIV-infected children, but not adults, de novo autologous variant-specific CTL responses were generated, enabling the pediatric immune system to "corner" the virus. Thus, even when escape variants are selected in early infection, the capacity in children to generate variant-specific anti-HIV CTL responses maintains the potential for CTL to contribute to effective shock-and-kill cure strategies in pediatric HIV infection.
Collapse
Affiliation(s)
- Ellen M Leitman
- Department of Paediatrics, University of Oxford, Oxford, England, UK
| | - Christina F Thobakgale
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, England, UK
| | - M Azim Ansari
- Oxford Martin School, University of Oxford, Oxford, England, UK
| | - Jayna Raghwani
- Department of Zoology, University of Oxford, Oxford, England, UK
| | - Andrew J Prendergast
- Blizard Institute, Queen Mary University of London, London, England, UK.,Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Gareth Tudor-Williams
- Division of Medicine, Department of Paediatrics, Imperial College London, London, England, UK
| | - Photini Kiepiela
- Medical Research Council, Durban, South Africa.,Witwatersrand Health Consortium, Johannesburg, South Africa
| | - Joris Hemelaar
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford, England, UK.,Linacre Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, University of Witwatersrand, Johannesburg, South Africa
| | - Jacqui Brener
- Department of Paediatrics, University of Oxford, Oxford, England, UK
| | - Ming-Han Tsai
- Department of Paediatrics, University of Oxford, Oxford, England, UK
| | - Masahiko Mori
- Department of Paediatrics, University of Oxford, Oxford, England, UK.,Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Lynn Riddell
- Northampton Healthcare NHS Foundation Trust, Cliftonville, England, UK
| | - Graz Luzzi
- Buckinghampshire Healthcare NHS Foundation Trust, High Wycombe, England, UK
| | - Pieter Jooste
- Paediatric Department, Kimberley Hospital, Northern Cape, South Africa
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | - Bruce D Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, England, UK
| | - Paul Kellam
- Kymab Ltd., Babraham Research Campus, Babraham, England, UK.,Department of Medicine, Division of Infectious Diseases, Imperial College Faculty of Medicine, London, England, UK
| | - Vivek Naranbhai
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA.,Centre for the AIDS Programme of Research in South Africa, University of KwaZulu Natal, Durban, South Africa
| | - Philippa C Matthews
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, England, UK
| | - Astrid Gall
- Wellcome Trust Sanger Institute, Hinxton, England, UK
| | - Philip J R Goulder
- Department of Paediatrics, University of Oxford, Oxford, England, UK .,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
8
|
Arcia D, Acevedo-Sáenz L, Rugeles MT, Velilla PA. Role of CD8 + T Cells in the Selection of HIV-1 Immune Escape Mutations. Viral Immunol 2016; 30:3-12. [PMID: 27805477 DOI: 10.1089/vim.2016.0095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) infection represents one of the biggest public health problems worldwide. The immune response, mainly the effector mechanisms mediated by CD8+ T cells, induces the selection of mutations that allows the virus to escape the immune control. These mutations are generally selected within CD8+ T cell epitopes restricted to human leukocyte antigen class I (HLA-I), leading to a decrease in the presentation and recognition of the epitope, decreasing the activation of CD8+ T cells. However, these mutations may also affect cellular processing of the peptide or recognition by the T cell receptor. Escape mutations often carry a negative impact in viral fitness that is partially or totally compensated by the selection of compensatory mutations. The selection of either escape mutations or compensatory mutations may negatively affect the course of the infection. In addition, these mutations are a major barrier for the development of new therapeutic strategies focused on the induction of specific CD8+ T cell responses.
Collapse
Affiliation(s)
- David Arcia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín, Colombia
| | - Liliana Acevedo-Sáenz
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín, Colombia
| | - María Teresa Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín, Colombia
| | - Paula A Velilla
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín, Colombia
| |
Collapse
|
9
|
Kinloch NN, MacMillan DR, Le AQ, Cotton LA, Bangsberg DR, Buchbinder S, Carrington M, Fuchs J, Harrigan PR, Koblin B, Kushel M, Markowitz M, Mayer K, Milloy MJ, Schechter MT, Wagner T, Walker BD, Carlson JM, Poon AFY, Brumme ZL. Population-Level Immune-Mediated Adaptation in HIV-1 Polymerase during the North American Epidemic. J Virol 2016; 90:1244-58. [PMID: 26559841 PMCID: PMC4719594 DOI: 10.1128/jvi.02353-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/06/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human leukocyte antigen (HLA) class I-associated polymorphisms in HIV-1 that persist upon transmission to HLA-mismatched hosts may spread in the population as the epidemic progresses. Transmission of HIV-1 sequences containing such adaptations may undermine cellular immune responses to the incoming virus in future hosts. Building upon previous work, we investigated the extent of HLA-associated polymorphism accumulation in HIV-1 polymerase (Pol) through comparative analysis of linked HIV-1/HLA class I genotypes sampled during historic (1979 to 1989; n = 338) and modern (2001 to 2011; n = 278) eras from across North America (Vancouver, BC, Canada; Boston, MA; New York, NY; and San Francisco, CA). Phylogenies inferred from historic and modern HIV-1 Pol sequences were star-like in shape, with an inferred most recent common ancestor (epidemic founder virus) sequence nearly identical to the modern North American subtype B consensus sequence. Nevertheless, modern HIV-1 Pol sequences exhibited roughly 2-fold-higher patristic (tip-to-tip) genetic distances than historic sequences, with HLA pressures likely driving ongoing diversification. Moreover, the frequencies of published HLA-associated polymorphisms in individuals lacking the selecting HLA class I allele was on average ∼2.5-fold higher in the modern than in the historic era, supporting their spread in circulation, though some remained stable in frequency during this time. Notably, polymorphisms restricted by protective HLA alleles appear to be spreading to a greater relative extent than others, though these increases are generally of modest absolute magnitude. However, despite evidence of polymorphism spread, North American hosts generally remain at relatively low risk of acquiring an HIV-1 polymerase sequence substantially preadapted to their HLA profiles, even in the present era. IMPORTANCE HLA class I-restricted cytotoxic T-lymphocyte (CTL) escape mutations in HIV-1 that persist upon transmission may accumulate in circulation over time, potentially undermining host antiviral immunity to the transmitted viral strain. We studied >600 experimentally collected HIV-1 polymerase sequences linked to host HLA information dating back to 1979, along with phylogenetically reconstructed HIV-1 sequences dating back to the virus' introduction into North America. Overall, our results support the gradual spread of many-though not all-HIV-1 polymerase immune escape mutations in circulation over time. This is consistent with recent observations from other global regions, though the extent of polymorphism accumulation in North America appears to be lower than in populations with high seroprevalence, older epidemics, and/or limited HLA diversity. Importantly, the risk of acquiring an HIV-1 polymerase sequence at transmission that is substantially preadapted to one's HLA profile remains relatively low in North America, even in the present era.
Collapse
Affiliation(s)
- Natalie N Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Daniel R MacMillan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Anh Q Le
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Laura A Cotton
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - David R Bangsberg
- Massachusetts General Hospital, Boston, Massachusetts, USA Harvard Medical School, Cambridge, Massachusetts, USA
| | - Susan Buchbinder
- San Francisco Department of Public Health, San Francisco, California, USA University of California, San Francisco, San Francisco, California, USA
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA Ragon Institute of Massachusetts General Hospital, MIT, and Harvard University, Cambridge, Massachusetts, USA
| | - Jonathan Fuchs
- San Francisco Department of Public Health, San Francisco, California, USA University of California, San Francisco, San Francisco, California, USA
| | - P Richard Harrigan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Margot Kushel
- University of California, San Francisco, San Francisco, California, USA
| | | | - Kenneth Mayer
- Harvard Medical School, Cambridge, Massachusetts, USA Fenway Community Health, Boston, Massachusetts, USA
| | - M J Milloy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Martin T Schechter
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Theresa Wagner
- San Francisco Department of Public Health, San Francisco, California, USA
| | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard University, Cambridge, Massachusetts, USA
| | | | - Art F Y Poon
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| |
Collapse
|
10
|
Abstract
An effective human immunodeficiency virus type 1 (HIV-1) vaccine is expected to have the greatest impact on HIV-1 spread and remains a global scientific priority. Only one candidate vaccine has significantly reduced HIV-1 acquisition, yet at a limited efficacy of 31%, and none have delayed disease progression in vaccinated individuals. Thus, the challenge remains to develop HIV-1 immunogens that will elicit protective immunity. A combination of two independent approaches - namely the elicitation of broadly neutralising antibodies (bNAb) to prevent or reduce acquisition of infection and stimulation of effective cytotoxic T lymphocyte (CTL) responses to slow disease progression in breakthrough infections (recent evidence suggests that CTLs could also block HIV-1 from establishing persistent infection) - is the current ideal. The purpose of this review is to summarise strategies and progress in the design and testing of HIV-1 immunogens to elicit bNAb and protective CTL immune responses. Recent advances in mimicking the functional native envelope trimer structure and in designing structurally-stabilised bNAb epitope forms to drive development of germline precursors to mature bNAb are highlighted. Systematic or computational approaches to T cell immunogen design aimed at covering viral diversity, increasing the breadth of immune responses and/or reducing viable viral escape are discussed. We also discuss a recent novel vaccine vector approach shown to induce extremely broad and persistent T cell responses that could clear highly pathogenic simian immunodeficiency virus (SIV) early after infection in the monkey model. While in vitro and animal model data are promising, Phase II and III human clinical trials are ultimately needed to determine the efficacy of immunogen design approaches.
Collapse
Affiliation(s)
- Jaclyn K Mann
- />HIV Pathogenesis Programme, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4001 South Africa
- />KwaZulu-Natal Research Institute for Tuberculosis and HIV, University of KwaZulu-Natal, Durban, 4001 South Africa
| | - Thumbi Ndung’u
- />HIV Pathogenesis Programme, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4001 South Africa
- />KwaZulu-Natal Research Institute for Tuberculosis and HIV, University of KwaZulu-Natal, Durban, 4001 South Africa
- />Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA 02139 USA
- />Max Planck Institute for Infection Biology, Chariteplatz, D-10117 Berlin, Germany
| |
Collapse
|
11
|
Carlson JM, Le AQ, Shahid A, Brumme ZL. HIV-1 adaptation to HLA: a window into virus-host immune interactions. Trends Microbiol 2015; 23:212-24. [PMID: 25613992 DOI: 10.1016/j.tim.2014.12.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/04/2014] [Accepted: 12/16/2014] [Indexed: 11/26/2022]
Abstract
HIV-1 develops specific mutations within its genome that allow it to escape detection by human leukocyte antigen (HLA) class I-restricted immune responses, notably those of CD8(+) cytotoxic T lymphocytes (CTL). HLA thus represents a major force driving the evolution and diversification of HIV-1 within individuals and at the population level. Importantly, the study of HIV-1 adaptation to HLA also represents an opportunity to identify what qualities constitute an effective immune response, how the virus in turn adapts to these pressures, and how we may harness this information to design HIV-1 vaccines that stimulate effective cellular immunity.
Collapse
Affiliation(s)
| | - Anh Q Le
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.
| |
Collapse
|
12
|
Mann JK, Chopera D, Omarjee S, Kuang XT, Le AQ, Anmole G, Danroth R, Mwimanzi P, Reddy T, Carlson J, Radebe M, Goulder PJR, Walker BD, Abdool Karim S, Novitsky V, Williamson C, Brockman MA, Brumme ZL, Ndung'u T. Nef-mediated down-regulation of CD4 and HLA class I in HIV-1 subtype C infection: association with disease progression and influence of immune pressure. Virology 2014; 468-470:214-225. [PMID: 25193656 DOI: 10.1016/j.virol.2014.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 06/08/2014] [Accepted: 08/11/2014] [Indexed: 11/30/2022]
Abstract
Nef plays a major role in HIV-1 pathogenicity. We studied HIV-1 subtype C infected individuals in acute/early (n = 120) or chronic (n = 207) infection to investigate the relationship between Nef-mediated CD4/HLA-I down-regulation activities and disease progression, and the influence of immune-driven sequence variation on these Nef functions. A single Nef sequence per individual was cloned into an expression plasmid, followed by transfection of a T cell line and measurement of CD4 and HLA-I expression. In early infection, a trend of higher CD4 down-regulation ability correlating with higher viral load set point was observed (r = 0.19, p = 0.05), and higher HLA-I down-regulation activity was significantly associated with faster rate of CD4 decline (p = 0.02). HLA-I down-regulation function correlated inversely with the number HLA-associated polymorphisms previously associated with reversion in the absence of the selecting HLA allele (r = -0.21, p = 0.0002). These data support consideration of certain Nef regions in HIV-1 vaccine strategies designed to attenuate the infection course.
Collapse
Affiliation(s)
- Jaclyn K Mann
- HIV Pathogenesis Programme, University of KwaZulu-Natal, 719 Umbilo Road, Durban 4001, South Africa; KwaZulu-Natal Research Institute for Tuberculosis and HIV, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Denis Chopera
- HIV Pathogenesis Programme, University of KwaZulu-Natal, 719 Umbilo Road, Durban 4001, South Africa; KwaZulu-Natal Research Institute for Tuberculosis and HIV, University of KwaZulu-Natal, Durban 4001, South Africa; Institute of Infectious Disease and Molecular Medicine, and the Division of Medical Virology, University of Cape Town and National Health Laboratory Services, Cape Town 7925, South Africa
| | - Saleha Omarjee
- HIV Pathogenesis Programme, University of KwaZulu-Natal, 719 Umbilo Road, Durban 4001, South Africa; KwaZulu-Natal Research Institute for Tuberculosis and HIV, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Xiaomei T Kuang
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Anh Q Le
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Gursev Anmole
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Ryan Danroth
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Philip Mwimanzi
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Tarylee Reddy
- Medical Research Council, Biostatistics Unit, Durban 4001, South Africa
| | - Jonathan Carlson
- Microsoft Research, Los Angeles, CA 90024, United States of America
| | - Mopo Radebe
- HIV Pathogenesis Programme, University of KwaZulu-Natal, 719 Umbilo Road, Durban 4001, South Africa; KwaZulu-Natal Research Institute for Tuberculosis and HIV, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Philip J R Goulder
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, United Kingdom; Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA 02139, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA 02139, USA; Massachusetts General Hospital and Harvard University, Boston, MA 02114, USA; Howard Hughes Medical Research Institute, Chevy Chase, MD 20815, USA
| | - Salim Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Vladimir Novitsky
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA; Botswana-Harvard School of Public Health AIDS Initiative Partnership for HIV Research and Education, P/Bag BO 320, Gaborone, Botswana
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine, and the Division of Medical Virology, University of Cape Town and National Health Laboratory Services, Cape Town 7925, South Africa
| | - Mark A Brockman
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6; Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada V6Z 1Y6
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada V6Z 1Y6
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, University of KwaZulu-Natal, 719 Umbilo Road, Durban 4001, South Africa; KwaZulu-Natal Research Institute for Tuberculosis and HIV, University of KwaZulu-Natal, Durban 4001, South Africa; Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA 02139, USA; Max Planck Institute for Infection Biology, Chariteplatz, D-10117 Berlin, Germany.
| |
Collapse
|
13
|
Mann JK, Barton JP, Ferguson AL, Omarjee S, Walker BD, Chakraborty A, Ndung'u T. The fitness landscape of HIV-1 gag: advanced modeling approaches and validation of model predictions by in vitro testing. PLoS Comput Biol 2014; 10:e1003776. [PMID: 25102049 PMCID: PMC4125067 DOI: 10.1371/journal.pcbi.1003776] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 06/29/2014] [Indexed: 11/20/2022] Open
Abstract
Viral immune evasion by sequence variation is a major hindrance to HIV-1 vaccine design. To address this challenge, our group has developed a computational model, rooted in physics, that aims to predict the fitness landscape of HIV-1 proteins in order to design vaccine immunogens that lead to impaired viral fitness, thus blocking viable escape routes. Here, we advance the computational models to address previous limitations, and directly test model predictions against in vitro fitness measurements of HIV-1 strains containing multiple Gag mutations. We incorporated regularization into the model fitting procedure to address finite sampling. Further, we developed a model that accounts for the specific identity of mutant amino acids (Potts model), generalizing our previous approach (Ising model) that is unable to distinguish between different mutant amino acids. Gag mutation combinations (17 pairs, 1 triple and 25 single mutations within these) predicted to be either harmful to HIV-1 viability or fitness-neutral were introduced into HIV-1 NL4-3 by site-directed mutagenesis and replication capacities of these mutants were assayed in vitro. The predicted and measured fitness of the corresponding mutants for the original Ising model (r = −0.74, p = 3.6×10−6) are strongly correlated, and this was further strengthened in the regularized Ising model (r = −0.83, p = 3.7×10−12). Performance of the Potts model (r = −0.73, p = 9.7×10−9) was similar to that of the Ising model, indicating that the binary approximation is sufficient for capturing fitness effects of common mutants at sites of low amino acid diversity. However, we show that the Potts model is expected to improve predictive power for more variable proteins. Overall, our results support the ability of the computational models to robustly predict the relative fitness of mutant viral strains, and indicate the potential value of this approach for understanding viral immune evasion, and harnessing this knowledge for immunogen design. At least 70 million people have been infected with HIV since the beginning of the epidemic and an effective vaccine remains elusive. The high mutation rate and diversity of HIV strains enables the virus to effectively evade host immune responses, presenting a significant challenge for HIV vaccine design. We have developed an approach to translate clinical databases of HIV sequences into mathematical models quantifying the capacity of the virus to replicate as a function of mutations within its genome. We have previously shown how such “fitness landscapes” can be used to guide the design of vaccines to attack vulnerable regions from which it is difficult for the virus to escape by mutation. Here, using new modeling approaches, we have improved on our previous models of HIV fitness landscape by accounting for undersampling of HIV sequences and the specific identity of mutant amino acids. We experimentally tested the accuracy of the improved models to predict the fitness of HIV with multiple mutations in the Gag protein. The experimental data are in strong agreement with model predictions, supporting the value of these models as a novel approach for determining mutational vulnerabilities of HIV-1, which, in turn, can inform vaccine design.
Collapse
Affiliation(s)
- Jaclyn K. Mann
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - John P. Barton
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, United States of America
| | - Andrew L. Ferguson
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Saleha Omarjee
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Bruce D. Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Arup Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, United States of America
- Departments of Chemistry and Physics, Massachusetts Institute of Technology, Boston, Massachusetts, United States of America
- * E-mail: (AC); (TN)
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, United States of America
- Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail: (AC); (TN)
| |
Collapse
|
14
|
Abstract
UNLABELLED Host and viral factors influence the HIV-1 infection course. Reduced Nef function has been observed in HIV-1 controllers during the chronic phase, but the kinetics and mechanisms of Nef attenuation in such individuals remain unclear. We examined plasma RNA-derived Nef clones from 10 recently infected individuals who subsequently suppressed viremia to less than 2,000 RNA copies/ml within 1 year postinfection (acute controllers) and 50 recently infected individuals who did not control viremia (acute progressors). Nef clones from acute controllers displayed a lesser ability to downregulate CD4 and HLA class I from the cell surface and a reduced ability to enhance virion infectivity compared to those from acute progressors (all P<0.01). HLA class I downregulation activity correlated inversely with days postinfection (Spearman's R=-0.85, P=0.004) and positively with baseline plasma viral load (Spearman's R=0.81, P=0.007) in acute controllers but not in acute progressors. Nef polymorphisms associated with functional changes over time were identified in follow-up samples from six controllers. For one such individual, mutational analyses indicated that four polymorphisms selected by HLA-A*31 and B*37 acted in combination to reduce Nef steady-state protein levels and HLA class I downregulation activity. Our results demonstrate that relative control of initial HIV-1 viremia is associated with Nef clones that display reduced function, which in turn may influence the course of HIV-1 infection. Transmission of impaired Nef sequences likely contributed in part to this observation; however, accumulation of HLA-associated polymorphisms in Nef that impair function also suggests that CD8+ T-cell pressures play a role in this phenomenon. IMPORTANCE Rare individuals can spontaneously control HIV-1 viremia in the absence of antiretroviral treatment. Understanding the host and viral factors that contribute to the controller phenotype may identify new strategies to design effective vaccines or therapeutics. The HIV-1 Nef protein enhances viral pathogenesis through multiple mechanisms. We examined the function of plasma HIV-1 RNA-derived Nef clones isolated from 10 recently infected individuals who subsequently controlled HIV viremia compared to the function of those from 50 individuals who failed to control viremia. Our results demonstrate that early Nef clones from HIV controllers displayed lower HLA class I and CD4 downregulation activity, as well as a reduced ability to enhance virion infectivity. The accumulation of HLA-associated polymorphisms in Nef during the first year postinfection was associated with impaired protein function in some controllers. This report highlights the potential for host immune responses to modulate HIV pathogenicity and disease outcome by targeting cytotoxic T lymphocyte (CTL) epitopes in Nef.
Collapse
|
15
|
Hu J, Zhang C. Porcine reproductive and respiratory syndrome virus vaccines: current status and strategies to a universal vaccine. Transbound Emerg Dis 2013; 61:109-20. [PMID: 23343057 DOI: 10.1111/tbed.12016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Indexed: 12/29/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of PRRS, the most significant infectious disease currently affecting swine industry worldwide. In the United States alone, the economic losses caused by PRRS amount to more than 560 million US dollars every year. Due to immune evasion strategies and the antigenic heterogeneity of the virus, current commercial PRRSV vaccines (killed-virus and modified-live vaccines) are of unsatisfactory efficacy, especially against heterologous infection. Continuous efforts have been devoted to develop better PRRSV vaccines. Experimental PRRSV vaccines, including live attenuated vaccines, recombinant vectors expressing PRRSV viral proteins, DNA vaccines and plant-made subunit vaccines, have been developed. However, the genetic and antigenic heterogeneity of the virus limits the value of almost all of the PRRSV vaccines tested. Developing a universal vaccine that can provide broad protection against circulating PRRSV strains has become a major challenge for current vaccine development. This paper reviews current status of PRRSV vaccine development and discusses strategies to develop a universal PRRSV vaccine.
Collapse
Affiliation(s)
- J Hu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | | |
Collapse
|
16
|
Yue L, Prentice HA, Farmer P, Song W, He D, Lakhi S, Goepfert P, Gilmour J, Allen S, Tang J, Kaslow RA, Hunter E. Cumulative impact of host and viral factors on HIV-1 viral-load control during early infection. J Virol 2013; 87:708-15. [PMID: 23115285 PMCID: PMC3554094 DOI: 10.1128/jvi.02118-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/24/2012] [Indexed: 12/22/2022] Open
Abstract
In HIV-1 infection, the early set-point viral load strongly predicts both viral transmission and disease progression. The factors responsible for the wide spectrum of set-point viral loads are complex and likely reflect an interplay between the transmitted virus and genetically defined factors in both the transmitting source partner and the seroconverter. Indeed, analysis of 195 transmission pairs from Lusaka, Zambia, revealed that the viral loads in transmitting source partners contributed only ∼2% of the variance in early set-point viral loads of seroconverters (P = 0.046 by univariable analysis). In multivariable models, early set-point viral loads in seroconverting partners were a complex function of (i) the viral load in the source partner, (ii) the gender of the seroconverter, (iii) specific HLA class I alleles in the newly infected partner, and (iv) sharing of HLA-I alleles between partners in a transmission pair. Each of these factors significantly and independently contributed to the set-point viral load in the newly infected partner, accounting for up to 37% of the variance observed and suggesting that many factors operate in concert to define the early virological phenotype in HIV-1 infection.
Collapse
Affiliation(s)
- Ling Yue
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Heather A. Prentice
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paul Farmer
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Wei Song
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Dongning He
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shabir Lakhi
- Zambia-Emory HIV Research Project, Lusaka, Zambia
| | - Paul Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jill Gilmour
- International AIDS Vaccine Initiative, London, England
| | - Susan Allen
- Department of Pathology, Emory University, Atlanta, Georgia, USA
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Richard A. Kaslow
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Eric Hunter
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Intersubtype differences in the effect of a rare p24 gag mutation on HIV-1 replicative fitness. J Virol 2012; 86:13423-33. [PMID: 23015721 DOI: 10.1128/jvi.02171-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain immune-driven mutations in HIV-1, such as those arising in p24(Gag), decrease viral replicative capacity. However, the intersubtype differences in the replicative consequences of such mutations have not been explored. In HIV-1 subtype B, the p24(Gag) M250I mutation is a rare variant (0.6%) that is enriched among elite controllers (7.2%) (P = 0.0005) and appears to be a rare escape variant selected by HLA-B58 supertype alleles (P < 0.01). In contrast, in subtype C, it is a relatively common minor polymorphic variant (10 to 15%) whose appearance is not associated with a particular HLA allele. Using site-directed mutant viruses, we demonstrate that M250I reduces in vitro viral replicative capacity in both subtype B and subtype C sequences. However, whereas in subtype C downstream compensatory mutations at p24(Gag) codons 252 and 260 reduce the adverse effects of M250I, fitness costs in subtype B appear difficult to restore. Indeed, patient-derived subtype B sequences harboring M250I exhibited in vitro replicative defects, while those from subtype C did not. The structural implications of M250I were predicted by protein modeling to be greater in subtype B versus C, providing a potential explanation for its lower frequency and enhanced replicative defects in subtype B. In addition to accounting for genetic differences between HIV-1 subtypes, the design of cytotoxic-T-lymphocyte-based vaccines may need to account for differential effects of host-driven viral evolution on viral fitness.
Collapse
|
18
|
Zhang SC, Martin E, Shimada M, Godfrey SB, Fricke J, Locastro S, Lai NY, Liebesny P, Carlson JM, Brumme CJ, Ogbechie OA, Chen H, Walker BD, Brumme ZL, Kavanagh DG, Le Gall S. Aminopeptidase substrate preference affects HIV epitope presentation and predicts immune escape patterns in HIV-infected individuals. THE JOURNAL OF IMMUNOLOGY 2012; 188:5924-34. [PMID: 22586036 DOI: 10.4049/jimmunol.1200219] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Viruses evade immune detection partly through immune-associated mutations. Analyses of HIV sequences derived from infected individuals have identified numerous examples of HLA-associated mutations within or adjacent to T cell epitopes, but the potential impact of most mutations on epitope production and presentation remains unclear. The multistep breakdown of proteins into epitopes includes trimming of N-extended peptides into epitopes by aminopeptidases before loading onto MHC class I molecules. Definition of sequence signatures that modulate epitope production would lead to a better understanding of factors driving viral evolution and immune escape at the population level. In this study, we identified cytosolic aminopeptidases cleavage preferences in primary cells and its impact on HIV Ag degradation into epitopes in primary human cell extracts by mass spectrometry and on epitope presentation to CTL. We observed a hierarchy of preferred amino acid cleavage by cytosolic aminopeptidases. We demonstrated that flanking mutations producing more or less cleavable motifs can increase or decrease epitope production and presentation by up to 14-fold. We found that the efficiency of epitope production correlates with cleavability of flanking residues. These in vitro findings were supported by in vivo population-level analyses of clinically derived viral sequences from 1134 antiretroviral-naive HIV-infected individuals: HLA-associated mutations immune pressures drove the selection of residues that are less cleavable by aminopeptidases predominantly at N-flanking sites, leading to reduced epitope production and immune recognition. These results underscore an important and widespread role of Ag processing mutations in HIV immune escape and identify molecular mechanisms underlying impaired epitope presentation.
Collapse
Affiliation(s)
- Shao Chong Zhang
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Antibody-Dependent Cellular Cytotoxicity and NK Cell-Driven Immune Escape in HIV Infection: Implications for HIV Vaccine Development. Adv Virol 2012; 2012:637208. [PMID: 22611395 PMCID: PMC3350948 DOI: 10.1155/2012/637208] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/13/2012] [Accepted: 02/13/2012] [Indexed: 02/05/2023] Open
Abstract
The HIV-1 genome is malleable and a difficult target tot vaccinate against. It has long been recognised that cytotoxic T lymphocytes and neutralising antibodies readily select for immune escape HIV variants. It is now also clear that NK cells can also select for immune escape. NK cells force immune escape through both direct Killer-immunoglobulin-like receptor (KIR)-mediated killing as well as through facilitating antibody-dependent cellular cytotoxicity (ADCC). These newer finding suggest NK cells and ADCC responses apply significant pressure to the virus. There is an opportunity to harness these immune responses in the design of more effective HIV vaccines.
Collapse
|
20
|
Williams SG, Madan R, Norris MGS, Archer J, Mizuguchi K, Robertson DL, Lovell SC. Using knowledge of protein structural constraints to predict the evolution of HIV-1. J Mol Biol 2011; 410:1023-34. [PMID: 21763504 DOI: 10.1016/j.jmb.2011.04.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 10/18/2022]
Abstract
The high levels of sequence diversity and rapid rates of evolution of HIV-1 represent the main challenges for developing effective therapies. However, there are constraints imposed by the three-dimensional protein structure that affect the sequence space accessible to the evolution of HIV-1. Here, we present a strategy for predicting the set of possible amino acid replacements in HIV. Our approach is based on the identification of likely amino acid changes in the context of these structural constraints using environment-specific substitution matrices as well as considering the physical constraints imposed by local structure. Assessment of the power of various published algorithms in predicting the evolution of HIV-1 Gag P17 shows that it is possible to use these methods to make accurate predictions of the sequence diversity. Our own method, SubFit, uses knowledge of local structural constraints; it achieves similar prediction success with the best-performing methods. We also show that erroneous predictions are largely due to infrequently occurring amino acids that will probably have severe fitness costs for the protein. Future improvements; for example, incorporating covariation and immunological constraints will permit more reliable prediction of viral evolution.
Collapse
Affiliation(s)
- Simon G Williams
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | | | |
Collapse
|
21
|
Chopera DR, Wright JK, Brockman MA, Brumme ZL. Immune-mediated attenuation of HIV-1. Future Virol 2011; 6:917-928. [PMID: 22393332 DOI: 10.2217/fvl.11.68] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immune escape mutations selected by human leukocyte antigen class I-restricted CD8(+) cytotoxic T lymphocytes (CTLs) can result in biologically and clinically relevant costs to HIV-1 replicative fitness. This phenomenon may be exploited to design an HIV-1 vaccine capable of stimulating effective CTL responses against highly conserved, mutationally constrained viral regions, where immune escape could occur only at substantial functional costs. Such a vaccine might 'channel' HIV-1 evolution towards a less-fit state, thus lowering viral load set points, attenuating the infection course and potentially reducing the risk of transmission. A major barrier to this approach, however, is the accumulation of immune escape variants at the population level, possibly leading to the loss of immunogenic CTL epitopes and diminished vaccine-induced cellular immune responses as the epidemic progresses. Here, we review the evidence supporting CTL-driven replicative defects in HIV-1 and consider the implications of this work for CTL-based vaccines designed to attenuate the infection course.
Collapse
|
22
|
Human leukocyte antigen variants B*44 and B*57 are consistently favorable during two distinct phases of primary HIV-1 infection in sub-Saharan Africans with several viral subtypes. J Virol 2011; 85:8894-902. [PMID: 21715491 DOI: 10.1128/jvi.00439-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
As part of an ongoing study of early human immunodeficiency virus type 1 (HIV-1) infection in sub-Saharan African countries, we have identified 134 seroconverters (SCs) with distinct acute-phase (peak) and early chronic-phase (set-point) viremias. SCs with class I human leukocyte antigen (HLA) variants B*44 and B*57 had much lower peak viral loads (VLs) than SCs without these variants (adjusted linear regression beta values of -1.08 ± 0.26 log(10) [mean ± standard error] and -0.83 ± 0.27 log(10), respectively; P < 0.005 for both), after accounting for several nongenetic factors, including gender, age at estimated date of infection, duration of infection, and country of origin. These findings were confirmed by alternative models in which major viral subtypes (A1, C, and others) in the same SCs replaced country of origin as a covariate (P ≤ 0.03). Both B*44 and B*57 were also highly favorable (P ≤ 0.03) in analyses of set-point VLs. Moreover, B*44 was associated with relatively high CD4(+) T-cell counts during early chronic infection (P = 0.02). Thus, at least two common HLA-B variants showed strong influences on acute-phase as well as early chronic-phase VL, regardless of the infecting viral subtype. If confirmed, the identification of B*44 as another favorable marker in primary HIV-1 infection should help dissect mechanisms of early immune protection against HIV-1 infection.
Collapse
|
23
|
The antiviral efficacy of HIV-specific CD8⁺ T-cells to a conserved epitope is heavily dependent on the infecting HIV-1 isolate. PLoS Pathog 2011; 7:e1001341. [PMID: 21589893 PMCID: PMC3093356 DOI: 10.1371/journal.ppat.1001341] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 04/11/2011] [Indexed: 01/03/2023] Open
Abstract
A major challenge to developing a successful HIV vaccine is the vast diversity of viral sequences, yet it is generally assumed that an epitope conserved between different strains will be recognised by responding T-cells. We examined whether an invariant HLA-B8 restricted Nef90–97 epitope FL8 shared between five high titre viruses and eight recombinant vaccinia viruses expressing Nef from different viral isolates (clades A–H) could activate antiviral activity in FL8-specific cytotoxic T-lymphocytes (CTL). Surprisingly, despite epitope conservation, we found that CTL antiviral efficacy is dependent on the infecting viral isolate. Only 23% of Nef proteins, expressed by HIV-1 isolates or as recombinant vaccinia-Nef, were optimally recognised by CTL. Recognition of the HIV-1 isolates by CTL was independent of clade-grouping but correlated with virus-specific polymorphisms in the epitope flanking region, which altered immunoproteasomal cleavage resulting in enhanced or impaired epitope generation. The finding that the majority of virus isolates failed to present this conserved epitope highlights the importance of viral variance in CTL epitope flanking regions on the efficiency of antigen processing, which has been considerably underestimated previously. This has important implications for future vaccine design strategies since efficient presentation of conserved viral epitopes is necessary to promote enhanced anti-viral immune responses. One of the greatest challenges to developing an effective HIV vaccine is the ability of HIV to rapidly alter its viral sequence. Such variation in viral sequence enables the virus to frequently evade recognition by the host immune system. To counteract this problem, there has been increasing interest in developing HIV vaccines that target T-cell responses to the regions of the virus that are highly conserved between strains of HIV. However, previous studies have focused on identifying amino acid variation predominantly within a single viral isolate, or have focused on classical within-epitope escape mutation. Our study assessed T-cell recognition of a conserved epitope shared by a total of 13 HIV strains. Strikingly, we show that only a small proportion of the viral strains were effectively recognised and targeted by the T-cells. In contrast, differences in amino acid sequence in the region flanking the epitope impaired the intracellular processing and presentation of epitope in the majority of HIV strains tested. Thus, our findings highlight that a large proportion of HIV strains may evade epitope-specific T-cell recognition despite absolute epitope conservation. This has important implications for both vaccine design and evaluation of vaccine efficacy.
Collapse
|
24
|
Abstract
Exceedingly high viral loads and rapid loss of CD4(+) T cells in all tissue compartments are a hallmark of acute human immunodeficiency virus type 1 (HIV-1) infection, which is often accompanied by clinical symptoms such as fever, maculopapular rash, and/or lymphadenopathy. The resolution of the clinical symptoms and the subsequent decrease in plasma viremia are associated with the emergence of HIV-1-specific CD4(+) and CD8(+) T cell responses. The remarkable early inhibition of viremia by CD8(+) T cells appears to be precipitated by only a limited number of specific CD8(+) T cell responses, and the plasma viremia is reduced to a "set point" level. Over time, the breadth and magnitude of CD8(+) T cell responses increase, but without a change in the control of viral replication or further reduction in the viral set point. Moreover, the early viral set point, consequent on the first CD8(+) T cell responses, is highly predictive of the later course of disease progression. Thus, HIV-1-specific CD8(+) T cell responses in acute HIV-1 infection appear uniquely able to efficiently suppress viral replication, whereas CD8(+) T cell responses generated in the chronic phase of infection appear often impaired.
Collapse
Affiliation(s)
- Hendrik Streeck
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | | |
Collapse
|
25
|
Early selection in Gag by protective HLA alleles contributes to reduced HIV-1 replication capacity that may be largely compensated for in chronic infection. J Virol 2010; 84:11937-49. [PMID: 20810731 DOI: 10.1128/jvi.01086-10] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutations that allow escape from CD8 T-cell responses are common in HIV-1 and may attenuate pathogenesis by reducing viral fitness. While this has been demonstrated for individual cases, a systematic investigation of the consequence of HLA class I-mediated selection on HIV-1 in vitro replication capacity (RC) has not been undertaken. We examined this question by generating recombinant viruses expressing plasma HIV-1 RNA-derived Gag-Protease sequences from 66 acute/early and 803 chronic untreated subtype B-infected individuals in an NL4-3 background and measuring their RCs using a green fluorescent protein (GFP) reporter CD4 T-cell assay. In acute/early infection, viruses derived from individuals expressing the protective alleles HLA-B*57, -B*5801, and/or -B*13 displayed significantly lower RCs than did viruses from individuals lacking these alleles (P < 0.05). Furthermore, acute/early RC inversely correlated with the presence of HLA-B-associated Gag polymorphisms (R = -0.27; P = 0.03), suggesting a cumulative effect of primary escape mutations on fitness during the first months of infection. At the chronic stage of infection, no strong correlations were observed between RC and protective HLA-B alleles or with the presence of HLA-B-associated polymorphisms restricted by protective alleles despite increased statistical power to detect these associations. However, RC correlated positively with the presence of known compensatory mutations in chronic viruses from B*57-expressing individuals harboring the Gag T242N mutation (n = 50; R = 0.36; P = 0.01), suggesting that the rescue of fitness defects occurred through mutations at secondary sites. Additional mutations in Gag that may modulate the impact of the T242N mutation on RC were identified. A modest inverse correlation was observed between RC and CD4 cell count in chronic infection (R = -0.17; P < 0.0001), suggesting that Gag-Protease RC could increase over the disease course. Notably, this association was stronger for individuals who expressed B*57, B*58, or B*13 (R = -0.27; P = 0.004). Taken together, these data indicate that certain protective HLA alleles contribute to early defects in HIV-1 fitness through the selection of detrimental mutations in Gag; however, these effects wane as compensatory mutations accumulate in chronic infection. The long-term control of HIV-1 in some persons who express protective alleles suggests that early fitness hits may provide lasting benefits.
Collapse
|
26
|
Strain-specific differences in the impact of human TRIM5alpha, different TRIM5alpha alleles, and the inhibition of capsid-cyclophilin A interactions on the infectivity of HIV-1. J Virol 2010; 84:11010-9. [PMID: 20702630 DOI: 10.1128/jvi.00758-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 infectivity is strongly restricted by TRIM5α from certain primate species but has been described as being only marginally susceptible to human TRIM5α. In this study, we evaluated the effects of the modulation of human TRIM5α activity (pretreatment of target cells with alpha interferon, expression of a pre-miRNA targeting TRIM5α, and/or overexpression of TRIM5γ), the inhibition of cyclophilin A (CypA)-CA interactions, and the expression of different allelic variants of human TRIM5α on the infectivity of a series of recombinant viruses carrying different patient-derived Gag-protease sequences. We show that HIV-1 displays virus-specific differences in its sensitivity to human TRIM5α and in its sensitivity to different TRIM5α alleles. The effect of inhibiting CypA-CA interactions is also strain specific, and blocking these interactions can either inhibit or improve viral infectivity, depending on the isolate studied. The inhibition of CypA-CA interactions also modulates viral sensitivity to human TRIM5α. In the absence of CypA-CA interactions, most viruses displayed increased sensitivity to the inhibitory effects of TRIM5α on viral replication, but one isolate showed a paradoxical decrease in sensitivity to TRIM5α. Taken together, these findings support a model in which three interlinked factors--capsid sequence, CypA levels, and TRIM5α--interact to determine capsid stability and therefore viral infectivity.
Collapse
|
27
|
Schaubert KL, Price DA, Salkowitz JR, Sewell AK, Sidney J, Asher TE, Blondelle SE, Adams S, Marincola FM, Joseph A, Sette A, Douek DC, Ayyavoo V, Storkus W, Leung MY, Ng HL, Yang OO, Goldstein H, Wilson DB, Kan-Mitchell J. Generation of robust CD8+ T-cell responses against subdominant epitopes in conserved regions of HIV-1 by repertoire mining with mimotopes. Eur J Immunol 2010; 40:1950-62. [PMID: 20432235 PMCID: PMC3086652 DOI: 10.1002/eji.200940079] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
HLA-A 0201-restricted virus-specific CD8(+) CTL do not appear to control HIV effectively in vivo. To enhance the immunogenicity of a highly conserved subdominant epitope, TV9 (TLNAWVKVV, p24 Gag(19-27)), mimotopes were designed by screening a large combinatorial nonapeptide library with TV9-specific CTL primed in vitro from healthy donors. A mimic peptide with a low binding affinity to HLA-A 0201, TV9p6 (KINAWIKVV), was studied further. Parallel cultures of in vitro-primed CTL showed that TV9p6 consistently activated cross-reactive and equally functional CTL as measured by cytotoxicity, cytokine production and suppression of HIV replication in vitro. Comparison of TCRB gene usage between CTL primed from the same donors with TV9 or TV9p6 revealed a degree of clonal overlap in some cases and an example of a conserved TCRB sequence encoded distinctly at the nucleotide level between individuals (a "public" TCR); however, in the main, distinct clonotypes were recruited by each peptide antigen. These findings indicate that mimotopes can mobilize functional cross-reactive clonotypes that are less readily recruited from the naïve T-cell pool by the corresponding WT epitope. Mimotope-induced repertoire diversification could potentially override subdominance under certain circumstances and enhance vaccine-induced responses to conserved but poorly immunogenic determinants within the HIV proteome.
Collapse
Affiliation(s)
- Keri L. Schaubert
- Department of Biological Sciences and Border Biomedical Research Institute, University of Texas at El Paso, El Paso, TX 79968
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201
| | - David A. Price
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
- Department of Infection, Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, Wales, UK
| | - Janelle R. Salkowitz
- Department of Biological Sciences and Border Biomedical Research Institute, University of Texas at El Paso, El Paso, TX 79968
| | - Andrew K. Sewell
- Department of Infection, Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, Wales, UK
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Tedi E. Asher
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sylvie E. Blondelle
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121
- Mixture Sciences Incorporated, San Diego, CA 92121
| | - Sharon Adams
- Immunogenetics Section, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892
| | - Francesco M. Marincola
- Immunogenetics Section, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892
| | - Aviva Joseph
- Departments of Microbiology & Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Velpandi Ayyavoo
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261
| | - Walter Storkus
- Departments of Immunology and Dermatology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15261
| | - Ming-Ying Leung
- Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX 79968
| | - Hwee L. Ng
- Department of Medicine and AIDS Institute, Center for Health Sciences, University of California Los Angeles, CA 90095
| | - Otto O. Yang
- Department of Medicine and AIDS Institute, Center for Health Sciences, University of California Los Angeles, CA 90095
| | - Harris Goldstein
- Departments of Microbiology & Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Darcy B. Wilson
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121
- Mixture Sciences Incorporated, San Diego, CA 92121
| | - June Kan-Mitchell
- Department of Biological Sciences and Border Biomedical Research Institute, University of Texas at El Paso, El Paso, TX 79968
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
28
|
Ramanathan VD, Kumar M, Mahalingam J, Sathyamoorthy P, Narayanan PR, Solomon S, Panicali D, Chakrabarty S, Cox J, Sayeed E, Ackland J, Verlinde C, Vooijs D, Loughran K, Barin B, Lombardo A, Gilmour J, Stevens G, Smith MS, Tarragona-Fiol T, Hayes P, Kochhar S, Excler JL, Fast P. A Phase 1 study to evaluate the safety and immunogenicity of a recombinant HIV type 1 subtype C-modified vaccinia Ankara virus vaccine candidate in Indian volunteers. AIDS Res Hum Retroviruses 2009; 25:1107-16. [PMID: 19943789 DOI: 10.1089/aid.2009.0096] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A recombinant modified vaccinia Ankara virus vaccine candidate (TBC-M4) expressing HIV-1 subtype C env, gag, tat-rev, and nef-RT genes was tested in a randomized, double-blind, dose escalation Phase I trial in 32 HIV-uninfected healthy volunteers who received three intramuscular injections of TBC-M4 at 0, 1, and 6 months of 5 x 10(7) plaque-forming units (pfu) (low dosage, LD) (n = 12) or 2.5 x 10(8) pfu (high dosage, HD) (n = 12) or placebo (n = 8). Local and systemic reactogenicity was experienced by approximately 67% and 83% of vaccine recipients, respectively. The reactogenicity events were mostly mild in severity. Severe but transient systemic reactogenicity was seen in one volunteer of the HD group. No vaccine-related serious adverse events or events suggesting perimyocarditis were seen. A higher frequency of local reactogenicity events was observed in the HD group. Cumulative HIV-specific IFN-gamma ELISPOT responses were detected in frozen PBMCs from 9/11 (82%), 12/12 (100%), and 1/8 (13%) volunteers after the third injection of the LD, HD, and placebo groups, respectively. Most of the responses were to gag and env proteins (maximum of 430 SFU/10(6) PBMCs) persisting across multiple time points. HIV-specific ELISA antibody responses were detected in 10/11, 12/12, and 0/8 volunteers post-third vaccination, in the LD, HD, and placebo groups, respectively. No neutralizing activity against HIV-1 subtype C isolates was detected. TBC-M4 appears to be generally safe and well-tolerated. The immune response detected was dose dependent, modest in magnitude, and directed mostly to env and gag proteins, suggesting further evaluation of this vaccine in a prime-boost regimen.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Josephine Cox
- International AIDS Vaccine Initiative, New York, New York 10038
| | - Eddy Sayeed
- International AIDS Vaccine Initiative, New York, New York 10038
| | - James Ackland
- International AIDS Vaccine Initiative, New York, New York 10038
| | - Carl Verlinde
- International AIDS Vaccine Initiative, New York, New York 10038
| | - Dani Vooijs
- International AIDS Vaccine Initiative, New York, New York 10038
| | | | - Burc Barin
- EMMES Corporation, Rockville Maryland 20850
| | - Angela Lombardo
- International AIDS Vaccine Initiative, New York, New York 10038
| | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College, London, UK
| | | | | | | | | | | | | | - Patricia Fast
- International AIDS Vaccine Initiative, New York, New York 10038
| |
Collapse
|
29
|
T-cell vaccine strategies for human immunodeficiency virus, the virus with a thousand faces. J Virol 2009; 83:8300-14. [PMID: 19439471 DOI: 10.1128/jvi.00114-09] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
30
|
Sullivan M. Moving candidate vaccines into development from research: lessons from HIV. Immunol Cell Biol 2009; 87:366-70. [PMID: 19434070 DOI: 10.1038/icb.2009.30] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There is a logarithmic increase in the cost and complexity of the research and development process when transitioning a promising candidate vaccine from the laboratory into the clinic. Managing complex development programs involving people from diverse technical, cultural and geographical backgrounds is a specialised skill. It is essential that the group is clear on their objectives and how their activities affect others, that communication is open, inclusive and effective, and that the most rigorous, scientific approach based on statistical principles in compliance with regulatory requirements is used. Applying these standards to all vaccine development programs will filter out inappropriate candidates more readily and enhance the efficiency of vaccine development. The challenges of developing a new vaccine are illustrated in human immunodeficiency virus (HIV) vaccinology. Selecting vaccine candidates for HIV requires the ability to evaluate the large number of potential antigens in imperfect and non-standardised animal models. Further, using these models to evaluate questions such as dose scaling to humans, optimal route of administration, the use of adjuvants and potential formulation improvements adds variable to variable, making the interpretation of results particularly challenging. This may lead to the promotion of a poor candidate or the elimination of a good one. The absence of precise immunological correlates of protection and the prohibitive cost of confirmatory clinical trials are further significant barriers. However, there are practical steps that can be taken to standardise early vaccine evaluation, which would result in more efficient development of new vaccines for HIV and other disease areas with similarly challenging development issues (such as hepatitis C virus, influenza, Mycobacterium tuberculosis and malaria).
Collapse
Affiliation(s)
- Mark Sullivan
- Medicines Development Limited, Melbourne, Victoria, Australia.
| |
Collapse
|
31
|
Matsuoka S, Dam E, Lecossier D, Clavel F, Hance AJ. Modulation of HIV-1 infectivity and cyclophilin A-dependence by Gag sequence and target cell type. Retrovirology 2009; 6:21. [PMID: 19254360 PMCID: PMC2653016 DOI: 10.1186/1742-4690-6-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 03/02/2009] [Indexed: 11/10/2022] Open
Abstract
Background HIV-1 Gag proteins are essential for virion assembly and viral replication in newly infected cells. Gag proteins are also strong determinants of viral infectivity; immune escape mutations in the Gag capsid (CA) protein can markedly reduce viral fitness, and interactions of CA with host proteins such as cyclophilin A (CypA) and TRIM5α can have important effects on viral infectivity. Little information, however, is available concerning the extent that different primary Gag proteins affect HIV-1 replication in different cell types, or the impact on viral replication of differences in the expression by target cells of proteins that interact with CA. To address these questions, we compared the infectivity of recombinant HIV-1 viruses expressing Gag-protease sequences from primary isolates in different target cells in the presence or absence of agents that disrupt cyclophilin A – CA interactions and correlated these results with the viral genotype and the expression of cyclophilin A and TRIM5α by the target cells. Results Viral infectivity was governed by the nature of the Gag proteins in a target cell-specific fashion. The treatment of target cells with agents that disrupt CypA-CA interactions often produced biphasic dose-response curves in which viral infectivity first increased and subsequently decreased as a function of the dose used. The extent that treatment of target cells with high-dose CypA inhibitors impaired viral infectivity was dependent on several factors, including the viral genotype, the nature of the target cell, and the extent that treatment with low-dose CypA inhibitors increased viral infectivity. Neither the presence of polymorphisms in the CA CypA-binding loop, the level of expression of CypA, or the level of TRIM5α expression could, alone, explain the differences in the shape of the dose-response curves observed or the extent that high-dose CypA inhibitors reduced viral infectivity. Conclusion Multiple interactions between host-cell factors and Gag can strongly affect HIV-1 infectivity, and these vary according to target cell type and the origin of the Gag sequence. Two of the cellular activities involved appear to be modulated in opposite directions by CypA-CA interactions, and Gag sequences determine the intrinsic sensitivity of a given virus to each of these cellular activities.
Collapse
|
32
|
Ndongala ML, Peretz Y, Boulet S, Doroudchi M, Yassine-Diab B, Boulassel MR, Rouleau D, Tremblay C, LeBlanc R, Routy JP, Sékaly RP, Bernard NF. HIV Gag p24 specific responses secreting IFN-gamma and/or IL-2 in treatment-naïve individuals in acute infection early disease (AIED) are associated with low viral load. Clin Immunol 2009; 131:277-87. [PMID: 19135418 DOI: 10.1016/j.clim.2008.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 11/19/2008] [Accepted: 11/21/2008] [Indexed: 01/29/2023]
Abstract
HIV-specific immune responses in acute infection early disease (AIED) may be effective at controlling viral replication and in establishing viral load (VL) set point. However, evidence correlating the function and specificity of these responses with the VL set point is lacking. To address this issue, we screened cells from 59 treatment-naïve HIV infected individuals (33 in AIED and 26 progressors) for responses to the entire HIV proteome using a dual color ELISPOT assay detecting 3 functional lymphocyte populations: single IFN-gamma, dual IFN-gamma/IL-2 and single IL-2 secreting cells. Responses characterized by dual secreting cells contributed more to the HIV specific response in AIED versus chronic infection. Of responses directed to individual HIV gene products the magnitude and breadth of only Gag p24-specific responses for the 3 functional subsets were associated with lower concurrent or set point VL. Therefore the early appearance of broader and more intense Gag-p24-specific responses may be a determinant of subsequent VL.
Collapse
Affiliation(s)
- Michel L Ndongala
- Research Institute of the McGill University Health Center, Montreal General Hospital, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|